

Ivor Horton’s Beginning Java™ 2,
JDK™ 5 Edition

Ivor Horton’s Beginning Java™ 2,
JDK™ 5 Edition

Ivor Horton

Ivor Horton’s Beginning Java™ 2, JDK™ 5 Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Ivor Horton
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 0-7645-6874-4
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1
5B/RU/RS/QU/IN
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.
For technical support, please visit www.wiley.com/techsupport.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.
Library of Congress Cataloging-in-Publication Data
Horton, Ivor.
Ivor Horton’s Beginning Java 2, JDK 5 Edition / Ivor Horton.

p. cm.
Includes index.
ISBN 0-7645-6874-4 (paper/website)
1. Java (Computer program language) I. Title: Ivor Horton’s Beginning Java 2, JDK 5 Edition. II. Title.
QA76.73.J38H6758 2004
005.13’3—dc22

2004017036
Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. Java and JDK are trademarks of Sun
Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

About the Author
Ivor Horton started out as a mathematician, but shortly after graduating, he was lured into messing
about with computers by a well-known manufacturer. He has spent many happy years programming
occasionally useful applications in a variety of languages as well as teaching mainly scientists and engi-
neers to do likewise. He has extensive experience in applying computers to problems in engineering
design and to manufacturing operations in a wide range of industries. He is the author of a number of
tutorial books on programming in C, C++, and Java. When not writing programming books or provid-
ing advice to others, he leads a life of leisure.

Credits
Executive Editor
Robert Elliott

Senior Development Editor
Kevin Kent

Technical Editors
Calvin Austin, J2SE 5.0 Specification Lead, Sun
Microsystems
Wiley-Dreamtech India Pvt Ltd

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
Karl Brandt
Jonelle Burns
Kelly Emkow
Carrie Foster
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Ron Terry

Quality Control Technicians
Joe Niesen
Susan Moritz
Brian H. Walls

Media Development Specialist
Travis Silvers

Proofreading and Indexing
TECHBOOKS Production Services

Cover Photograph
© Ian Capener

Foreword

You are probably reading this foreword with one of several things in mind. First, is this the right book
for me, is the material current, and does the text reflect the final API? Second, what should I expect to
learn and where should I start reading a book of this length?

Many of the forewords I have seen will lead you through an amusing anecdote or story and then men-
tion a little about the author, but then fail to leave you any wiser about the answer to those questions. So,
to get straight to the point and to answer the second question first, this is a book that you can start from
page one and read right through to the end. If you haven’t read any of Ivor Horton’s books before, you
are in for a pleasant surprise. Ivor’s style is very accessible, which makes the content easy to follow and
understand. I know, because I have read this book from cover to cover.

This edition of Ivor Horton’s Beginning Java 2, JDK 5 Edition is based on the J2SE 5.0 platform. The J2SE 5.0
release is one of the most significant updates to the Java platform in many years and has been three
years in the making. The release involved 160 experts worldwide, all working through the Java
Community Process and focused on making the platform better for all developers. I have been involved
with the project since day one as the Specification Lead for JSR 176, which defines the contents of J2SE
5.0. As such, I had a great interest in making sure that this book is accurate and matches the final API set.
I’ve even compiled and run every code example twice, and there are a lot of great examples, as you will
find out.

So what can you expect to learn from this new edition? First, Ivor covers the basic programming blocks
and gets you started with your first Java program. Ivor then introduces the Java language changes step
by step, including the new generic types, the enhanced for loop, enumerated types, and many others.
You will also get to use the new language changes in later chapters and learn some of the other non-
language features, such as XML DOM3 updates. So whether you are a new developer or already have
some Java programming experience, you will gain the skills needed to work with the latest Java release.

In closing, I encourage you to read and enjoy what JDK 5.0 has to offer and find out how easy using J2SE
5.0 really is.

Calvin Austin
J2SE 5.0 Specification Lead
Sun Microsystems

Acknowledgments

While a book is usually attributed to the author, a book — particularly a large book such as this — is
always the result of the efforts of a sizeable team of people. I’d therefore like to thank all the editorial
and production staff at Wiley who worked so hard to produce this fifth edition of my Java tutorial from
my initial draft.

I’d especially like to thank Calvin Austin of Sun Microsystems for his extensive technical input. He
somehow found the time to go through the complete text and try out all the examples — twice — in spite
of the considerable demands of his day job. Calvin’s suggestions for improvements were invaluable, as
was his ability to spot my mistakes, and I’m particularly grateful for his indications of where I’d missed
some of the inevitable changes arising from the evolution of the J2SE 5.0 API during the beta phases.
Any errors that remain are, of course, my own, but there are surely fewer of them as a consequence of
Calvin’s efforts.

I’d also like to thank readers of past editions of Ivor Horton’s Beginning Java for their numerous sugges-
tions for corrections and improvements. In addition to the many changes that I made in response to
these, I also updated and reintroduced the chapters on using JDBC that were omitted from the previous
edition, in response to requests from a number of readers. The greatly increased page count of this edi-
tion over the previous edition is only in part a consequence of restoring the JDBC tutorial. The bulk of
the additional page count is attributable to new material relating to the features introduced by J2SE 5.0
that deliver exciting new capabilities for every Java programmer. The J2SE 5.0 release is truly a major
step forward that encompasses important extensions to the Java language as well as major additions to
the class libraries.

Finally I’d like to thank my wife, Eve, who provides unstinting support for whatever I happen to be
doing and cheerfully accepts my complaints about the workload that I freely elected to undertake. She
always manages to be on hand whenever I need sustenance or sympathy, or both, and undoubtedly I
would never have finished this book without her.

Ivor Horton

Contents

About the Author v
Foreword ix
Acknowledgments xi
Introduction xxxvii

Chapter 1: Introducing Java 1

What Is Java All About? 1
Features of the Java Language 2
Learning Java 3

Java Programs 3
Learning Java — The Road Ahead 3

The Java Environment 4
Java Program Development 5

Installing the JDK 6
Compiling a Java Program 8
Executing a Java Application 9
Executing an Applet 10

Object-Oriented Programming in Java 12
So What Are Objects? 13
What Defines a Class of Objects? 14
Operating on Objects 17
Java Program Statements 19
Encapsulation 20
Classes and Data Types 20
Classes and Subclasses 21
Advantages of Using Objects 21

Java Program Structure 21
Java’s Class Library 22
Java Applications 24

Java and Unicode 27
Summary 27
Resources 28

xiv

Contents

Chapter 2: Programs, Data, Variables, and Calculation 29

Data and Variables 29
Naming Your Variables 30
Variable Names and Unicode 31
Variables and Types 31

Integer Data Types 31
Integer Literals 33
Declaring Integer Variables 34

Floating-Point Data Types 36
Floating-Point Literals 36
Declaring Floating-Point Variables 37

Fixing the Value of a Variable 37
Arithmetic Calculations 38

Integer Calculations 39
Producing Output 44

Integer Division and Remainders 45
The Increment and Decrement Operators 46
Computation with Shorter Integer Types 48
Errors in Integer Arithmetic 49
Floating-Point Calculations 49

Other Floating-Point Arithmetic Operators 50
Error Conditions in Floating-Point Arithmetic 51

Mixed Arithmetic Expressions 51
Explicit Casting 52
Automatic Type Conversions in Assignments 52

The op= Operators 53
Mathematical Functions and Constants 54

Importing the Math Class Methods 59
Storing Characters 60

Character Escape Sequences 60
Character Arithmetic 61

Bitwise Operations 63
Using the AND and OR Operators 65
Using the Exclusive OR Operator 68
Shift Operations 70
Methods for Bitwise Operations 74

Variables with a Fixed Set of Integer Values 77
Boolean Variables 79
Operator Precedence 80
Program Comments 81

Documentation Comments 82

xv

Contents

Summary 83
Exercises 84

Chapter 3: Loops and Logic 85

Making Decisions 85
Making Comparisons 86
The if Statement 87

Statement Blocks 88
The else Clause 90

Nested if Statements 91
Comparing Enumeration Values 94

Logical Operators 95
Logical AND Operations 95
&& versus & 97
Logical OR Operations 98
Boolean NOT Operations 98
Character Testing Using Standard Library Methods 99

The Conditional Operator 100
The switch Statement 102

The General Case of the switch Statement 104
Variable Scope 108
Loops 111

Varieties of Loop 112
Counting Using Floating-Point Values 117

Nested Loops 121
The continue Statement 123

The Labeled continue Statement 123
Using the break Statement in a Loop 124

Breaking Indefinite Loops 127
The Labeled break Statement 128

Assertions 130
More Complex Assertions 132

Summary 133
Exercises 134

Chapter 4: Arrays and Strings 135

Arrays 135
Array Variables 136
Defining an Array 136
The Length of an Array 137

xvi

Contents

Accessing Array Elements 138
Reusing Array Variables 138
Initializing Arrays 139

Using a Utility Method to Initialize an Array 140
Initializing an Array Variable 141

Using Arrays 142
Using the Collection-Based for Loop with an Array 143

Arrays of Arrays 145
Arrays of Arrays of Varying Length 149
Multidimensional Arrays 151

Arrays of Characters 152
Strings 152

String Literals 153
Creating String Objects 153
Arrays of Strings 155

Operations on Strings 157
Joining Strings 157
Comparing Strings 161

Comparing Strings for Equality 163
String Interning 166
Checking the Start and End of a String 167

Sequencing Strings 167
Accessing String Characters 169

Extracting String Characters 170
Searching Strings for Characters 172
Searching for Substrings 173
Extracting Substrings 177

Tokenizing a String 179
Modified Versions of String Objects 182
Creating Character Arrays from String Objects 182
Using the Collection-Based for Loop with a String 183
Obtaining the Characters in a String as an Array of Bytes 183
Creating String Objects from Character Arrays 184

Mutable Strings 184
Creating StringBuffer Objects 185
The Capacity of a StringBuffer Object 186
Changing the String Length for a StringBuffer Object 188
Adding to a StringBuffer Object 189

Appending a Substring 189
Appending Basic Types 190

Finding the Position of a Substring 191
Replacing a Substring in the Buffer 192
Inserting Strings 192

xvii

Contents

Extracting Characters from a Mutable String 193
Other Mutable String Operations 193
Creating a String Object from a StringBuffer Object 194

Summary 196
Exercises 197

Chapter 5: Defining Classes 199

What Is a Class? 200
Fields in a Class Definition 200
Methods in a Class Definition 202
Accessing Variables and Methods 203

Defining Classes 204
Defining Methods 205

Returning from a Method 206
The Parameter List 206

How Argument Values Are Passed to a Method 208
Final Parameters 209

Defining Class Methods 209
Accessing Class Data Members in a Method 209
The Variable this 210
Initializing Data Members 211

Using Initialization Blocks 212
Constructors 215

The Default Constructor 216
Creating Objects of a Class 217

Passing Objects to a Method 218
The Lifetime of an Object 219

Defining and Using a Class 220
Method Overloading 222

Multiple Constructors 223
Calling a Constructor from a Constructor 225

Duplicating Objects Using a Constructor 226
Using Objects 227

Creating a Point from Two Lines 230
Recursion 233
Understanding Packages 236

Packaging Up Your Classes 237
Packages and the Directory Structure 237
Compiling a Package 238
Accessing a Package 239
Using Extensions 240

Adding Classes from a Package to Your Program 241

xviii

Contents

Packages and Names in Your Programs 241
Importing Static Class Members 242
Standard Packages 243

Standard Classes Encapsulating the Primitive Data Types 244
Controlling Access to Class Members 246

Using Access Attributes 246
Specifying Access Attributes 248
Choosing Access Attributes 250

Using Package and Access Attributes 251
Nested Classes 256

Static Nested Classes 257
Using a Non-Static Nested Class 262
Using a Nested Class Outside the Top-Level Class 263
Local Nested Classes 264

The finalize() Method 265
Native Methods 266
Summary 266
Exercises 267

Chapter 6: Extending Classes and Inheritance 269

Using Existing Classes 269
Class Inheritance 271

Inheriting Data Members 272
Hidden Data Members 273

Inherited Methods 273
Objects of a Derived Class 274
Deriving a Class 275
Derived Class Constructors 275
Calling the Base Class Constructor 276

Overriding a Base Class Method 277
Choosing Base Class Access Attributes 279
Polymorphism 279

Using Polymorphism 282
Multiple Levels of Inheritance 286
Abstract Classes 287
The Universal Superclass 288

The toString() Method 289
Determining the Type of an Object 289
Copying Objects 291

Methods Accepting a Variable Number of Arguments 295
Limiting the Types in a Variable Argument List 297

xix

Contents

Casting Objects 298
When to Cast Objects 300
Identifying Objects 301

More on Enumerations 302
Adding Members to an Enumeration Class 303

Designing Classes 307
A Classy Example 307

Designing the PolyLine Class 309
A General-Purpose Linked List 313

Using the final Modifier 317
Interfaces 318

Encapsulating Constants in a Program 319
Constants in an Interface 320
Constants Defined in a Class 321

Interfaces Declaring Methods 323
A Partial Interface Implementation 324

Extending Interfaces 325
Interfaces and Multiple Inheritance 326

Using Interfaces 326
Interfaces and Polymorphism 327
Using Multiple Interfaces 333

Method Parameters of Interface Types 333
Nesting Classes in an Interface Definition 334
Interfaces and the Real World 334

Anonymous Classes 335
Summary 335
Exercises 337

Chapter 7: Exceptions 339

The Idea Behind Exceptions 339
Types of Exceptions 340

Error Exceptions 341
RuntimeException Exceptions 342
Other Subclasses of Exception 343

Dealing with Exceptions 344
Specifying the Exceptions a Method Can Throw 344
Handling Exceptions 345
The try Block 345
The catch Block 345

try catch Bonding 347
Multiple catch Blocks 349

The finally Block 350

xx

Contents

Structuring a Method 351
Execution Sequence 352

Normal Execution of a Method 355
Execution When an Exception Is Thrown 356
Execution When an Exception Is Not Caught 357

Nested try Blocks 358
Rethrowing Exceptions 359

Exception Objects 359
The Throwable Class 359
Standard Exceptions 362

Defining Your Own Exceptions 362
Defining an Exception Class 363
Throwing Your Own Exception 363
An Exception Handling Strategy 364

An Example of an Exception Class 364
Summary 368
Exercises 368

Chapter 8: Understanding Streams 371

Streams and the New I/O Capability 371
Understanding Streams 372

Input and Output Streams 373
Binary and Character Streams 374

The Classes for Input and Output 375
Basic Input Stream Operations 375
Basic Output Stream Operations 379
Stream Readers and Writers 379

Using Readers 381
Using Writers 382

The Standard Streams 384
Getting Data from the Keyboard 384

Tokenizing a Stream 385
Customizing a Stream Tokenizer 387

Writing to the Command Line 392
The printf() Method 392

Formatting Numerical Data 394
Specifying the Width and Precision 395
Formatting Characters and Strings 396
The Locale Class 397

Formatting Data into a String 398
Summary 399
Exercises 399

xxi

Contents

Chapter 9: Accessing Files and Directories 401

Working with File Objects 401
Creating File Objects 402

Portable Path Considerations 404
Absolute and Relative Paths 404

Accessing System Properties 405
Setting System Properties 407

Testing and Checking File Objects 408
Querying Files and Directories 409

Filtering a File List 414
Creating and Modifying Files and Directories 417

Creating File Output Streams 419
Ensuring a File Exists 421
Avoiding Overwriting a File 423
FileDescriptor Objects 424

Summary 425
Exercises 425

Chapter 10: Writing Files 427

File I/O Basics 427
File Input and Output 429
Channels 430

Channel Operations 431
File Channels 433

Buffers 434
Buffer Capacity 434
Buffer Position and Limit 435
Setting the Position and Limit 437
Creating Buffers 438

View Buffers 439
Duplicating and Slicing Buffers 441
Creating Buffers by Wrapping Arrays 443
Wrapping Strings 445

Marking a Buffer 446
Buffer Data Transfers 446
Transferring Data into a Buffer 447
Using View Buffers 449
Preparing a Buffer for Output to a File 449

Writing to a File 451
File Position 453

Using a View Buffer to Load Data into a Byte Buffer 458

xxii

Contents

Writing Varying Length Strings to a File 460
Using a Formatter Object to Load a Buffer 462

Direct and Indirect Buffers 466
Writing Numerical Data to a File 467
Writing Mixed Data to a File 471
Gathering-Write Operations 477

Summary 481
Exercises 482

Chapter 11: Reading Files 483

File Read Operations 483
Creating File Input Streams 484

File Channel Read Operations 485
Reading a Text File 488

Getting Data from the Buffer 489
Reading Binary Data 491
Reading Mixed Data 496

Compacting a Buffer 499
Copying Files 502
Random Access to a File 507
Read/Write Operations with a Single File Channel 512
Memory-Mapped Files 513

Locking a File 517
Locking Part of a File 519
Practical File Locking Considerations 519

Summary 523
Exercises 524

Chapter 12: Serializing Objects 525

Storing Objects in a File 525
Writing an Object to a File 526
Writing Basic Data Types to an Object Stream 528
Implementing the Serializable Interface 529

Conditions for Serialization 532
Transient Data Members of a Class 533

Reading an Object from a File 533
Determining the Class of a Deserialized Object 537
Reading Basic Data from an Object Stream 538

Using Object Serialization 538
Serializing Classes Yourself 541

xxiii

Contents

Serialization Problems and Complications 542
Resetting an Object Output Stream 544

Summary 545
Exercises 546

Chapter 13: Generic Class Types 547

What Are Generic Types? 547
Defining a Generic Class Type 548

Implementing a Generic Type 550
Instantiating a Generic Type 551

Using Primitive Type Wrapper Class Types as Arguments 555
The Runtime Type of Generic Type Instances 557
Relationships between Generic Type Instances 559
Multiple Type Parameters 559
Type Parameter Scope 560
Static Fields in a Generic Type 560
Type Parameter Bounds 561

Generic Types and Generic Interfaces 565
Enabling the Collection-Based for Loop 565
Implementing an Iterator Capability 567
A Parameterized Type for Binary Trees 569

Defining the Generic Type 571
Hidden Constraints in the BinaryTree<> Type 579

Variables of a Raw Type 580
Using Wildcards as Type Parameter Arguments 582

Constraints on a Wildcard 584
More on the Class Class 587

Arrays and Parameterized Types 588
Parameterized Methods 592

Generic Constructors 595
Parameterized Types and Inheritance 598
Summary 599
Exercises 600

Chapter 14: The Collections Framework 601

Understanding the Collections Framework 601
Collections of Objects 602

Sets 603
Sequences 604
Maps 605

Hashing 606

xxiv

Contents

Iterators 606
List Iterators 608

Collection Classes 610
Collection Interfaces 614

Using Vectors 615
Creating a Vector 616

The Capacity and Size of a Vector 618
Storing Objects in a Vector 620
Retrieving Objects from a Vector 621

Accessing Elements in a Vector through a List Iterator 621
Extracting All the Elements from a Vector 622

Removing Objects from a Vector 623
Searching a Vector 625
Applying Vectors 626
Sorting a Collection 630
Stack Storage 632

Linked Lists 638
Using Maps 640

The Hashing Process 640
Using Your Own Class Objects as Keys 642

Generating Hashcodes 642
Creating a HashMap Container 643
Storing, Retrieving, and Removing Objects 644
Processing all the Elements in a Map 646

Summary 657
Exercises 658

Chapter 15: A Collection of Useful Classes 659

Utility Methods for Arrays 659
Filling an Array 660
Comparing Arrays 661
Sorting Arrays 662
Searching Arrays 666

Observable and Observer Objects 670
Defining Classes of Observable Objects 671
Observable Class Methods 671

Generating Random Numbers 675
Random Operations 676

Dates and Times 678
The Date Class 679
Interpreting Date Objects 679

Obtaining a Date Object from a String 684

xxv

Contents

Gregorian Calendars 684
Setting the Date and Time 686
Getting Date and Time Information 687
Modifying Dates and Times 688
Comparing Calendars 688

Regular Expressions 691
Defining Regular Expressions 691

Creating a Pattern 692
Creating a Matcher 693
Searching a String 694
Matching an Entire String 696
Defining Sets of Characters 697
Matching Boundaries 700
Using Quantifiers 701
Tokenizing a String 703
Search and Replace Operations 705
Using Capturing Groups 708
Juggling Captured Text 710

Using a Scanner 714
Creating Scanner Objects 714
Getting Input from a Scanner 715
Testing for Tokens 717
Defining Your Own Patterns for Tokens 718

Summary 720
Exercises 721

Chapter 16: Threads 723

Understanding Threads 723
Creating Threads 726
Stopping a Thread 731
Connecting Threads 733
Thread Scheduling 733
Implementing the Runnable Interface 734

Managing Threads 736
Synchronization 737

Synchronized Methods 737
Synchronizing Statement Blocks 749

Deadlocks 755
Communicating between Threads 756

Using wait() and notifyAll() in the Bank Program 758
Thread Priorities 761

Using Thread Priorities 762

xxvi

Contents

Summary 765
Exercises 766

Chapter 17: Creating Windows 767

Graphical User Interfaces in Java 767
Model-View-Controller (MVC) Architecture 768

Creating a Window 770
Components and Containers 775

Window and Frame Components 776
Window Panes 777

Basics of Components 779
Component Attributes 779
The Size and Position of a Component 780
Points and Rectangles 784

Point Objects 784
Rectangle Objects 785

Visual Characteristics of a Component 788
Defining Color 789
System Colors 791
Creating Cursors 791
Selecting Fonts 792

Swing Components 797
Buttons 798
Menus 799
Text Components 800
Other Swing Components 800

Using Containers 801
Adding Components to a Container 802

Container Layout Managers 803
The Flow Layout Manager 805

Changing the Gap 807
Using a Border Layout Manager 811
Using a Card Layout Manager 813
Using a Grid Layout Manager 815
Using a BoxLayout Manager 817

Struts and Glue 820
Using a GridBagLayout Manager 825

GridBagConstraints Instance Variables 826
Using a SpringLayout Manager 834

Understanding Constraints 835
Defining Constraints 836
Setting Constraints for a Component 837

xxvii

Contents

Adding a Menu to a Window 843
Creating JMenu and JMenuItem 843
Creating a Menu 844
Adding Menu Items to a Menu 847
Adding a Shortcut for a Menu Item 852

More on Applets 854
Converting an Application to an Applet 856

Summary 857
Exercises 858

Chapter 18: Handling Events 861

Window-Based Java Programs 861
Event-Driven Programs 862

The Event-Handling Process 863
Avoiding Deadlocks in GUI Code 865
Event Classes 867

Low-Level Event Classes 868
Making a Window Handle Its Own Events 870
Enabling Other Low-level Events 873

Low-Level Event Listeners 874
The WindowListener Interface 875
The WindowFocusListener Interface 875
The WindowStateListener Interface 875
The MouseListener Interface 876
The MouseMotionListener Interface 876
The MouseWheelListener Interface 876
The KeyListener Interface 876
The FocusListener Interface 877
Using Adapter Classes 879

Semantic Events 882
Semantic Event Listeners 883

Semantic Event Handling in Applets 884
Alternative Event-Handling Approaches 893
Handling Low-Level and Semantic Events 895

Semantic Event Listeners in an Application 896
Listening to Menu Items 896

Fixing the Color Menu Check Marks 902
Using Actions 902

The Action Interface 903
Using Actions as Menu Items 905

Defining Action Classes 906

xxviii

Contents

Adding a Toolbar 911
Adding Buttons to a Toolbar 912

Adding Icons 914
Fixing the Menus 918

Adding Tooltips 920
Disabling Actions 922

Summary 924
Exercises 924

Chapter 19: Drawing in a Window 927

Using the Model/View Architecture 927
Coordinate Systems in Components 931
Drawing on a Component 933

Graphics Contexts 934
The Drawing Process 937
Rendering Operations 938

Shapes 939
Classes Defining Points 939
Lines and Rectangles 941

Combining Rectangles 943
Testing Rectangles 944

Arcs and Ellipses 947
Curves 950
Complex Paths 960

Filling Shapes 966
Gradient Fill 968

Managing Shapes 972
Storing Shapes in the Model 974
Drawing Shapes 975

Drawing Using the Mouse 976
Handling Mouse Events 977
Handling Mouse Button Press Events 979

Using XOR Mode 980
Handling Mouse Dragging Events 981
Handling Button Release Events 983
Locating the Mouse Cursor Using MouseInfo Class Methods 985

Defining Your Own Shape Classes 985
Defining Lines 986
Defining Rectangles 988
Defining Circles 990
Drawing Curves 993

xxix

Contents

Summary 996
Exercises 996

Chapter 20: Extending the GUI 997

Creating a Status Bar 997
Using Dialogs 1002

Modal and Non-Modal Dialogs 1003
A Simple Modal Dialog 1005
Instant Dialogs 1009
Input Dialogs 1011

Using a Dialog to Create Text Elements 1013
A Font Selection Dialog 1023

Creating the Font Dialog Buttons 1026
Adding the Data Pane 1027
Implementing the Font List 1028
Displaying the Selected Font 1031
Using a Split Pane 1031
Using a Spinner 1033
Using Radio Buttons to Select the Font Style 1035
Listening for Radio Buttons 1036

Pop-Up Menus 1039
Displaying a Pop-Up Menu 1040
Implementing a Context Menu 1044

Tracking Mouse Moves 1045
Defining the Other Context Menu 1048
Deleting Elements 1050
Implementing the Send-to-Back Operation 1051

Transforming the User Coordinate System 1052
The AffineTransform Class 1054
Modifying the Transformation for a Graphics Context 1056
Creating AffineTransform Objects 1058

Translating Lines 1060
Translating Rectangles 1062
Translating Circles 1063
Translating Curves 1063
Translating Text 1064
Moving an Element 1065
Rotating Elements 1070

Choosing Custom Colors 1074
Summary 1076
Exercises 1077

xxx

Contents

Chapter 21: Filing and Printing Documents 1079

Serializing the Sketch 1080
Implementing the Serializable Interface 1083

Serializing the List of Elements 1083
Serializing Lines 1084
Serializing Rectangles 1085
Serializing Circles 1086
Serializing Curves 1086
Serializing Text 1089

Supporting the File Menu 1089
Using a File Chooser 1090
File Save Operations 1091

Implementing the Save Operation 1093
Writing a Sketch to a File 1095
Creating a File Filter 1097

File Save As Operations 1099
File Open Operations 1100
Starting a New Sketch 1103
Preventing Data Loss on Close 1104

Printing in Java 1106
Creating and Using PrinterJob Objects 1109

Displaying a Print Dialog 1110
Starting the Printing Process 1111

Printing Pages 1112
The PageFormat Class 1114

Printing the Whole Sketch 1117
Scaling the Sketch to Fit 1120

Printing in Landscape Orientation 1123
Improving the Printing Facilities 1125
Implementing Page Setup 1126
Using the Java Print Dialog 1130

Setting Print Request Attributes Programmatically 1132
Multipage Document Printing 1134

Implementing the Pageable Interface 1134
Creating PageFormat Objects 1135
Dealing with Paper 1136

Printing Using a Book 1143
Printing Swing Components 1146

Summary 1149
Exercises 1150

1
Introducing Java

This chapter will give you an appreciation of what the Java language is all about. Understanding
the details of what I’ll discuss in this chapter is not important at this stage; you will see all of the
topics again in greater depth in later chapters of the book. The intent of this chapter is to introduce
you to the general ideas that underpin what I’ll be covering through the rest of the book, as well as
the major contexts in which Java programs can be used and the kind of program that is applicable
in each context.

In this chapter you will learn:

❑ The basic characteristics of the Java language

❑ How Java programs work on your computer

❑ Why Java programs are portable between different computers

❑ The basic ideas behind object-oriented programming

❑ How a simple Java program looks and how you can run it using the Java Development Kit

❑ What HTML is and how it is used to include a Java program in a web page

What Is Java All About?
Java is an innovative programming language that has become the language of choice for programs
that need to run on a variety of different computer systems. First of all, Java enables you to write
small programs called applets. These are programs that you can embed in web pages to provide
some intelligence. Being able to embed executable code in a web page introduces a vast range of
exciting possibilities. Instead of being a passive presentation of text and graphics, a web page can
be interactive in any way that you want. You can include animations, games, interactive transac-
tion processing — the possibilities are almost unlimited.

Of course, embedding program code in a web page creates special security requirements. As an Internet
user accessing a page with embedded Java code, you need to be confident that it won’t do anything that
might interfere with the operation of your computer, or damage the data you have on your system. This
implies that execution of the embedded code must be controlled in such a way that it will prevent acci-
dental damage to your computer environment, as well as ensure that any Java code that was created with
malicious intent is effectively inhibited. Java implicitly incorporates measures to minimize the possibility
of such occurrences arising with a Java applet.

Java’s support for the Internet and network-based applications generally doesn’t end with applets. For
example, Java Server Pages (JSP) provides a powerful means of building a server application that can
dynamically create and download HTML pages to a client that are precisely customized for the specific
request that is received. Of course, the pages that are generated by JSP can themselves contain Java applets.

Java also allows you to write large-scale application programs that you can run unchanged on any com-
puter with an operating system environment in which Java is supported. This applies to the majority of
computers in use today. You can even write programs that will work both as ordinary applications and
as applets.

Java has matured immensely in recent years, particularly since the introduction of Java 2. The breadth
of function provided by the standard core Java has grown incredibly. Java provides you with compre-
hensive facilities for building applications with an interactive graphical user interface (GUI), extensive
image processing and graphics programming facilities, as well as support for accessing relational data-
bases and communicating with remote computers over a network. Just about any kind of application
can now be programmed effectively in Java, with the implicit plus of complete portability.

Of course, Java is still developing and growing. Amongst a myriad of other enhancements, release 1.4
of Java added a major additional capability, the ability to read and write XML. Java 5.0, which followed
release 1.4, adds further new facilities, including important new language features as well as significant
additions to the class libraries. You’ll be learning about all of these in this book.

Features of The Java Language
The most important characteristic of Java is that it was designed from the outset to be machine indepen-
dent. You can run Java programs unchanged on any machine and operating system combination that
supports Java. Of course, there is still the slim possibility of the odd glitch, as you are ultimately depen-
dent on the implementation of Java on any particular machine, but Java programs are intrinsically more
portable than programs written in other languages. An application written in Java will only require a
single set of source code statements, regardless of the number of different computer platforms on which
it is run. In any other programming language, the application will frequently require the source code to
be tailored to accommodate different computer environments, particularly if an extensive graphical user
interface is involved. Java offers substantial savings in time and resources in developing, supporting,
and maintaining major applications on several different hardware platforms and operating systems.

Possibly the next most important characteristic of Java is that it is object-oriented. The object-oriented
approach to programming is also an implicit feature of all Java programs, so we will be looking at what
this implies later in this chapter. Object-oriented programs are easier to understand and less time-
consuming to maintain and extend than programs that have been written without the benefit of using
objects.

2

Chapter 1

Not only is Java object-oriented, but it also manages to avoid many of the difficulties and complications
that are inherent in some other object-oriented languages, making it easy to learn and very straight-
forward to use. By and large, it lacks the traps and “gotchas” that arise in some other programming
languages. This makes the learning cycle shorter, and you need less real-world coding experience to
gain competence and confidence. It also makes Java code easier to test.

Java has a built-in ability to support national character sets. You can write Java programs as easily for
use in Greece or Japan as you can for English-speaking countries, always assuming you are familiar with
the national languages involved, of course. You can even build programs from the outset to support sev-
eral different national languages with automatic adaptation to the environment in which the code executes.

Learning Java
Java is not difficult to learn, but there is a great deal to it. Although the Java language is very powerful, it
is fairly compact, so acquiring an understanding of it will take less time than you think. However, there’s
more to Java than just the language. To be able to program effectively in Java, you also need to under-
stand the libraries that go with the language, and these are very extensive. In this book, the sequence in
which you learn how the language works and how you apply it has been carefully structured so that
you’ll gain expertise and confidence with programming in Java through a relatively easy and painless
process. As far as possible, each chapter avoids the use of things you haven’t learned about already. A
consequence, though, is that you won’t be writing Java applications with a GUI right away. While it may
be an appealing idea, this would be a bit like learning to swim by jumping in the pool at the deep end.
Generally speaking, there is good evidence that by starting in the shallow end of the pool and learning
how to float before you try to swim, you’ll minimize the chance of drowning, and there is a high expec-
tation that you’ll end up being a competent swimmer.

Java Programs
As I have already noted, there are two basic kinds of programs you can write in Java. Programs that are
to be embedded in a web page are called Java applets, and normal standalone programs are called Java
applications. You can further subdivide Java applications into console applications, which only support
character output to your computer screen (to the command line on a PC under Windows, for example),
and windowed applications, which can create and manage multiple windows. The latter use the typical
GUI mechanisms of window-based programs — menus, toolbars, dialogs, and so on.

While you are learning the Java language basics, you will be using console applications as examples to
illustrate how things work. These are applications that use simple command-line input and output. With
this approach you can concentrate on understanding the specifics of the language, without worrying
about any of the complexity involved in creating and managing windows. Once you are comfortable
with using all the features of the Java language, you’ll move on to windowed applications and applet
examples.

Learning Java — The Road Ahead
Before starting out on any journey, it is always helpful to have an idea of where you’re heading and
what route you should take, so let’s take a look at a brief road map of where you’ll be going with Java.
There are five broad stages you’ll progress through in learning Java using this book:

3

Introducing Java

1. The first stage is this chapter. It sets out some fundamental ideas about the structure of Java pro-
grams and how they work. This includes such things as what object-oriented programming is
all about and how an executable program is created from a Java source file. Getting these con-
cepts straight at the outset will make learning to write Java programs that much easier for you.

2. Next, you’ll learn how statements are put together, what facilities you have for storing basic
data in a program, how you perform calculations, and how you make decisions based on the
results of them. These are the nuts and bolts you need for the next stages.

3. In the third stage, you’ll learn about classes — how you define them and how you can use them.
Classes are blueprints for objects, so this is where you’ll learn the object-oriented characteristics
of Java. By the time you are through this stage, you will have learned all the basics of how the
Java language works, so you’ll be ready to progress further into how you can use it.

4. In the fourth stage, you’ll learn how you can segment the activities that your programs carry
out into separate tasks that can execute concurrently. This is particularly important for when
you want to include several applets in a web page, and you don’t want one applet to have
to wait for another to finish executing before it can start. You may want a fancy animation to
continue running while you play a game, for example, with both programs sitting in the same
web page.

5. In the fifth stage, you’ll learn in detail how you implement an application or an applet with a
graphical user interface, and how you handle interactions with the user in this context. This
amounts to applying the capabilities provided by the Java class libraries. When you finish this
stage, you will be equipped to write your own fully fledged applications and applets in Java.

At the end of the book, you should be a knowledgeable Java programmer. The rest is down to experience.

Throughout this book I’ll be using complete examples to explore how Java works. You should create
and run all of the examples, even the simplest, preferably by typing them in yourself. Don’t be afraid to
experiment with them. If there is anything you are not quite clear on, try changing an example around to
see what happens, or better still — write an example of your own. If you’re uncertain how some aspect
of Java that you have already covered works, don’t look it up right away — try it out. Making mistakes is
a very effective way to learn.

The Java Environment
You can run Java programs on a wide variety of computers using a range of operating systems. Your Java
programs will run just as well on a PC running any supported version of Microsoft Windows as it will
on Linux or a Sun Solaris workstation. This is possible because a Java program does not execute directly
on your computer. It runs on a standardized environment called the Java 2 Platform that has been imple-
mented as software on a wide variety of computers and operating systems. The Java Platform consists of
two elements — a software implementation of a hypothetical computer called the Java Virtual Machine
(JVM) and the Java Application Programming Interface (Java API), which is a set of software compo-
nents that provides the facilities you need to write a fully fledged interactive application in Java.

A Java compiler converts the Java source code that you write into a binary program consisting of byte-
codes. Bytecodes are machine instructions for the Java Virtual Machine. When you execute a Java pro-
gram, a program called the Java interpreter inspects and deciphers the bytecodes for it, checks it out to

4

Chapter 1

ensure that it has not been tampered with and is safe to execute, and then executes the actions that the
bytecodes specify within the Java Virtual Machine. A Java interpreter can run standalone, or it can be
part of a web browser such as Netscape Navigator, Mozilla, or Microsoft Internet Explorer where it can
be invoked automatically to run applets in a web page.

Because your Java program consists of bytecodes rather than native machine instructions, it is completely
insulated from the particular hardware on which it is run. Any computer that has the Java environment
implemented will handle your program as well as any other, and because the Java interpreter sits between
your program and the physical machine, it can prevent unauthorized actions in the program from being
executed.

In the past, there has been a penalty for all this flexibility and protection in the speed of execution of
your Java programs. An interpreted Java program would typically run at only one-tenth of the speed
of an equivalent program using native machine instructions. With present Java machine implementa-

tions, much of the performance penalty has been eliminated, and in programs that are not computation
intensive — which is usually the case with the sort of program you would want to include in a web page,
for example — you really wouldn’t notice this anyway. With the JVM that is supplied with the current
Java 2 Development Kit (JDK) available from the Sun web site, there are very few circumstances where
you will notice any appreciable degradation in performance compared to a program compiled to native
machine code.

Java Program Development
For this book you need the Java 2 Platform, Standard Edition (J2SE) version 5.0 or later. You can down-
load the JDK from Sun for a variety of hardware platforms and operating systems, either directly from
the Sun Java web site at http://java.sun.com (for Windows, Solaris, and Linux operating systems)
or from sites that you can link to from there. The JDK you’ll be using is available from http://java.
sun.com/j2se. Versions of the Java Development Kit for Mac OS X are available from http://
devworld.apple.com/java/.

Note that J2SE 5.0 succeeded J2SE 1.4. Normally, release 1.5 would have followed release 1.4, but it was
decided to identify it as release 5.0 in recognition of the significance of the new features that are intro-
duced by release 5.0 and the maturity of the product. Code module names in release 5.0 still use the
denotation 1.5.0 so expect to see folder names incorporating 1.5.0 rather than 5.0, and you’ll see 1.5.0
popping up in a few other places too, so don’t let this confuse you.

One aspect of terminology also causes confusion sometimes — the Java Development Kit has been referred
to at various times as the JDK — the Java Development Kit — and as the SDK — the Software Development
Kit. The current usage with release 5.0 is JDK but with release 1.4 it was SDK, so if you see SDK this gen-
erally means the same as JDK. Just for consistency, I’ll use JDK to refer to any Java Development Kit in
the book.

To create the Java program source files that you will use with the JDK, you’ll need a plaintext editor. Any
editor will do as long as it does not introduce formatting codes into the contents of a file. Quite a num-
ber of shareware and freeware editors around are suitable, some of which are specific to Java, and you
should have no trouble locating one. I find the JCreator editor is particularly good. There’s a free version
and a fee version with more functionality, but the free version is perfectly adequate for learning. You can
download a free copy from http://www.jcreator.com. A good place to start looking if you want to
investigate what other program text editors are available is the http://www.download.com web site.

5

Introducing Java

A number of excellent professional Java program development environments are available, including
products from Sun, Borland, Metrowerks, and Symantec. These all provide very friendly environments
for creating and editing your Java source code and compiling and debugging your programs. These are
powerful tools for the experienced programmer, but for learning Java using this book, I recommend
that you resist the temptation to use any of these, especially if you are relatively new to programming.
Instead, stick to using the JDK from Sun together with a suitable simple program text editor for creating
your source code. So why am I suggesting that you will be better off not using a tool that makes pro-
gramming easier and faster? There are several reasons. Firstly, the professional development systems
tend to hide a lot of things you need to get to grips with so that you have a full understanding of how
Java works. Secondly, the pro development environments are geared to managing complex applications
with a large amount of code, which introduces complexity that you really are better off without while
you are learning. Virtually all commercial Java development systems provide prebuilt facilities of their
own to speed development. While this is very helpful for production program development, it really
does get in the way when you are trying to learn Java. A further consideration is that productivity fea-
tures supported by a commercial Java development are sometimes tied to a specific version of the Java 2
Platform. This means that some features of the latest version of Java may not work. The professional
Java development tools are intended primarily for knowledgeable and experienced programmers, so
start with one when you get to the end of the book.

Having said that, if you really do prefer to work with a commercial Java development system for what-
ever reason, and you have problems with running a particular example from the book, try it out with the
JDK from the command line. The chances are good it will work okay.

Installing the JDK
You can obtain detailed instructions on how to install the JDK for your particular operating system from
the Sun web site, so I won’t go into all the variations for different systems here. However, you should
watch out for a few things that may not leap out from the pages of the installation documentation.

First of all, the JDK and the documentation are separate, and you install them separately. The JDK for
Windows is available in two versions — as a web install where components are downloaded incremen-
tally, and as a full download of an .exe file that you just execute to start installation. The documentation
for the JDK consists of a large number of HTML files structured in a hierarchy that are distributed in a
ZIP archive. You will find it easier to install the JDK first, followed by the documentation. If you install
the JDK to drive C: under Windows, the directory structure shown in Figure 1-1 will be created.

The jdk1.5.0 directory in Figure 1-1 is sometimes referred to as the root directory for Java. In some
contexts it is also referred to as the Java home directory. The actual root directory name may have the
release version number appended, in which case the actual directory name will be of the form
jdk1.5.0_n where n is a release number, so in the first maintenance release, it will be jdk1.5.0_01,
for example.

The sample directory contains sample applications that use JNLP, which is the Java Network Launching
Protocol that is used for executing applications or applets from a network server without the need for a
browser or the need to download and install the code.

You don’t need to worry about the contents of most of these directories, at least not when you get
started, but you should add the path for the jdk1.5.0\bin directory to the paths defined in your PATH
environment variable. That way you will be able to run the compiler and the interpreter from anywhere
without having to specify the path to it. If you installed the JDK to C:, then you need to add the path
C:\jdk1.5.0\bin.

6

Chapter 1

Figure 1-1

A word of warning — if you have previously installed a commercial Java development product, check
that it has not modified your PATH environment variable to include the path to its own Java executables.
If it has, when you try to run the Java compiler or interpreter, you are likely to get the versions supplied
with the commercial product rather that those that came with the JDK. One way to fix this is to remove
the path or paths that cause the problem. If you don’t want to remove the paths that were inserted for
the commercial product, you will have to use the full path specification when you want to run the com-
piler or interpreter from the JDK. The jre directory contains the Java Runtime facilities that are used
when you execute a Java program. The classes in the Java libraries are stored in the jre\lib directory.
They don’t appear individually though. They are all packaged up in the archive, rt.jar. Leave this alone.
The Java Runtime takes care of retrieving what it needs from the archive when your program executes.

The CLASSPATH environment variable is a frequent source of problems and confusion to newcomers to
Java. The current JDK does NOT require CLASSPATH to be defined, and if it has been defined by some
other Java version or system, it is likely to cause problems. Commercial Java development systems and
versions of the Java Development Kit prior to 1.2 may well define the CLASSPATH environment variable,
so check to see whether CLASSPATH has been defined on your system. If it has and you no longer have
whatever defined it installed, you should delete it. If you have to keep the CLASSPATH environment
variable — maybe because you want to keep the system that defined it or you share the machine with
someone who needs it — you will have to use a command-line option to define CLASSPATH temporarily
whenever you compile or execute your Java code. We will see how to do this a little later in this chapter.

If you want the JDK documentation installed in the hierarchy shown in Figure 1-1, then you
should now extract the documentation from the archive to the root directory. This corresponds to
C:\jdk1.5.0 if you installed the JDK to your C: drive. This will create a new subdirectory, docs,
to the root directory, and install the documentation files in that. To look at the documentation, you just
open the index.html file that is in the docs subdirectory.

Extracting the Source Code for the Class Libraries
The source code for the class libraries is included in the archive src.zip that you’ll find in the
jdk1.5.0 root directory. Once you have learned the basics of the Java language, browsing this source is
very educational, and it can also be helpful when you are more experienced with Java in giving a better

jdk1.5.0

bin demo include sample jre

bin lib

lib

Root directory
Contains a src.zip file that contains

the source code files for the
standard library classes

Compiler
Interpreter

+
other

executables

Subdirectories
containing
demo code

C header files
for native

code

JNLP samples

Executables for runtime Class libaries

Java runtime Files used
by executables

7

Introducing Java

understanding of how things work — or when they don’t, why they don’t. You can extract the source
files from the archive using the Winzip utility, the JAR utility that comes with the JDK, or any other util-
ity that will unpack .zip archives — but be warned — there’s a lot of it, and it takes a while!

Extracting the contents of src.zip to the root directory \jdk1.5.0 creates a new subdirectory, src, and
installs the source code in subdirectories to this. To look at the source code for a particular class, just
open the .java file that you are interested in using any plaintext editor.

Compiling a Java Program
Java source code is always stored in files with the extension .java. Once you have created the source
code for a program and saved it in a .java file, you need to process the source using a Java compiler.
Using the compiler that comes with the JDK, you would make the directory that contains your Java
source file the current directory, and then enter the following command:

javac MyProgram.java

Here, javac is the name of the Java compiler, and MyProgram.java is the name of the program source
file. This command assumes that the current directory contains your source file. If it doesn’t, the com-
piler won’t be able to find your source file. It also assumes that the source file corresponds to the Java
language as defined in the current version of the JDK. There is a command-line option, -source, that
you can use to specify the Java language version, so for JDK 5.0, the command above to execute the com-
piler is equivalent to:

javac -source 5 MyProgram.java

Note that you can also use 1.5 as the value with the source command-line option, in which case you
could write the command like this:

javac -source 1.5 MyProgram.java

In practice you can ignore the -source command-line option unless you are compiling a Java program
that was written using an older version of the JDK. For example, to compile code written for JDK 1.4 you
would write:

javac -source 1.4 oldSourceCode.java

Here’s a simple program you can try out the compiler on:

public class MyProgram {

public static void main(String[] args) {

System.out.println(“Rome wasn’t burned in a day!”);

}

}

This just outputs a line of text to the command line. As this is just to try out the compiler, I won’t explain
how the program works at this point. Of course, you must type the code in exactly as shown and save
the source file as MyProgram.java. If you have made any mistakes the compiler will issue error
messages.

8

Chapter 1

If you need to override an existing definition of the CLASSPATH environment variable — perhaps because
it has been set by a Java development system you have installed — the command would be:

javac -classpath . MyProgram.java

The value of CLASSPATH follows the -classpath specification and here it is just a period. This defines
just the path to the current directory, whatever that happens to be. This means that the compiler looks
for your source file or files in the current directory. If you forget to include the period, the compiler will
not be able to find your source files in the current directory. If you include the -classpath . command-
line option in any event, it will do no harm.

Note that you should avoid storing your source files within the directory structure that was created for
the JDK, as this can cause problems. Set up a separate directory of your own to hold the source code for
a program and keep the code for each program in its own directory.

Assuming your program contains no errors, the compiler generates a bytecode program that is the equiva-
lent of your source code. The compiler stores the bytecode program in a file with the same name as the
source file, but with the extension .class. Java executable modules are always stored in a file with the
extension .class. By default, the .class file will be stored in the same directory as the source file.

The command-line options we have introduced here are by no means all the options you have available
for the compiler. You will be able to compile all of the examples in the book just knowing about the
options we have discussed. There is a comprehensive description of all the options within the documen-
tation for the JDK. You can also specify the -help command-line option to get a summary of the stan-
dard options you can use.

If you are using some other product to develop your Java programs, you will probably be using a much
more user-friendly, graphical interface for compiling your programs that won’t involve entering com-
mands such as that shown above. However, the file name extensions for your source file and the object
file that results from it will be just the same.

Executing a Java Application
To execute the bytecode program in the .class file with the Java interpreter in the JDK, you make the
directory containing the .class file current and enter the command:

java -enableassertions MyProgram

Note that we use just the name MyProgram to identify the program, not the name of the file generated
by the compiler, MyProgram.class. It is a common beginner’s mistake to use the latter by analogy with
the compile operation. If you put a .class file extension on MyProgram, your program won’t execute,
and you will get an error message:

Exception in thread “main” java.lang.NoClassDefFoundError: MyProgram/class

While the compiler expects to find the name of your source file, the java interpreter expects the name of
a class, which is MyProgram in this case, not the name of a file. The MyProgram.class file contains the
MyProgram class. We will explain what a class is shortly.

9

Introducing Java

The -enableassertions option is necessary for JDK 5.0 programs that use assertions, and since you
will be using assertions once you have learned about them it’s a good idea to get into the habit of always
using this option. You can abbreviate the -enableassertions option to -ea if you wish.

If you want to override an existing CLASSPATH definition, the option is the same as with the compiler.
You can also abbreviate -classpath to -cp with the compiler or the Java interpreter. Here’s how the
command would look:

java -ea -cp . MyProgram

To execute your program, the Java interpreter analyzes and then executes the bytecode instructions. The
Java Virtual Machine is identical in all computer environments supporting Java, so you can be sure your
program is completely portable. As we already said, your program will run just as well on a Unix Java
implementation as it will on that for Microsoft Windows, Solaris, Linux, OS/2, or any other operating
system that supports Java. (Beware of variations in the level of Java supported though. Some environ-
ments, such as the Macintosh, tend to lag a little, so implementations for Java 2 will typically be avail-
able later than under Windows or Solaris.)

Executing an Applet
The Java compiler in the JDK will compile both applications and applets. However, an applet is not exe-
cuted in the same way as an application. You must embed an applet in a web page before it can be run.
You can then execute it either within a Java 2-enabled web browser, or by using the appletviewer,
a bare-bones browser provided as part of the JDK. It is a good idea to use the appletviewer to run
applets while you are learning. This ensures that if your applet doesn’t work, it is almost certainly your
code that is the problem, rather than some problem in integration with the browser.

If you have compiled an applet and included it in a web page stored as MyApplet.html in the current
directory on your computer, you can execute it by entering the command:

appletviewer MyApplet.html

So how do you put an applet in a web page?

The Hypertext Markup Language
The Hypertext Markup Language, or HTML as it is commonly known, is used to define a web page.
When you define a web page as an HTML document, it is stored in a file with the extension .html. An
HTML document consists of a number of elements, and each element is identified by tags. The docu-
ment will begin with <html> and end with </html>. These delimiters, <html> and </html>, are tags,
and each element in an HTML document will be enclosed between a similar pair of tags between angle
brackets. All element tags are case-insensitive, so you can use uppercase or lowercase, or even a mixture
of the two, but by convention they are capitalized so they stand out from the text. Here is an example of
an HTML document consisting of a title and some other text:

<html>

<head>

<title>This is the title of the document</title>

</head>

<body>

10

Chapter 1

You can put whatever text you like here. The body of a document can contain

all kinds of other HTML elements, including Java applets. Note how each

element always begins with a start tag identifying the element, and ends with

an end tag that is the same as the start tag but with a slash added. The pair

of tags around ‘Java applets’ in the previous sentence will display the text

as bold.

</body>

</html>

There are two elements that can appear directly within the <html> element, a <head> element and a
<body> element, as in the example above. The <head> element provides information about the docu-
ment, and is not strictly part of it. The text enclosed by the <title> element tags that appears here
within the <head> element will be displayed as the window title when the page is viewed.

Other element tags can appear within the <body> element, and they include tags for headings, lists,
tables, links to other pages, and Java applets. There are some elements that do not require an end tag
because they are considered to be empty. An example of this kind of element tag is <hr/>, which speci-
fies a horizontal rule, a line across the full width of the page. You can use the <hr/> tag to divide up a
page and separate one type of element from another.

Adding an Applet to an HTML Document
For many element tag pairs, you can specify an element attribute in the starting tag that defines addi-
tional or qualifying data about the element. This is how a Java applet is identified in an <applet> tag.
Here is an example of how you might include a Java applet in an HTML document:

<html>

<head>

<title> A Simple Program </title>

</head>

<body>

<hr/>

<applet code = “MyFirstApplet.class” width = 300 height = 200 >

</applet>

<hr/>

</body>

</html>

The two shaded lines between tags for horizontal lines specify that the bytecodes for the applet are con-
tained in the file MyFirstApplet.class. The name of the file containing the bytecodes for the applet is
specified as the value for the code attribute in the <applet> tag. The other two attributes, width and
height, define the width and height of the region on the screen that will be used by the applet when it exe-
cutes. These always have to be specified to run an applet. Here is the Java source code for a simple applet:

import javax.swing.JApplet;

import java.awt.Graphics;

public class MyFirstApplet extends JApplet {

public void paint(Graphics g) {

g.drawString(“To climb a ladder, start at the bottom rung”, 20, 90);

}

}

11

Introducing Java

Note that Java is case-sensitive. You can’t enter public with a capital P— if you do, the program won’t
compile. This applet just displays a message when you run it. The mechanics of how the message gets
displayed are irrelevant here — the example is just to illustrate how an applet goes into an HTML page.
If you compile this code and save the previous HTML page specification in the file MyFirstApplet.html
in the same directory as the Java applet code, you can run the applet using appletviewer from the JDK
with the command:

appletviewer MyFirstApplet.html

This will display a window something like that shown in Figure 1-2:

Figure 1-2

In this particular case, the window is produced by Internet Explorer under Windows XP. Under other
operating systems and browsers it is likely to look a little different. Since the height and width of the
window for the applet are specified in pixels, the physical dimensions of the window will depend on the
resolution and size of your monitor.

This example should work by default with Internet Explorer since the installation process for the JDK
will install the Java plug-in for you. If it doesn’t work, check the Internet Options . . . on the Tools menu
for Internet Explorer. On the Advanced tab you should find an option titled “Use JRE v1.5.0 for <applet>
(requires restart)”; make sure this option is checked. If you use Mozilla 1.x or Netscape 7.x, follow the
instruction given in the installation documentation for the JDK to enable the plug-in.

Object-Oriented Programming in Java
As I said at the beginning of this chapter, Java is an object-oriented language. When you use a program-
ming language that is not object-oriented, you must express the solution to every problem essentially in
terms of numbers and characters — the basic kinds of data that you can manipulate in the language. In
an object-oriented language like Java, things are different. Of course, you still have numbers and charac-
ters to work with — these are referred to as the primitive data types — but you can define other kinds of
entities that are relevant to your particular problem. You solve your problem in terms of the entities or
objects that occur in the context of the problem. This not only affects how a program is structured, but
also the terms in which the solution to your problem is expressed. If your problem concerns baseball

12

Chapter 1

players, your Java program is likely to have BaseballPlayer objects in it; if you are producing a pro-
gram dealing with fruit production in California, it may well have objects that are Oranges in it. Apart
from seeming to be an inherently sensible approach to constructing programs, object-oriented programs
are usually easier to understand.

In Java almost everything is an object. If you haven’t delved into object-oriented programming before,
or maybe because you have, you may feel this is a bit daunting. But fear not. Objects in Java are particu-
larly easy. So easy, in fact, that you are going to start out by understanding some of the ideas behind Java
objects right now. In that way you’ll be on the right track from the outset.

This doesn’t mean you are going to jump in with all the precise nitty-gritty of Java that you need for
describing and using objects. You are just going to get the concepts straight at this point. You’ll do this
by taking a stroll through the basics using the odd bit of Java code where it helps the ideas along. All the
code that you use here will be fully explained in later chapters. Concentrate on understanding the notion
of objects first. Then you can ease into the specific practical details as you go along.

So What Are Objects?
Anything can be thought of as an object. Objects are all around you. You can consider Tree to be a par-
ticular class of objects: trees in general. The notion of a Tree in general is a rather abstract concept —
although any tree fits the description, it is more useful to think of more specific types of tree. Hence, the
Oak tree in my yard which I call myOak, the Ash tree in your yard which you call thatDarnedTree, and
a generalSherman, the well-known redwood, are actual instances of specific types of tree, subclasses of
Tree that in this case happen to be Oak, Ash, and Redwood. Note how we drop into the jargon here —
class is a term that describes a specification for a collection of objects with common properties. Figure
1-3 shows some classes of trees and how you might relate them.

A class is a specification, or blueprint — expressed as a piece of program code — that defines what goes
to make up a particular sort of object. A subclass is a class that inherits all the properties of the parent
class, but that also includes extra specialization. Particular classes of Tree, such as Oak or Ash, have all
the characteristics of the most general type, Tree; otherwise, they could not be considered to be such.
However, each subclass of Tree, such as Oak, has its own characteristics that differentiate Oak objects
from other types of Tree.

Of course, you define a class specification to fit what you want to do in your application context. There
are no absolutes here. For my trivial problem, the specification of a Tree class might just consist of its
species name and its height. If you are an arboriculturalist, then your problem with trees may require a
much more complex class, or more likely a set of classes, that involves a mass of arboreal characteristics.

Every object that your program will use will have a corresponding class definition somewhere for
objects of that type. This is true in Java as well as in other object-oriented languages. The basic idea of a
class in programming parallels that of classifying things in the real world. It is a convenient and well-
defined way to group things together.

An instance of a class is a technical term for an existing object of that class. Ash is a specification for a
type of object, and yourAsh is an object constructed to that specification. So, yourAsh would be an
instance of the class Ash. Once you have a class defined, then you can come up with objects, or instances,
of that class. This raises the question of what differentiates an object of a given class from an object of
another class, an Ash class object, say, from a Redwood object. In other words, what sort of information
defines a class?

13

Introducing Java

Figure 1-3

What Defines a Class of Objects?
You may have already guessed the answer. A class definition identifies all the parameters that define an
object of that particular class, at least, so far as your needs go. Someone else might define the class differ-
ently, with a larger or smaller set of parameters to define the same sort of object — it all depends on what
you want to do with the class. You decide what aspects of the objects you include to define that particu-
lar class of object, and you choose them depending on the kinds of problems that you want to address
using the objects of the class. Let’s think about a specific class of objects.

If you were defining a class Hat, for example, you might use just two parameters in the definition. You
could include the type of hat as a string of characters such as “Fedora” or “Baseball cap” and its size
as a numeric value. The parameters that define an object of a class are referred to as instance variables

Generic Tree

derived from derived from

derived from

Redwood

Oak

Ash

Create
instance

Objects of
type Ash

Objects of a class Tree
will have a given set

of properties in common.
Each object of the class
will have its own values

for these properties. myAsh yourAsh

Create
instance

14

Chapter 1

or attributes of a class, or class fields. The instance variables can be basic types of data such as numbers,
but they can also be other class objects. For example, the name of a Hat object could be of type String—
the class String defines objects that are strings of characters.

Of course there are lots of other things you could include to define a Hat if you wanted to, color, for
example, which might be another string of characters such as “Blue”. To specify a class you just decide
what set of attributes meet your requirements, and those are what you use. This is called data abstraction
in the parlance of the object-oriented aficionado because you just abstract the attributes you want to use
from the myriad possibilities for a typical object.

In Java the definition of the class Hat would look something like this:

class Hat {

// Stuff defining the class in detail goes here.

// This could specify the name of the hat, the size,

// maybe the color, and whatever else you felt was necessary.

}

The name of the class follows the word class, and the details of the definition appear between the curly
braces.

I won’t go into the detail of how the class Hat is defined, since you don’t need it at this point. The lines
appearing between the braces above are not code; they are actually program comments, because they
begin with two successive forward slashes. The compiler will ignore anything on a line that follows two
successive forward slashes in your Java programs, so you’ll use this to add explanations to your pro-
grams. Generally, the more useful comments you can add to your programs, the better. You will see in
Chapter 2 that there are other ways you can write comments in Java.

Each object of your class will have a particular set of values defined that characterize that particular
object. You could have an object of type CowboyHat, which might be defined by values such as “Stetson”
for the type of the hat, “White” for the color, and the size as 7. This is illustrated in Figure 1-4.

Although Figure 1-4 shows CowboyHat objects defined by a set of three values that you would not nor-
mally expect to change for a given instance, in general the parameter values that define an object are not
necessarily fixed. You would expect the type and size attributes for a particular CowboyHat object to
stay fixed since hats don’t usually change their size — at least, not unless it’s raining — but you could
have other attributes, as illustrated in Figure 1-5.

You might have a parameter owner, which would record the owner’s name, so the value stored as the
attribute owner could be changed when the hat was sold or otherwise transferred to someone else. You
might also have a parameter hatOn, for example, which would indicate whether the hat was on or off
the owner’s head; the value true would indicate that the owner was indeed wearing the hat, whereas
the value false would mean that the hat had been removed and was just lying about somewhere.

Because the word class has this special role in Java it is called a keyword, and it is
reserved for use only in this context. There are lots of other keywords in Java that
you will pick up as we go along. You just need to remember that you must not use
any of them for any other purposes.

15

Introducing Java

Figure 1-4

Figure 1-5

Class
instances

class CowboyHat {

 String owner;
 String type;
 String color;
 int size;
 boolean hatOn;

{

owner: Jed
type: Stetson
color: White
size: 6
hatOn: false

owner: Slim
type: Stetson
color: Gray
size: 7
hatOn: true

Class
instances

class CowboyHat {

 String type;
 String color;
 int size;

{

type: Stetson
color: White
size: 6

type: Stetson
color: Gray
size: 7

16

Chapter 1

Operating on Objects
In spite of what you might think looking at Figure 1-5, a class object is not just a collection of various
items of data. In addition to the parameters that characterize an object, a class specifies what you can
do with an object of the class — that is, it defines the operations that are possible on objects of the class.
Clearly, for objects to be of any use in a program, you need to decide what you can do with them. The
operations that you specify for objects of a given type will depend on what sort of objects you are talking
about, the attributes they contain, and how you intend to use them.

For the CowboyHat class in Figure 1-5, you may want to have operations that you could refer to as
putHatOn and takeHatOff, which would have meanings that are fairly obvious from their names, and
do make sense for CowboyHat objects. These operations on a particular CowboyHat object would set the
value of hatOn for the object. To determine whether your CowboyHat was on or off, you would just need
to look at this value. Conceivably, you might also have an operation changeOwner by which you could
set the instance variable recording the current owner’s name to a new value. Figure 1-6 shows two oper-
ations applied in succession to a CowboyHat object.

Figure 1-6

owner: TimB
type: Stetson
color: White
size: 7
hatOn: false

changeOwner pu
tH

at
O

n

owner: JonF
type: Stetson
color: White
size: 7
hatOn: true

owner: JonF
type: Stetson
color: White
size: 7
hatOn: false

17

Introducing Java

Of course, for each type of object you can have any operation that makes sense for you. If you want to
have a shootHoleIn operation for Hat objects, that’s no problem. You just have to define what that
operation does to an object.

You are probably wondering at this point how an operation for a class is defined. As you’ll see in detail a
bit later, it boils down to a self-contained block of program code called a method that is identified by the
name you give to it. You can pass data items — which can be integers, floating-point numbers, character
strings, or class objects — to a method, and these will be processed by the code in the method. A method
may also return a data item as a result. Performing an operation on an object amounts to executing the
method that defines that operation for the object.

Just so you’ll recognize one when you see it, let’s take a look at an example of a complete class defini-
tion. The code for the class CowboyHat we have been talking about might be as illustrated in Figure 1-7.

Figure 1-7

These braces
enclose the
code for the
method
putHatOn()

The braces
enclose the
class
definition

These specify the
attributes for the class

This is a special
method that creates
Hat objects

These are the other
class methods

class CowboyHat {

}

private String owner;
private int size;
private boolean hatOn=false;

// Constructor to create a Hat object
public Hat(String person, int theSize) {
 size = theSize; // Set the hat size
 owner = person; // Set the hat owner
}

// Method to put the hat on
public void putHatOn() {
 hatOn = true; // Record hat status as on
}

// Method to put the hat on
public void putHatOn() {
 hatOn = false; // Record hat status as off
}

// Method to change the owner
public void changeOwner(String newOwner) {
 owner = newOwner;
}

// Method to get the hat size
public int getSize() {
 return size; // Return the size of the hat
}

// Name of current owner
// Stores the hat size
// Records whether a hat is on or off

Of course, the only operations you can perform on an instance of a particular class
are those defined within the class, so the usefulness and flexibility of a class is
going to depend on the thought that you give to its definition. We will be looking
into these considerations more in Chapter 5.

18

Chapter 1

This code would be saved in a file with the name CowboyHat.java. The name of a file that contains the
definition of a class is always the same as the class name, and the extension will be .java to identify
that the file contains Java source code.

The code for the class definition appears between the braces that follow the identification for the class,
as shown in Figure 1-7. The code for each of the methods in the class also appears between braces. The
class has three instance variables, owner, size, and hatOn, and this last variable is always initialized
as false. Each object that is created according to this class specification will have its own independent
copy of each of these variables, so each object will have its own unique values for the owner, the hat size,
and whether the hat is on or off. I omitted the type parameter in this version of the class to make the
code a little bit shorter.

The keyword private, which has been applied to each instance variable, ensures that only code within
the methods of the class can access or change the values of these directly. Methods of a class can also be
specified as private. Being able to prevent access to some members of a class from outside is an impor-
tant facility. It protects the internals of the class from being changed or used incorrectly. Someone using
your class in another program can get access only to the bits to which you want them to have access.
This means that you can change how the class works internally without affecting other programs that
may use it. You can change any of the things inside the class that you have designated as private, and
you can even change the code inside any of the public methods, as long as the method name and the
number and types of values passed to it or returned from it remain the same.

Our CowboyHat class also has five methods, so you can do five different things with a CowboyHat object.
One of these is a special method called a constructor, which creates a CowboyHat object — this is the
method with the name, CowboyHat, that is the same as the class name. The items between the paren-
theses that follow the name of the constructor specify data that is to be passed to the method when it is
executed — that is, when a CowboyHat object is created.

Java Program Statements
As you saw in the CowboyHat class example, the code for each method in the class appears between
braces, and it consists of program statements. A semicolon terminates each program statement. A state-
ment in Java can spread over several lines if necessary, since the end of each statement is determined by
the semicolon, not by the end of a line. Here is a Java program statement:

hatOn = false;

If you wanted to, you could also write this as:

hatOn =

false;

In practice you might need to define a few other methods for the class to be useful;
you might want to compare CowboyHat objects for example, to see if one was larger
than another. However, at the moment you just need to get an idea of how the code
looks. The details are of no importance here, as you’ll return to all this in Chapter 5.

19

Introducing Java

You can generally include spaces and tabs, and spread your statements over multiple lines to enhance
readability if it is a particularly long statement, but sensible constraints apply. You can’t put a space in
the middle of a name for instance. If you write hat On, for example, the compiler will read this as two
words.

Encapsulation
At this point we can introduce another bit of jargon you can use to impress or bore your friends —
encapsulation. Encapsulation refers to the hiding of items of data and methods within an object. This
is achieved by specifying them as private in the definition of the class. In the CowboyHat class, the
instance variables owner, type, size, and hatOn were encapsulated. They were accessible only through
the methods defined for the class. Therefore, the only way to alter the values they contain is to call a
method that does that. Being able to encapsulate members of a class in this way is important for the
security and integrity of class objects. You may have a class with data members that can take on only
particular values. By hiding the data members and forcing the use of a method to set or change the val-
ues, you can ensure that only legal values are set.

I mentioned earlier another major advantage of encapsulation — the ability to hide the implementation
of a class. By allowing only limited access to the members of a class, you have the freedom to change the
internals of the class without necessitating changes to programs that use the class. As long as the exter-
nal characteristics of the methods that can be called from outside the class remain unchanged, the inter-
nal code can be changed in any way that you, the programmer, want.

A particular object, an instance of CowboyHat, incorporates, or encapsulates, the owner, the size of the
object, and the status of the hat in the instance variable hatOn. Only the constructor, and the putHatOn(),
takeHatOff(), changeOwner(), and getSize() methods can be accessed externally.

Classes and Data Types
Programming is concerned with specifying how data of various kinds is to be processed, massaged,
manipulated, or transformed. Since classes define the types of objects that a program will work with,
you can consider defining a class to be the same as defining a data type. Thus, Hat is a type of data,
as is Tree, and any other class you care to define. Java also contains a library of standard classes that
provide you with a whole range of programming tools and facilities. For the most part then, your Java
program will process, massage, manipulate, or transform class objects.

There are some basic types of data in Java that are not classes, and these are called primitive types. I will
go into these in detail in the next chapter, but they are essentially data types for numeric values such as
99 or 3.75, for single characters such as A or ?, and for logical values that can be true or false. Java also
has classes that correspond to each of the primitive data types for reasons that you will see later on, so

Whenever I am referring to a method in the text, I will add a pair of parentheses
after the method name to distinguish it from other things that have names. Some
examples of this appear in the preceding paragraph. A method always has parenthe-
ses in its definition and in its use in a program, as you’ll see, so it makes sense to
represent it in this way in the text.

20

Chapter 1

there is an Integer class that defines objects that encapsulate integers, for example. Every entity in your
Java program that is not of a primitive data type will be an object of a class — either a class that you define
yourself, a class supplied as part of the Java environment, or a class that you obtain from somewhere
else, such as from a specialized support package.

Classes and Subclasses
Many sets of objects that you might define in a class can be subdivided into more specialized subsets
that can also be represented by classes, and Java provides you with the capability to define one class as
a more specialized version of another. This reflects the nature of reality. There are always lots of ways of
dividing a cake — or a forest. Conifer, for example, could be a subclass of the class Tree. The Conifer
class would have all the instance variables and methods of the Tree class, plus some additional instance
variables and/or methods that make it a Conifer in particular. You refer to the Conifer class as a sub-
class of the class Tree, and the class Tree as a superclass of the class Conifer.

When you define a class such as Conifer using another class such as Tree as a starting point, the class
Conifer is said to be derived from the class Tree, and the class Conifer inherits all the attributes of
the class Tree.

Advantages of Using Objects
As I said at the outset, object-oriented programs are written using objects that are specific to the problem
being solved. Your pinball machine simulator may well define and use objects of type Table, Ball,
Flipper, and Bumper. This has tremendous advantages, not only in terms of easing the development
process and making the program code easier to understand, but also in any future expansion of such a
program. Java provides a whole range of standard classes to help you in the development of your pro-
gram, and you can develop your own generic classes to provide a basis for developing programs that
are of particular interest to you.

Because an object includes the methods that can operate on it as well as the data that defines it, program-
ming using objects is much less prone to error. Your object-oriented Java programs should be more robust
than the equivalent in a procedural programming language. Object-oriented programs take a little longer
to design than programs that do not use objects since you must take care in the design of the classes that
you will need, but the time required to write and test the code is sometimes substantially less than that
for procedural programs. Object-oriented programs are also much easier to maintain and extend.

Java Program Structure
Let’s summarize how a Java program is structured:

❑ A Java program always consists of one or more classes.

❑ You typically put the program code for each class in a separate file, and you must give each file
the same name as that of the class that is defined within it.

❑ A Java source file name must have the extension .java.

21

Introducing Java

Thus your file containing the class Hat will be called Hat.java and your file containing the class
BaseballPlayer must have the file name BaseballPlayer.java.

A typical program consists of several files as illustrated in Figure 1-8.

Figure 1-8

This program clearly majors on apparel, with four of the five classes representing clothing. Each source
file contains a class definition, and all of the files that go to make up the program are stored in the same
directory. The source files for your program contain all the code that you wrote, but this is not every-
thing that is ultimately included in the program. There is also code from the Java standard class library,
so let’s take a peek at what that can do.

Java’s Class Library
A library in Java is a collection of classes — usually providing related facilities — that you can use in
your programs. The Java class library provides you with a whole range of goodies, some of which are
essential for your programs to work at all, and some of which make writing your Java programs easier.
To say that the standard class library covers a lot of ground would be something of an understatement,
so I won’t be going into it in detail here; however, you will be looking into how to apply many of the
facilities it provides throughout the book.

Since the class library is a set of classes, it is stored in sets of files where each file contains a class defini-
tion. The classes are grouped together into related sets that are called packages, and each package is
stored in a separate directory. A class in a package can access any of the other classes in the package. A
class in another package may or may not be accessible. We will learn more about this in Chapter 5.

The package name is based on the path to the directory in which the classes belonging to the package
are stored. Classes in the package java.lang for example are stored in the directory path java\lang
(or java/lang under Unix). This path is relative to a particular directory that is automatically known
by the Java run-time environment that executes your code. You can also create your own packages that
will contain classes of your own that you want to reuse in different contexts, and that are related in
some way.

The JDK includes a growing number of standard packages — well over 100 the last time I counted. Some
of the packages you will meet most frequently are:

The complete program consists of 5 files

class MyProgram {

 //Class
 definition

}

MyProgram.Java Coat.java Shoe.java Sock.java Hat.java

class Coat {

 //Class
 definition

}

class Shoe {

 //Class
 definition

}

class Sock {

 //Class
 definition

}

class Hat {

 //Class
 definition

}

22

Chapter 1

Package Name Description

java.lang These classes support the basic language features and the handling
of arrays and strings. Classes in this package are always available
directly in your programs by default because this package is always
automatically loaded with your program.

java.io Classes for data input and output operations.

java.util This package contains utility classes of various kinds, including
classes for managing data within collections or groups of data items.

javax.swing These classes provide easy-to-use and flexible components for
building graphical user interfaces (GUIs). The components in this
package are referred to as Swing components.

java.awt Classes in this package provide the original GUI components
(JDK 1.1) as well as some basic support necessary for Swing
components.

java.awt.geom These classes define two-dimensional geometric shapes.

java.awt.event The classes in this package are used in the implementation of
windowed applications to handle events in your program. Events
are things like moving the mouse, pressing the left mouse button,
or clicking on a menu item.

As noted previously, you can use any of the classes from the java.lang package in your programs
by default. To use classes from the other packages, you typically use import statements to identify the
names of the classes that you need from each package. This allows you to reference the classes by the
simple class name. Without an import statement you would need to specify the fully qualified name of
each class from a package each time you refer to it. As we will see in a moment, the fully qualified name
for a class includes the package name as well as the basic class name. Using fully qualified class names
would make your program code rather cumbersome, and certainly less readable. It would also make
them a lot more tedious to type in.

You can use an import statement to import the name of a single class from a package into your program,
or all the class names. The two import statements at the beginning of the code for the applet you saw
earlier in this chapter are examples of importing a single class name. The first was:

import javax.swing.JApplet;

This statement imports the JApplet class name that is defined in the javax.swing package. Formally, the
name of the JApplet class is not really JApplet— it is the fully qualified name javax.swing.JApplet.
You can use the unqualified name only when you import the class or the complete package containing it
into your program. You can still reference a class from a package even if you don’t import it though — you
just need to use the full class name, javax.swing.JApplet. You could try this out with the applet you
saw earlier if you like. Just delete the two import statements from the file and use the full class names in the
program. Then recompile it. It should work the same as before. Thus, the fully qualified name for a class is
the name of the package in which it is defined, followed by a period, followed by the name given to the
class in its definition.

23

Introducing Java

You could import the names of all the classes in the javax.swing package with the statement:

import javax.swing.*;

The asterisk specifies that all the class names are to be imported. Importing just the class names that
your source code uses makes compilation more efficient, but when you are using a lot of classes from a
package you may find it more convenient to import all the names. This saves typing reams of import
statements for one thing. We will do this with examples of Java code in the book to keep the number of
lines to a minimum. However, there are risks associated with importing all the names in a package.
There may be classes with names that are identical to names you have given to your own classes, which
would obviously create some confusion when you compile your code.

As I indicated earlier, the standard classes do not appear as files or directories on your hard disk. They
are packaged up in a single compressed file, rt.jar, that is stored in the jre/lib directory. This direc-
tory is created when you install the JDK on your computer. A .jar file is a Java archive — a compressed
archive of Java classes. The standard classes that your executable program requires are loaded automati-
cally from rt.jar, so you don’t have to be concerned with it directly at all.

Java Applications
Every Java application contains a class that defines a method called main(). The name of this class is the
name that you use as the argument to the Java interpreter when you run the application. You can call
the class whatever you want, but the method which is executed first in an application is always called
main(). When you run your Java application, the method main() will typically cause methods belong-
ing to other classes to be executed, but the simplest possible Java application program consists of one
class containing just the method main(). As you will see below, the main() method has a particular
fixed form, and if it is not of the required form, it will not be recognized by the Java interpreter as the
method where execution starts.

You can see how this works by taking a look at just such a Java program. You need to enter the program
code using your favorite plaintext editor, or if you have a Java development system with an editor, you
can enter the code for the example using that. When you have entered the code, save the file with the
same name as that used for the class and with the extension .java. For this example the file name will
be OurFirstProgram.java. The code for the program is shown in Figure 1-9

The program consists of a definition for a class I have called OurFirstProgram. The class definition
contains only one method, the method main(). The first line of the definition for the method main() is
always of the form:

public static void main(String[] args)

You will see more on how to use import statements in Chapter 5, as well as more
about how packages are created and used, and you will be exploring the use of
classes from the standard packages in considerable depth throughout the book.

24

Chapter 1

Figure 1-9

The code for the method appears between the pair of curly braces. This version of the method has only
one executable statement:

System.out.println(“Krakatoa, EAST of Java??”);

So what does this statement do? Let’s work through it from left to right:

❑ System is the name of a standard class that contains objects that encapsulate the standard I/O
devices for your system — the keyboard for command-line input and command-line output to
the display. It is contained in the package java.lang, so it is always accessible just by using
the simple class name System.

❑ The object out represents the standard output stream — the command line on your display
screen — and is a data member of the class System. The member, out, is a special kind of mem-
ber of the System class. Like the method main() in our OurFirstProgram class, it is static.
This means that out exists even though there are no objects of type System (more on this in
forthcoming chapters). Using the class name, System, separated from the member name out
by a period —System.out— references the out member.

❑ The bit at the rightmost end of the statement, println(“Krakatoa, EAST of Java??”),
calls the println() method that belongs to the object out, and that outputs the text string that
appears between the parentheses to your display. This demonstrates one way in which you can
call a class method — by using the object name followed by the method name, with a period

This is the definition of the class
OurFirstProgram. The class
definition only contains the
method main().

This is the definition of the method main().
The keyword public indicates it is globally accessible.
The keyword static ensures it is accessible even
though no objects of the class exist.
The keyword void indicates it does not return a value.

public class OurFirstProgram {

}

public static void main(String[] args) {

 System.out.print1n("Krakatoa, EAST of Java??");
}

25

Introducing Java

separating them. The stuff between the parentheses following the name of a method is informa-
tion that is passed to the method when it is executed. As we said, for println() it is the text we
want to output to the command line.

For completeness, the keywords public, static, and void that appear in the method definition are
explained briefly in the annotations to the program code, but you need not be concerned if these still
seem a bit obscure at this point. I will be coming back to them in much more detail in Chapter 5.

You can compile this program using the JDK compiler with the command

javac OurFirstProgram.java

or with the -classpath option specified:

javac –classpath . OurFirstProgram.java

If it didn’t compile, there’s something wrong somewhere. Here’s a checklist of possible sources of the
problem:

❑ You forgot to include the path to the jdk1.5.0\bin directory in your PATH, or maybe you did
not specify the path correctly. This will result in your operating system not being able to find the
javac compiler that is in that directory.

❑ You made an error typing in the program code. Remember Java is case-sensitive, so
OurfirstProgram is not the same as OurFirstProgram, and of course, there must be no spaces
in the class name. If the compiler discovers an error, it will usually identify the line number in the
code where the error was found. In general, watch out for confusing zero, 0, with a small letter o,
or the digit one, 1, with the small letter l. All characters such as periods, commas, and semicolons
in the code are essential and must be in the right place. Parentheses, (), curly braces, {}, and square
brackets, [], always come in matching pairs and are not interchangeable.

❑ The source file name must match the class name exactly. The slightest difference will result in an
error. It must have the extension .java.

Once you have compiled the program successfully, you can execute it with the command:

java –ea OurFirstProgram

The -ea option is not strictly necessary since this program does not use assertions, but if you get used to
putting it in, you won’t forget it when it is necessary. If you need the -classpath option specified:

java –ea –classpath . OurFirstProgram

Assuming the source file compiled correctly, and the jdk1.5.0\bin directory is defined in your path,
the most common reason for the program failing to execute is a typographical error in the class name,
OurFirstProgram. The second most common reason is writing the file name, OurFirstProgram.class,
in the command, whereas it should be just the class name, OurFirstProgram.

When you run the program, it will display the text:

Krakatoa, EAST of Java??

26

Chapter 1

Java and Unicode
Programming to support languages that use anything other than the Latin character set has always been
a major problem. There are a variety of 8-bit character sets defined for many national languages, but if
you want to combine the Latin character set and Cyrillic in the same context, for example, things can get
difficult. If you want to handle Japanese as well, it becomes impossible with an 8-bit character set because
with 8 bits you have only 256 different codes so there just aren’t enough character codes to go round.
Unicode is a standard character set that was developed to allow the characters necessary for almost all
languages to be encoded. It uses a 16-bit code to represent a character (so each character occupies 2 bytes),
and with 16 bits up to 65,535 non-zero character codes can be distinguished. With so many character
codes available, there is enough to allocate each major national character set its own set of codes, includ-
ing character sets such as Kanji, which is used for Japanese and which requires thousands of character
codes. It doesn’t end there though. Unicode supports three encoding forms that allow up to a million
additional characters to be represented.

As you’ll see in Chapter 2, Java source code is in Unicode characters. Comments, identifiers (names in
other words — see Chapter 2), and character and string literals can all use any characters in the Unicode
set that represent letters. Java also supports Unicode internally to represent characters and strings, so the
framework is there for a comprehensive international language capability in a program. The normal
ASCII set that you are probably familiar with corresponds to the first 128 characters of the Unicode set.
Apart from being aware that each character usually occupies 2 bytes, you can ignore the fact that you are
handling Unicode characters in the main, unless of course you are building an application that supports
multiple languages from the outset.

I say each Unicode character usually occupies 2 bytes because Java supports Unicode 4.0, which allows
32-bit characters called surrogates. You might think that the set of 64K characters that you can represent
with 16 bits would be sufficient, but it isn’t. Far-eastern languages such as Japanese, Korean, and Chinese
alone involve more than 70,000 ideographs, and surrogates are used to represent characters that are not
contained within the basic multilingual set that is defined by 16-bit characters.

Summary
In this chapter you’ve looked at the basic characteristics of Java, and how portability between different
computers is achieved. I have also introduced you to the elements of object-oriented programming.
There are bound to be some aspects of what I’ve discussed that you don’t feel are completely clear to
you. Don’t worry about it. Everything I have discussed here I will be revisiting again in more detail later
on in the book.

The essential points I have covered in this chapter are:

❑ Java applets are programs that are designed to be embedded in an HTML document. Java appli-
cations are standalone programs. Java applications can be console programs that only support
text output to the screen, or they can be windowed applications with a GUI.

❑ Java programs are intrinsically object-oriented.

❑ Java source code is stored in files with the extension .java.

27

Introducing Java

❑ Java programs are compiled to bytecodes, which are instructions for the Java Virtual Machine.
The Java Virtual Machine is the same on all the computers on which it is implemented, thus
ensuring the portability of Java programs.

❑ Java object code is stored in files with the extension .class.

❑ Java programs are executed by the Java interpreter, which analyses the bytecodes and carries
out the operations they specify.

❑ The Java Development Kit (JDK) supports the compilation and execution of Java applications
and applets.

Resources
You can download the source code for the examples in this book from http://www.wrox.com.

The source code download includes ancillary files, such as .gif files containing icons, for example,
where they are used in the examples. I also include the solutions to the exercises that appear at the end
of most chapters.

28

Chapter 1

2
Programs, Data, Variables,

and Calculation

In this chapter you’ll look at the entities in Java that are not objects — numbers and characters.
This will give you all the elements of the language you need to perform numerical calculations,
and you’ll apply these in a few working examples.

In this chapter you’ll learn:

❑ How to declare and define variables of the basic integer and floating-point types

❑ How to write an assignment statement

❑ How integer and floating-point expressions are evaluated

❑ How to output data from a console program

❑ How mixed integer and floating-point expressions are evaluated

❑ What casting is and when you must use it

❑ What boolean variables are

❑ What determines the sequence in which operators in an expression are executed

❑ How to include comments in your programs

Data and Variables
A variable is a named piece of memory that you use to store information in your Java program —
a piece of data of some description. Each named piece of memory that you define in your program
is able to store data only of one particular type. If you define a variable to store integers, for exam-
ple, you can’t use it to store a value that is a decimal fraction, such as 0.75. If you’ve defined a

variable that you use to refer to a Hat object, you can only use it to reference an object of type Hat (or
any of its subclasses, as you’ll see in Chapter 6). Since the type of data that each variable can store is
fixed, the compiler can verify that each variable you define in your program is not used in a manner or
a context that is inappropriate to its type. If a method in your program is supposed to process integers,
the compiler will be able to detect when you inadvertently try to use the method with some other kind
of data — for example, a string or a numerical value that is not integral.

Explicit data values that appear in your program are called literals. Each literal will also be of a particu-
lar type: 25, for example, is an integer literal of type int. I will go into the characteristics of the various
types of literals that you can use as I discuss each variable type.

Before you can use a variable you must specify its name and type in a declaration statement. Before I
describe how you write a declaration for a variable, let’s consider what flexibility you have in choosing
a name.

Naming Your Variables
The name that you choose for a variable, or indeed the name that you choose for anything in Java, is
called an identifier. An identifier can be any length, but it must start with a letter, an underscore (_), or
a dollar sign ($). The rest of an identifier can include any characters except those used as operators in
Java (such as +, –, or *), but you will be generally better off if you stick to letters, digits, and the under-
score character.

Java is case-sensitive, so the names republican and Republican are not the same. You must not include
blanks or tabs in the middle of a name, so Betty May is out but you could have BettyMay or even
Betty_May. Note that you can’t have 6Pack as a name since you cannot start a name with a numeric
digit. Of course, you could use sixPack as an alternative.

Subject to the restrictions I have mentioned, you can name a variable almost anything you like, except
for two additional restraints — you can’t use keywords in Java as a name for something, and a name
can’t be anything that could be interpreted as a constant value — as a literal, in other words. Keywords
are words that are an essential part of the Java language. You saw some keywords in the previous chap-
ter, and you will learn a few more in this chapter. If you’d like to know what they all are now, see the
complete list in Appendix A. The restriction on constant values is there because, although it is obvious
why a name can’t be 1234 or 37.5, constants can also be alphabetic, such as true and false, for exam-
ple, which are literals of type boolean. Of course, the basic reason for these rules is that the compiler
has to be able to distinguish between your variables and other things that can appear in a program. If
you try to use a name for a variable that makes this impossible, then it’s not a legal name.

Clearly, it makes sense to choose names for your variables that give a good indication of the sort of data
they hold. If you want to record the size of a hat, for example, hatSize is not a bad choice for a variable
name, whereas qqq would be a bad choice. It is a common convention in Java to start variable names
with a lowercase letter and, where you have a name that combines several words, to capitalize the first
letter of each word, as in hatSize or moneyWellSpent. You are in no way obliged to follow this con-
vention but since almost all the Java world does, it helps to do so.

If you feel you need more guidance in naming conventions (and coding conventions in general) take a
look at http://www.javasoft.com/docs/codeconv/.

30

Chapter 2

Variable Names and Unicode
Even though you may be entering your Java programs in an environment that stores ASCII characters,
all Java source code is in Unicode. Although the original source code that you create may be ASCII, it is
converted to Unicode characters internally, before it is compiled. While you can write any Java language
statement using ASCII, the fact that Java supports Unicode provides you with immense flexibility. It
means that the identifiers that you use in your source program can use any national language character
set that is defined within the Unicode character set, so your programs can use French, Greek, or Russian
variable names, for example, or even names in several different languages, as long as you have the means
to enter them in the first place. The same applies to character data that your program defines.

Variables and Types
As I mentioned earlier, each variable that you declare can store values only of a type consistent with the
data type of that variable. You specify the type of a particular variable by using a type name in the vari-
able declaration. For instance, here’s a statement that declares a variable that can store integers:

int numberOfCats;

The data type in this case is int and the variable name is numberOfCats. The semicolon marks the end
of the statement. The variable, numberOfCats, can only store values of type int. Of course, int is a
keyword.

Many of your variables will be used to reference objects, but let’s leave those on one side for the moment,
as they have some special properties. The only things in Java that are not objects are variables that corre-
spond to one of eight basic data types, defined within the language. These fundamental types are referred
to as primitive types, and they allow you to define variables for storing data that fall into one of three
categories:

❑ Numeric values, which can be either integer or floating point

❑ Variables that store the code for a single Unicode character

❑ Logical variables that can assume the values true or false

All of the type names for the basic variable types are keywords in Java so you must not use them for
other purposes. Let’s take a closer look at each of the primitive data types and get a feel for how you can
use them.

Integer Data Types
There are four types of variables that you can use to store integer data. All of these are signed; that is,
they can store both negative and positive values. The four integer types differ in the range of values they
can store, so the choice of type for a variable depends on the range of data values you are likely to need.

31

Programs, Data, Variables, and Calculation

The four integer types in Java are:

Data Type Description

byte Variables of this type can have values from -128 to +127 and occupy 1 byte
(8 bits) in memory

short Variables of this type can have values from -32768 to 32767 and occupy
2 bytes (16 bits) in memory

int Variables of this type can have values from -2147483648 to 2147483647 and
occupy 4 bytes (32 bits) in memory

long Variables of this type can have values from -9223372036854775808 to
9223372036854775807 and occupy 8 bytes (64 bits) in memory

Although I said the choice of type depends on the range of values that you want to be able to store, in
practice you’ll be using variables of type int or type long to store integers most of the time, for reasons
that I’ll explain a little later. Let’s take a look at declarations of variables of each of these types:

byte smallerValue;

short pageCount;

int wordCount;

long bigValue;

Each of these statements declares a variable of the type specified.

The range of values that can be stored by each integer type in Java, as shown in the preceding table, is
always the same, regardless of what kind of computer you are using. This is also true of the other primi-
tive types that you will see later in this chapter and has the rather useful effect that your program will
execute in the same way on computers that may be quite different. This is not necessarily the case with
other programming languages.

Of course, although I have expressed the range of possible values for each type as decimal values, inte-
gers are stored internally as binary numbers, and it is the number of bits available to store each type that
determines the maximum and minimum values, as shown in Figure 2-1.

For each of the binary numbers shown here, the leftmost bit is the sign bit, marked with an s. When the
sign bit is 0 the number is positive, and when it is 1 the number is negative. Binary negative numbers are
represented in what is called 2’s complement form. If you are not familiar with this, you will find an
explanation of how it works in Appendix B.

32

Chapter 2

Figure 2-1

Integer Literals
An integer variable stores an integer value, so before you get to use integer variables you need to under-
stand how you write integer values of various types. As I said earlier, a value of any kind in Java is
referred to as a literal. So 1, 10.5, and “This is text” are all examples of literals.

Any integer literal that you specify as a sequence of decimal digits is of type int by default. Thus 1,
-9999, and 123456789 are all literals of type int. If you want to define an integer literal of type long,

you need to append an L to the value. The values 1L, -9999L, and 123456789L are all of type long. You
can also use a lowercase letter l, but don’t — it is too easily confused with the digit 1.

You are perhaps wondering how you specify literals of type byte or short. Because of the way integer
arithmetic works in Java, they just aren’t necessary in the main. You’ll see a couple of instances where an
integer literal may be interpreted by the compiler as type byte or short later in this chapter, but these
situations are the exception.

You can also specify integer literals to base 16 — in other words, as hexadecimal numbers. Hexadecimal
literals in Java have 0x or 0X in front of them and follow the usual convention of using the letters A to F
(or a to f) to represent digits with values 10 to 15, respectively. In case you are a little rusty on hexadeci-
mal values, here are some examples:

1 0

0 1

1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0

s

s

s

s

s

s

s

s

min

max

min

min

max

byte

short

int

long

min

max

max 1

33

Programs, Data, Variables, and Calculation

0x100 1 * 162 + 0 * 161 + 0 * 160 which is 256 in decimal

0x1234 1 * 163 + 2 * 162 + 3 * 161 + 4 * 160 which is 4660 in decimal

0xDEAF 13 * 163 + 14 * 162 + 10 * 161 + 15 * 160 which is 57007 in decimal

0xCAB 12 * 162 + 10 * 161 + 11 * 160 which is 3243 in decimal

If you are not familiar with hexadecimal numbers, you can find an explanation of how these work in
Appendix B. All the hexadecimal literals in the preceding table are of type int. If you want to specify a
hexadecimal literal of type long, you must append L to the literal just as with decimal literals. For exam-
ple, 0x0FL is a hexadecimal literal that is equivalent to the decimal value 15.

There is a further possibility for integer literals — you can also define them as octal values, which is to
base 8, and legal digits in an octal literal can be from 0 to 7. You write literals that are octal numbers with
a leading zero, so 035 and 067 are examples of octal numbers. Each octal digit defines 3 bits, so this num-
ber base was used a lot more frequently in the days when machines used words of lengths that were a
multiple of 3 bits to store a number. You will rarely find it necessary to use octal numbers these days, but
you should take care not to use them by accident. If you put a leading zero at the start of an integer lit-
eral, the Java compiler will think you are specifying an octal value. Unless one of the digits is greater
than 7, which results in the compiler flagging it as an error, you won’t know that you have done this.

Declaring Integer Variables
As you saw earlier, you can declare a variable of type long with the statement:

long bigOne;

This statement is a declaration for the variable bigOne. This specifies that the variable bigOne will store
a value of type long. When this statement is compiled, 8 bytes of memory will be allocated for the vari-
able bigOne. Java does not automatically initialize a variable such as this. If you want your variables to
have an initial value rather than a junk value left over from when the memory was last used, you must
specify your own value in the declaration. To declare and initialize the variable bigOne to 2999999999,
you just write:

long bigOne = 2999999999L;

The variable will be set to the value following the equal sign. It is good practice to always initialize your
variables when you declare them. Note that if you try to use a variable in a calculation that has not had a
value assigned to it, your program will not compile. There are also circumstances where the compiler
cannot determine whether or not a variable has been initialized before it is used if you don’t initialize it
when you declare it, even though it may be obvious to you that it has been. This will also be flagged as
an error, but if you get into the habit of always initializing variables when you declare them, you’ll avoid
all of these problems.

You can declare a variable just about anywhere in your program, but you must declare each variable
before you use it in a calculation. The placement of the declaration has an effect on whether a particular
variable is accessible at a given point in a program, and we will look deeper into the significance of this
in the next chapter. Broadly, you should group related variable declarations together, immediately before
the block of code that uses them.

34

Chapter 2

You can declare and define multiple variables in a single statement. For example:

long bigOne = 999999999L, largeOne = 100000000L;

Here I have declared two variables of type long. A comma separates each variable from the next. You
can declare as many variables as you like in a single statement, although it is usually better to stick to
declaring one variable in each statement, as it helps to make your programs easier to read. A possible
exception occurs with variables that are closely related — an (x,y) coordinate pair representing a point,
for example, which you might reasonably declare as:

int xCoord = 0, yCoord = 0; // Point coordinates

On the same line as the declaration of these two variables, we have a comment following the double
slash, explaining what they are about. The compiler ignores everything from the double slash (//) until
the end of the line. Explaining in comments what your variables are for is a good habit to get into, as it
can be quite surprising how something that was as clear as crystal when you wrote it transmogrifies into
something as clear as mud a few weeks later. You can add comments to your programs in other ways
that we will see a little later in this chapter.

You can also spread a single declaration over several lines if you want. This also can help to make your
program more readable. For example:

int miles = 0, // One mile is 8 furlongs

furlongs = 0, // One furlong is 220 yards

yards = 0, // One yard is 3 feet

feet = 0;

This defines four variables of type int in a single statement with the names miles, furlongs, yards,
and feet. Each variable has 0 as its initial value. Naturally, you must be sure that an initializing value
for a variable is within the range of the type concerned; otherwise, the compiler will complain. Your
compiler is intelligent enough to recognize that you can’t get a quart into a pint pot, or, alternatively, a
long constant into a variable of type int, short, or byte. Because the statement is spread over four
lines, I am able to add a comment on each of the first three lines to explain something about the variable
that appears on it.

To complete the set of variables that store integers you can declare and initialize a variable of type byte
and one of type short with the following two statements:

byte luckyNumber = 7;

short smallNumber = 1234;

Here the compiler can deduce that the integer literals are to be of type byte and short, respectively, and
convert the literals to the appropriate type. It is your responsibility to make sure the initial value will fit
within the range of the variable that you are initializing. If it doesn’t, the compiler will reject the state-
ment and output an error message.

Most of the time you will find that variables of type int will cover your needs for dealing with integers,
with type long being necessary now and again when you have some really big integer values to deal
with. Variables of type byte and short do save a little memory, but unless you have a lot of values of
these types to store, that is, values with a very limited range, they won’t save enough to be worth worry-
ing about. They also introduce complications when you use them in calculations, as you’ll see shortly, so

35

Programs, Data, Variables, and Calculation

generally you should not use them unless it is absolutely necessary. Of course, when you are reading
data from some external source, a disk file for instance, you’ll need to make the type of variable for each
data value correspond to what you expect to read.

Floating-Point Data Types
Numeric values that are not integral are stored as floating-point numbers. A floating-point number has
a fixed number of digits of accuracy but with a very wide range of values. You get a wide range of val-
ues, even though the number of digits is fixed, because the decimal point can “float.” For example, the
values 0.000005, 500.0, and 5000000000000.0 can be written as 5×10-6, 5×102, and 5×1012 respectively —
you have just one digit 5 but you get three different numbers by moving the decimal point around.

There are two primitive floating-point types in Java, type float and type double. These give you a
choice in the number of digits precision available to represent your data values, and in the range of val-
ues that can be accommodated:

Data Type Description

float Variables of this type can have values from -3.4E38 (-3.4 * 1038) to +3.4E38 (+3.4
* 1038) and occupy 4 bytes in memory. Values are represented with approxi-
mately 7 decimal digits accuracy.

double Variables of this type can have values from -1.7E308 (-1.7 * 10308) to +1.7E308
(+1.7 * 10308) and occupy 8 bytes in memory. Values are represented with
approximately 17 decimal digits accuracy. The smallest non-zero value that
you can have is roughly (4.9 * 10–324.

As with integer calculations, floating-point calculations in Java will produce the same results on any
computer.

Floating-Point Literals
Floating-point literals are of type double by default, so 1.0 and 345.678 are both of type double. When
you want to specify a value of type float, you just append an f, or an F, to the value, so 1.0f and
345.678F are both literals of type float. If you are new to programming it is important to note that you
must not include commas as separators when specifying numerical values in your program code. Where
you might normally write a value as 99,786.5, in your code you must write it without the comma, as
99786.5.

When you need to write very large or very small floating-point values, you will usually want to write
them with an exponent — that is, as a decimal value multiplied by a power of 10. You can do this in Java

All floating-point operations and the definitions for values of type float and type
double conform to the IEEE 754 standard.

36

Chapter 2

by writing the number as a decimal value followed by an E, or an e, preceding the power of 10 that you
require. For example, the distance from the Earth to the Sun is approximately 149,600,000 kilometers,
more conveniently written as 1.496E8. Since the E (or e) indicates that what follows is the exponent, this
is equivalent to 1.496 * 108. At the opposite end of the scale, the mass of an electron is around
0.0000000000000000000000000009 grams. This is much more convenient, not to say more readable, when
it is written as 9.0E-28 grams.

Declaring Floating-Point Variables
You declare floating-point variables in a similar way to what you’ve already used for integers. You can
declare and initialize a variable of type double with the following statement:

double sunDistance = 1.496E8;

This declares the variable with the name sunDistance and initializes it with the appropriate value.

Declaring a variable of type float is much the same. For example:

float electronMass = 9E-28F;

This defines and initializes the variable electronMass.

You can, of course, declare more than one variable of a given type in a single statement:

float hisWeight = 185.2F, herWeight = 108.5F;

Remember that you must put the F or f at the end of literals of type float. If you leave it out, the literal
will be of type double, and the compiler won’t convert it automatically to type float.

Fixing the Value of a Variable
Sometimes you will declare and initialize a variable with a value that should never change. For example:

int feet_per_yard = 3;

double mm_per_inch = 25.4;

Both these values should be fixed. There are always 3 feet to a yard, and an inch will always be 25.4 mil-
limeters. Although they are fixed values for which you could use a literal in calculations, it is very con-
venient to store them in a variable because using suitable names makes it clear in your program what
they mean. If you use the value 3 in your program code it could mean anything — but the name
feet_per_yard leaves no doubt as to what it is.

However, ideally you’d like to prevent these variables from varying if possible. Accidental changes to
the number of feet in a yard could make the results of your program suspect to say the least. Java pro-
vides you with a way to fix the value of any variable by using the final keyword when you declare it.
For example:

final int FEET_PER_YARD = 3; // Constant values

final double MM_PER_INCH = 25.4; // that cannot be changed

37

Programs, Data, Variables, and Calculation

The final keyword specifies that the value of a variable is final and must not be changed. The compiler
will check your code for any violations of this and flag them as errors. I’ve used uppercase letters for the
names of the variables here because it is a convention in Java to write constants in this way. This makes
it easy to see which variables are defined as constant values. Obviously, any variable you declare as final
must have an initial value assigned, as you can’t specify it later.

Now that you know how to declare and initialize variables of the basic types, you are nearly ready to
write a program. You just need to look at how you express the calculations you want carried out, and
you store the results.

Arithmetic Calculations
You store the result of a calculation in a variable by using an assignment statement. An assignment
statement consists of three elements: the name of the variable where you want the result stored; the
assignment operator, =, which indicates that this is indeed an assignment operation; and an arithmetic
expression that defines the calculation you want to perform. The whole thing is terminated by a semi-
colon that marks the end of the assignment statement. Here’s a simple example of an assignment
statement:

numFruit = numApples + numOranges; // Calculate the total fruit

When this statement executes, the value of the expression to the right of the assignment operator, =, is
calculated, and the result is stored in the variable that appears to the left of the = sign. In this case, the
values stored in the variables numApples and numOranges are added together, and the result is stored in
the variable numFruit. Of course, you would have to declare all three variables before this statement.

Incrementing a variable by a given amount is a common requirement in programming. Look at the fol-
lowing assignment statement:

numApples = numApples + 1;

The result of evaluating the expression on the right of the = is one more than the value of numApples.
This result is stored back in the variable numApples, so the overall effect of executing the statement is to
increment the value in numApples by 1. You will see an alternative, more concise, way of producing the
same effect shortly.

You can write multiple assignments in a single statement. Suppose you have three variables a, b, and c
that you have defined to be of type int, and you want to set all three to 777. You can do this with the
statement:

a = b = c = 777;

Note that an assignment is different from initialization in a declaration. Initialization causes a variable to
have the value of the constant that you specify when it is created. An assignment involves copying data
from one place in memory to another. For the preceding assignment statement, the compiler will have
allocated some memory (4 bytes) to store the constant 777 as type int. This value will then be copied to
the variable c. The value in c will be extracted and copied to b. Finally, the value in b will be copied to a.
(However, strictly speaking, the compiler may optimize these assignments when it compiles the code to

38

Chapter 2

reduce the inefficiency of performing successive assignments of the same value in the way I have
described.)

With simple assignments of a constant value to a variable of type short or byte, the constant will be
stored as the type of the variable on the left of the =, rather than type int. For example:

short value = 0;

value = 10;

Here you have a declaration statement for the variable value, followed by an assignment statement.
When the declaration executes, it will allocate space for the variable value, and arrange for its initial
value to be 0. The assignment statement that follows the declaration statement needs to have 10 avail-
able as an integer literal of type short, occupying 2 bytes, because value is of type short. The value 10
will then be copied to the variable value.

Now let’s look in more detail at how you perform calculations with integers.

Integer Calculations
The basic operators you use in calculations involving integers are +, -, *, and /, and these have the usual
meanings — add, subtract, multiply, and divide, respectively. Each of these is a binary operator; that is,
they combine two operands to produce a result — 2 + 3 for example will result in 5. An operand is just
the term for a value to which an operator is applied. The priority or precedence that applies when an
expression using these operators is evaluated is the same as you learned at school, so multiplication and
division operations are executed before any addition or subtraction. Evaluating the expression:

20 – 3 * 3 – 9 / 3

will produce the value 8, since it is equivalent to 20 – 9 – 3.

As you will also have learned in school, you can use parentheses in arithmetic calculations to change the
sequence of operations. Expressions within parentheses are always evaluated first, starting with the
innermost when they are nested, so you use parentheses to override the default sequence of operations.
Therefore, the expression

(20 – 3) * (3 – 9) / 3

is equivalent to 17 * (-6) / 3, which results in -34.

Of course, you use these operators with variables that store integer values as well as integer literals. You
could calculate a value to be stored in a variable, area, of type int from values stored in the variables
length and width, also of type int, by writing:

area = length*width;

As I said earlier, these arithmetic operators are binary operators, so called because they require two
operands. There are also unary versions of the + and – operators that apply to a single operand to the
right of the operator. Note that the unary – operator is not just a sign, as in a literal such as –345; it is an
operator that has an effect. When applied to a variable, it results in a value that has the opposite sign to

39

Programs, Data, Variables, and Calculation

that of the value stored in the variable. For example, if the variable count has the value -10, the expres-
sion –count has the value +10. Of course, applying the unary + operator to the value of a variable
results in the same value.

Let’s try out some simple arithmetic in a working console application.

Try It Out Apples and Oranges (or Console Yourself)
Key in the code for this example and save it in a file with the name Fruit.java. You will remember
from the previous chapter that each source file will contain a class definition, and that the name of the
file will be the same as that of the class with the extension .java. Store the file in a directory that is sepa-
rate from the hierarchy containing the JDK. You can give the directory any name that you want, even the
name Fruit if that helps to identify the program that it contains.

public class Fruit {

public static void main(String[] args) {

// Declare and initialize three variables

int numOranges = 5; // Count of oranges

int numApples = 10; // Count of apples

int numFruit = 0; // Count of fruit

numFruit = numOranges + numApples; // Calculate the total fruit count

// Display the result

System.out.println(“A totally fruity program”);

System.out.println(“Total fruit is “ + numFruit);

}

}

Just to remind you, to compile this program using the JDK, first make sure that the current directory is
the one containing your source file and then execute the following command:

javac Fruit.java

As I noted in the previous chapter, you may need to use the -classpath option if the CLASSPATH envi-
ronment variable has been defined. If there are no errors, this will generate a file, Fruit.class, in the
same directory, and this file contains the bytecodes for the program. To execute the program you invoke
the Java interpreter with the class name for your application program:

java -ea Fruit

40

Chapter 2

In some Java development environments, the output may not be displayed long enough for you to see it.
If this is the case, you can add a few lines of code to get the program to wait until you press Enter before
it ends. The additional lines to do this are shown shaded in the following listing:

import java.io.IOException; // For code that delays ending the program

public class FruitWait {

public static void main(String[] args) {

// Declare and initialize three variables

int numOranges = 5; // Count of oranges

int numApples = 10; // Count of apples

int numFruit = 0; // Count of fruit

numFruit = numOranges + numApples; // Calculate the total fruit count

// Display the result

System.out.println(“A totally fruity program”);

System.out.println(“Total fruit is “ + numFruit);

// Code to delay ending the program

System.out.println(“(press Enter to exit)”);

try {

System.in.read(); // Read some input from the keyboard

} catch (IOException e) { // Catch the input exception

return; // and just return

}

}

}

I have changed the class name to FruitWait to distinguish it from the previous version of the program,
so I can put it in a separate file in the code download for the book. I won’t go into this extra code here. If
you need to, just put it in for the moment. You will understand exactly how it works later in the book.

The stuff between the parentheses following main— that is, String[] args— provides a means of
accessing data that is passed to the program from the command line when you run it. I will be going into
this in detail later on in the book so you can just ignore it for now, though you must always include it in
the first line of main(). If you don’t, the program will compile but won’t execute.

All that additional code in the body of the main() method just waits until you press Enter before ending
the program. If necessary, you can include this in all of your console programs to make sure they don’t
disappear before you can read the output. It won’t make any difference to how the rest of the program
works. I will defer discussing in detail what is happening in the bit of code that I have added until I get
to explaining exceptions in Chapter 7.

41

Programs, Data, Variables, and Calculation

If you run this program with the additional code, the output will be similar to the window in Figure 2-2.

Figure 2-2

The basic elements of the code in the original version of the program are shown in Figure 2-3.

42

Chapter 2

Figure 2-3

The program consists of just one class, Fruit, and just one method, main(). Execution of an application
always starts at the first executable statement in the method main(). There are no objects of the class
Fruit defined, but the method main() can still be executed because I have specified it as static. The
method main() is always specified as public and static and with the return type void. The effects of
these three keywords on the method are as follows:

public Specifies that the method is accessible from outside the Fruit class

static Specifies that the method is a class method that is to be executable, even though no
class objects have been created. (Methods that are not static can be executed only for
a particular object of the class, as you’ll see in Chapter 5.)

void Specifies that the method does not return a value

Don’t worry if these are not completely clear to you at this point — you will meet them all again later.

The first three statements in main() declare the variables numOranges, numApples, and numFruit to be
of type int and initialize them to the values 5, 10, and 0, respectively. The next statement adds the val-
ues stored in numOranges and numApples, and stores the result, 15, in the variable numFruit. We then
generate some output from the program.

The public keyword specifies that
main() is accessible from outside of the
class.

The static keyword specifies that main()
exists without any objects being defined.

The void keyword specifies that main()
does not return a value.

Execution starts with the first
statement in the body of main().

This displays the first output line.

This displays the second output
line.

The body
contains the
executable
code for

main() and is
between the

braces.

public class Fruit {

 public static void main(String args) {

 }

}

// Declare and initialize three variables
int numOranges=5;
int numApples=10;
int numFruit=0;

numFruit = numOranges+numApples; // Calculate the total fruit

System.out.println("A totally fruity program");

System.out.println("Total fruit is "+numFruit); // Display the result

43

Programs, Data, Variables, and Calculation

Producing Output
The next two statements use the println() method, which displays text output. The statement looks a
bit complicated but it breaks down quite simply, as Figure 2-4 shows.

Figure 2-4

The text between double quotes, “A totally fruity program”, is a character string. Whenever you
need a string constant, you just put the sequence of characters you want in the string between double
quotes.

You can see from the annotations above how you execute methods that belong to an object. Here we exe-
cute the method println(), which belongs to the object out, which, in turn, is a variable that is a static
member of the class System. Because the object out is static, it exists even if there are no objects of type
System in existence. This is analogous to the use of the keyword static for the method main().

Most objects in a program are not static members of a class though, so calling a method for an object typ-
ically just involves the object name and the method name. For instance, if you guessed, based on the last
example, that to call the putHatOn() method for an object cowboyHat of the type Hat that I introduced
in Chapter 1, you would write

cowboyHat.putHatOn();

you would be right. Don’t worry if you didn’t though. We will be going into this again when we look at
classes in detail. For the moment, any time you want to output something as text to the console, you will
just write

System.out.println(whateverWeWantToDisplay);

with whatever character string you want to display plugged in between the parentheses.

Thus, the second statement in the example:

System.out.println(“Total fruit is “ + numFruit);

This is the name of the class
that contains the object out

This is a static variable
in the class System

Whatever you specify between the parentheses
is passed to the println() method and displayed

This is a method in
the object out

System.out.println("A totally fruity program");

44

Chapter 2

outputs the character string “Total fruit is “ followed by the value of numFruit converted to characters,
which is 15. So what’s the + doing here — it’s obviously not arithmetic we are doing, is it? The addition
operator has a special effect when used with operands that are character strings — it joins them together
to produce a single string. But numFruit is not a string, is it? No, but the left operand, “Total fruit
is “, is, and this causes the compiler to decide that the whole thing is an expression working on char-
acter strings. Therefore, the compiler inserts code that converts the value of the right operand,
numFruit, to a character string to be compatible with the left operand. The effect of the + operation is to
tack the string representation of the value of numFruit onto the end of the string “Total fruit is “.
The composite string is then passed to the println() method to display it on your screen. Dashed
clever, these compilers.

If you wanted to output the value of numOranges as well, you could write:

System.out.println(“Total fruit is “ + numFruit + “ and oranges = “ + numOranges);

Try it out by adding it to the program if you like. You should get the following output:

Total fruit is 15 and oranges = 5

Integer Division and Remainders
When you divide one integer by another and the result is not exact, any remainder is discarded, so the
final result is always an integer. The division 3/2, for example, produces the result 1, and 11/3 produces
the result 3. This makes it easy to divide a given quantity equally amongst a given number of recipients.
To divide numFruit equally between four children, you could write:

int numFruitEach = 0; // Number of fruit for each child

numFruitEach = numFruit/4;

The result of division when the operands are positive is fairly obvious. It’s the amount left over after divid-
ing the right operand, called the divisor, into the left operand, referred to as the dividend, a whole number
of times. The situation when either or both operands are negative deserves a little more exploration.

If you divide 7 by -3, the result will be -2. Similarly, if you divide -10 by 4 the result is -2. If you divide -5
by -3 the result is +1. The magnitude of the result of dividing a value a, by a value b, is the same, regard-
less of the sign of the operands, but the sign of the result depends on the sign of the operands. The sign
of the result will be positive when the operands both have the same sign and negative when the
operands are of different signs and the divisor is not greater than the dividend (in which case the result
is zero). There is one peculiar exception to this. When the divisor is a negative integer of the largest pos-
sible magnitude and the divisor is -1, the result is the same as the dividend, which is negative and there-
fore violates the rule. You can see why this is so by considering specifics.

The value -2147483648 is the negative value of type int that has the largest magnitude. Dividing this by
-1 should result in the value +2147483648, but the largest positive integer you can have as type int is
2147483647, so this result cannot be represented as type int. Therefore, the result is arbitrarily the origi-
nal dividend, -2147483648.

45

Programs, Data, Variables, and Calculation

Dividing by zero is something to be avoided. If you accidentally cause this to be attempted then your
program will be terminated because an exception of type ArithmeticException will be thrown. You’ll
learn what exceptions are and what you can do about them in Chapter 7.

Of course, there are circumstances where you may want to obtain the remainder after a division, and on
these occasions you can calculate the remainder using the modulus operator, %. If you wanted to know
how many fruit were left after dividing the total by 4, you could write:

int remainder = 0;

remainder = numFruit%4; // Calculate the remainder after division by 4

When either or both operands to the remainder operator are negative, the result may not seem to be
obvious but keep in mind that it is related to the divide operation, so if you can work out what the result
of a division will be, you can deduce the result of the remainder operation. You can get a clear idea of
what happens by considering a few examples.

The result of the operation 8 % (-3) is +2. This will be evident if you recall that from the earlier discussion
of division you know that the result of 8 / (-3) is -2. If you multiply the result of the division by the divi-
sor, (-2) * (-3), the result is +6, so a remainder of +2 makes sense. The expression (-8) % 3 produces -2,
which again you can deduce from the result of (-8) / 3 being -2. You have to add -2 to the result of (-2) * 3
to get the original value, -8. Lastly, (-8) % (-3) results in -2, which is also consistent with the divide opera-
tion applied to the same operands.

The modulus operator has the same precedence as multiplication and division and therefore executes
before any add or subtract operations in the same expression. You could add these statements to the pro-
gram, too, if you want to see the modulus operator in action. The following statement will output the
results:

System.out.println(“The number of fruit each is “ + numFruitEach

+ “ and there are “ + remainder + “ left over.”);

The Increment and Decrement Operators
If you want to increment an integer variable by one, you can use the increment operator instead of using
an assignment. You write the increment operator as two successive plus signs, ++. For example, if you
have an integer variable count that you’ve declared as:

int count = 10;

you can then write the statement:

++count; // Add 1 to count

This statement will increase the value of count to 11. If you want to decrease the value of count by 1
you can use the decrement operator, --:

--count; // Subtract 1 from count

46

Chapter 2

At first sight, apart from reducing the typing a little, this doesn’t seem to have much of an advantage
over writing:

count = count – 1; // Subtract 1 from count

However, a big advantage of the increment and decrement operators is that you can use them in an
expression. Try changing the arithmetic statement calculating the sum of numApples and numOranges

in the previous example:

public class Fruit {

public static void main(String[] args) {

// Declare and initialize three variables

int numOranges = 5;

int numApples = 10;

int numFruit = 0;

// Increment oranges and calculate the total fruit

numFruit = ++numOranges + numApples;

System.out.println(“A totally fruity program”);

// Display the result

System.out.println(“Value of oranges is “ + numOranges);

System.out.println(“Total fruit is “ + numFruit);

}

}

The lines that have been altered or added have been highlighted. In addition to the change to the
numFruit calculation, an extra statement has been added to output the final value of numOranges. The
value of numOranges will be increased to 6 before the value of numApples is added, so the value of
numFruit will be 16. Thus, the statement changes the value stored in numOranges as well as the value
stored in numFruit. You could try the decrement operation in the example as well.

A further property of the increment and decrement operators is that they work differently in an expres-
sion depending on whether you put the operator in front of the variable to which it applies, or following
it. When you put the operator in front of a variable, as in the example you have just seen, it’s called the
prefix form. The converse case, with the operator following the variable, is called the postfix form. If
you change the statement in the example to:

numFruit = numOranges++ + numApples;

and run it again, you’ll find that numOranges still ends up with the value 6, but the total stored in
numFruit has remained 15. This is because the effect of the postfix increment operator is to change the
value of numOranges to 6 after the original value, 5, has been used in the expression to supply the value
of numFruit. The postfix decrement operator works similarly, and both operators can be applied to any
type of integer variable.

As you see, no parentheses are necessary in the expression numOranges++ + numApples. You could even
write it as numOranges+++numApples and it will still mean the same thing but it is certainly a lot less obvi-
ous that this is the case. Someone who doesn’t have all the rules for evaluating Java expressions at their fin-
gertips might guess, wrongly, that the expression will execute as numOranges+(++numApples). Such
potential confusion is really the programmer’s fault. You can write it as (numOranges++) + numApples
to make it absolutely clear where the ++ operator belongs. It is a good idea to always add parentheses to
clarify things when there is some possibility of misinterpretation.

47

Programs, Data, Variables, and Calculation

Computation with Shorter Integer Types
I have deliberately used variables of type int in all the previous examples. Computations with variables
of the shorter integer types introduce some complications. This is because all binary integer operations
in Java work only with both operands of type int or both operands of type long. The result is that with
arithmetic expressions using variables of type byte or short, the values of the variables are first con-
verted to type int, and the calculation is carried out using 32-bit arithmetic. The result will therefore be
type int— a 32-bit integer. This has an interesting effect that you can see in the context of the previous
example. Try changing the types of the variables numOranges, numApples, and numFruit in the original
version of the program to type short, for example:

short numOranges = 5;

short numApples = 10;

short numFruit = 0;

You will find that the program will no longer compile. The problem is with the statement:

numFruit = numOranges + numApples;

Since the expression numOranges + numApples produces a 32-bit result, the compiler cannot store this
value in numFruit, as the variable numFruit is only 16 bits long. To make the code acceptable to the
compiler, you must modify the assignment statement so that the 32-bit result of the addition is converted
back to a 16-bit number. You do this by changing the statement to:

numFruit = (short)(numOranges + numApples);

The statement now calculates the sum of numOranges and numApples and then converts, or casts, the
32-bit result to type short before storing it in numFruit. This is called an explicit cast, and the conver-
sion process is referred to as casting. The cast to type short is the expression (short), and the cast
applies to whatever is immediately to the right of (short), so the parentheses around the expression
numOranges + numApples are necessary. Without them the cast would apply only to the variable
numOranges, which is type short anyway, and the code would still not compile.

If the variables here were of type byte, you would need to cast the result of the addition to type byte.
You would write such a cast as (byte). This is a strong clue to how you write casts to other types. In
general, you write a cast to any given type, typename, as the typename between parentheses — thus
(typename).

The effect of the cast to type short in the example is just to take the least significant 16 bits of the result,
discarding the most significant 16 bits. The least significant bits are those at the right-hand end of the
number because the bits in a binary number in Java increase in value from right to left. Thus, the most
significant bits are those at the left-hand end. For the cast to type byte only the least significant 8 bits are
kept. This means that if the magnitude of the result of the addition is such that more than 16 bits are nec-
essary to represent it (or 8 bits in the case of a cast to byte), your answer will be wrong. You will get no
indication from the compiler that this has occurred because it was you, after all, that expressly specified
the cast, and the compiler assumes that you know what you are doing. To minimize the possibility for
such hidden and mystifying errors, you should avoid explicit casts in your programs unless they are
absolutely essential.

48

Chapter 2

An integer arithmetic operation involving a value of type long will always be carried out using 64-bit
values. If the other number in such an operation is not of type long, the compiler will arrange for it to be
cast to type long before the operation is executed. For example:

long result = 0;

long factor = 10L;

int number = 5;

result = factor*number;

To execute the last statement, because the variable factor is of type long, the multiplication will be car-
ried out using long values. The value stored in the variable number will be converted to type long, and
that will be multiplied by the value of factor.

All other integer arithmetic operations involving types other than long are carried out with 32-bit val-
ues. Thus, you really need to consider only two kinds of integer literals:

❑ Type long for operations with 64-bit values where the value has an L appended.

❑ Type int for operations with 32-bit values for all other cases where there is no L at the end of
the number.

Errors in Integer Arithmetic
If you divide an integer value by zero, no sensible result can be produced so an exception will be
thrown, as I mentioned earlier in the chapter. An exception is the way of signaling errors in Java, which I
will discuss in detail in Chapter 7. Using the % operator with a variable or expression for the right-hand
operand that has a zero value will also cause an exception to be thrown.

Note that if an integer expression results in a value that is outside the range of the type of the result, the
result will be truncated to the number of bits for the type you are using and therefore will be incorrect, but
this will not be indicated in any way. It is up to you to make sure that the integer types that you are using
in your program are always able to accommodate any value that might be produced by your calculations.

Problems can arise with intermediate results in some situations. Even when the ultimate result of an
expression is within the legal range, the result of any intermediate calculation that is outside the range
will be truncated, thus causing an incorrect result to be produced. To take a trivial example — if you
multiply 1000000 by 2000000 and divide by 500000 using type int, you will not obtain the correct result
if the multiplication is executed first This is because the result of the multiplication exceeds the maxi-
mum that can be stored as type int. Obviously where you know this sort of problem can occur, you may
be able to circumvent it by using parentheses to make sure the division takes place first — but you need
to remember that integer division produces an integer result, so a different sequence of execution can
produce a different answer.

Floating-Point Calculations
The four basic arithmetic operators, +, -, *, /, are also available for use in floating-point expressions. You
can try some of these out in another version of the Fruit program, which I’ll call AverageFruit.

49

Programs, Data, Variables, and Calculation

Try It Out Average Fruit
Make the following changes to the Fruit.java file, and save this as AverageFruit.java. If necessary,
you can add in the code we used earlier to make the program wait for the Enter key to be pressed before
finishing.

public class AverageFruit {

public static void main(String[] args) {

// Declare and initialize three variables

double numOranges = 50.0E-1; // Initial value is 5.0

double numApples = 1.0E1; // Initial value is 10.0

double averageFruit = 0.0;

averageFruit = (numOranges + numApples)/2.0;

System.out.println(“A totally fruity program”);

System.out.println(“Average fruit is “ + averageFruit);

}

}

This will produce the output:

A totally fruity program

Average fruit is 7.5

The program just computes the average number of fruits of different kinds by dividing the total by 2.0.

Other Floating-Point Arithmetic Operators
You can use ++ and -- with floating-point variables, and they have the same effect as with integer vari-
ables, incrementing or decrementing the floating-point variable to which they are applied by 1.0. You can
use them in prefix or postfix form, and their operation in each case is the same as with integer variables.

You can apply the modulus operator, %, to floating-point values, too. For an operation of the form:

floatOperand1 % floatOperand2

the result will be the floating-point remainder after dividing floatOperand2 into floatOperand1 an
integral number of times. For example, the expression 12.6 % 5.1 will give the result 2.4. In general,
the sign of the result of applying the modulus operator to floating-point values is the sign of the divi-
dend. The magnitude of the result of a floating-point remainder operation is the largest integral value
such that the magnitude of the result of multiplying the divisor by the result of the remainder operation
does not exceed the dividend. For the more mathematically minded, if r is the result of a % b, then the
magnitude of r * b (|r * b|) is not greater than the magnitude of a (|r * b| |a|).

As you can see, I have used various representations for the initializing values for the
variables in the program, which are now of type double. It’s not the ideal way to
write 5.0, but at least it demonstrates that you can write a negative exponent value.

50

Chapter 2

Error Conditions in Floating-Point Arithmetic
There are two error conditions that can occur with floating-point operations that are signaled by a spe-
cial result value being generated. One occurs when a calculation produces a value that is outside the
range that can be represented by the floating-point type you are using, and the other arises when the
result is mathematically indeterminate, such as when your calculation is effectively dividing zero by
zero.

To illustrate the first kind of error you could use a variable to specify the number of types of fruit. You
could define the variable:

double fruitTypes = 2.0;

and then rewrite the calculation as:

averageFruit = (numOranges + numApples)/fruitTypes;

This in itself is not particularly interesting, but if we happened to set fruitTypes to 0.0, the output from
the program would be:

A totally fruity program

Average fruit is Infinity

The value Infinity indicates a positive but effectively infinite result, in that it represents a value that is
greater than the largest number that can be stored as type double. An effectively infinite result that was
negative would be output as -Infinity. You don’t actually need to divide by zero to produce this
effect; any calculation that generates a value that exceeds the maximum value that can be represented as
type double will have the same effect. For example, repeatedly dividing by a very small number, such
as 1.0E-300, will yield an out-of-range result.

If you want to see what an indeterminate result looks like, you can replace the statement to calculate
averageFruit with the following:

averageFruit = (numOranges – 5.0)/(numApples – 10.0);

This statement doesn’t make much sense, but it produces an indeterminate result. The value of
averageFruit is output as NaN. This value is referred to as Not-a-Number, indicating an indeterminate
value. A variable with an indeterminate value will contaminate any subsequent expression in which it is
used, so any operation involving an operand value of NaN will produce the same result of NaN.

A value that is Infinity or -Infinity will be unchanged when you add, subtract, or multiply by finite
values, but if you divide any finite value by Infinity or -Infinity the result will be zero.

Mixed Arithmetic Expressions
You have probably guessed from earlier discussions that you can mix values of the basic types together
in a single expression. The way mixed expressions are treated is governed by some simple rules that
apply to each operator in such an expression. The rules, in the sequence in which they are checked, are:

51

Programs, Data, Variables, and Calculation

❑ If either operand is of type double, the other is converted to double before the operation is
carried out.

❑ If either operand is of type float, the other is converted to float before the operation is
carried out.

❑ If either operand is of type long, the other is converted to long before the operation is
carried out.

The first rule in the sequence that applies to a given operation is the one that is carried out. If neither
operand is double, float, or long, they must be int, short, or byte, so they will be converted to type
int where necessary and use 32-bit arithmetic to produce the result, as we saw earlier in the chapter.

Explicit Casting
It may well be that the default treatment of mixed expressions listed in the preceding section is not what
you want. For example, suppose you have defined a double variable result; and two variables, three
and two, of type int with the values 3 and 2, respectively. If you compute the value of result with the
statement

result = 1.5 + three/two;

the value stored will be 2.5, since three/two will be executed as an integer operation and will produce
the result 1. You may have wanted the term three/two to produce the value 1.5 so the overall result
would be 3.0. You could do this using an explicit cast:

result = 1.5 + (double)three/two;

This causes the value stored in three to be converted to type double before the divide operation takes
place. Then rule 1 applies for the divide operation, and the operand two is also converted to type
double before the divide operation is executed. Hence, the value of result in this case will be 3.0.

Automatic Type Conversions in Assignments
When the type of the result of an arithmetic expression on the right of an assignment operator differs
from the type of the variable on the left, an automatic cast will be applied to the result as long as there is
no possibility of losing information. If you think of the basic types that we have seen so far as being in
the sequence

byte → short → int → long → float → double

You can cast a value from any primitive type to any other, but you need to take care
that you don’t unintentionally lose information when you do so. Obviously casting
from one integer type to another with a more limited range has the potential for los-
ing information, as does casting any floating-point value to an integer. Casting from
type double to type float can also produce an effective infinity when the original
value is greater than the maximum value for a value of type float.

52

Chapter 2

then an automatic conversion will be made as long as it is upwards through the sequence of types, that
is, from left to right. If you want to go in the opposite direction, from type double to type float or
long, for example, then you must insert an explicit cast into your code for the result of the expression on
the right of the assignment operator.

The op= Operators
The op= operators are used in statements of the form

lhs op= rhs;

where op can be any of the arithmetic operators +, -, *, /, %. It also works with some other operators you
haven’t seen yet. The preceding statement is basically a shorthand representation of the statement

lhs = lhs op (rhs);

The right-hand side (rhs) is in brackets because it is worked out first — then the result is combined with
the left-hand side (lhs) using the operation op. Let’s look at a few examples of this to make sure it’s
clear. To increment an int variable count by 5 you can write:

count += 5;

This has the same effect as the statement:

count = count + 5;

Of course, the expression to the right of the op= operator can be anything that is legal in the context, so
the statement:

result /= a % b/(a + b);

is equivalent to:

result = result/(a % b/(a + b));

What I have said so far about op= operations is not quite the whole story. If the type of the result of the
rhs expression is different from the type of lhs, the compiler will automatically insert a cast to convert
the rhs value to the same type as lhs. This would happen with the last example if result was of type
int and a and b were of type double, for example. This is quite different from the way the normal
assignment operation is treated. A statement using the op= operator is really equivalent to:

lhs = (type_of_lhs)(lhs op (rhs));

The automatic conversion will be inserted by the compiler regardless of what the types of lhs and rhs

are. Of course, this can result in information being lost due to the cast, and you will get no indication
that it has occurred. This is different from ordinary assignment statements where an automatic cast will
be allowed only when the range of values for the type of lhs is greater that the range for the type of rhs.

53

Programs, Data, Variables, and Calculation

The complete set of op= operators are:

+= -= *= /= %=

<<= >>= >>>= &= |= ^=

You will meet the operators on the second row later in the book.

Mathematical Functions and Constants
Sooner or later you are likely to need mathematical functions in your programs, even if it’s only to
obtain an absolute value or calculate a square root. Java provides a range of methods that support such
functions as part of the standard library that is stored in the package java.lang, and all these are avail-
able in your program automatically.

The methods that support various additional mathematical functions are implemented in the Math class
as static methods, so to reference a particular function you can just write Math and the name of the
method you wish to use separated by a period. For example, the sqrt() method calculates the square
root of whatever you place between the parentheses. To use the sqrt() method to produce the square
root of the floating-point value that you’ve stored in a variable, aNumber, you would write
Math.sqrt(aNumber).

The class Math includes a range of methods for standard trigonometric functions:

Method Function Argument Type Result Type

sin(arg) sine of the argument double in radians double

cos(arg) cosine of the argument double in radians double

tan(arg) tangent of the argument double in radians double

asin(arg) sin-1 (arc sine) of double double in
the argument radians, with

values from
–π/2 to π/2.

acos(arg) cos-1 (arc cosine) of double double in radi-
the argument ans, with values

from 0.0 to π.

atan(arg) tan-1 (arc tangent) double double in
of the argument radians, with

values from
–π/2 to π/2.

atan2 (arg1,arg2) tan-1 (arc tangent) Both double double in
of arg1/arg2 radians, with

values from
–π to π.

54

Chapter 2

As with all methods, the arguments that you put between the parentheses following the method name
can be any expression that produces a value of the required type. The toRadians() method in the Math
class will convert a double argument that is an angular measurement in degrees to radians. There is a
complementary method, toDegrees(), to convert in the opposite direction. The Math class also defines
double values for e and (, which you can access as Math.E and Math.PI, respectively. If you are not
familiar with these trigonometric operations you can safely ignore them.

You also have methods for evaluating hyperbolic functions, and you can ignore these too if they’re not
your bag:

Method Function Argument Type Result Type

sinh(arg) Hyperbolic sine of the argument, which is: double double

(earg-e-arg)/2

cosh(arg) Hyperbolic cosine of the argument, which is: double double

(earg+e-arg)/2

tanh(arg) Hyperbolic tangent of the argument, which is: double double

(earg-e-arg)/ (earg+e-arg)

You also have a range of numerical functions implemented as static methods in the Math class, and at
least some of these will be useful to you:

Method Function Argument Type Result Type

abs(arg) Calculates the absolute int, long, The same
value of the argument float, or type as the

double argument

max (arg1,arg2) Returns the larger of the int, long, The same
two arguments, both of float, or type as the
the same type double argument

min (arg1,arg2) Returns the smaller of int, long, The same
the two arguments, float, or type as the
both of the same type double argument

ceil(arg) Returns the smallest double double

integer that is greater
than or equal to the
argument

floor(arg) Returns the largest double double

integer that is less than
or equal to the argument

Table continued on following page

55

Programs, Data, Variables, and Calculation

Method Function Argument Type Result Type

round(arg) Calculates the nearest float or Of type int
integer to the argument double for a float
value argument, of

type long for
a double
argument

rint(arg) Calculates the nearest double double

integer to the argument
value

IEEEremainder (arg1,arg2) Calculates the remainder Both of type Of type
when arg1 is divided double double

by arg2

The IEEEremainder() method produces the remainder from arg1 after dividing arg2 into arg1 the
integral number of times that is closest to the exact value of arg1/arg2. This is somewhat different from
the remainder operator. The operation arg1 % arg2 produces the remainder after dividing arg2 into
arg1 the integral number of times that does not exceed the absolute value of arg1. In some situations
this can result in markedly different results. For example, executing the expression 9.0 % 5.0 results in
4.0, whereas the expression Math.IEEEremainder(9.0,5.0) results in –1.0. You can pick one approach
to calculating the remainder or the other, to suit your requirements.

Where more than one type of argument is noted in the table, there are actually several methods, one for
each type of argument, but all have the same name. We will see how this is possible in Java when we
look at implementing class methods in Chapter 5.

There are methods defined in the Math class related to floating-point operations. The signum() method
returns the signum of the floating-point argument, which may by of type double or of type float. The
signum is returned as the same type as the argument, and the value is zero if the argument is zero, 1.0 if
the argument is greater than zero, and -1.0 if the argument is less than zero. The ulp() method returns
the size of the ULP (Unit in the Last Place) of the argument, which may be of type double or type
float. The ULP is the smallest possible change in a floating-point value to produce the next higher or
lower value. Another way of expressing this is that the ULP is the distance from one floating-point value
to the next. Of course, the real values in between one floating-point value and the next cannot be repre-
sented exactly.

Several methods implement mathematical functions in the Math class. You’ll probably be surprised at
how often you find uses for some of these. The mathematical methods you have available are:

Method Function Argument Type Result Type

sqrt(arg) Calculates the square root of double double

the argument

cbrt(arg) Calculates the cube root of the double double

argument

56

Chapter 2

Method Function Argument Type Result Type

pow (arg1,arg2) Calculates the first argument raised Both double double

to the power of the second argument,
arg1arg2

hypot(arg1,arg2) Calculates the square root of Both double double

(arg12+arg22)

exp(arg) Calculates e raised to the power of double double

the argument, earg

expm1(arg) Calculates e raised to the power of double double

the argument minus 1, earg -1

log(arg) Calculates the natural logarithm double double

(base e) of the argument

log1p(arg) Calculates the natural logarithm double double

(base e) of arg+1

log10(arg) Calculates the base 10 logarithm double double

of the argument.

random() Returns a pseudo-random number None double

greater than or equal to 0.0 and
less than 1.0

You can try out a sample of the contents of the Math class in an example to make sure you know how
they are used.

Try It Out The Math Class
You are planning a new circular pond in which you want to keep fish. Your local aquatics supplier tells
you that you can stock the pond with fish at the rate of 2 inches of fish length per square foot of pond
surface area. Your problem is to calculate the radius of the pond that will accommodate 20 fish averaging
10 inches in length. The solution, of course, is to write a Java program — what else? The following pro-
gram will calculate the radius of a pond, in feet and inches, that will provide a home for the number of
fish you would like to keep:

public class PondRadius {

public static void main(String[] args) {

// Calculate the radius of a pond

// which can hold 20 fish averaging 10 inches long

int fishCount = 20; // Number of fish in pond

int fishLength = 10; // Average fish length

int lengthPerSqFt = 2; // Fish length per square foot of surface

double radius = 0.0; // Pond radius in feet

int feet = 0; // Pond radius - whole feet

57

Programs, Data, Variables, and Calculation

int inches = 0; // - and whole inches

double pondArea = (double)(fishCount*fishLength)/lengthPerSqFt;

radius = Math.sqrt(pondArea/Math.PI);

feet = (int)Math.floor(radius); // Get the whole feet and nothing but the feet

inches = (int)Math.round(12.0*(radius – feet)); // Get the inches

System.out.println(“To hold “ + fishCount + “ fish averaging “ + fishLength +

“ inches long you need a pond with an area of \n” +

pondArea + “ square feet.”);

System.out.println(“The radius of a pond with area “ + pondArea +

“ square feet is\n “ +

feet + “ feet “ + inches + “ inches”);

}

}

Save the program source file as PondRadius.java. When you compile and run it, you should get:

To hold 20 fish averaging 10 inches long you need a pond with an area of

100.0 square feet.

The radius of a pond with area 100.0 square feet is 5 feet 8 inches

How It Works
You first define the variables that specify initial data, followed by the variables feet and inches that
you will use to store the result. You then calculate the pond surface area in feet with this statement:

double pondArea = (double)(fishCount*fishLength)/lengthPerSqFt;

You cast the total length of fish to be in the pond, fishCount*fishLength, to type double to force the
division by the number of inches per square foot of pond surface to be done using floating-point values
rather than integers.

The next calculation uses the sqrt() method to calculate the radius. Since the area of a circle with
radius r is given by the formula (r2, the radius must be ((area/((, so you specify the argument to the
sqrt() method as the expression pondArea/Math.PI, where Math.PI references the value of (that is
defined in the Math class:

radius = Math.sqrt(pondArea/Math.PI);

The result is in feet as a value of type double.

To get the number of whole feet you use the floor() method:

feet = (int)Math.floor(radius); // Get the whole feet and nothing but the feet

Note that the cast to type int of the value produced by the floor() method is essential in this state-
ment; otherwise, you will get an error message from the compiler. The value returned from the floor()
method is type double, and the compiler will not cast this to type int automatically because the process
potentially loses information.

58

Chapter 2

Finally, you get the number of inches by subtracting the value for whole feet from the original radius,
multiplying the fraction of a foot by 12 to get the equivalent inches, and then rounding the result to the
nearest integer using the round() method:

inches = (int)Math.round(12.0*(radius – feet)); // Get the inches

The constant for the number of inches per foot is written as a floating-point literal, 12.0, to be consistent
with the rest of the expression for the value you pass to the round() method. If you were to write it as
simply 12, it would be an integer literal of type int.

To output the result, you specify a combination (or concatenation) of strings and variables as arguments
to the two println() method calls:

System.out.println(“To hold “ + fishCount + “ fish averaging “ + fishLength +

“ inches long you need a pond with an area of \n” +

pondArea + “ square feet.”);

System.out.println(“The radius of a pond with area “ + pondArea +

“ square feet is “ +

feet + “ feet “ + inches + “ inches”);

Each statement is spread over three lines for convenience here. The \n that appears in the first output
statement specifies a newline character, so the output will be on two lines. Anytime you want the next
bit of output to begin a new line, just add \n to the output string. You can’t enter a newline character just
by typing it because when you do that the cursor just moves to the next line. That’s why it’s specified as
\n. There are other characters like this that you cannot enter directly that we’ll look into a little later in
this chapter.

Importing the Math Class Methods
It would be a lot more convenient if you were able to avoid having to qualify the name of every method
in the Math class that you use with the class name. The code would be a lot less cluttered if you could
write floor(radius) instead of Math.floor(radius) for example. Well, you can. All you need to do
is put the following statement at the beginning of the source file:

import static java.lang.Math.*; // Import static class members

This statement makes the names of all the static members of the Math class available for use in your pro-
gram code without having to qualify them with the class name. This includes constants such as PI as
well as static methods. You can try this statement in the PondRadius example. With this statement at the
beginning of the source file, you will be able to remove the qualification by the class name Math from all
the members of this class that the program uses.

The * in the statement indicates that all static names are to be imported. If you wanted to import just the
names from the Math class that the PondRadius program uses, you would write:

import static java.lang.Math.floor; // Import floor

import static java.lang.Math.sqrt; // Import sqrt

import static java.lang.Math.round; // Import round

import static java.lang.Math.PI; // Import PI

59

Programs, Data, Variables, and Calculation

These statements import individually the four names from the Math class that the program references.
You could use these four statements at the beginning of the program in place of the previous import
statement that imports all the static names. I’ll discuss this form of the import statement further in
Chapter 5.

Storing Characters
Variables of type char store a single character code. They each occupy 16 bits, or 2 bytes, in memory
because all characters in Java are stored as Unicode. To declare and initialize a character variable
myCharacter you could use the statement:

char myCharacter = ‘X’;

This initializes the variable with the Unicode character representation of the letter ‘X’. You must always
put single quotes as delimiters for a character literal in a statement as in this example, ‘X’. This is neces-
sary to enable the compiler to distinguish between the character ‘X’ and a variable with the name X.
Note that you can’t use double quotes as delimiters here because they are used to delimit a character
string. A character string such as “X” is quite different from the literal of type char, ‘X’.

Character Escape Sequences
In general, the characters that you will be able to enter directly from your keyboard will be a function of
the keys you have available and the set of character codes they map to according to your operating sys-
tem. Whatever that is, it will be a small subset of the characters defined by the Unicode encoding. To
enable you to enter any Unicode character as part of your program source code you can define Unicode
characters by specifying the hexadecimal representation of the character codes in an escape sequence.
An escape sequence is simply an alternative means of specifying a character that is often, but not exclu-
sively, defined by its code. A backslash indicates the start of an escape sequence, so you have already
met the escape sequence for a newline character, \n.

You create an escape sequence for a Unicode character by preceding the four hexadecimal digits of the
character code by \u. Since the Unicode coding for the letter X is the hexadecimal value 0x0058 (the low-
order byte is the same as the ASCII code), you could also declare and define myCharacter with the
statement:

char myCharacter = ‘\u0058’;

You place the escape sequence between single quotes to define the character literal. The result is the
same as the previous statement where you used ‘X’ as the initial value for myCharacter. You can enter
any Unicode character in this way, as long as you know its code of course.

You can get more information on the full Unicode character set on the Internet by
visiting http://www.unicode.org/.

60

Chapter 2

Because the backslash indicates the beginning of an escape sequence, you must always use the escape
sequence, \\, to specify a backslash character as a character literal or in a text string.

As you have seen, you write a character string (a String literal, as we will see in Chapter 4) enclosed
between double quotes, and a character literal between single quotes. For this reason you also need the
escape sequences \’ and \” to specify these characters. For example, to produce the output

“It’s freezing in here”, he said coldly.

you could write

System.out.println(“\”It\’s freezing in here\”, he said coldly.”);

In fact, it’s not strictly necessary to use an escape sequence to specify a single quote within a string, but
obviously it will be when you want to specify a single quote as a character literal. Of course, it is always
necessary to specify a double quote within a string using an escape sequence; otherwise, it would be
interpreted as the end of the string.

There are other escape sequences that you use to define control characters:

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

Character Arithmetic
You can perform arithmetic on char variables. With myCharacter containing the character ‘X’, the
statement:

myCharacter += 1; // Increment to next character

will result in the value of myCharacter being changed to ‘Y’. This is because the Unicode code for ‘Y’
is one more than the code for ‘X’. You could use the increment operator ++ to increase the code stored in
myCharacter by just writing:

++myCharacter; // Increment to next character

When you use variables of type char in an arithmetic expression, their values will be converted to type
int to carry out the calculation. It doesn’t necessarily make a whole lot of sense, but you could write the
following statements that calculate with values of type char:

char aChar = 0;

char bChar = ‘\u0028’;

aChar = (char)(2*bChar + 8);

61

Programs, Data, Variables, and Calculation

These statements will leave the aChar variable holding the code for the letter X — which is 0x0058.

Try It Out Arithmetic with Character Codes
This example will demonstrate arithmetic operations with values of type char:

public class CharCodeCalcs {

public static void main(String[] args){

char letter1 = ‘A’; // letter1 is ‘A’

char letter2 = (char)(letter1+1); // letter2 is ‘B’

char letter3 = letter2; // letter3 is also ‘B’

System.out.println(“Here\’s a sequence of letters: “+ letter1 + letter2 +

(++letter3));

// letter3 is now ‘C’

System.out.println(“Here are the decimal codes for the letters:\n”+

letter1 + “: “ + (int)letter1 +

“ “ + letter2 + “: “ + (int)letter2 +

“ “ + letter3 + “: “ + (int)letter3);

}

}

This example will produce the following output:

Here’s a sequence of letters: ABC

Here are the decimal codes for the letters:

A: 65 B: 66 C: 67

How It Works
The first three statements in main() define three variables of type char:

char letter1 = ‘A’; // letter1 is ‘A’

char letter2 = (char)(letter1+1); // letter2 is ‘B’

char letter3 = letter2; // letter3 is also ‘B’

The cast to type char of the initial value for letter2 is essential. Without it, the code will not compile.
The expression letter1+2 produces a result of type int, and the compiler will not insert an automatic
cast to allow the value to be used as the initial value for letter2.

The next statement outputs three characters:

System.out.println(“Here\’s a sequence of letters: “+ letter1 + letter2 +

(++letter3));

The first two characters displayed are those stored in letter1 and letter2. The third character is the
value stored in letter3 after the variable has been incremented by 1.

By default, the println() method treats a variable of type char as a character for output. You can still
output the value stored in a char variable as a numerical value simply by casting it to type int. The
next statement demonstrates this:

62

Chapter 2

System.out.println(“Here are the decimal codes for the letters:\n”+

letter1 + “: “ + (int)letter1 +

“ “ + letter2 + “: “ + (int)letter2 +

“ “ + letter3 + “: “ + (int)letter3);

This statement outputs the value of each of the three variables as a character followed by its decimal
value.

Of course, you may prefer to see the character codes as hexadecimal values. You can display any value
of type int as a hexadecimal string by enlisting the help of a static method that is defined in the
Integer class in the standard library. Add an extra output statement to the example as the last state-
ment in main():

System.out.println(“Here are the hexadecimal codes for the letters:\n”+

letter1 + “: “ + Integer.toHexString(letter1) +

“ “ + letter2 + “: “ + Integer.toHexString(letter2) +

“ “ + letter3 + “: “ + Integer.toHexString(letter3));

This statement will output the character codes as hexadecimal values, so you’ll see this additional out-
put:

Here are the hexadecimal codes for the letters:

A: 41 B: 42 C: 43

The toHexString() method generates a string representation of the argument you supply. Here you
just have the name of a variable of type char as the argument in each of the three uses of the method but
you could put any expression that results in a value of type int. Because the method requires an argu-
ment of type int, the compiler will insert a cast to type int for each of the arguments letter1,
letter2, and letter3.

The Integer class is related to the primitive type int in that an object of type Integer “wraps” a value
of type int. You will understand the significance of this better when you investigate classes in Chapter
5. There are also classes of type —Byte, Short, Long— that relate to values of the corresponding primi-
tive types. The Long class also defines a static method toHexString() that you use to obtain a string
that is a hexadecimal representation of a value of type long. These classes also contain other useful util-
ity methods that I will introduce when a suitable context arises.

Of course, you can use the static import statement that I introduced in the context of the Math class to
import the names of static members of other classes such as Integer and Long. For example, the follow-
ing statement at the beginning of a source file would enable you to use the toHexString() method
without having to qualify it with the Integer class name:

import static java.lang.Integer.toHexString;

Bitwise Operations
As you already know, all these integer variables we have been talking about are represented internally
as binary numbers. A value of type int consists of 32 binary digits, known to us computer fans as bits.
You can operate on the bits that make up integer values using the bitwise operators, of which there are
four available:

63

Programs, Data, Variables, and Calculation

& AND

| OR

^ Exclusive OR

~ Complement

Each of these operators operates on the individual bits in its operands as follows:

❑ The bitwise AND operator, &, combines corresponding bits in its two operands such that if the
first bit AND the second bit are 1, the result is 1 — otherwise, the result is 0.

❑ The bitwise OR operator, |, combines corresponding bits such that if either or both bits are 1,
then the result is 1. Only if both bits are 0 is the result 0.

❑ The bitwise exclusive OR (XOR) operator, ^, combines corresponding bits such that if both bits
are the same the result is 0; otherwise, the result is 1.

❑ The complement operator, ~, takes a single operand in which it inverts all the bits, so that each 1
bit becomes 0, and each 0 bit becomes 1.

You can see the effect of these operators in the examples shown in Figure 2-5.

Figure 2-5

Figure 2-5 shows the binary digits that make up the operands and the results. Each of the three binary
operations applies to each corresponding pair of bits from its operands in turn. The complement opera-
tor just flips the state of each bit in its operand so that 0 changes to 1 and 1 changes to 0 in the value that
results.

0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1a
a&b

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

b

0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1a
a b

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1

b

0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1a
a^b

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0

b

0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1a ~a 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

64

Chapter 2

Since you are concerned with individual bits when using bitwise operations, writing a constant as a nor-
mal decimal value is not going to be particularly convenient. For example, the bit pattern that is speci-
fied by the decimal value 24576 is not exactly self-evident. A much better way of writing binary values
when you want to work with the bits is to express them as hexadecimal numbers, because you can con-
vert from binary to hexadecimal, and vice versa, very quickly. There’s more on this in Appendix B.

Converting from binary to hexadecimal is easy. Each group of four binary digits from the right corre-
sponds to one hexadecimal digit. You just work out what the value of each four bits is and write the
appropriate hexadecimal digit. For example, the value of a from the previous illustration is:

Binary 0110 0110 1100 1101

Decimal value 6 6 12 13

Hexadecimal 6 6 C D

So the value of the variable a in hexadecimal is 0x66CD, where the 0x prefix indicates that this is a hex-
adecimal value. The variable b in the illustration has the hexadecimal value 0x000F. If you think of the
variable b as a mask applied to a, you can view the & operator as keeping bits unchanged where the
mask is 1 and setting the rest to 0. Mask is a term used to refer to a particular configuration of bits
designed to select out specific bits when it is combined with a variable using a bitwise operator. So, if
you want to select a particular bit out of an integer variable, just AND it with a mask that has that bit set
to 1 and all the others as 0.

Using the AND and OR Operators
You can also envisage what the & operator does from another perspective — it forces a bit to 0 if the cor-
responding mask bit is 0, and leaves a bit unchanged if the mask bit is 1. Thus, the & operator provides
you with a way to switch off specific bits in a word, leaving the rest as they were. Just create a mask with
0 bits in the positions that you want to make 0 and with 1 bits everywhere else. Similarly, the | operator
forces a bit to be 1 when the mask bit is 1, and a mask bit of 0 leaves a bit unchanged so you can use the
| operator to set particular bits in a word on.

The & and | operators are the most frequently used of the bitwise operators, mainly for dealing with
variables where the individual bits are used as state indicators of some kind — for things that can be
either true or false, or on or off. You could use a single bit as a state indicator determining whether some-
thing should be displayed, with the bit as 1, or not displayed, with the bit as 0. To take a simple example,
to select the third bit from the right in the int variable indicators, you can write:

thirdBit = indicators & 0x4; // Select the 3rd bit

The third bit of the variable thirdBit will be the same as the third bit in indicators and all the other
bits will be zero. We can illustrate how this works if we assume the variable indicators contains the
hexadecimal value 0xFF07:

65

Programs, Data, Variables, and Calculation

Hexadecimal Binary

indicators 0xFF07 1111 1111 0000 0111

mask value 0x4 0000 0000 0000 0100

indicators & 0x4 0x4 0000 0000 0000 0100

All these values should have 32 bits, and we are only showing 16 bits here, but you see all you need to
know how it works. The mask value sets all the bits in the result to zero except for the third bit, which
will be set to that of the indicators variable. Here, the result of the expression is non-zero because the
third bit in indicators is 1.

On the other hand, if the variable indicators contained the value 0xFF09 the result would be different:

Hexadecimal Binary

indicators 0xFF09 1111 1111 0000 1001

mask value 0x4 0000 0000 0000 0100

indicators & 0x4 0x0004 0000 0000 0000 0000

The result of the expression is now zero because the third bit of indicators is zero.

As I said, you can use the | operator to set a particular bit on. For example, to set the third bit in indi-
cators on, you can write:

indicators = indicators | 0x4; // Set the 3rd bit on

You can see how this applies to the last value you had for indicators:

Hexadecimal Binary

indicators 0xFF09 1111 1111 0000 1001

mask value 0x4 0000 0000 0000 0100

indicators | 0x4 0xFF0D 1111 1111 0000 1101

As you can see, the effect is just to switch the third bit of indicators on. All the other bits are
unchanged. Of course, if the third bit was already on, it would stay on.

You can also use the bitwise operators in the op= form. Setting the third bit in the variable indicators
is usually written as:

indicators |= 0x4;

Although there is nothing wrong with the original statement, the one above is just a bit more concise.

66

Chapter 2

To set a bit off you need to use the & operator again, with a mask that has 0 for the bit you want as 0, and
1 for all the others. To set the third bit of indicators off you could write:

indicators &= ~0x4; // Set the 3rd bit off

The ~ operator provides a useful way of specifying a value with all bits 1 apart from one. The literal 0x4
is a value with the third bit as zero and the other bits as 1. Applying the ~ operator to this flips each bit,
so that the 0 bits are 1 and the 1 bit is zero. With indicators having the value 0xFF07, this would work
as follows:

Hexadecimal Binary

indicators 0xFF07 1111 1111 0000 0111

mask value 0x4 0000 0000 0000 0100

~0x4 0xFFFB 1111 1111 1111 1011

indicators & ~0x4 0xFF03 1111 1111 0000 0011

Let’s see some of these bitwise operations in action.

Try It Out Bitwise AND and OR Operations
This example just exercises some of the operations that you saw in the previous section:

import static java.lang.Integer.toBinaryString;

public class BitwiseOps {

public static void main(String[] args) {

int indicators = 0xFF07;

int selectBit3 = 0x4; // Mask to select the 3rd bit

// Try the bitwise AND to select the third bit in indicators

System.out.println(“indicators = “ +

toBinaryString(indicators));

System.out.println(“selectBit3 = “ +

toBinaryString(selectBit3));

indicators &= selectBit3;

System.out.println(“indicators & selectBit3 = “ +

toBinaryString(indicators));

// Try the bitwise OR to switch the third bit on

indicators = 0xFF09;

System.out.println(“\nindicators = “+

toBinaryString(indicators));

System.out.println(“selectBit3 = “+

toBinaryString(selectBit3));

indicators |= selectBit3;

System.out.println(“indicators | selectBit3 = “ +

toBinaryString(indicators));

// Now switch the third bit off again

67

Programs, Data, Variables, and Calculation

indicators &= ~selectBit3;

System.out.println(“\nThe third bit in the previous value of indicators” +

“ has been switched off”);

System.out.println(“indicators & ~selectBit3 = “ +

toBinaryString(indicators));

}

}

This example produces the following output:

indicators = 1111111100000111

selectBit3 = 100

indicators & selectBit3 = 100

indicators = 1111111100001001

selectBit3 = 100

indicators | selectBit3 = 1111111100001101

The third bit in the previous value of indicators has been switched off

indicators & ~selectBit3 = 1111111100001001

How It Works
The example uses the code fragments that I discussed in the previous section so you can see they work
as described. One new capability introduced here is the use of the static toBinaryString() method
that is defined in the Integer class. There’s a static import statement for the name of this method so its
use is not qualified by the class name in the example. The toBinaryString() method produces a string
containing a binary representation of the value of type int that is passed as the argument to the method.
You can see from the output for the value of selectBit3 that the string does not include leading zeros.
Obviously, the output would be better with leading zeros displayed but you need to know more about
handling strings to be able to fix this. By the end of Chapter 4, you will be in a position to do so.

Using the Exclusive OR Operator
The ^ operator has the slightly surprising ability to interchange two values without moving either value
somewhere else. The need for this turns up most frequently in tricky examination questions. Suppose
you execute the following three statements:

a ^= b;

b ^= a;

a ^= b;

The effect of these statements is to interchange the values of a and b, but remember this works only
for integers. We can try this out with a couple of arbitrary values for a and b, 0xD00F and 0xABAD,
respectively — again, we will just look at 16 bits for each variable. The first statement changes a to a
new value:

68

Chapter 2

a ^= b Hexadecimal Binary

a 0xD00F 1101 0000 0000 1111

b 0xABAD 1010 1011 1010 1101

a from a^b 0x7BA2 0111 1011 1010 0010

Now the next statement, which calculates a new value of b using the new value of a:

b ^= a Hexadecimal Binary

a 0x7BA2 0111 1011 1010 0010

b 0xABAD 1010 1011 1010 1101

b from b^a 0xD00F 1101 0000 0000 1111

So b now has a value that looks remarkably like the value that a started out with. Let’s look at the last
step, which calculates a new value for a using the new value of b:

a ^= b Hexadecimal Binary

a 0x7BA2 0111 1011 1010 0010

b 0xD00F 1101 0000 0000 1111

a from a^b 0xABAD 1010 1011 1010 1101

Lo and behold, the value of a is now the original value of b. In the old days, when all programmers wore
lab coats, when computers were driven by steam, and when memory was measured in bytes rather than
megabytes, this mechanism could be quite useful since you could interchange two values in memory
without having to have extra memory locations available. So if antique computers are your thing, this
may turn out to be a valuable technique. In fact, it’s really much more useful than that. When you get to
do some graphics programming later in the book, you’ll see that this application of the exclusive OR
operator is very relevant.

Don’t forget — all of these bitwise operators can be applied only to integers. They don’t work with any
other type of value. As with the arithmetic expressions, the bitwise operations are carried out with 32
bits for integers of type short and of type byte, so a cast to the appropriate type is necessary for the
result of the expression on the right of the assignment operator.

69

Programs, Data, Variables, and Calculation

One note of caution: Special care is needed when initializing variables of type byte and type short with
hexadecimal values to avoid being caught out. For example, you might be tempted to initialize a vari-
able of type byte to binary 1111 1111 with the following statement:

byte allBitsOne = 0xFF; // Wrong!!

In fact, this results in a compiler error message. The literal 0xFF is 1111 1111, so what’s the beef here? The
beef is that 0xFF is not 1111 1111 at all. The literal 0xFF is type int, so it is the binary value 0000 0000
0000 0000 1111 1111. This happens to be equivalent to the decimal value 128, which is outside the range
of type byte. The byte value you are looking for, 1111 1111, is equivalent to the decimal value -1, so the
correct way to initialize allBitsOne to 1s is to write:

byte allBitsOne = 0xFFFFFFFF; // Correct – well done!!

Now the compiler will happily chop off the high-order bits to produce the result you are looking for.

Shift Operations
Another mechanism that you have for working with integer variables at the bit level is shifting. You can
shift the bits in an integer to the right or the left. You can also envisage the process of shifting binary dig-
its right or left as dividing or multiplying by powers of two, respectively. Shifting the binary value of 3,
which is 0011, to the left one bit multiplies it by two. It becomes binary 0110, which is decimal 6. Shifting
it to the right by one bit divides it by 2. It becomes binary 0001, which is 1.

Java has three shift operators:

<< Shift left, filling with zeros from the right.

>> Shift right, propagating the sign bit from the left.

>>> Shift right, filling with zeros from the left.

The effect of each of the shift operators is shown in Figure 2-6.

Of course, if the high-order bit in the >> operation in Figure 2-6 were zero, there would be three zeros at
the leftmost end of the result.

70

Chapter 2

Figure 2-6

These bits are shifted
out and lost

These zeros
are inserted

1a

a<<3

1 1 0 0 0 0 001 1 1 1 1 1 1

0 0 1 1 0 1 0 001 1 0 1 1 0 0

These bits are shifted
out and lost

These zeros
are inserted

1a

a>>>3

1 1 0 0 0 0 001 1 1 1 1 1 1

0 0 0 1 1 0 1 001 0 1 1 1 0 1

These bits are shifted
out and lost

The sign is
propagated

1a

a>>3

1 1 0 0 0 0 001 1 1 1 1 1 1

1 1 1 1 1 0 1 001 0 1 1 1 0 1

71

Programs, Data, Variables, and Calculation

Shift operations are often used in combination with the other bitwise operators I have discussed to
extract parts of an integer value. In many operating systems, a single 32-bit value is sometimes used to
store multiple values. For example, you could store two 16-bit screen coordinates in a single 32-bit word.
This is illustrated in Figure 2-7.

Figure 2-7

Figure 2-7 shows how the shift operations can be used to extract either the left or the right 16 bits from
the variable value. You can see here why you have an extra shift right operation that propagates the
leftmost bit. It is related to the notion of a shift as multiplying or dividing by a power of 2, and the impli-
cations of that in the context of negative integers represented in 2’s complement form (see Appendix B).
When the sign bit is not propagated, the shift right operation does not have a numerical interpretation
for negative values because the sign bit is treated the same as any other bit, and zeros are inserted from
the right. When the sign bit is propagated, the effect for negative values is the same as for positive values
— namely, that each bit position shifted is a division by 2.

Try It Out Using Shift Operations
This example uses the shift operators together with the bitwise operators to pack four values of type
char into a variable of type long. Here’s the code:

import static java.lang.Long.toHexString;

public class PackingCharacters {

public static void main(String[] args) {

char letterA = ‘A’;

char letterB = ‘B’;

char letterC = ‘C’;

char letterD = ‘D’;

long packed = 0L;

packed = letterD; // Store D

0

coordinate x coordinate y

value

x

// Extract x from value(assumed positive)x = value>>>16;

0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1

y

// Extract y from value(assumed positive)y = value & 0xFF;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0

x

// Extract x from value(positive or negative)y = value>>16;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1

y

// Extract y from value(positive or negative)y = (value <<16)>>16;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0

72

Chapter 2

packed = (packed << 16) | letterC; // Shift and add the next letter - C

packed = (packed << 16) | letterB; // Shift and add the next letter - B

packed = (packed << 16) | letterA; // Shift and add the next letter - A

System.out.println(“packed now contains 0x” + toHexString(packed));

// Now unpack the letters and output them

long mask = 0xFFFF; // Rightmost 16 bits as 1

char letter = (char)(packed & mask); // Extract the rightmost letter

System.out.println(“From right to left the letters in packed are:”);

System.out.println(“ “ + letter + “ 0x” + toHexString(letter));

packed >>= 16; // Shift out the rightmost letter

letter = (char)(packed & mask); // Extract the new rightmost letter

System.out.println(“ “ + letter + “ 0x” + toHexString(letter));

packed >>= 16; // Shift out the rightmost letter

letter = (char)(packed & mask); // Extract the new rightmost letter

System.out.println(“ “ + letter + “ 0x” + toHexString(letter));

packed >>= 16; // Shift out the rightmost letter

letter = (char)(packed & mask); // Extract the new rightmost letter

System.out.println(“ “ + letter + “ 0x” + toHexString(letter));

}

}

The output from this example will be:

packed now contains 0x44004300420041

From right to left the letters in packed are:

A 0x41

B 0x42

C 0x43

D 0x44

How It Works
The first four statements in main() define variables initialized with the letters to be packed into the vari-
able, packed, of type long defined in the fifth statement in main(). The packing process begins by stor-
ing the first character in packed:

packed = letterD; // Store D

The rightmost 16 bits in packed now contain the character code D. This will eventually end up in the
leftmost 16 bits of packed. The next statement inserts the next letter, C, into packed:

packed = (packed << 16) | letterC; // Shift and add the next letter - C

The letter is inserted by first shifting the contents of packed left by 16 bits, and then ORing the value of
letterC with the result. At this point, the leftmost 32 bits of packed are zero and the rightmost 32 bits
contain D followed by C.

The next two statements repeat the same process to insert B and then A:

packed = (packed << 16) | letterB; // Shift and add the next letter - B

packed = (packed << 16) | letterA; // Shift and add the next letter - A

73

Programs, Data, Variables, and Calculation

Now the variable packed holds the codes for all four characters in the sequence D, C, B, and A.

The output produced by the next statement confirms this:

System.out.println(“packed now contains 0x” + toHexString(packed));

This statement uses the toHexString() method defined in the Long class to generate a string contain-
ing a hexadecimal representation of the value of packed. Because you have a static import statement for
the name of this method, you don’t need to qualify it with the class name. You can see from the output
that this consists of the character code values 0x44, 0x43, 0x42, and 0x41, which are the codes for the
letters D through A.

The program then demonstrates how you can use the shift operators combined with the bitwise AND to
extract the four char values from packed. The first step is to define a mask to select the rightmost 16 bits
in a value of type long:

long mask = 0xFFFF; // Rightmost 16 bits as 1

The next statement uses mask to pick out the rightmost character code in packed:

char letter = (char)(packed & mask); // Extract the rightmost letter

The cast to type char of the value that results from ANDing mask with packed is necessary because the
compiler will not insert an automatic cast from type long to type char.

The next two statements output a heading followed by the first letter as a letter and its code:

System.out.println(“From right to left the letters in packed are:”);

System.out.println(“ “ + letter + “ 0x” + toHexString(letter));

To get at the next character along, you can shift out the character just extracted and AND the result with
mask once again:

packed >>= 16; // Shift out the rightmost letter

letter = (char)(packed & mask); // Extract the new rightmost letter

The result of the shift right operation is stored back in packed, so ANDing mask with packed extracts
the next letter. Extraction of the next two letters is achieved by repeating exactly the same process of
shifting and then ANDing with mask. From the output you can see that it all works as it should.

Methods for Bitwise Operations
In addition to the basic Java language facilities for operations on integers at the bit level, you also have
some methods available in library classes that provide you with a few extra facilities. I won’t go into
great detail on these as they’re rather specialized, but I’ll outline the methods and explain what they do
so you are aware of them.

The methods that implement bitwise operations are defined in the Integer and Long classes in the
java.lang package. The methods in the Integer class apply to values of type int, and the methods
in the Long class apply to values of type long. Both classes define the following methods for bitwise
operations:

74

Chapter 2

Method Description

bitCount(arg) Returns the number of 1 bits in the binary integer that you
supply as arg. The count is returned as a value of type int.

highestOneBit(arg) Returns an integer with a single 1 bit in the position corre-
sponding to the leftmost 1 bit in arg. The value is returned
as the same type as arg.

lowestOneBit(arg) Returns an integer with a single 1 bit in the position corre-
sponding to the rightmost 1 bit in arg. The value is returned
as the same type as arg.

numberOfLeadingZeros(arg) Returns the number of 0 bits preceding the leftmost 1 bit in
arg. The value is returned as type int. If arg is zero, then
the method returns the total number of bits in arg, which
will be 32 for type int and 64 for type long.

numberOfTrailingZeros(arg) Returns the number of 0 bits following the rightmost 1 bit in
arg. The value is returned as type int. If arg is zero, then
the method returns the total number of bits in arg, which
will be 32 for type int and 64 for type long.

reverse(arg) Returns the value that is obtained by reversing the order of
bits in arg. The value is returned as the same type as arg.

rotateLeft(arg, distance) Returns the value obtained by rotating the bits in arg left by
distance bits positions, where distance is a value of type
int. Rotation left means that bits shifted out on the left are
shifted into vacated bit positions on the right. The value is
returned as the same type as arg.

rotateRight(arg, distance) Returns the value obtained by rotating the bits in arg right
by distance bits positions, where distance is a value of
type int. Rotation right means that bits shifted out on the
right are shifted into vacated bit positions on the left. The
value is returned as the same type as arg.

When you want to operate on a value of type int, you call the method for the Integer class, and for a
value of type long you call the method in the Long class. The return value is of the same type as the
argument in each case where the result is a transformed version of the argument. Where it is simply a
count, the value returned is of type int.

If you think about what you would need to do yourself to implement what these methods do, you’ll
realize they can save a lot of effort. To count how many 1 bits there are in an integer, you would need to
work through each of the bits in a loop checking for a 1 bit in each case. With the bitCount() method,
you get the result with a single statement. It may well be faster than you could implement it for yourself,
too. Let’s consider some examples of how you use these methods.

First, suppose you define an integer variable as follows:

int data = 0x0F00; // data is: 0000 0000 0000 0000 0000 1111 0000 0000

75

Programs, Data, Variables, and Calculation

You can now apply the bitCount() method to this. You must use the method in the Integer class
because data is of type int:

int bits = Integer.bitCount(data); // Result is 4

The variable bits will be set to 4 because data contains four 1 bits. You use the method in the Integer
class here because data is of type int. If you were working with an argument of type long, you would
use the method in the Long class.

Here’s a definition of another integer variable, this time of type long:

long number = 0xF00000000000000FL;

The bit pattern in number has the first byte as 1111 0000 and the last byte as 0000 1111; all the other bytes
are zero. Note that the L on the end of the literal is essential here. Without it you are specifying a literal
of type int, and type int only has 32 bits so you’ll get an error message from the compiler.

You could rotate the bits in number left by two with the following statement:

long result = Long.rotateLeft(number, 2);

The variable result will be set to a value where the first byte is 0xC0, the last byte is 0x3F, and all the
other bits are zero. The bits in number are shifted left by two bit positions, and the two 1 bits that are
shifted out on the left will be shifted in on the right as this is a rotation operation on the bits.

Let’s see some of these methods working for real.

Try It Out Methods for Operations on Bits
You’ll be able to see the effects of some of the methods I have discussed by just outputting the results of
some of the operations. The example also makes use of another method that is defined in both the
Integer and Long classes that you’ve seen in an earlier example — the toBinaryString() method,
which creates a string representation of a binary integer. Here’s the code:

import static java.lang.Long.*;

public class TryBitMethods {

public static void main(String[] args) {

long number = 0xF00000000000000FL;

System.out.println(“number:\n” + toBinaryString(number));

long result = rotateLeft(number,2);

System.out.println(“number rotated left 2 bits:\n” + toBinaryString(result));

result = rotateRight(number, 3);

System.out.println(“number rotated right 3 bits:\n” + toBinaryString(result));

result = reverse(result);

System.out.println(“Previous result reversed:\n” + toBinaryString(result));

System.out.println(“Bit count in number:\n” + bitCount(number));

}

}

76

Chapter 2

This program will produce the following output:

number:

1111001111

number rotated left 2 bits:

1100111111

number rotated right 3 bits:

1111111001

Previous result reversed:

1001111111

Bit count in number: 8

I inserted \n characters in the output to put the binary value on the line following its description
because it would not fit within the page width otherwise. You might find it more convenient to remove
the newlines but insert spaces to make the binary values align vertically. They’ll be easier to compare
that way.

How It Works
The program applies a variety of the methods for bit operations in the Long class to the value in number.
The toBinaryString() method in the Long class creates a string representation of the binary value
that is passed to the method, and you output that using the println() method. By comparing the bit
patterns produced by each method with the original, you can clearly see what the methods do. You
might like to try the same thing with the methods in the Integer class. Because there is an import
statement for all the static members of the Long class, none of the methods from the Long class that the
program uses need to be qualified with the class name.

Variables with a Fixed Set of Integer Values
You will often need variables that can have values only from a predefined fixed set. For example, sup-
pose you want to define an integer variable with the name weekday, which will store an integer value
representing a day of the week. The variable ideally needs to be limited to seven possible values, one for
each of Monday through Sunday. This is a situation where a facility called an enumeration is a natural
choice. You could define an enumeration for this situation with the following declaration statement:

enum Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday }

This defines a new type, Day, for variables that can store only one or other of the values specified
between the braces. The names Monday, Tuesday, and so on through to Sunday are called enumeration
constants, and they identify the only values that are allowed for variables of type Day. In fact, these
names will correspond to integer values, starting from 0 in this case, but they are not the same as integer
variables because they exist only within the context of the enumeration, Day. Note the absence of a semi-
colon at the end of the definition of the Day enumeration. Because you are defining a type here, no semi-
colon is required after the closing brace. I used a capital D at the beginning of the type name, Day,
because by convention, types that you define begin with a capital letter. The names for the enumeration
constants would usually be written beginning with a lowercase letter, but in this case I used a capital let-
ter at the beginning because that’s how the days of the week are usually written. You could just as well
write the enumeration constants with a lowercase letter.

77

Programs, Data, Variables, and Calculation

With this new type, you can now define the variable weekday like this:

Day weekday = Day.Tuesday;

This declares the variable weekday to be of type Day, and initializes it with the value, Tuesday. Note
that the enumeration constant must be qualified with the name of the enumeration type here. If you
leave the qualifier out, the compiler will not recognize the constant. There is a way to get around this,
but you’ll have to wait until Chapter 5 to find out about it. You can set a variable of a given enumeration
type only to one or other of the enumeration constants that you defined for the type.

An enumeration can contain as many or as few enumeration constants as you need. Here’s an enumera-
tion type for the months in the year:

enum Month { January, February, March , April , May , June,

July , August , September, October, November, December }

You could define a variable of this type like this:

Month current = Month.September; // Initialize to September

If you later want to change the value stored in the variable, you can set it to a different enumeration
constant:

current = Month.October;

The current variable will now contain the enumeration constant, October.

Let’s see an enumeration in action in an example.

Try It Out Using an Enumeration
Here’s a program that defines the Day enumeration and some variables of that type:

public class TryEnumeration {

// Define an enumeration type for days of the week

enum Day {Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday }

public static void main(String[] args) {

// Define three variables of type Day

Day yesterday = Day.Thursday;

Day today = Day.Friday;

Day tomorrow = Day.Saturday;

// Output the values of the Day variables

System.out.println(“Today is “ + today);

System.out.println(“Tomorrow will be “ + tomorrow);

System.out.println(“Yesterday was “ + yesterday);

}

}

78

Chapter 2

This will produce the following output:

Today is Friday

Tomorrow will be Saturday

Yesterday was Thursday

How It Works
The code itself is essentially what you saw in the previous section. There is the declaration of the enu-
meration type, Day, followed by the main() method that contains definitions of three variables of that
type. You then have output statements for the values of the three variables.

The output is very interesting. It doesn’t display the numerical values of the variables of type Day, but
their names. This is the default way in which a value of an enumeration type is represented as a string
because the names are more important than the values in most enumeration types. After all, the values
that they have are arbitrarily assigned here and serve only to differentiate one enumeration constant
from another.

Note that because the statement that defines Day is defining a new type, you cannot position it within
the body of the main() method, or indeed any other method that you might define. The definition for
Day could appear in a separate source file with the name Day.java, and the example would work just
as well.

This is just a small fraction of the capabilities of enumerations. I introduced them at this point because
enumeration constants — the values that a variable of an enumeration type may have — are always inte-
gers. You will find out more about how you can use them as you progress through subsequent chapters,
but you will have to wait until Chapter 6 for the full story.

Boolean Variables
Variables of type boolean can have only one of two values, true or false. The values true and false

are boolean literals. The boolean type is named after the mathematician George Boole, who invented
Boolean algebra, and variables of this type are described as boolean variables. You can define a variable
of type boolean called state with the following statement:

boolean state = true;

This statement also initializes the variable state with the value true.

You can also set the value of a boolean variable in an assignment statement. For example, the statement

state = false;

sets the value of the variable state to false.

At this point you can’t do much with a boolean variable, other than to set its value to true or false,
but as you will see in the next chapter, boolean variables become much more useful in the context of
decision-making in a program, particularly when we can use expressions that produce a result of type
boolean.

79

Programs, Data, Variables, and Calculation

Several operators combine boolean values, including operators for boolean AND, boolean OR, and
boolean negation (these are &&, ||, and !, respectively), as well as comparison operators that produce a
boolean result. Rather than go into these here in the abstract, I will defer discussion until the next chap-
ter, where I will also explain how you can apply them in practice to alter the sequence of execution in a
program.

Operator Precedence
I have already introduced the idea of a pecking order for operators that determines the sequence in
which they are executed in a statement. A simple arithmetic expression such as 3 + 4*5 results in the
value 23 because the multiply operation is executed first — it takes precedence over the addition opera-
tion. I can now formalize the position by classifying all the operators present in Java according to their
precedence. Each operator in Java has a set priority or precedence in relation to the others, as shown in
the following table. Operators with a higher precedence are executed before those of a lower precedence.
Precedence is highest for operators in the top line in the table, down through to the operators in the bot-
tom line, which have the lowest precedence. Operators that appear on the same line of the table have the
same precedence:

Operator Precedence Group Associativity

(), [], postfix ++, postfix -- left

unary +, unary -, prefix ++, prefix --, ~, ! right

(type), new left

*, /, % left

+, - left

<<, >>, >>> left

< ,<= , >, >=, instanceof left

==, != left

& left

^ left

| left

&& left

|| left

?: left

=, +=, -=, *=, /=, %=, <<=, >>=, >>>=, &=, |=, ^= right

Note that variables of type boolean differ from the other primitive data types in
that they cannot be cast to any other basic type, and the other primitive types cannot
be cast to type boolean.

80

Chapter 2

Most of the operators that appear in the table you have not seen yet, but you will meet them all in this
book eventually, and it is handy to have them all gathered together in a single precedence table that you
can refer to when necessary.

By definition, the postfix ++ operator changes the value of its operand after the other operators in the
expression in which it appears have been executed, despite its high precedence. In this case, precedence
determines what it applies to; in other words, the postfix ++ acts only on the variable that appears imme-
diately before it. For this reason the expression numOranges+++numApples that we saw earlier in the
chapter is evaluated as (oranges++) + apples rather than oranges + (++apples).

The sequence of execution of operators with equal precedence in a statement is determined by a prop-
erty called associativity. The operators that appear on the same line in the table above form a group of
operators that are either left-associative or right-associative. A left-associative operator attaches to its
immediate left operand. This results in an expression involving several left-associative operators with
the same precedence in the same expression being executed in sequence, starting with the leftmost and
ending with the rightmost. Right-associative operators of equal precedence in an expression bind to their
right operand and consequently are executed from right to left. For example, if you write the statement:

a = b + c + 10;

the left associativity of the group to which the + operator belongs implies that this is effectively:

a = (b + c) + 10;

On the other hand, = and op= are right-associative, so if you have int variables a, b, c, and d each ini-
tialized to 1, the statement:

a += b = c += d = 10;

sets a to 12, b and c to 11, and d to 10. The statement is equivalent to:

a += (b = (c += (d = 10)));

Note that these statements are intended to illustrate how associativity works and are not a recom-
mended approach to coding.

You will probably find that you will learn the precedence and associativity of the operators in Java by
just using them in your programs, so don’t spend time trying to memorize them. You may need to refer
back to the table from time to time, but as you gain experience you will gain a feel for where the opera-
tors sit and eventually you will automatically know when you need parentheses and when not.

Program Comments
I have been adding comments in all the examples so far, so you already know that everything following
// in a line is ignored by the compiler (except when the // appears in a character string between double
quotes of course). Another use for // is to change lines of code into comments so that they don’t get exe-
cuted — to “comment them out” in other words. If you want to remove some code from a program tem-
porarily, you just add // at the beginning of each line that you want to eliminate. Removing the // later
restores the line of code.

81

Programs, Data, Variables, and Calculation

It is often convenient to include multiple lines of comment in a program — for example, at the beginning
of a method to explain what it does. An alternative to using // at the beginning of each line in a block of
comments is to put /* at the beginning of the first comment line and */ at the end of the last comment
line. Everything between the /* and the next */ will be ignored. By this means you can annotate your
programs, as shown here for example:

/***************************************

* This is a long explanation of *

* some particularly important *

* aspect of program operation. *

***************************************/

Here I have used asterisks to highlight the comment. Of course, you can frame blocks like this in any
way that you like, or even not at all, just so long as there is /* at the beginning and */ at the end.

Documentation Comments
You can also include comments in a program that are intended to produce separate documentation for
the program. These are called documentation comments. A program called javadoc processes the doc-
umentation comments in the source code for a program to generate separate documentation for the
code. All the documentation that you get with the JDK is produced in this way.

The documentation that is generated by javadoc is in the form of HTML web pages that can be viewed
using a browser such as Netscape Navigator or Internet Explorer. A full discussion of documentation
comments is outside the scope of this book — not because they are difficult, they aren’t. However, it
would require a lot of pages to cover them properly, and there are already a lot of pages in the book. I will
just describe them sufficiently so that you will recognize documentation comments when you see them.

A documentation comment begins with /** and ends with */. An example of a simple documentation
comment is:

/**

This is a documentation comment.

*/

Any asterisks at the beginning of each line in a documentation comment are ignored, as are any spaces
preceding the first asterisk.

A documentation comment can also include HTML tags, as well as special tags beginning with @ that are
used to document methods and classes in a standard form. The @ character is followed by a keyword
that defines the purpose of the tag. Here are some of the keywords that you can use:

@author Used to define the author of the code. For example, I could specify that I am
the author by adding the tag:

/**

@author Ivor Horton

*/

82

Chapter 2

@deprecated Used in the documentation of library classes and methods to indicate that
they have been superseded and generally should not be used in new applica-
tions. This is primarily used within the class libraries to identify obsolete
methods.

@exception Used to document exceptions that the code can throw and the circumstance
which can cause this to occur. For example, you might add the following doc-
umentation comment preceding your definition of a method to indicate the
type of exception that the method may throw:

/**

@exception IOException When an I/O error occurs.

*/

{@link} Generates a link to another part of the documentation within the documenta-
tion that is produced. You can use this tag to embed a link to another class or
method within descriptive text for your code. The curly brackets are used to
separate the link from the rest of the in-line text.

@param Used to describe the parameters for a method.

@return Used to document the value returned from a method.

@see Used to specify cross-references to some other part of the code, such as
another class or a method. It can also reference a URL.

@throws A synonym for @exception.

@version Used to describe the current version of the code.

You can use any HTML tags within a documentation comment except for header tags. The HTML tags
you insert are used to structure and format the documentation appropriately when it is viewed, and
javadoc will add HTML tags to format the comments that include the special @ tags mentioned in the
preceding table.

The outline here really only gives you a hint as to what documentation comments are and doesn’t do
justice to the power and scope of javadoc. For that you need to look into it in detail. If you want to see
real examples of javadoc comments, take a look at one or other of the source code files for the library
classes. The JDK comes with the javadoc program and its documentation. javadoc also has its own
home page on the Javasoft web site at http://java.sun.com/j2se/javadoc/.

Summary
In this chapter you have seen all of the basic types of variables that are available in Java. The discussion
of boolean variables will be more meaningful in the context of the next chapter since their primary use
is in decision-making and modifying the execution sequence in a program.

83

Programs, Data, Variables, and Calculation

The important points you have learned in this chapter are:

❑ The integer types are byte, short, int, and long, occupying 1, 2, 4, and 8 bytes, respectively.

❑ Variables of type char occupy 2 bytes and can store a single Unicode character code.

❑ Integer expressions are evaluated using 64-bit operations for variables of type long, and using
32-bit operations for all other integer types. You must, therefore, add a cast for all assignment
operations storing a result of type byte, type short, or type char.

❑ A cast will be automatically supplied where necessary for op= assignment operations.

❑ The floating-point types are float and double, occupying 4 and 8 bytes, respectively.

❑ Values that are outside the range of a floating-point type are represented by a special value that
is displayed as either Infinity or -Infinity.

❑ Where the result of a floating-point calculation is indeterminate, the value is displayed as NaN.
Such values are referred to as Not-a-Number.

❑ You use an enumeration type to define variables that can be assigned values only from a fixed
set that you specified as part of the enumeration.

❑ Variables of type boolean can have only either the value true or the value false.

❑ The order of execution of operators in an expression is determined by their precedence. Where
operators are of equal precedence, the order of execution is determined by their associativity.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Write a console program to define and initialize a variable of type byte to 1, and then succes-
sively multiply it by 2 and display its value 8 times. Explain the reason for the last result.

2. Write a console program to declare and initialize a double variable with some value such as
1234.5678. Then retrieve the integral part of the value and store it in a variable of type long, and
the first four digits of the fractional part and store them in an integer of type short. Display the
value of the double variable by outputting the two values stored as integers.

3. Write a program that defines a floating-point variable initialized with a dollar value for your
income and a second floating-point variable initialized with a value corresponding to a tax rate
of 35 percent. Calculate and output the amount of tax you must pay with the dollars and cents
stored as separate integer values (use two variables of type int to hold the tax, perhaps
taxDollars and taxCents).

4. The diameter of the Sun is approximately 865,000 miles. The diameter of the Earth is approxi-
mately 7,600 miles. Use the methods in the class Math to calculate:

❑ The volume of the Earth in cubic miles

❑ The volume of the Sun in cubic miles

❑ The ratio of the volume of the Sun to the volume of the Earth

84

Chapter 2

3
Loops and Logic

In this chapter you’ll look at how you make decisions and choices in your Java programs. You will
also learn how to make your programs repeat a set of actions until a specific condition is met. In
this chapter you’ll learn:

❑ How you compare data values

❑ How you can define logical expressions

❑ How you can use logical expressions to alter the sequence in which program statements
are executed

❑ How you can select different expressions depending on the value of a logical expression

❑ How to choose between options in a fixed set of alternatives

❑ How long your variables last

❑ How you can repeat a block of code a given number of times

❑ How you can repeat a block of code as long as a given logical expression is true

❑ How you can break out of loops and statement blocks

❑ What assertions are and how you use them

All your programs of any consequence will use at least some, and often most, of the language
capabilities and programming techniques I will cover in this chapter, so make sure you have a
good grasp of them.

But first, how do you make decisions in code, and so affect the way the program runs?

Making Decisions
Making choices will be a fundamental element in all your programs. You need to be able to make
decisions like, “If the user wants to enter more data, then read another value from the keyboard”

or “If the bank balance is large, buy the car with the go-faster stripes, else renew the monthly
bus ticket.” Whatever decision you want to make, in programming terms it requires the ability to make
comparisons between variables, constants, and the values of expressions and then execute one group of
statements or another, depending on the result of a given comparison. Thus, the first step to understand-
ing how you make decisions in a program is to look at how you make comparisons.

Making Comparisons
Java provides you with six relational operators for comparing two data values. The data values you are
comparing can be variables, constants, or expressions with values drawn from Java’s primitive data
types —byte, short, int, long, char, float or double.

Relational Operators Description

> Produces the value true if the left operand is greater than the right
operand, and false otherwise.

>= Produces the value true if the left operand is greater than or equal to
the right operand, and false otherwise.

== Produces the value true if the left operand is equal to the right
operand, and false otherwise.

!= Produces the value true if the left operand is not equal to the right
operand, and false otherwise.

<= Produces the value true if the left operand is less than or equal to the
right operand, and false otherwise.

< Produces the value true if the left operand is less than the right
operand, and false otherwise.

As you see, each operator produces either the value true or the value false, and so is eminently suited
to the business of making decisions. This also implies that you can use a boolean variable to store the
result of a comparison. You saw how to declare variables of type boolean in the previous chapter. For
example, you could define a boolean variable state and set its value to be the result of an expression
using a comparison as follows:

boolean state = false; // Define and initialize the variable

state = x - y < a + b; // Store the result of comparing x-y with a+b

The value of the variable state will be set to true in the assignment statement if x - y is less than a +
b, and to false otherwise.

To understand how the preceding expression is evaluated, take a look back at the precedence table for
operators that I introduced in the last chapter. You’ll see that the comparison operators are all of lower
precedence than the arithmetic operators, so arithmetic operations will always be completed before any
comparisons are made, unless of course there are parentheses dictating otherwise. The expression

x - y == a + b

will produce the result true if x - y is equal to a + b, since these arithmetic sub-expressions will be
evaluated first, and the values that result will be the operands for the == operator. Of course, it is helpful

86

Chapter 3

to put the parentheses in, even though they are not strictly necessary. It leaves no doubt as to what is
happening if you write:

(x – y) == (a + b)

Note that if the left and right operands of a relational operator are of differing types, values will be pro-
moted in the same way as you saw in the previous chapter for mixed arithmetic expressions. So if
aDouble is of type double and number is of type int in the following expression:

aDouble < number + 1

the result of the expression number + 1 will be calculated as type int, and this value will be promoted
to type double before comparing it with the value of aDouble.

The if Statement
The first statement you’ll look at that can make use of the result of a comparison is the if statement. The
if statement, in its simplest configuration, is of the form

if(expression)

statement;

where expression can be any expression that produces a value true or false. You can see a graphical
representation of this logic in Figure 3-1.

Figure 3-1

expression is
true?

if (expression)
statement;

next_statement;

execute
statement

yes

no

execute
next_statement

87

Loops and Logic

If the value of expression is true, the statement that follows the if is executed; otherwise, it isn’t. A
practical example of this is as follows:

if(number%2 != 0) // Test if number is odd

++number; // If so make it even

The if condition between the parentheses tests whether the value of number is odd by comparing the
remainder that results from dividing it by 2 with 0. If the remainder isn’t equal to 0, the value of number
is odd, so you add 1 to make it even. If the value of number is even, the statement incrementing number
will not be executed.

You may sometimes see a simple if written on a single line. The previous example could have been
written:

if(number%2 != 0) ++number; // If number is odd, make it even

This is perfectly legal. The compiler ignores excess spaces and newline characters — the semicolon acts
as the delimiter for a statement. Writing an if in this way saves a little space, and occasionally it can be
an aid to clarity, when you have a succession of such comparisons, for example, but generally it is better
to write the action statement on a separate line from the condition being tested.

Statement Blocks
In general, wherever you can have one executable statement in Java, you can also have a block of state-
ments enclosed between braces. This applies to the statements within a statement block, so you can
always nest a statement block between braces inside another statement block, and you can do this to any
depth. The ability to use a block wherever you can have a statement means that you can use a statement
block within the basic if statement that you just saw. Therefore, the if statement can equally well be of
the form:

if(expression) {

statement 1;

statement 2;

...

statement n;

}

Now if the value of expression is true, all the statements enclosed in the following block will be exe-
cuted. Of course, without the braces to enclose the block, the code no longer has a statement block:

Note how the statement on the second line is indented. This is to show that it is sub-
ject to the if condition. You should always indent statements in your Java programs
as cues to the program structure. You will gather more guidelines on the use of state-
ment indenting as you work with more complicated examples.

88

Chapter 3

if(expression)

statement 1;

statement 2;

...

statement n;

Here, only the first statement, statement 1, will be omitted when the if expression is false; the
remaining statements will always be executed regardless of the value of expression. You can see from
this that indenting is just a visual cue to the logic. It has no effect on how the program code executes.
This looks as though the sequence of statements belongs to the if, but only the first statement does
because there are no braces. The indenting is incorrect and misleading here and the code should be writ-
ten as:

if(expression)

statement 1;

statement 2;

...

statement n;

As a practical example of an if statement that includes a statement block, you could write:

if(number%2 != 0) { // Test if number is odd

// If so make it even and output a message

++number;

System.out.println(“Number was forced to be even and is now “ + number);

}

Now both statements between the braces are executed if the if expression is true, and neither of them
is executed if the if expression is false.

It is good practice to always put opening and closing braces around the code dependent on an if condi-
tion, even when there is only a single action statement. This helps to make the code easier to follow and
will minimize the possibility of the program logic being confused.

Statement blocks are more than just a convenient way of grouping statements together — they affect the
life and accessibility of variables. You’ll learn more about statement blocks when I discuss variable scope
later in this chapter. In the meantime, let’s look a little deeper into what you can do with the if statement.

In this book, I have adopted the convention of having the opening brace on the
same line as the if condition. The closing brace will then be aligned with the first
character, i, in the keyword if. I will indent all the statements within the block
from the braces so that they are easily identified as belonging to the block. This is
consistent with the pattern I have been using with a block defining a class and a
block belonging to a method. There are other conventions that you can use if you
prefer. In another common convention, the braces bounding a block appear on their
own line and are aligned. The most important consideration is that you are consis-
tent in whatever convention you adopt.

89

Loops and Logic

The else Clause
You can extend the basic if statement by adding an else clause. This provides an alternative choice of
statement, or statement block, that is executed when the expression in the if statement is false. You
can see the syntax of this statement, and how the program’s control flow works, in Figure 3-2.

Figure 3-2

This provides an explicit choice between two courses of action — one for when the if expression is true
and another for when it is false.

You can apply this in a console program and try out the random() method from the Math class at the
same time.

Try It Out if-else
When you have entered the program text, save it in a file called NumberCheck.java. Compile it and
then run it a few times to see what results you get.

public class NumberCheck {

public static void main(String[] args) {

int number = 0;

expression is
true?

if (expression) {

statement1;

statement2;
)else {

)
next_statement;

execute
statement2

noyes

execute
next_statement

execute
statement1

90

Chapter 3

number = 1+(int)(100*Math.random()); // Get a random integer between 1 & 100

if(number%2 == 0) { // Test if it is even

System.out.println(“You have got an even number, “ + number); // It is even

} else {

System.out.println(“You have got an odd number, “ + number); // It is odd

}

}

}

How It Works
You saw the random() method that is defined in the standard class Math in the previous chapter. It
returns a random value of type double between 0.0 and 1.0, but the result is always less than 1.0, so the
largest number you will get is 0.9999... (with the number of recurring digits being limited to the maxi-
mum number that the type double will allow, of course). Consequently, when you multiply the value
returned by 100.0 and convert this value to type int with the explicit cast, you discard any fractional
part of the number and produce a random integer between 0 and 99. Adding 1 to this will result in a ran-
dom integer between 1 and 100, which you store in the variable number. You then generate the program
output in the if statement. If the value of number is even, the first println() call is executed; other-
wise, the second println() call in the else clause is executed.

Note the use of indentation here. It is evident that main() is within the class definition because of the
indentation relative to the first line of the class definition. The code for main() is clearly distinguished
because it is indented relative to the first line of the method. You can also see immediately which state-
ment is executed when the if expression is true, and which applies when it is false.

Nested if Statements
The statement that is executed when an if expression is true can be another if, as can the statement in
an else clause. This enables you to express such convoluted logic as “if my bank balance is healthy, then
I will buy the car if I have my check book with me, else I will buy the car if I can get a loan from the
bank.” An if statement that is nested inside another can also itself contain a nested if. You can continue
nesting ifs one inside the other like this for as long as you still know what you are doing — or even
beyond if you enjoy confusion.

To illustrate the nested if statement, I can modify the if from the previous example:

if(number%2 == 0) { // Test if it is even

if(number < 50) { // Output a message if number is < 50

System.out.println(“You have got an even number < 50, “ + number);

}

} else {

System.out.println(“You have got an odd number, “ + number); // It is odd

}

Now the message for an even value is displayed only if the value of number is also less than 50. There
are three possible outcomes from this code fragment — if number is even and less than 50, you will see a
message to that effect; if number is even and is not less than 50, there will be no output; and finally, if
number is odd, a message will be displayed.

91

Loops and Logic

The braces around the nested if are necessary here because of the else clause. The braces constrain the
nested if in the sense that if it had an else clause, it would have to appear between the braces enclos-
ing the nested if. If the braces were not there, the program would still compile and run but the logic
would be different. Let’s see how.

With nested ifs, the question of to which if statement a particular else clause belongs often arises. If
you remove the braces from the code above, you have:

if(number%2 == 0) // Test if it is even

if(number < 50) // Output a message if number is < 50

System.out.println(“You have got an even number < 50, “ + number);

else

System.out.println(“You have got an odd number, “ + number); // It is odd

This has substantially changed the logic from the previous version, in spite of the fact that the indenta-
tion implies otherwise. The else clause now belongs to the nested if that tests whether number is less
than 50, so the second println() call is executed only for even numbers that are greater than or equal to
50. This is clearly not what was intended since it makes nonsense of the output in this case, but it does
illustrate the rule for connecting elses to ifs, which is:

You need to take care that the indenting of statements with nested ifs is correct. It is easy to convince
yourself that the logic is as indicated by the indentation, even when this is completely wrong.

Let’s try the if-else combination in another program:

Try It Out Deciphering Characters the Hard Way
Create the class LetterCheck, and code its main() method as follows:

public class LetterCheck {

public static void main(String[] args) {

char symbol = ‘A’;

symbol = (char)(128.0*Math.random()); // Generate a random character

if(symbol >= ‘A’) { // Is it A or greater?

if(symbol <= ‘Z’) { // yes, and is it Z or less?

// Then it is a capital letter

System.out.println(“You have the capital letter “ + symbol);

} else { // It is not Z or less

if(symbol >= ‘a’) { // So is it a or greater?

if(symbol <= ‘z’) { // Yes, so is it z or less?

// Then it is a small letter

System.out.println(“You have the small letter “ + symbol);

} else { // It is not less than z

System.out.println(

An else always belongs to the nearest preceding if in the same block that is not
already spoken for by another else.

92

Chapter 3

“The code is greater than a but it’s not a letter”);

}

} else {

System.out.println(

“The code is less than a and it’s not a letter”);

}

}

} else {

System.out.println(“The code is less than A so it’s not a letter”);

}

}

}

How It Works
This program figures out whether the character stored in the variable symbol is an uppercase letter, a
lowercase letter, or some other character. The program first generates a random character with a numeric
code between 0 and 127, which corresponds to the characters in the basic 7-bit ASCII (ISO 646) character
set. The Unicode coding for the ASCII characters is numerically the same as the ASCII code values.
Within this character set, the letters ‘A’ to ‘Z’ are represented by a contiguous group of ASCII codes
with decimal values from 65 to 90. The lowercase letters are represented by another contiguous group
with ASCII code values that have decimal values from 97 to 122. So to convert any capital letter to a low-
ercase letter, you just need to add 32 to the character code.

The if statements are a bit convoluted so let’s look at the diagram of the logic in Figure 3-3.

Figure 3-3

Symbol>=′A′? Symbol<=′Z′?

Symbol>=′a′?

It is a capital letter
y y

y y

n

n
else

n

It is a lower case letter

It is not a letter

else

It is not a letter

Symbol<=′z′?

n
else

It is not a letter

93

Loops and Logic

You have four if statements altogether. The first if tests whether symbol is ‘A’ or greater. If it is, it
could be a capital letter, a small letter, or possibly something else. But if it isn’t, it is not a letter at all, so
the else for this if statement (toward the end of the program) produces a message to that effect.

The nested if statement, which is executed if symbol is ‘A’ or greater, tests whether it is ‘Z’ or less. If
it is, then symbol definitely contains a capital letter, and the appropriate message is displayed. If it isn’t
then it may be a small letter, so another if statement is nested within the else clause of the first nested
if to test for this possibility.

The if statement in the else clause tests for symbol being greater than ‘a’. If it isn’t, you know that
symbol is not a letter, and a message is displayed. If it is, another if checks whether symbol is ‘z’ or
less. If it is you have a small letter, and if not you don’t have a letter at all.

You will have to run the example a few times to get all the possible messages to come up. They all will —
eventually.

After having carefully crafted our convoluted and cumbersome condition checking, I can now reveal
that there is a much easier way to achieve the same result. You’ll see that in the section “Logical
Operators” that follows immediately after a brief word on working with enumeration values.

Comparing Enumeration Values
You can’t compare variables of an enumeration type using the comparison operators but you can using a
method that every enumeration object provides. Suppose you define an enumeration type as:

enum Season { spring, summer, fall, winter }

You could now define and initialize a variable of type Season with the following statement:

Season season = Season.summer;

If you later want to check what the season variable currently holds, you could write

if(season.equals(Season.spring) {

System.out.println(“Spring has sprung, the grass is riz.”);

} else {

System.out.println(“It isn\’t Spring!”);

}

This calls the equals() method for the enumeration referred to by season. This method will compare
the value in season with the value between the parentheses and result in true if they are equal or
false if they are unequal. You could use the equals() method to compare season with another vari-
able of type Season, for example:

Season best = Season.winter; // A new variable initialized to winter

if(season.equals(best)) {

System.out.println(“season is the same as best, and is equal to “+ best);

} else {

System.out.println(“ season has the value “+season +

“ and best has the value “ + best);

}

94

Chapter 3

After defining the variable, best, you test whether the value of season is the same value as best. If it
is, the first output statement will be executed. If best and season are not equal, the output statement in
the else block will be executed.

Logical Operators
The tests you have put in the if expressions have been relatively simple so far. Real life is typically more
complicated. You will often want to combine a number of conditions so that you execute a particular
course — for example, if they are all true simultaneously. You can ride the roller coaster if you are over
12 years old, over 4 feet tall, and less than 6 feet 6. Failure on any count and it’s no-go. Sometimes,
though, you may need to test for any one of a number of conditions being true— for example, you get a
lower price entry ticket if you are under 16, or over 65.

You can deal with both of these cases, and more, using logical operators to combine several expressions
that have a value true or false. Because they operate on boolean values, they are also referred to as
boolean operators. There are five logical operators that operate on boolean values:

Symbol Long Name

& logical AND

&& conditional AND

| logical OR

|| conditional OR

! logical negation (NOT)

These are very simple; the only point of potential confusion is the fact that you have the choice of two
operators for each of AND and OR. The extra operators are the bitwise & and | from the previous chap-
ter that you can also apply to boolean values where they have an effect that is subtly different from &&
and ||. I’ll first consider what each of these is used for in general terms; then I’ll look at how you can
use them in an example.

Logical AND Operations
You can use either AND operator, && or &, where you have two logical expressions that must both be true
for the result to be true— that is, you only want to be rich and healthy. Either AND operator will pro-
duce the same result from the logical expression. I will come back to how they differ in a moment. First,
let’s explore how they are used. All of the following discussion applies equally well to & as well as &&.

Let’s see how logical operators can simplify the last example. You could use the && operator if you were
testing a variable of type char to determine whether it contained an uppercase letter or not. The value
being tested must be both greater than or equal to ‘A’ AND less than or equal to ‘Z’. Both conditions
must be true for the value to be a capital letter. Taking the example from our previous program, with a
value stored in a char variable symbol, you could implement the test for an uppercase letter in a single
if by using the && operator:

if(symbol >= ‘A’ && symbol <= ‘Z’)

System.out.println(“You have the capital letter “ + symbol);

95

Loops and Logic

If you look at the precedence table in Chapter 2, you’ll see that the relational operators will be executed
before the && operator, so no parentheses are necessary. Here, the output statement will be executed only
if both of the conditions combined by the operator && are true. However, as I have said before, it is a
good idea to add parentheses if they make the code easier to read. It also helps to avoid mistakes.

In fact, the result of an && operation is very simple. It is true only if both operands are true; otherwise,
the result is false.

You can now rewrite the set of ifs from the last example.

Try It Out Deciphering Characters the Easy Way
You can replace the outer if-else loop and its contents in LetterCheck.java as shown in the follow-
ing code:

public class LetterCheck2 {

public static void main(String[] args) {

char symbol = ‘A’;

symbol = (char)(128.0*Math.random()); // Generate a random character

if(symbol >= ‘A’ && symbol <= ‘Z’) { // Is it a capital letter

System.out.println(“You have the capital letter “ + symbol);

} else {

if(symbol >= ‘a’ && symbol <= ‘z’) { // or is it a small letter?

System.out.println(“You have the small letter “ + symbol);

} else { // It is not less than z

System.out.println(“The code is not a letter”);

}

}

}

}

The output should be the same as the previous version of the code.

How It Works
Using the && operator has condensed the example down quite a bit. You now can do the job with two
ifs, and it’s certainly easier to follow what’s happening.

You might want to note that when the statement in an else clause is another if, the if is sometimes
written on the same line as the else, as in:

if(symbol >= ‘A’ && symbol <= ‘Z’) { // Is it a capital letter

System.out.println(“You have the capital letter “ + symbol);

} else if(symbol >= ‘a’ && symbol <= ‘z’) { // or is it a small letter?

System.out.println(“You have the small letter “ + symbol);

} else { // It is not less than z

System.out.println(“The code is not a letter”);

}

I think the original is clearer in this particular case, but writing else if can sometimes make the code
easier to follow.

96

Chapter 3

&& versus &
So what distinguishes && from & ? The difference between them is that the conditional && will not bother
to evaluate the right-hand operand if the left-hand operand is false, since the result is already deter-
mined in this case to be false. This can make the code a bit faster when the left-hand operand is false.

For example, consider the following statements:

int number = 50;

if(number<40 && (3*number - 27)>100) {

System.out.println(“number = “ + number);

}

Here the expression (3*number - 27)>100 will never be executed since the expression number<40 is
always false. On the other hand, if you write the statements as

int number = 50;

if(number<40 & (3*number - 27)>100) {

System.out.println(“number = “ + number);

}

the effect is different. The whole logical expression is always evaluated, so even though the left-hand
operand of the & operator is false and the result is a forgone conclusion once that is known, the right-
hand operand ((3*number - 27)>100) will still be evaluated.

So, you can just use && all the time to make your programs a bit faster and forget about &, right? Wrong —
it all depends on what you are doing. Most of the time you can use &&, but there are occasions when you
will want to be sure that the right-hand operand is evaluated. Equally, in some instances, you want to be
certain the right-hand operand won’t be evaluated if the left operand is false.

For example, the first situation can arise when the right-hand expression involves modifying a variable —
and you want the variable to be modified in any event. An example of a statement like this is:

if(++value%2 == 0 & ++count < limit) {

// Do something

}

Here, the variable count will be incremented in any event. If you use && instead of &, count will be
incremented only if the left operand of the AND operator is true. You get a different result depending
on which operator is used.

I can illustrate the second situation with the following statement:

if(count > 0 && total/count > 5) {

// Do something...

}

In this case, the right operand for the && operation will be executed only if the left operand is true—
that is, when count is positive. Clearly, if you were to use & here, and count happened to be zero, you
would be attempting to divide the value of total by 0, which in the absence of code to prevent it would
terminate the program.

97

Loops and Logic

Logical OR Operations
The OR operators, | and ||, apply when you want a true result if either or both of the operands are
true. The logical OR, ||, has a similar effect to the logical AND, in that it omits the evaluation of the
right-hand operand when the left-hand operand is true. Obviously if the left operand is true, the result
will be true regardless of whether the right operand is true or false.

Let’s take an example. A reduced entry ticket price is issued to under 16-year-olds and to those aged 65
or over; this could be tested using the following if:

if(age < 16 || age>= 65) {

ticketPrice *= 0.9; // Reduce ticket price by 10%

}

The effect here is to reduce ticketPrice by 10 percent if either condition is true. Clearly in this case,
both conditions cannot be true.

With an | or an || operation, you get a false result only if both operands are false. If either or both
operands are true, the result is true.

Boolean NOT Operations
The third type of logical operator, !, applies to one boolean operand, and the result is the inverse of the
operand value. So if the value of a boolean variable, state, is true, then the expression !state has the
value false, and if it is false, then !state evaluates to true. To see how the operator is used with an
expression, you could rewrite the code fragment you used to provide discounted ticket price as:

if(!(age >= 16 && age < 65)) {

ticketPrice *= 0.9; // Reduce ticket price by 10%

}

The expression (age >= 16 && age < 65) is true if age is from 16 to 64. People of this age do not
qualify for the discount, so the discount should be applied only when this expression is false.
Applying the ! operator to the result of the expression does what you want.

You could also apply the ! operator in an expression that was a favorite of Charles Dickens:

!(Income>Expenditure)

If this expression is true, the result is misery, at least as soon as the bank starts bouncing your checks.

Of course, you can use any of the logical operators in combination if necessary. If the theme park decides
to give a discount on the price of entry to anyone who is under 12 years old and under 48 inches tall, or
to someone who is over 65 and over 72 inches tall, you could apply the discount with this test:

if((age < 12 && height < 48) || (age > 65 && height > 72)) {

ticketPrice *= 0.8; // 20% discount on the ticket price

}

The parentheses are not strictly necessary here, as && has a higher precedence than ||, but adding the
parentheses makes it clearer how the comparisons combine and makes it a little more readable.

98

Chapter 3

Character Testing Using Standard Library Methods
While testing characters using logical operators is a useful way of demonstrating how these operators
work, in practice there is an easier way. The standard Java packages provide a range of standard meth-
ods to do the sort of testing for particular sets of characters such as letters or digits that you have been
doing with if statements. They are all available within the Character class, which is automatically
available in your programs. For example, you could have written the if statement in the LetterCheck2
program as shown in the following example.

Try It Out Deciphering Characters Trivially
In the following example, the if expressions in main() that were in the LetterCheck2 class have been
replaced by expressions that call methods in the Character class to do the testing:

import static java.lang.Character.isLowerCase;

import static java.lang.Character.isUpperCase;

public class LetterCheck3 {

public static void main(String[] args) {

char symbol = ‘A’;

symbol = (char)(128.0*Math.random()); // Generate a random character

if(isUpperCase(symbol)) {

System.out.println(“You have the capital letter “ + symbol);

} else {

if(isLowerCase(symbol)) {

System.out.println(“You have the small letter “ + symbol);

} else {

System.out.println(“The code is not a letter”);

}

}

}

}

How It Works
Because you have the import statements for the isUpperCase and isLowerCase method names at the
beginning of the source file, you can call these methods without using the Character class name as
qualifier. The isUpperCase() method returns true if the char value that you pass to it is uppercase,
and false if it is not. Similarly, the isLowerCase() method returns true if the char value you pass to
it is lowercase.

Don’t confuse the bitwise operators &, |, and ! with the logical operators that look
the same. Which type of operator you are using in any particular instance is deter-
mined by the type of operand with which you use it. The bitwise operators apply to
integer types and produce an integer result. The logical operators apply to operands
that have boolean values and produce a result of type boolean—true or false.
You can use both bitwise and logical operators in an expression if it is convenient
to do so.

99

Loops and Logic

The following table shows some of the other methods included in the Character class that you may
find useful for testing characters. In each case, you put the argument of type char that is to be tested
between the parentheses following the method name.

Method Description

isDigit() Returns the value true if the argument is a digit (0 to 9), and
false otherwise.

isLetter() Returns the value true if the argument is a letter, and false
otherwise.

isLetterOrDigit() Returns the value true if the argument is a letter or a digit, and
false otherwise.

isWhitespace() Returns the value true if the argument is whitespace, which is any
one of the following characters:

space (‘ ‘)
tab (‘\t’)
newline (‘\n’)
carriage return (‘\r’)
form feed (‘\f’)

The method returns false otherwise.

You will find information on other methods in the class Character in the JDK documentation for
the class.

The Conditional Operator
The conditional operator is sometimes called a ternary operator because it involves three operands. It is
best understood by looking at an example. Suppose you have two variables of type int with the names
yourAge and myAge, and you want to assign the greater of the values stored in yourAge and myAge to a
third variable, older, which is also of type int. You can do this with the following statement:

older = yourAge>myAge ? yourAge : myAge;

The conditional operator has a logical expression as the first of its three operands — in this case, it is the
expression yourAge>myAge. If this expression is true, the operand that follows the ? symbol — in this
case, yourAge— is evaluated to produce the value resulting from the operation. If the expression
yourAge>myAge is false, the third operand which comes after the colon — in this case, myAge— is
evaluated to produce the value from the operation. Thus, the result of this conditional expression is
yourAge, if yourAge is greater than myAge, and myAge otherwise. This value is then stored in the vari-
able older. The use of the conditional operator in this assignment statement is equivalent to the if
statement:

if(yourAge > myAge) {

older = yourAge;

100

Chapter 3

} else {

older = myAge;

}

Remember, though, the conditional operator is an operator and not a statement, so you can use it in a
more complex expression involving other operators.

The conditional operator can be written generally as:

logical_expression ? expression1 : expression2

If the logical_expression evaluates as true, the result of the operation is the value of expression1,
and if logical_expression evaluates to false, the result is the value of expression2. Note that if
expression1 is evaluated because logical_expression is true, then expression2 will not be, and
vice versa.

You can use the conditional operator in lots of circumstances, and one common application of it is to
control output, depending on the result of an expression or the value of a variable. You can vary a mes-
sage by selecting one text string or another depending on the condition specified.

Try It Out Conditional Plurals
Type in the following code, which will add the correct ending to ‘hat’ depending on how many hats
you have:

public class ConditionalOp {

public static void main(String[] args) {

int nHats = 1; // Number of hats

System.out.println(“I have “ + nHats + “ hat” + (nHats == 1 ? “.” : “s.”));

nHats++; // Increment number of hats

System.out.println(“I have “ + nHats + “ hat” + (nHats == 1 ? “.” : “s.”));

}

}

The output from this program will be:

I have 1 hat.

I have 2 hats.

How It Works
The result of executing the conditional operator in the program is a string containing just a period when
the value of nHats is 1, and a string containing an s followed by a period in all other cases. The effect of
this is to cause the output statement to automatically adjust the output between singular and plural. You
can use the same technique in other situations, such as where you need to choose “he” or “she” for
example, as long as you are able to specify a logical expression to differentiate the situation in which you
should use one rather than the other. A more challenging application you could try is to append “st”,
“nd”, “rd”, or “th” to a date value, such as in “3rd November” or “4th July”.

101

Loops and Logic

The switch Statement
You use the switch statement to select from multiple choices based on a set of fixed values for a given
expression. The expression must produce a result of an integer type other than long, or a value of an
enumeration type. Thus, the expression that controls a switch statement can result in a value of type
char, byte, short, or int, or an enumeration constant.

In normal use the switch statement operates rather like a rotary switch in that you can select one of a
fixed number of choices. For example, on some makes of washing machine you choose between the vari-
ous possible machine settings in this way, with positions for cotton, wool, synthetic fiber, and so on,
which you select by turning the knob to point to the option that you want.

Here’s a switch statement reflecting this logic for a washing machine:

switch(wash) {

case 1: // wash is 1 for Cotton

System.out.println(“Cotton selected”);

break;

case 2: // wash is 2 for Linen

System.out.println(“Linen selected”);

break;

case 3: // wash is 3 for Wool

System.out.println(“Wool selected”);

break;

default: // Not a valid value for wash

System.out.println(“Selection error”);

break;

}

The selection in the switch statement is determined by the value of the expression that you place
between the parentheses after the keyword switch. In this case it’s simply the variable wash that would
need to be previously declared as of type char, byte, short, or int. You define the possible switch
options by one or more case values, also called case labels, which you define using the keyword case.
In general, a case label consists of the case keyword followed by a constant value that is the value that
will select the case, followed by a colon. The statements to be executed when the case is selected follow
the case label. You place all the case labels and their associated statements between the braces for the
switch statement. You have three case values in the preceding example, plus a special case with the
label default, which is another keyword. A particular case value is selected if the value of the switch
expression is the same as that of the particular case value. The default case is selected when the value
of the switch expression does not correspond to any of the values for the other cases. Although I’ve
written the cases in the preceding switch sequenced by their case values, they can be in any order.

When a particular case is selected, the statements that follow that case label are executed. So if wash has
the value 2, the statements that follow:

case 2: // wash is 2 for Linen

are executed. In this case, these are:

System.out.println(“Linen selected”);

break;

102

Chapter 3

When a break statement is executed here, it causes execution to continue with the statement following
the closing brace for the switch. The break is not mandatory as the last statement for each case, but if
you don’t put a break statement at the end of the statements for a case, the statements for the next case
in sequence will be executed as well, through to whenever another break is found or the end of the
switch block is reached. This is not usually what you want. The break after the default statements in
our example is not strictly necessary, but it does protect against the situation when you might add
another case label at the end of the switch statement block, and overlook the need for the break at the
end of the last case.

You need a case label for each choice to be handled in the switch, and the case values must all be differ-
ent. The default case you have in the preceding example is, in general, optional. As I said, it is selected
when the value of the expression for the switch does not correspond with any of the case values that
you have defined. If you don’t specify a default case and the value of the switch expression does not
match any of the case labels, none of the statements in the switch will be executed, and execution con-
tinues at the statement following the closing brace of the switch statement.

You could rewrite the previous switch statement to use a variable of an enumeration type as the expres-
sion controlling the switch. Suppose you have defined the WashChoice enumeration type like this:

enum WashChoice { cotton, linen, wool } // Define enumeration type

You can now code the switch statement like this:

WashChoice wash = WashChoice.linen; // Initial definition of variable

// Some more code that might change the value of wash...

switch(wash) {

case cotton:

System.out.println(“Cotton selected”);

break;

case linen:

System.out.println(“Linen selected”);

break;

case wool:

System.out.println(“Wool selected”);

break;

}

The switch is controlled by the value of the wash variable. Note how you use the enumeration con-
stants as case values. You must write them without the enumeration type name as a qualifier in this con-
text; otherwise, the code will not compile. Using enumeration constants as the case values makes the
switch much more self-explanatory. It is perfectly clear what each case applies to. Because you cannot
assign a value to a variable of an enumeration type that is not a defined enumeration constant, it is not
necessary to include a default case here.

103

Loops and Logic

The General Case of the switch Statement
I have illustrated the logic of the general switch statement in the flowchart shown in Figure 3-4.

Figure 3-4

Each case value is notionally compared with the value of an expression. If one matches, then the code
for that case is executed, and the break branches to the first statement after the switch. As I said earlier,
if you don’t include the break statements, the logic is quite different, as shown in Figure 3-5.

Now when a case label value is equal to the switch expression, the code for that case is executed, and
followed by the statements for all the other cases that succeed the case that was selected, including that
for the default case if that follows. This is not usually what you want, so make sure you don’t forget the
break statements.

switch(expression) {

case value:
 // Do value1 thing
 break;
case value2:
 // Do value2 thing
 break;

...

default
 // Do default action
 break;

Do value1 thing
expression

equals
value1?

expression
equals

value2?

y
break

Do value2 thing

Do default action

y

n

break

n

Continue the program

break

}
// Continue the program

104

Chapter 3

Figure 3-5

You can arrange to execute the same statements for several different case labels, as in the following
switch statement:

char yesNo = ‘N’;

// more program logic...

switch(yesNo) {

case ‘n’: case ‘N’:

System.out.println(“No selected”);

break;

expression
equals

value1?
Do value1 thing

y

expression
equals

value2?
Do value2 thing

y

n

Continue the program

Do default action

n

switch(expression) {

case value:
 // Do value1 thing

case value2:
 // Do value2 thing

...

default;
 // Do default action

}
// Continue the program

105

Loops and Logic

case ‘y’: case ‘Y’:

System.out.println(“Yes selected”);

break;

}

Here the variable yesNo receives a character from the keyboard somehow. You want a different action
depending on whether the user enters ‘Y’ or ‘N’, but you want to be able to accept either uppercase or
lowercase entries. This switch does just this by putting the case labels together. Note that there is no
default case here. If yesNo contains a character other than those identified in the case statements, the
switch statement has no effect. In practice, you might add a default case in this kind of situation to out-
put a message indicating when the value in yesNo is not valid.

Of course, you could also implement this logic using if statements:

if(yesNo==’n’ || yesNo==’N’) {

System.out.println(“No selected”);

} else {

if(yesNo==’y’ || yesNo==’Y’) {

System.out.println(“Yes selected”);

}

}

I prefer the switch statement as I think it’s easier to follow, but you decide for yourself. Let’s try an
example.

Try It Out Making the switch
This example uses a switch controlled by an integer type and a switch controlled by a variable of an
enumeration type:

public class TrySwitch {

enum WashChoice {cotton, linen, wool, synthetic} // Define enumeration type

public static void main(String[] args) {

WashChoice wash = WashChoice.cotton; // Variable to define the choice of wash

// The clothes variable specifies the clothes to be washed by an integer value

// 1:shirts 2:sweaters 3:socks 4:sheets 5:pants

int clothes = 3;

switch(clothes) {

case 1:

System.out.println(“Washing shirts.”);

wash = WashChoice.cotton;

break;

case 2:

System.out.println(“Washing sweaters.”);

wash = WashChoice.wool;

break;

case 3:

System.out.println(“Washing socks.”);

wash = WashChoice.wool;

106

Chapter 3

break;

case 4:

System.out.println(“Washing sheets.”);

wash = WashChoice.linen;

break;

case 5:

System.out.println(“Washing pants.”);

wash = WashChoice.synthetic;

break;

default:

System.out.println(“Unknown washing - default synthetic.”);

wash = WashChoice.synthetic;

break;

}

// Now select the wash temperature

System.out.println(“Wash is “+ wash);

switch(wash) {

case wool:

System.out.println(“Temperature is 120.”);

break;

case cotton:

System.out.println(“Temperature is 170.”);

break;

case synthetic:

System.out.println(“Temperature is 130.”);

break;

case linen:

System.out.println(“Temperature is 180.”);

break;

}

}

}

You should get the following output from this example:

Washing socks.

Wash is wool

Temperature is 120.

How It Works
This looks like a lot of code, but it’s because of the number of cases in the two switch statements. You
first define an enumeration type, WashChoice. You then define a variable of this type in the main()
method with the following statement:

WashChoice wash = WashChoice.cotton; // Variable to define the choice of wash

The initial value for wash here is arbitrary. You could have chosen any of the possible enumeration con-
stants for the WashChoice type.

Next, you define and initialize a variable identifying the type of clothes to be washed:

int clothes = 3;

107

Loops and Logic

The initial value for clothes corresponds to socks and in a more practical example would be arrived at
by means other than just assigning the value. You use the clothes variable to control the next switch
statement. For each case in the switch, you output what is to be washed and set the value for the wash
variable to the appropriate enumeration constant. You would usually put a default case in this sort of
switch statement because its control expression is numeric, and if the value was derived by some com-
putation or other, there is always the possibility of an invalid value being produced. If there is no default
case and the switch expression results in a value that does not correspond to any of the cases, execution
will just continue with the statement following the switch block.

After the first switch, you output the wash type:

System.out.println(“Wash is “+ wash);

You saw in the previous chapter that the string representation of a value that is an enumeration constant
is the name of the value as it appears in the type definition.

Lastly, you use the wash variable as the expression selecting a case in the next switch. Because a vari-
able of an enumeration type must have an enumeration constant as a value, and all possible values are
represented by cases in the switch, you don’t need a default case here.

Note that you could have defined the values for the various types of clothes as constant values:

final int SHIRTS = 1;

final int SWEATERS = 2;

final int SOCKS = 3;

final int SHEETS = 4;

final int PANTS = 5;

The value set for the clothes variable would then have been much more obvious:

int clothes = SOCKS;

Of course, you could also have used an enumeration for the clothes type, too, but I’ll leave you to
work out what that would look like.

Variable Scope
The scope of a variable is the part of the program over which the variable name can be referenced — in
other words, where you can use the variable in the program. Every variable that I have declared so far in
program examples has been defined within the context of a method, the method main(). Variables that
are declared within a method are called local variables, as they are only accessible within the confines of
the method in which they are declared. However, they are not necessarily accessible everywhere in the
code for the method in which they are declared. Look at the next code fragment, which shows variables
defined within nested blocks:

{

int n = 1; // Declare and define n

// Reference to n is OK here

108

Chapter 3

// Reference to m here is an error because m does not exist yet

{

// Reference to n here is OK too

// Reference to m here is still an error

int m = 2; // Declare and define m

// Reference to m and n are OK here - they both exist

} // m dies at this point

// Reference to m here is now an error

// Reference to n is still OK though

} // n dies at this point so you can’t refer to it in following statements

A variable does not exist before its declaration; you can refer to it only after it has been declared. It con-
tinues to exist until the end of the block in which it is defined, and that includes any blocks nested
within the block containing its declaration. The variable n is created as the first statement in the outer
block. It continues to exist within the inner block too. The variable m exists only within the inner block
because that’s where its declaration appears. After the brace at the end of the inner block, m no longer
exists so you can’t refer to it. The variable n is still around though and it survives until the closing brace
of the outer block.

So, the rule that determines the accessibility of local variables is simple. Local variables are accessible
only from the point in the program where they are declared to the end of the block that contains the dec-
laration. At the end of the block in which they are declared, they cease to exist. I can demonstrate this
with an example:

Try It Out Scoping
Here’s a version of the main() method that demonstrates how variable scope works:

public class Scope {

public static void main(String[] args) {

int outer = 1; // Exists throughout the method

{

// You cannot refer to a variable before its declaration

// System.out.println(“inner = “ + inner); // Uncomment this for an error

int inner = 2;

System.out.println(“inner = “ + inner); // Now it is OK

System.out.println(“outer = “ + outer); // and outer is still here

// All variables defined in the enclosing outer block still exist,

// so you cannot redefine them here

// int outer = 5; // Uncomment this for an error

}

// Any variables declared in the previous inner block no longer exist

// so you cannot refer to them

// System.out.println(“inner = “ + inner); // Uncomment this for an error

109

Loops and Logic

// The previous variable, inner, does not exist so you can define a new one

int inner = 3;

System.out.println(“inner = “ + inner); // ... and output its value

System.out.println(“outer = “ + outer); // outer is still around

}

}

As it stands, this program will produce the following output:

inner = 2

outer = 1

inner = 3

outer = 1

If you uncomment any or all of the three statements as suggested, it won’t compile:

javac Scope.java

Scope.java:11: Undefined variable: inner

System.out.println(“inner = “ + inner); // Uncomment this for an error

^

1 error

javac Scope.java

Scope.java:19: Variable ‘outer’ is already defined in this method.

int outer = 5; // Uncomment this for an error

^

1 error

javac Scope.java

Scope.java:23: Undefined variable: inner

System.out.println(“inner = “ + inner); // Uncomment this for an error

^

1 error

How It Works
The main() method in this program has one block nested inside the block that contains the code for the
method. The variable outer is defined right at the start, so you can refer to this anywhere within the
method main(), including inside the nested block. You are not allowed to re-declare a variable, so the
commented statement that re-declares outer within the inner block will cause a compiler error if you
remove the double slash at the beginning of the line.

The variable inner is defined inside the nested block with the initial value 2, and you can refer to it any-
where from its declaration to the end of the inner block. After the closing brace of the inner block, the
variable inner no longer exists, so the commented output statement that refers to inner is illegal.
However, since the variable inner has expired, you can declare another one with the same name and
with the initial value 3.

Note that all this is just to demonstrate the lifetime of local variables. It is not good practice to redefine
variables that have expired, because of the obvious potential for confusion. Also, although I have only
used variables of type int in the preceding example, scoping rules apply to variables of any type.

110

Chapter 3

Loops
A loop allows you to execute a statement or block of statements repeatedly. The need to repeat a block of
code arises in almost every program. If you did the first exercise at the end of the last chapter, based on
what you had learned up to that point, you would have come up with a program along the lines of the
following:

public class TryExample1_1 {

public static void main(String[] args) {

byte value = 1;

value *= 2;

System.out.println(“Value is now “+value);

value *= 2;

System.out.println(“Value is now “+value);

value *= 2;

System.out.println(“Value is now “+value);

value *= 2;

System.out.println(“Value is now “+value);

value *= 2;

System.out.println(“Value is now “+value);

value *= 2;

System.out.println(“Value is now “+value);

value *= 2;

System.out.println(“Value is now “+value);

value *= 2;

System.out.println(“Value is now “+value);

}

}

The same pair of statements has been entered eight times. This is a rather tedious way of doing things. If
the program for the company payroll had to include separate statements to do the calculation for each
employee, it would never get written. A loop removes this sort of difficulty. You could write the method
main() to do the same as the code above as follows:

public static void main(String[] args) {

byte value = 1;

for (int i=0; i<8 ; i++) {

value *= 2;

System.out.println(“Value is now “ + value);

}

}

There are other variables called class variables that have much longer lifetimes when
they are declared in a particular way. The variables PI and E in the standard library
class Math are examples of these. They hang around as long as your program is exe-
cuting. There are also variables that form part of a class object called instance
variables. You’ll learn more about these in Chapter 5.

111

Loops and Logic

This uses one particular kind of loop — called a for loop. The for loop statement on the third line
causes the statements in the following block to be repeated eight times. The number of times it is to be
repeated is determined by the stuff between parentheses following the keyword for— you’ll see how in
a moment. The point is you could, in theory, repeat the same block of statements as many times as you
want — a thousand or a million or a billion — it is just as easy and it doesn’t require any more lines of
code. The primary purpose of the for loop is to execute a block of statements a given number of times.

In general, a loop has two parts to it; it has a loop body, which is a single statement or block of state-
ments defining the code that is to be repeated, and it has a loop control mechanism that determines how
many times the loop body will execute.

Varieties of Loop
There are four kinds of loop statements you can use. I’ll introduce these in outline first to give an
overview of all the possibilities:

1. The numerical for loop:

for (initialization_expression ; loop_condition ; increment_expression) {

// statements

}

I have described this loop as the numerical for loop as a rough indication of how it is used, and
to distinguish it from another variety of for loop that I’ll come to in a moment. The numerical
for loop is usually just referred to as a for loop. The loop body for this loop is the block of
statements between the braces. This can be just a single statement, in which case the braces are
optional. The code to control the for loop appears in parentheses following the keyword for.

As you can see, the loop control mechanism has three parts separated by semicolons. The first
part, the initialization_expression, executes once before the loop starts. You typically use
this expression to initialize a counter for the number of loop iterations — for example, i = 0.
With a loop controlled by a counter, which can be an integer or a floating-point variable, you
can count up or down by whatever increment or decrement you choose until the variable
reaches some defined limit.

Execution of this loop continues as long as the condition you specify in the second part of the
control mechanism, the loop_condition, is true. This expression is checked at the beginning
of each loop iteration, and as long as it is true, the loop body executes. When loop_condition
is false, the loop ends and execution continues with the statement following the loop block.
For example, if you used i<10 as the loop_condition expression, the loop would continue as
long as the variable i has a value less than 10. The third part of the control information between
the parentheses, the increment_expression, is usually used to increment the loop counter.
This is executed at the end of each loop iteration. This could be i++, which would increment the

112

Chapter 3

loop counter, i, by one. Of course, you might want to increment the loop counter in steps other
than 1. For example, you might write i += 2 as the increment_expression to go in steps of 2,
or even something more complicated such as i = 2*i+1.

2. The collection-based for loop:

for (type identifier : iterable_expression) {

// statements

}

You won’t be able to fully appreciate the capabilities of this loop until you have learned about
Collection classes in Chapter 14, so I’ll just give you a brief indication here of what you can
do with it so you know about all the loop statements you have available. This for loop has two
control elements separated by a colon that appear between the parentheses following the for
keyword. The first element is an identifier of the type that you specify, and the second is an
expression specifying a collection of objects or values of the specified type. The loop will exe-
cute once for each item of the specified type that appears in the collection, and you can refer to
the current item in the loop body using the identifier that you specified as the first control
element. You can apply this form of for loop to arrays as well as collections. You will learn
about arrays — and how you can use this loop with an array — in Chapter 4.

3. The while loop:

while (expression) {

// statements

}

This loop executes as long as the logical expression between the parentheses is true. When
expression is false, the loop ends and execution continues with the statement following the
loop block. The expression is tested at the beginning of the loop, so if it is initially false, the
loop body will not be executed at all. An example of a while loop condition might be
yesNo==’Y’ || yesNo==’y’. This expression would be true if the variable yesNo contained
‘y’ or ‘Y’, so yesNo might hold a character entered from the keyboard in this instance.

4. The do while loop:

do {

// statements

} while (expression);

This loop is similar to the while loop, except that the expression controlling the loop is tested at
the end of the loop block. This means that the loop body always executes at least once, even if
the expression is always false.

113

Loops and Logic

The basic logic of each of the four kinds of loop is shown in Figure 3-6.

Figure 3-6

The two versions of the for loop have quite different mechanisms controlling the number of iterations.
You can also see quite clearly that the primary difference between the while loop and the do while
loop is where the test is carried out.

Let’s explore each of these loops in turn and see how they work in a practical context.

Try It Out The Numerical for Loop
Let’s start with a very simple example. Suppose you want to calculate the sum of the integers from 1 to a
given value. You can do this using the for loop as shown in the following example:

public class ForLoop {

public static void main(String[] args) {

int limit = 20; // Sum from 1 to this value

int sum = 0; // Accumulate sum in this variable

// Loop from 1 to the value of limit, adding 1 each cycle

for(int i = 1; i <= limit; i++) {

sum += i; // Add the current value of i to sum

Execute
initialization
expression

n

y

Execute
loop body

statement(s)

Execute
increment
expression

Next statement

loop_condition
is true?

Create
loop

identifier

y

n

Set identifier
to next item

Execute
loop body

statement(s)

Next statement

All items in
collection

processed?

Execute loop
statement(s)

n

Next statement

condition
expression

is true?

n

y

yExecute loop
statement(s)

Next statement

Test condition
is true?

The numerical
for loop

The collection-based
for loop

The do-while loopThe while loop

114

Chapter 3

}

System.out.println(“sum = “ + sum);

}

}

This program will produce the output

sum = 210

but you can try it out with different values for limit.

How It Works
All the work is done in the for loop. The loop counter is i, and this is declared and initialized within the
for loop statement. The syntax of this for loop is shown in Figure 3-7.

Figure 3-7

As you see, there are three elements that control the operation of the for loop, and they appear between
the parentheses that follow the keyword for. In sequence, their purpose is to:

❑ Set the initial conditions for the loop, particularly the loop counter

❑ Specify the condition for the loop to continue

❑ Increment the loop counter

This expression is executed
once on entry to the loop.
You usually use it to set the
initial value for the loop
counter variable, and in this
case it declares it as well.

for(int i = 1 i<=limit i++) {

}

; ;

sum+=i;

This is the statement in the loop
body. The loop body can also be
a block of several statements.

This must be an
expression having the
value true or false. It is
checked on each iteration.
As long as it is true, the
loop body is repeated.

This is executed at the
end of each iteration of
the loop body. It is
usually used as here to
increment the loop
counter, i.

115

Loops and Logic

They are always separated by semicolons, but as you will see later, any or all of them can be omitted.

The first control element is executed when the loop is first entered. Here you declare and initialize the
loop counter i. Because it is declared within the loop, it will not exist outside it. If you try to output the
value of i after the loop with a statement such as

System.out.println(“Final value of i = “ + i); // Will not work outside the loop

you’ll find that the program will no longer compile.

Where the loop body consists of just a single statement, you can omit the braces and write the loop like
this:

for (int i = 1; i <= limit; i++)

sum += i; // Add the current value of i to sum

In general, it’s better practice to keep the braces in as it makes it clearer where the loop body ends.

If you need to initialize and/or declare other variables for the loop, you can do it here by separating the
declarations by commas. For example, you could write:

for (int i = 1, j = 0; i <= limit; i++) {

sum += i * j++; // Add the current value of i*j to sum

}

In this fragment, I initialize an additional variable j, and, to make the loop vaguely sensible, I have
modified the value to add the sum to i*j++, which is the equivalent of i*(i-1) in this case. Note that j
will be incremented after the product i*j has been calculated. You could declare other variables here,
but note that it would not make sense to declare sum at this point. If you can’t figure out why, delete or
comment out the original declaration of sum in the example and put it in the for loop instead to see
what happens. The program won’t compile — right? After the loop ends, the variable sum no longer
exists, so you can’t reference it. This is because all variables that you declare within the loop control
expressions are logically within the block that is the body of the loop.

The second control element in a for loop is a logical expression that is checked at the beginning of each
iteration through the loop. If the expression is true, the loop continues, the loop body executes, and as
soon as it is false, the loop is finished. In our program, the loop ends when i is greater than the value
of limit.

The third control element in a for loop typically increments the loop variable, as you have seen in the
example. You can put multiple expressions here, too, so you could rewrite the previous code fragment
that added j to the loop as:

for (int i = 1, j = 0; i <= limit; i++, j++) {

sum+=i*j; // Add the current value of i*j to sum

}

Again, there can be several expressions here, and they do not need to relate directly to the control of the
loop. You could even rewrite the original loop for summing integers so that the summation occurs in the
loop control element:

116

Chapter 3

for (int i = 1; i <= limit; sum += i, i++) {

;

}

Now the loop statement is empty — you just have the semicolon to terminate it. This version of the code
doesn’t really improve things though as it’s certainly not so easy to see what is happening and there are
hazards in writing the loop this way. If you were to reverse the sequence of adding to sum and incre-
menting i as follows:

for (int i = 1; i <= limit; i++, sum += i) { // Wrong!!!

;

}

you would generate the wrong answer. This is because the expression i++ will be executed before sum
+= i, so the wrong value of i is used.

You can omit any or all of the elements that control the for loop, but you must include the semicolons. It
is up to you to make sure that the loop does what you want. I could rewrite the loop in the program as:

for(int i = 1; i <= limit;) {

sum += i++; // Add the current value of i to sum

}

I have simply transferred the operation of incrementing i from the for loop control expression to the
loop body. The for loop works just as before. However, this is not a good way to write the loop, as it
makes it much less obvious how the loop counter is incremented.

Counting Using Floating-Point Values
You can use a floating-point variable as the loop counter if you need to. This may be needed when you
are calculating the value of a function for a range of fractional values. Suppose you wanted to calculate
the area of a circle with values for the radius from 1 to 2 in steps of 0.2. You could write this as:

for(double radius = 1.0; radius <= 2.0; radius += 0.2) {

System.out.println(“radius = “ + radius + “ area = “ + Math.PI*radius*radius);

}

This will produce the following output:

radius = 1.0 area = 3.141592653589793

radius = 1.2 area = 4.523893421169302

radius = 1.4 area = 6.157521601035994

radius = 1.5999999999999999 area = 8.04247719318987

radius = 1.7999999999999998 area = 10.178760197630927

radius = 1.9999999999999998 area = 12.566370614359169

The area has been calculated using the formula (r2 with the standard value PI defined in the Math class,
which is 3.14159265358979323846. Although you may have intended the values of radius to increment
from 1.0 to 2.0 in steps of 0.2, they don’t quite make it. The value of radius is never exactly 2.0 or any of
the other intermediate values because 0.2 cannot be represented exactly as a binary floating-point value.
If you doubt this, and you are prepared to deal with an infinite loop, change the loop to:

117

Loops and Logic

// BE WARNED - THIS LOOP DOES NOT END

for(double radius = 1.0; radius != 2.0; radius += 0.2) {

System.out.println(“radius = “ + radius + “ area = “ + Math.PI*radius*radius);

}

If the value of radius reaches 2.0, the condition radius ! =2.0 will be false and the loop will end,
but unfortunately, it doesn’t. Its last value before 2 will be approximately 1.999 . . . and the next value
will be something like 2.1999 . . . and so it will never be 2.0. From this you can deduce a golden rule:

Try It Out The Collection-Based for Loop
You can’t do a whole lot with the collection-based for loop yet. This will come into its own later in the
book, especially after Chapter 14, and you’ll be learning more about what you can do with it in the next
chapter. One thing that it does apply to and that you have learned something about is an enumeration.
Here’s how you could apply the collection-based for loop to iterate through all the possible values in an
enumeration:

public class CollectionForLoop {

enum Season { spring, summer, fall, winter } // Enumeration type definition

public static void main(String[] args) {

for(Season season : Season.values()) { // Vary over all values

System.out.println(“ The season is now “ + season);

}

}

}

This will generate the following output:

The season is now spring

The season is now summer

The season is now fall

The season is now winter

How It Works
Figure 3-8 shows the way the collection-based for loop works.

The season variable of type Season that appears in the first control expression between the parentheses
for the for loop will be assigned a different enumeration constant value of each iteration of the loop.
The second control expression, following the colon, identifies the collection that is the source of values
for the variable declared in the first control expression. In this case it is an enumeration, but in general,
there are other collections you can use, as you’ll see in Chapter 14. In the next chapter you’ll be learning
about arrays where both forms of for loop can be used.

Never use tests that depend on an exact value for a floating-point variable to control
a loop.

118

Chapter 3

Figure 3-8

In this example, the enumeration defines four values, spring, summer, fall, and winter, so the vari-
able season will be assigned each of these values in turn, as the output shows.

Try It Out The while Loop
You can write the program for summing integers again using the while loop, which will show you how
the loop mechanism differs from the for loop:

public class WhileLoop {

public static void main(String[] args) {

int limit = 20; // Sum from 1 to this value

int sum = 0; // Accumulate sum in this variable

int i = 1; // Loop counter

// Loop from 1 to the value of limit, adding 1 each cycle

while(i <= limit) {

sum += i++; // Add the current value of i to sum

}

System.out.println(“sum = “ + sum);

}

}

You should get the following result:

sum = 210

This expression specifies
the variable, season, of
type Season in this case,
that will be assigned each
of the values in the
collection in turn.

for(Season season Season.values()) {

}

:

System.out.println("The season is now" + season);

This statement will execute with
the current value of season.

A colon separates the two
control expressions in this
type of for loop - not a
semicolon.

This expression identifies
the collection that is the
source of data values to
be iterated over. In this
case it is all the values in
the enumeration, Season.

119

Loops and Logic

How It Works
The while loop is controlled wholly by the logical expression that appears between the parentheses that
follow the keyword while. The loop continues as long as this expression has the value true, and how it
ever manages to arrive at the value false to end the loop is up to you. You need to be sure that the
statements within the loop will eventually result in this expression being false. Otherwise, you have a
loop that continues indefinitely.

How the loop ends in the example is clear. You have a simple count as before, and you increment i in
the loop statement that accumulates the sum of the integers. Sooner or later i will exceed the value of
limit, and the while loop will end.

You don’t always need to use the testing of a count limit as the loop condition. You can use any logical
condition you want.

Try It Out The do while Loop
And last, but not least, you have the do while loop.

As I said at the beginning of this topic, the do while loop is much the same as the while loop, except
for the fact that the continuation condition is checked at the end of the loop. You can write an integer-
summing program with this kind of loop too:

public class DoWhileLoop {

public static void main(String[] args) {

int limit = 20; // Sum from 1 to this value

int sum = 0; // Accumulate sum in this variable

int i = 1; // Loop counter

// Loop from 1 to the value of limit, adding 1 each cycle

do {

sum += i; // Add the current value of i to sum

i++;

} while(i <= limit);

System.out.println(“sum = “ + sum);

}

}

The output will be the same as the previous example.

How It Works
The statements within the loop are always executed at least once because the condition that determines
whether the loop should continue is tested at the end of each iteration. Within the loop you add the
value of i to sum, and then increment it. When i exceeds the value of limit, the loop ends, at which
point sum will contain the sum of all the integers from 1 to limit.

The loop statement here has braces around the block of code that is within the loop. You could rewrite
the loop so that only one statement was within the loop body, in which case the braces are not required.
For example:

120

Chapter 3

do

sum += i; // Add the current value of i to sum

while(++i <= limit);

Of course, you can and should still put the braces in. I advise that you always use braces around the
body of a loop, even when it is only a single statement.

There are often several ways of writing the code to produce a given result, and this is true here — you
could also move the incrementing of the variable i back inside the loop and write it as follows:

do {

sum += i++; // Add the current value of i to sum

} while (i <= limit);

The value of i is now incremented using the postfix increment operator. If you were to use the prefix
form, you would get the wrong result. Note that the semicolon after the while condition is present in
each version of the loop. This is part of the loop statement so you must not forget to put it in. The pri-
mary reason for using this loop over the while loop would be if you want to be sure that the loop code
always executes at least once.

Nested Loops
You can nest loops of any kind one inside another to any depth. Let’s look at an example where you can
use nested loops.

A factorial of an integer, n, is the product of all the integers from 1 to n. It is written as n!. It may seem a
little strange if you haven’t come across it before, but the factorial of an integer is very useful for calcu-
lating combinations and permutations of things. For example, n! is the number of ways you can arrange
n different things in sequence, so a deck of cards can be arranged in 52! different sequences. Let’s try cal-
culating some factorial values.

Try It Out Calculating Factorials
This example will calculate the factorial of every integer from 1 up to a given limit. Enter the following
code:

public class Factorial {

public static void main(String[] args) {

long limit = 20L; // Calculate factorials of integers up to this value

long factorial = 1L; // A factorial will be stored in this variable

// Loop from 1 to the value of limit

for (long i = 1L; i <= limit; i++) {

factorial = 1L; // Initialize factorial

for (long factor = 2; factor <= i; factor++) {

factorial *= factor;

}

System.out.println(i + “! is “ + factorial);

}

}

}

121

Loops and Logic

This program will produce the following output:

1! is 1

2! is 2

3! is 6

4! is 24

5! is 120

6! is 720

7! is 5040

8! is 40320

9! is 362880

10! is 3628800

11! is 39916800

12! is 479001600

13! is 6227020800

14! is 87178291200

15! is 1307674368000

16! is 20922789888000

17! is 355687428096000

18! is 6402373705728000

19! is 121645100408832000

20! is 2432902008176640000

How It Works
All the variables used in this example are of type long. Factorial values grow very rapidly so by using
type long you allow much larger factorials to be calculated than if you used type int. You still could
have declared factor and i as type int without limiting the size of the factorial value that the program
can produce, but the compiler would then need to insert casts to make the int values type long when-
ever they were involved in an operation with a value of type long.

The outer loop, controlled by i, walks through all the integers from 1 to the value of limit. In each itera-
tion of the outer loop, the variable factorial is initialized to 1, and the nested loop calculates the facto-
rial of the current value of i using factor as the control counter that runs from 2 to the current value of i.
The resulting value of factorial is then displayed before going to the next iteration of the outer loop.

Although you have nested a for loop inside another for loop here, as I said at the outset, you can nest
any kind of loop inside any other. You could have written the nested loop as:

for (long i = 1L; i <= limit; i++) {

factorial = 1L; // Initialize factorial

long factor = 2L;

while (factor <= i) {

factorial *= factor++;

}

System.out.println(i + “! is “ + factorial);

}

Now you have a while loop nested in a for loop. It works just as well, but it is rather more naturally
coded as two nested for loops because they are both controlled by a counter.

122

Chapter 3

The continue Statement
There are situations where you may want to skip all or part of a loop iteration. Suppose you want to sum
the values of the integers from 1 to some limit, except that you don’t want to include integers that are
multiples of three. You can do this using an if and a continue statement:

for(int i = 1; i <= limit; i++) {

if(i % 3 == 0) {

continue; // Skip the rest of this iteration

}

sum += i; // Add the current value of i to sum

}

The continue statement is executed in this example when i is an exact multiple of 3, causing the rest of
the current loop iteration to be skipped. Program execution continues with the next iteration if there is one,
and if not, with the statement following the end of the loop block. The continue statement can appear
anywhere within a block of loop statements. You may even have more than one continue in a loop.

The Labeled continue Statement
Where you have nested loops, there is a special form of the continue statement that enables you to stop
executing the inner loop — not just the current iteration of the inner loop — and continue at the begin-
ning of the next iteration of the outer loop that immediately encloses the current loop. This is called the
labeled continue statement.

To use the labeled continue statement, you need to identify the loop statement for the enclosing outer
loop with a statement label. A statement label is simply an identifier that is used to reference a particu-
lar statement. When you need to reference a particular statement, you write the statement label at the
beginning of the statement in question, separated from the statement by a colon. Let’s look at an
example:

Try It Out Labeled continue
You could add a labeled continue statement to omit the calculation of factorials of odd numbers greater
than 10. This is not the best way to do this, but it does demonstrate how the labeled continue statement
works:

public class Factorial2 {

public static void main(String[] args) {

long limit = 20L; // to calculate factorial of integers up to this value

long factorial = 1L; // factorial will be calculated in this variable

// Loop from 1 to the value of limit

If you have been concentrating, you may well have noticed that you don’t really
need nested loops to display the factorial of successive integers. You can do it with a
single loop that multiplies the current factorial value by the loop counter. However,
this would be a very poor demonstration of a nested loop.

123

Loops and Logic

OuterLoop:

for(long i = 1L; i <= limit; i++) {

factorial = 1; // Initialize factorial

for(long j = 2L; j <= i; j++) {

if(i > 10L && i % 2L == 1L) {

continue OuterLoop; // Transfer to the outer loop

}

factorial *= j;

}

System.out.println(i + “! is “ + factorial);

}

}

}

If you run this it will produce the following output:

1! is 1

2! is 2

3! is 6

4! is 24

5! is 120

6! is 720

7! is 5040

8! is 40320

9! is 362880

10! is 3628800

12! is 479001600

14! is 87178291200

16! is 20922789888000

18! is 6402373705728000

20! is 2432902008176640000

How It Works
The outer loop has the label OuterLoop. In the inner loop, when the condition in the if statement is
true, the labeled continue is executed causing an immediate transfer to the beginning of the next itera-
tion of the outer loop. The condition in the if statements causes the calculation of the factorial to be
skipped for odd values greater than 10.

In general, you can use the labeled continue to exit from an inner loop to any enclosing outer loop, not
just the one immediately enclosing the loop containing the labeled continue statement.

Using the break Statement in a Loop
You have seen how to use the break statement in a switch block. Its effect is to exit the switch block
and continue execution with the first statement after the switch. You can also use the break statement
to break out from a loop. When break is executed within a loop, the loop ends immediately, and execu-
tion continues with the first statement following the loop. To demonstrate this, you will write a program
to find prime numbers. In case you have forgotten, a prime number is an integer that is only exactly
divisible by itself and 1.

124

Chapter 3

Try It Out Calculating Primes I
There’s a little more code to this than the previous example. This program will find all the primes from 2
to 50:

public class Primes {

public static void main(String[] args) {

int nValues = 50; // The maximum value to be checked

boolean isPrime = true; // Is true if we find a prime

// Check all values from 2 to nValues

for(int i = 2; i <= nValues; i++) {

isPrime=true; // Assume the current i is prime

// Try dividing by all integers from 2 to i-1

for(int j = 2; j < i; j++) {

if(i % j == 0) { // This is true if j divides exactly

isPrime = false; // If we got here, it was an exact division

break; // so exit the loop

}

}

// We can get here through the break, or through completing the loop

if(isPrime) // So is it prime?

System.out.println(i); // Yes, so output the value

}

}

}

You should get the following output:

2

3

5

7

11

13

17

19

23

29

31

37

41

43

47

How It Works
There are much more efficient ways to calculate primes, but this program does demonstrate the break
statement in action. The first step in main() is to declare two variables:

int nValues = 50; // The maximum value to be checked

boolean isPrime = true; // Is true if we find a prime

125

Loops and Logic

The first variable is the upper limit for integers to be checked to see if they are prime. The isPrime vari-
able will be used to record whether a particular value is prime or not.

The basic idea of the program is to go through the integers from 2 to the value of nValues and check
each one to see if it has an integer divisor less than itself. The nested loops do this:

for(int i = 2; i <= nValues; i++) {

isPrime=true; // Assume the current i is prime

// Try dividing by all integers from 2 to i-1

for(int j = 2; j < i; j++) {

if(i % j == 0) { // This is true if j divides exactly

isPrime = false; // If we got here, it was an exact division

break; // so exit the loop

}

}

// We can get here through the break, or through completing the loop

if(isPrime) // So is it prime?

System.out.println(i); // Yes, so output the value

}

The outer loop is indexed by i and steps through the possible values that need to be checked for prime-
ness. The inner loop is indexed by j, the value of j being a trial divisor. This determines whether any
integer less than the value being tested for primality is an exact divisor.

The checking is done in the if statement in the inner loop. If j divides i exactly, i%j will be 0, so
isPrime will be set to false. In this case the break will execute to exit the inner loop — there is no
point in continuing as you now know that the value being tested is not prime. The next statement to be
executed will be the if statement after the closing brace of the inner loop block. You can also reach this
point by a normal exit from the loop that occurs when the value is prime so you need a way to deter-
mine whether the current value of i was found to be prime or not. The isPrime variable solves this
problem. You just check the value of isPrime and if it has the value true, you have a prime to display
so you execute the println() call.

You could simplify this example if you used the labeled continue statement instead of the break
statement:

Try It Out Calculating Primes II
Try the following changes to the code in the Primes class:

public class Primes2 {

public static void main(String[] args) {

int nValues = 50; // The maximum value to be checked

// Check all values from 2 to nValues

OuterLoop:

for(int i = 2; i <= nValues; i++) {

// Try dividing by all integers from 2 to i-1

for(int j = 2; j < i; j++) {

if(i%j == 0) { // This is true if j divides exactly

126

Chapter 3

continue OuterLoop; // so exit the loop

}

}

// We only get here if we have a prime

System.out.println(i); // so output the value

}

}

}

If you’ve keyed it in correctly, you’ll get the same output as the previous example.

How It Works
You no longer need the isPrime variable to indicate whether you have a prime or not, as the output state-
ment can be reached only through a normal exit from the inner loop. When this occurs it means you have
found a prime. If you get an exact divisor in the inner loop, it implies that the current value of i is not
prime, so the labeled continue statement transfers immediately to the next iteration of the outer loop.

Breaking Indefinite Loops
You will find that sometimes you need to use a loop where you don’t know in advance how many itera-
tions will be required. This can arise when you are processing external data items that you might be
reading in from the keyboard, for example, and you cannot know in advance how many there will be.
You can often use a while loop in these circumstances, with the loop condition determining when the
loop should end, but sometimes it can be convenient to use an indefinite loop instead and use a break
statement in the loop body to end the loop. An indefinite loop is a loop where the control condition is
such that the loop apparently continues to execute indefinitely. In this case, the mechanism to end the
loop must be in the body of the loop.

Try It Out Calculating Primes III
Suppose you want the Primes program to generate a given number of primes, rather than check up to
a given integer value. In this case, you don’t know how many numbers you need to check to generate
the required number of primes. This is a case where an indefinite loop is useful. You can code this as
follows:

public class FindPrimes {

public static void main(String[] args) {

int nPrimes = 50; // The maximum number of primes required

OuterLoop:

for(int i = 2; ; i++) { // This loop runs forever

// Try dividing by all integers from 2 to i-1

for(int j = 2; j < i; j++) {

if(i % j == 0) { // This is true if j divides exactly

continue OuterLoop; // so exit the loop

}

}

// We only get here if we have a prime

System.out.println(i); // so output the value

127

Loops and Logic

if(--nPrimes == 0) { // Decrement the prime count

break; // It is zero so we have them all

}

}

}

}

This program will output the first 50 primes.

How It Works
This program is very similar to the previous version. The principal differences are that nPrimes contains
the number of primes required, so the program will produce the first 50 primes, instead of finding the
primes between 2 and 50, and the for outer loop, controlled by i, has the loop condition omitted, so the
loop has no direct mechanism for ending it. The loop must be terminated by the code within the loop;
otherwise, it will continue to execute indefinitely.

Here the termination of the outer loop is controlled by the if statement following the output statement.
As you find each prime, the value is displayed, after which the value of nPrimes is decremented in the
if statement:

if(--nPrimes == 0) { // Decrement the prime count

break; // It is zero so we have them all

}

The break statement will be executed when nPrimes has been decremented to zero, and this will exit
the outer loop.

The Labeled break Statement
Java also makes a labeled break statement available to you. This enables you to jump immediately to
the statement following the end of any enclosing statement block or loop that is identified by the label in
the labeled break statement. The label precedes the opening brace of the block that it identifies. Figure
3-9 illustrates how the labeled break statement works.

The labeled break enables you to break out to the statement following an enclosing block or loop that
has an identifying label, regardless of how many levels of nested blocks there are. You might have sev-
eral loops nested one within the other, for example, where you could use the labeled break to exit from
the innermost loop (or indeed any of them) to the statement following the outermost loop. You just need
to add a label to the beginning of the relevant block or loop that you want to break out of, and use that
label in the break statement.

128

Chapter 3

Figure 3-9

Just to see it working you can alter the previous example to use a labeled break statement:

public class FindPrimes2 {

public static void main(String[] args) {

int nPrimes = 50; // The maximum number of primes required

// Check all values from 2 to nValues

OuterLoop:

for(int i = 2; ; i++) { // This loop runs forever

// Try dividing by all integers from 2 to i-1

for(int j = 2; j < i; j++) {

if(i % j == 0) { // This is true if j divides exactly

continue OuterLoop; // so exit the loop

}

}

// We only get here if we have a prime

System.out.println(i); // so output the value

if(--nPrimes == 0) { // Decrement the prime count

break OuterLoop; // It is zero so we have them all

}

}

// break OuterLoop goes to here

}

}

}
...

breaks our beyond
Block1

breaks our beyond
Block2breaks our beyond

OuterLoop

Block1: {

} // end of Block1
...

Block2: {

...

} // end of Block2
...

OuterLoop:
for(...) {

break Block1;
while(...) {

}
...

...
break Block2;
...
break OuterLoop;

129

Loops and Logic

The program works in exactly the same way as before. The labeled break ends the loop operation begin-
ning with the label OuterLoop, and so effectively branches to the point indicated by the comment.

Of course, in this instance its effect is no different from that of an unlabeled break. However, in general
this would work wherever the labeled break statement was within OuterLoop. For example, it could be
nested inside another inner loop, and its effect would be just the same — control would be transferred to
the statement following the end of OuterLoop. The following code fragment illustrates this sort of situa-
tion. The label this time is Outside:

Outside:

for(int i = 0 ; i< count1 ; i++) {

...

for(int j = 0 ; j< count2 ; j++) {

...

for(int k = 0 ; k< count3 ; k++) {

...

break Outside;

...

}

}

}

// The labeled break transfers to here...

The labeled break is not needed very often, but when you need to break out of a deeply nested set of
loops, it can be invaluable since it makes it a simple operation.

Assertions
Every so often you will find that the logic in your code leads to some logical condition that should
always be true. If you test an integer and establish that it is odd, it is certainly true that it cannot be
even, for example. You may also find yourself writing a statement or statements that, although they
could be executed in theory, in practice they never really should be. I don’t mean by this the usual sorts
of errors that occur, such as some incorrect data being entered somehow, which should be handled ordi-
narily by the normal code. I mean circumstances where if the statements were to be executed, it would
imply that something was very seriously wrong with the program or its environment. These are pre-
cisely the circumstances to which assertions apply.

A simple assertion is a statement of the form

assert logical_expression;

Here, assert is a keyword, and logical_expression is any expression that results in a value of true
or false. When this statement executes, if logical_expression evaluates to true, then the program
continues normally. If logical_expression evaluates to false, the program will be terminated with
an error message starting with:

java.lang.AssertionError

130

Chapter 3

This will be followed by more information about where the error occurred in the code. When this occurs,
the program is said to assert.

Let’s consider an example. Suppose you have a variable of type int that stores the number of days in
the current month. You might use it like this:

if(daysInMonth == 30) {

System.out.println(“Month is April, June, September, or November”);

} else if(daysInMonth == 31) {

System.out.println(

“Month is January, March, May, July, August, October, or December.”);

} else {

assert daysInMonth == 28 || daysInMonth == 29;

System.out.println(“Month is February.”);

}

You are presuming that daysInMonth is valid — that is, it has one of the values 28, 29, 30, or 31. Maybe it
came from a file that is supposed to be accurate so you should not need to check it, but if it turns out not
to be valid, the assertion will detect it and end the program.

You could have written this slightly differently:

if(daysInMonth == 30) {

System.out.println(“Month is April, June, September, or November”);

} else if(daysInMonth == 31) {

System.out.println(

“Month is January, March, May, July, August, October, or December.”);

} else if(daysInMonth == 28 || daysInMonth == 29) {

System.out.println(“Month is February.”);

} else {

assert false;

}

Here, if daysInMonth is valid, the program should never execute the last else clause. An assertion with
the logical expression as false will always assert, and terminate the program.

For assertions to have an effect when you run your program, you must specify the -enableassertions
option. For example:

java -enableassertions MyProg

You can also use its abbreviated form -ea:

java -ea MyProg

If you don’t specify this option when you run the program, assertions will be ignored.

131

Loops and Logic

More Complex Assertions
There is a slightly more complex form of assertions that have this form:

assert logical_expression : string_expression;

Here, logical_expression must evaluate to a boolean value, either true or false. If
logical_expression is false then the program will terminate with an error message including the
string that results from string_expression.

For example, you could have written the assertion in the last code fragment as:

assert false : “daysInMonth has the value “ + daysInMonth;

Now if the program asserts, the output will include information about the value of daysInMonth.

Let’s see how it works in practice.

Try It Out A Working Assertion
Here’s some code that is guaranteed to assert — if you compile and execute it right:

public class TryAssertions {

public static void main(String args[]) {

int daysInMonth = 32;

if(daysInMonth == 30) {

System.out.println(“Month is April, June, September, or November”);

} else if(daysInMonth == 31) {

System.out.println(

“Month is January, March, May, July, August, October, or December.”);

} else if(daysInMonth == 28 || daysInMonth == 29) {

System.out.println(“Month is February.”);

} else {

assert false;

}

}

}

Don’t forget that, once you have compiled the program, you must execute it with assertions enabled, like
this:

java -enableassertions TryAssertions

You should then get the following output:

java.lang.AssertionError

at TryAssertions.main(TryAssertions.java:15)

Exception in thread “main”

132

Chapter 3

How It Works
Since you have set daysInMonth to an invalid value, the assertion statement is executed, and that
results in the error message. You could try out the other form of the assertion in the example:

assert false : “daysInMonth has the value “ + daysInMonth;

Now you should see that the output includes the string resulting from the second expression in the
assertion statement:

java.lang.AssertionError: daysInMonth has the value 32

at TryAssertions.main(TryAssertions.java:15)

Exception in thread “main”

I will use assertions from time to time in the examples in subsequent chapters.

Summary
In this chapter you have learned about all of the essential mechanisms for making decisions in Java. You
have also learned all of the looping facilities that you have available when programming in Java. The
essential points I have covered are:

❑ You can use relational operators to compare values, and such comparisons result in values of
either true or false.

❑ You can combine basic comparisons and logical variables in more complex logical expressions
by using logical operators.

❑ The if statement is a basic decision-making tool in Java. It enables you to choose to execute a
block of statements if a given logical expression has the value true. You can optionally execute
another block of statements if the logical expression is false by using the else keyword.

❑ You can use the conditional operator to choose between two expressions depending on the
value of a logical expression.

❑ You can use the switch statement to choose from a fixed number of alternatives.

❑ The variables in a method come into existence at the point at which you declare them and cease
to exist after the end of the block that immediately encloses their declaration. The program
extent where the variable is accessible is the scope of the variable.

❑ You have four ways of repeating a block of statements: a numerical for loop, a collection-based
for loop, a while loop, or a do while loop.

❑ The continue statement enables you to skip to the next iteration in the loop containing the
continue statement.

❑ The labeled continue statement enables you to skip to the next iteration in a loop enclosing the
labeled continue that is identified by the label. The labeled loop need not be that immediately
enclosing the labeled continue.

❑ The break statement enables you to break out of a loop or block of statements in which it
appears.

133

Loops and Logic

❑ The labeled break statement enables you to break out of a loop or block of statements that
encloses it that is identified by the label. This is not necessarily the block that encloses it directly.

❑ You use an assertion statement to verify logical conditions that should always be true, or as
code in parts of a program that should not be reached, but theoretically can be.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Write a program to display a random choice from a set of six choices for breakfast (you could
use any set; for example, scrambled eggs, waffles, fruit, cereal, toast, or yogurt).

2. When testing whether an integer is a prime, it is sufficient to try to divide by integers up to the
square root of the number being tested. Rewrite the program example from this chapter to use
this approach.

3. A lottery requires that you select six different numbers from the integers 1 to 49. Write a pro-
gram to do this for you and generate five sets of entries.

4. Write a program to generate a random sequence of capital letters that does not include vowels.

134

Chapter 3

4
Arrays and Strings

In this chapter you’ll start to use Java objects. You’ll first be introduced to arrays, which enable you
to deal with a number of variables of the same type through a single variable name, and then
you’ll look at how to handle character strings. By the end of this chapter you’ll have learned:

❑ What arrays are and how you declare and initialize them

❑ How you access individual elements of an array

❑ How you can use individual elements of an array

❑ How to declare arrays of arrays

❑ How you can create arrays of arrays with different lengths

❑ How to create String objects

❑ How to create and use arrays of String objects

❑ What operations are available for String objects

❑ What StringBuffer objects are and how they relate to operations on String objects

❑ What operations are available for StringBuffer objects

Some of what I discuss in this chapter relates to objects, and as I have not yet covered in detail
how you define a class (which is an object type definition), I will have to skate over some aspects
of how objects work, but all will be revealed in Chapter 5.

Arrays
With the basic built-in Java data types that you’ve seen in the previous chapters, each identifier
corresponds to a single variable. But when you want to handle sets of values of the same type —
the first 1,000 primes, for example — you really don’t want to have to name them individually.
What you need is an array.

Let’s first get a rough idea of what an array is and how it works. An array is an object that is a named set
of variables of the same type. Each variable in the array is called an array element. To reference a partic-
ular element in an array, you use the array name combined with an integer value of type int, called an
index. You put the index between square brackets following the array name; for example, data[99]
refers to the element in the data array corresponding to the index value 99. The index for an array ele-
ment is the offset of that particular element from the beginning of the array. The first element will have
an index of 0, the second will have an index of 1, the third an index of 2, and so on. Thus, data[99]
refers to the hundredth element in the data array. The index value does not need to be an integer literal.
It can be any expression that results in a value of type int that is equal to or greater than zero.
Obviously a for loop is going to be very useful for processing array elements — which is one reason
why you had to wait until now to hear about arrays.

Array Variables
An array variable and the array it refers to are separate entities. The memory that is allocated for an
array variable stores a reference to an array object, not the array itself. The array object itself is a distinct
entity that will be elsewhere in memory. All variables that refer to objects store references that record the
memory locations of the objects they refer to.

You are not obliged to create an array when you declare an array variable. You can first create the array
variable and later use it to store a reference to a particular array.

You could declare the integer array variable primes with the following statement:

int[] primes; // Declare an integer array variable

The variable primes is now a placeholder for an integer array that you have yet to define. No memory
has been allocated to hold an array itself at this point. The primes variable is simply a location in mem-
ory that can store a reference to an array. You will see in a moment that to create the array itself you must
specify its type and how many elements it is to contain. The square brackets following the type in the
previous statement indicates that the variable is for referencing an array of int values, and not for stor-
ing a single value of type int. The type of the array variable is int[].

You may come across an alternative notation for declaring an array variable:

int primes[]; // Declare an integer array variable

Here the square brackets appear after the variable name, rather than after the type name. This is exactly
equivalent to the previous statement so you can use either notation. Many programmers prefer the origi-
nal notation, as int[] tends to indicate more clearly that the type is an array of values of type int.

Defining an Array
Once you have declared an array variable, you can define an array that it will reference:

primes = new int[10]; // Define an array of 10 integers

This statement creates an array that will store 10 values of type int, and stores a reference to the array
in the variable primes. The reference is simply where the array is in memory. You could also declare the
array variable and define the array of type int to hold 10 prime numbers with a single statement, as
shown in Figure 4-1.

136

Chapter 4

Figure 4-1

The first part of the definition specifies the type of the array. The element type name, int in this case, is
followed by an empty pair of square brackets to indicate you are declaring an array rather than a single
variable of type int. The part the statement that follows the equals sign defines the array. The keyword
new indicates that you are allocating new memory for the array, and int[10] specifies you want capacity
for 10 variables of type int in the array. Since each element in the primes array is a variable of type int
that requires 4 bytes, the whole array will occupy 40 bytes, plus 4 bytes for the primes variable to store
the reference to the array. When an array is created like this, all the array elements are initialized to a
default value automatically. The initial value is zero in the case of an array of numerical values, is false
for boolean arrays, is ‘\u0000’ for arrays storing type char, and is null for an array of a class type.

Consider the statement:

double[] myArray = new double[100];

This statement is a declaration of the array variable myArray. The statement also defines the array, since
the array size is specified. The variable myArray will refer to an array of 100 values of type double, and
each element will have the value 0.0 assigned by default. Because there are 100 elements in this array, the
legal index values range from 0 to 99.

The Length of an Array
You can refer to the length of the array — the number of elements it contains — using length, a data
member of the array object. For example, for the array myArray that you defined in the previous sec-
tion, you can refer to its length as myArray.length, which will have the value 100. You can use the
length member of an array to control a numerical for loop that iterates over the elements of an array.

Specifies an array of
variables of type int

primes(0)

We are creating
a new array object

The name of
the array

The array object is of type int
and has ten elements

index values

int[] primes = new int[10]; //An array of 10 integers

primes(1) primes(2) primes(3) primes(4) primes(5) primes(6) primes(7) primes(8) primes(9)

137

Arrays and Strings

Accessing Array Elements
As I mentioned earlier, you refer to an element of an array by using the array name followed by the ele-
ment’s index value enclosed between square brackets. You can specify an index value by any expression
that produces a zero or positive result of type int. If you use a value of type long as an index, you will
get an error message from the compiler; if your calculation of an index uses long variables and the
result is of type long, you will need to cast it to type int. You will no doubt recall from Chapter 2 that
arithmetic expressions involving values of type short and type byte produce a result of type int, so
you can use those in an index expression.

You refer to the first element of the primes array that was declared previously as primes[0], and you
reference the fifth element in the array as primes[4]. The maximum index value for an array is one less
than the number of elements in the array. Java checks that the index values you use are valid. If you use
an index value that is less than 0, or greater than the index value for the last element in the array, an
exception will be thrown — throwing an exception is just the way errors at execution time are signaled,
and there are different types of exceptions for signaling various kinds of errors. The exception type in
this case is an IndexOutOfBoundsException. When such an exception is thrown, your program will
normally be terminated. You’ll be looking at exceptions in detail in Chapter 7, including how you can
deal with exceptions and prevent termination of your program.

The primes array is an example of what is sometimes referred to as a one-dimensional array, because
each of its elements is referenced using one index — running from 0 to 9 in this case. You’ll see later that
arrays can also have two or more dimensions, the number of dimensions being the same as the number
of indexes required to access an element of the array.

Reusing Array Variables
As I explained at the beginning of this chapter, an array variable is separate from the array that it refer-
ences. Rather like the way an ordinary variable can store different values at different times, you can use
an array variable to store a reference to different arrays at different points in your program. Suppose you
have declared and defined the variable primes as before, like this:

int[] primes = new int[10]; // Allocate an array of 10 integer elements

This produces an array of 10 elements of type int. Perhaps a bit later in your program you want to use
the array variable primes to refer to a larger array, with 50 elements, say. You could simply write:

primes = new int[50]; // Allocate an array of 50 integer elements

Now the primes variable refers to a new array of values of type int that is entirely separate from the
original. When this statement is executed, the previous array of 10 elements is discarded, along with all
the data values you may have stored in it. The variable primes can now be used to reference only ele-
ments of the new array. This is illustrated in Figure 4-2.

138

Chapter 4

Figure 4-2

After executing the statement shown in Figure 4-2, the array variable primes now points to a new inte-
ger array of 50 elements with index values running from 0 to 49. Although you can change the array that
an array variable references, you can’t alter the type of value that an element stores. All the arrays refer-
enced by a given variable must correspond to the original type that you specified when you declared the
array variable. The variable primes, for example, can only reference arrays of type int[]. You have
used an array of elements of type int in the illustration, but the same thing applies equally well when
you are working with arrays of elements of type long or double or of any other type. Of course, you are
not restricted to working with arrays of elements of primitive types. You can create arrays of elements to
store references to any type of object, including objects of the classes that you will be defining yourself in
Chapter 5.

Initializing Arrays
You can initialize the elements in an array with your own values when you declare it, and at the same
time determine how many elements it will have. To do this, you simply add an equals sign followed by
the list of element values enclosed between braces following the specification of the array variable. For
example, you could define and initialize an array with the following statement:

int[] primes = {2, 3, 5, 7, 11, 13, 17}; // An array of 7 elements

This creates the primes array with sufficient elements to store all of the initializing values that appear
between the braces — seven in this case. The array size is determined by the number of initial values so
no other information is necessary to define the array. The values are assigned to the array elements in
sequence so in this example primes[0] will have the initial value 2, primes[1] will have the initial
value 3, primes[2] will have the initial value 5, and so on through the rest of the elements in the array.

Old array is discarded

Reference to old
array is replaced

Refers to
new array

primes

New array is created

Reassigning an Array Variable

primes[0] primes[1] primes[2] primes[3] primes[4] primes[5] primes[6] primes[7] primes[8] primes[9]

primes[0] primes[1] primes[2] primes[3] primes[47] primes[48]

139

Arrays and Strings

If you specify initializing values for an array, you must include values for all the elements. If you want to
set only some of the array elements to specific values explicitly, you must use an assignment statement
for each element for which you supply a value. For example:

int[] primes = new int[100];

primes[0] = 2;

primes[1] = 3;

The first statement declares and defines an integer array of 100 elements, all of which will be initialized
to zero by default. The two assignment statements then set values for the first two array elements.

You can also initialize the elements in an array using a for loop to iterate over all the elements and set
the value for each:

double[] data = new double[50]; // An array of 50 values of type double

for(int i = 0 ; i<data.length ; i++) { // i from 0 to data.length-1

data[i] = 1.0;

}

For an array with length elements, the index values for the elements run from 0 to length-1. The for
loop control statement is written so that the loop variable i starts at 0 and will be incremented by 1 on
each iteration up to data.length-1. When i is incremented to data.length, the loop will end. Thus,
this loop sets each element of the array to 1. Using a for loop in this way is one standard idiom for
iterating over the elements in an array. You’ll see later that you can use the collection-based for loop
for iterating over and accessing the values of the array elements. Here you are setting the values so the
collection-based for loop cannot be applied.

Using a Utility Method to Initialize an Array
You can also use a method that is defined in the Arrays class in the java.util package to initialize an
array. For example, to initialize the data array defined as in the previous fragment, you could use the fol-
lowing statement:

Arrays.fill(data, 1.0); // Fill all elements of data with 1.0

The first argument to the fill() method is the name of the array to be filled. The second argument is
the value to be used to set the elements. This method will work for arrays of any primitive type. Of
course, for this statement to compile correctly you would need an import statement at the beginning of
the source file:

import java.util.Arrays;

This statement imports the Arrays class name into the source file so you can use it as you have in the
preceding code line. Without the import statement, you can still access the Arrays class using the fully
qualified name. In this case the statement to initialize the array would be:

java.util.Arrays.fill(data, 1.0); // Fill all elements of data with 1.0

This is just as good as the previous version of the statement.

140

Chapter 4

Of course, because fill() is a static method in the Arrays class, you could import the method name
into your source file:

import static java.util.Arrays.fill;

Now you can call the method with the name unadorned with the class name:

fill(data, 1.0); // Fill all elements of data with 1.0

Initializing an Array Variable
You can initialize an array variable with a reference to an existing array. For example, you could declare
the following array variables:

long[] even = {2L, 4L, 6L, 8L, 10L};

long[] value = even;

Here the array reference stored in even is used to initialize the array value in its declaration. This has
the effect shown in Figure 4-3.

Figure 4-3

You have created two array variables, but you have only one array. Both arrays refer to the same set of
elements, and you can access the elements of the array through either variable name — for example,
even[2] refers to the same variable as value[2]. One use for this is when you want to switch the
arrays referenced by two variables. If you were sorting an array by repeatedly transferring elements
from one array to another, by flipping the array you were copying from with the array you were copying
to, you could use the same code. For example, if you declared array variables as:

double[] inputArray = new double[100]; // Array to be sorted

double[] outputArray = new double[100]; // Reordered array

double[] temp; // Temporary array reference

when you want to switch the array referenced by outputArray to be the new input array, you could
write:

2

even

even[0] even[1] even[2] even[3] even[4]

value[0] value[1] value[2] value[3] value[4]

long[] even = (2L, 4L, 6L, 8L, 10L);

long[] value = even;

value

64 8 10

141

Arrays and Strings

temp = inputArray; // Save reference to inputArray in temp

inputArray = outputArray; // Set inputArray to refer to outputArray

outputArray = temp; // Set outputArray to refer to what was inputArray

None of the array elements are moved here. Just the addresses of where the arrays are located in mem-
ory are swapped, so this is a very fast process. Of course, if you want to replicate an array, you have to
define a new array of the same size and type, and then copy the value of each element of the old array
individually to your new array.

Using Arrays
You can use array elements in expressions in exactly the same way as you might use a single variable of
the same data type. For example, if you declare an array samples, you can fill it with random values
between 0.0 and 100.0 with the following code:

double[] samples = new double[50]; // An array of 50 double values

for(int i = 0; i < samples.length; i++) {

samples[i] = 100.0*Math.random(); // Generate random values

}

This shows how the numerical for loop is ideal when you want to iterate though the elements in an
array to set their values. Of course, this is not an accident. A major reason for the existence of the for
loop is precisely for iterating over the elements in an array.

To show that array elements can be used in exactly the same way as ordinary variables, I could write the
following statement:

double result = (samples[10]*samples[0] – Math.sqrt(samples[49]))/samples[29];

This is a totally arbitrary calculation, of course. More sensibly, to compute the average of the values
stored in the samples array, you could write:

double average = 0.0; // Variable to hold the average

for(int i = 0; i < samples.length; i++) {

average += samples[i]; // Sum all the elements

}

average /= samples.length; // Divide by the total number of elements

Within the loop, you accumulate the sum of all the elements of the array samples in the variable
average. You then divide this sum by the number of elements.

Notice how you use the length of the array, samples.length, all over the place. It appears in the for
loop, and in floating-point form as a divisor to calculate the average. When you use arrays, you will
often find that references to the length of the array are strewn all through your code. As long as you
use the length member of the array, the code is independent of the number of array elements. If you
change the number of elements in the array, the code will automatically deal with that. You should
always use the length member when you need to refer to the length of an array — never use explicit
values.

142

Chapter 4

Using the Collection-Based for Loop with an Array
You can use a collection-based for loop as an alternative to the numerical for loop when you want to
process the values of all the elements in an array. For example, you could rewrite the code fragment
from the previous section that calculated the average of the values in the samples array like this:

double average = 0.0; // Variable to hold the average

for(double value : samples) {

average += value; // Sum all the elements

}

average /= samples.length; // Divide by the total number of elements

The for loop will iterate through the values of all elements of type double in the samples array in
sequence. The value variable will be assigned the value of each element of the samples array in turn.
Thus, the loop achieves the same result as the numerical for loop that you used earlier — the sum of all
the elements will be accumulated in average. Of course, when you want to process only data from part
of the array, you still must use the numerical for loop with the loop counter ranging over the indexes
for the elements you want to access.

It’s important to remember that the collection-based for loop iterates over the values stored in an array.
It does not provide access to the elements for the purpose of setting their values. Therefore, you use it
only when you are accessing all the values stored in an array to use them in some way. If you want to
recalculate the values in the array, use the numerical for loop.

Let’s try out an array in an improved program to calculate prime numbers:

Try It Out Even More Primes
Try out the following code, derived, in part, from the code you used in Chapter 3:

import static java.lang.Math.ceil;

import static java.lang.Math.sqrt;

public class MorePrimes {

public static void main(String[] args) {

long[] primes = new long[20]; // Array to store primes

primes[0] = 2L; // Seed the first prime

primes[1] = 3L; // and the second

int count = 2; // Count of primes found – up to now,

// which is also the array index

long number = 5L; // Next integer to be tested

outer:

for(; count < primes.length; number += 2L) {

// The maximum divisor we need to try is square root of number

long limit = (long)ceil(sqrt((double)number));

// Divide by all the primes we have up to limit

for(int i = 1; i < count && primes[i] <= limit; i++) {

if(number%primes[i] == 0L) { // Is it an exact divisor?

continue outer; // Yes, so try the next number

}

143

Arrays and Strings

}

primes[count++] = number; // We got one!

}

for(long n : primes) {

System.out.println(n); // Output all the primes

}

}

}

This program computes as many prime numbers as the capacity of the primes array will allow.

How It Works
Any number that is not a prime must be a product of prime factors, so you only need to divide a prime
number candidate by prime numbers that are less than or equal to the square root of the candidate to
test for whether it is prime. This is fairly obvious if you think about it. For every factor a number has
that is greater than the square root of the number, the result of division by this factor is another factor
that is less than the square root. You perhaps can see this more easily with a specific example. The num-
ber 24 has a square root that is a bit less than 5. You can factorize it as 2 * 12, 3 * 8, 4 * 6; then you come to
cases where the first factor is greater than the square root so the second is less, 6 * 4, 8 * 3, etc., and so
you are repeating the pairs of factors you already have.

You first declare the array primes to be of type long, and define it as having 20 elements. You set the
first two elements of the primes array to 2 and 3, respectively, to start the process off, as you will use the
primes you have in the array as divisors when testing a new candidate.

The variable count is the total number of primes you have found, so this starts out as 2 because you
have already stored 2 and 3 in the first two elements of the primes array. Note that because you use
count as the for loop control variable, you omit the first expression between parentheses in the loop
statement, as the initial value of count has already been set.

You store the candidate to be tested in number, with the first value set as 5. The for loop statement
labeled outer is slightly unusual. First of all, the variable count that determines when the loop ends is
not incremented in the for loop statement, but in the body of the loop. You use the third control expres-
sion between the for loop parentheses to increment number in steps of two, since you don’t want to
check even numbers. The for loop ends when count is equal to the length of the array. You test the
value in number in the inner for loop by dividing number by all of the prime numbers you have in the
primes array that are less than, or equal to, the square root of the candidate. If you get an exact division,
the value in number is not prime, so you go immediately to the next iteration of the outer loop via the
continue statement.

You calculate the limit for divisors you need to try with the following statement:

long limit = (long)ceil(sqrt((double)number));

The sqrt() method from the Math class produces the square root of number as a double value, so if
number has the value 7, for example, a value of about 2.64575 will be returned. This is passed to the
ceil() method, which is also a member of the Math class. The ceil() method returns a value of type
double that is the minimum whole number that is not less than the value passed to it. With number as 7,

144

Chapter 4

this will return 3.0, the smallest integral value not less than the square root of 7. You want to use this
number as the limit for your integer divisors, so you cast it to type long and store the result in limit.
You are able to call the sqrt() and ceil() methods without qualifying their names with the class to
which they belong because you have imported their names into the source file.

If you don’t get an exact division, you exit normally from the inner loop and execute the statement

primes[count++] = number; // We got one!

Because count is the number of values you have stored, it also corresponds to the index for the next free
element in the primes array. Thus, you use count as the index to the array element in which you want
to store the value of number, and then increment count.

When you have filled the primes array, the outer loop will end and you output all the values in the
array in the loop:

for(long n : primes) {

System.out.println(n); // Output all the primes

}

This loop will iterate through all the elements of type long in the primes array in sequence. On each
iteration n will contain the value of the current element, so that will be written out by the println()
method.

You can express the logical process of this program as the following sequence of steps:

1. Take the number in question and determine its square root.

2. Set the limit for divisors to be the smallest integer that is greater than this square root value.

3. Test to see if the number can be divided exactly (without remainder) by any of the primes
already in the primes array that are less than the limit for divisors.

4. If any of the existing primes divide into the current number, discard the current number and
start a new iteration of the loop with the next candidate number.

5. If none of the divisors divide into number without a remainder, it is a prime, so enter the exist-
ing number in the first available empty slot in the array and then move to the next iteration for
a new candidate number.

6. When the array of primes is full, stop looking for new primes and output all the prime number
values from the array.

Arrays of Arrays
You have worked only with one-dimensional arrays up to now, that is, arrays that use a single index.
Why would you ever need the complications of using more indexes to access the elements of an array?

Consider a specific example. Suppose that you have a fanatical interest in the weather, and you are
intent on recording the temperature each day at 10 separate geographical locations throughout the year.
Once you have sorted out the logistics of actually collecting this information, you can use an array of 10

145

Arrays and Strings

elements corresponding to the number of locations, where each of these elements is an array of 365 ele-
ments to store the temperature values. You would declare this array with the statement

float[][] temperature = new float[10][365];

This is called a two-dimensional array, since it has two dimensions — one with index values running
from 0 to 9, and the other with index values from 0 to 364. The first index relates to a geographical loca-
tion, and the second index corresponds to the day of the year. That’s much handier than a one-dimen-
sional array with 3650 elements, isn’t it?

Figure 4-4 shows the organization of the two-dimensional array.

Figure 4-4

There are 10 one-dimensional arrays that make up the two-dimensional array, and they each have 365
elements. In referring to an element, the first pair of square brackets encloses the index for a particular
array and the second pair of square brackets encloses the index value for an element within that array.
So to refer to the temperature for day 100 for the sixth location, you would use temperature[5][99].
Since each float variable occupies 4 bytes, the total space required to store the elements in this two-
dimensional array is 10x365x4 bytes, which is a total of 14,600 bytes.

For a fixed value for the second index in a two-dimensional array, varying the first index value is often
referred to as accessing a column of the array. Similarly, fixing the first index value and varying the sec-
ond, you access a row of the array. The reason for this terminology should be apparent from Figure 4-4.

You could equally well have used two statements to create the last array, one to declare the array vari-
able and the other to define the array:

float [][] temperature; // Declare the array variable

temperature = new float[10][365]; // Create the array

The first statement declares the array variable temperature for two-dimensional arrays of type float.
The second statement creates the array with ten elements, each of which is an array of 365 elements of
type float.

temperature[0][0]

temperature[0]

temperature[0][1] temperature[0][2]

float[] [] temperature = new float[10] [365];

temperature[0][363] temperature[0][364]

temperature[1][0]

temperature[1]

temperature[1][1] temperature[1][2] temperature[1][363] temperature[1][364]

temperature[9][0]

temperature[9]

temperature[9][1] temperature[9][2] temperature[9][363] temperature[9][364]

146

Chapter 4

Let’s exercise this two-dimensional array in a program to calculate the average annual temperature for
each location.

Try It Out The Weather Fanatic
To save you having to wander around 10 different locations armed with a thermometer, you’ll generate
the temperatures as random values between -10 degrees and 35 degrees. This assumes you are recording
temperatures in degrees Celsius. If you prefer Fahrenheit, you could generate values from 14 degrees to
95 degrees to cover the same range.

public class WeatherFan {

public static void main(String[] args) {

float[][] temperature = new float[10][365]; // Temperature array

// Generate random temperatures

for(int i = 0; i<temperature.length; i++) {

for(int j = 0; j < temperature[i].length; j++) {

temperature[i][j] = (float)(45.0*Math.random() – 10.0);

}

}

// Calculate the average per location

for(int i = 0; i<temperature.length; i++) {

float average = 0.0f; // Place to store the average

for(int j = 0; j < temperature[i].length; j++) {

average += temperature[i][j];

}

// Output the average temperature for the current location

System.out.println(“Average temperature at location “

+ (i+1) + “ = “ + average/(float)temperature[i].length);

}

}

}

When I ran the program, I got the following output:

Average temperature at location 1 = 12.2733345

Average temperature at location 2 = 12.012519

Average temperature at location 3 = 11.54522

Average temperature at location 4 = 12.490543

Average temperature at location 5 = 12.574791

Average temperature at location 6 = 11.950315

Average temperature at location 7 = 11.492908

Average temperature at location 8 = 13.176439

Average temperature at location 9 = 12.565457

Average temperature at location 10 = 12.981103

You should get different results.

147

Arrays and Strings

How It Works
After declaring the array temperature you fill it with random values using nested for loops. Note how
temperature.length used in the outer loop refers to the length of the first dimension, 10 in this case.
In the inner loop you use temperature[i].length to refer to the length of the second dimension, 365.
You could use any index value here; temperature[0].length would have been just as good for all the
elements, since the lengths of the rows of the array are all the same in this case.

The Math.random() method generates a value of type double from 0.0 up to, but excluding, 1.0. This
value is multiplied by 45.0 in the expression for the temperature, which results in values between 0.0
and 45.0. Subtracting 10.0 from this value gives you the range you require, -10.0 to 35.0.

You then use another pair of nested for loops, controlled in the same way as the first, to calculate the
averages of the stored temperatures. The outer loop iterates over the locations and the inner loop sums
all the temperature values for a given location. Before the execution of the inner loop, the variable
average is declared and initialized, and this is used to accumulate the sum of the temperatures for a
location in the inner loop. After the inner loop has been executed, you output the average temperature
for each location, identifying the locations by numbers 1 to 10, one more than the index value for each
location. Note that the parentheses around (i+1) here are essential. To get the average, you divide the
variable average by the number of samples, which is temperature[i].length, the length of the array
holding temperatures for the current location. Again, you could use any index value here since, as you
have seen, they all return the same value, 365.

You could write the nested loop to calculate the average temperatures as nested collection-based for
loops, like this:

int location = 0; // Location number

for(float[] temperatures : temperature) {

float average = 0.0f; // Place to store the average

for(float t : temperatures) {

average += t;

}

// Output the average temperature for the current location

System.out.println(“Average temperature at location “

+ (++location) + “ = “ + average/(float)temperatures.length);

}

The outer loop iterates over the elements in the array of arrays, so the loop variable temperatures will
reference each of the one-dimensional arrays in temperature in turn. The type of the temperatures
variable is float[] because it stores a reference to a one-dimensional array from the array of one-
dimensional arrays, temperature.

148

Chapter 4

The inner for loop iterates over the elements in the array that is currently referenced by temperatures,
and the loop variable t will be assigned the value of each element from the temperatures in turn. You
have to define an extra variable, location, to record the location number as this was previously pro-
vided by the loop variable i, which is not present in this version. You increment the value of location
in the output statement using the prefix form of the increment operator so the location values will be 1,
2, 3, and so on.

Arrays of Arrays of Varying Length
When you create an array of arrays, the arrays in the array do not need to be all the same length. You
could declare an array variable, samples, with the statement:

float[][] samples; // Declare an array of arrays

This declares the array object samples to be of type float[][]. You can then define the number of ele-
ments in the first dimension with the statement:

samples = new float[6][]; // Define 6 elements, each is an array

The samples variable now references an array with six elements, each of which can hold a reference to a
one-dimensional array. You can define these arrays individually if you want:

samples[2] = new float[6]; // The 3rd array has 6 elements

samples[5] = new float[101]; // The 6th array has 101 elements

This defines two of the six possible one-dimensional arrays that can be referenced through elements of
the samples array. The third element in the samples array now references an array of 6 elements of type
float, and the sixth element of the samples array references an array of 101 elements of type float.
Obviously, you cannot use an array until it has been defined, but you could conceivably use these two
and define the others later — not a likely approach though!

If you wanted the array samples to have a triangular shape, with one element in the first row, two ele-
ments in the second row, three in the third row, and so on, you could define the arrays in a loop:

for(int i = 0; i<samples.length; i++) {

samples[i] = new float[i+1]; // Allocate each array

}

149

Arrays and Strings

The effect of this is to produce the array layout that is shown in Figure 4-5.

Figure 4-5

The 21 elements in the array will occupy 84 bytes. When you need a two-dimensional array with rows of
varying length, allocating them to fit the requirement can save a considerable amount of memory com-
pared to just using rectangular arrays where the row lengths are all the same.

To check out that the array is as shown in Figure 4-5, you could define it in a program using the code
fragments you have just seen and include statements to display the length member for each of the one-
dimensional arrays.

You could use a numerical for loop to initialize the elements in the samples array, even though the
rows may differ in length:

for(int i = 0; i < samples.length; i++) {

for(int j = 0 ; j<samples[i].length ; j++) {

samples[i][j] = 99.0f; // Initialize each element to 99

}

}

samples[4]

samples[4][0] samples[4][1] samples[4][2] samples[4][3] samples[4][4]

samples[3]

samples[3][0] samples[3][1] samples[3][2] samples[3][3]

samples[2]

samples[2][0] samples[2][1] samples[2][2]

samples[1]

samples[1][0] samples[2][1]

samples[0]

samples.length is 6

samples[2].length is 3

samples[4].length is 5

samples[0][0]

samples[5][0]

samples[5]

samples[5][1] samples[5][2] samples[5][3] samples[5][4] samples[5][5]

150

Chapter 4

The upper limit for the control variable in the inner loop is samples[i].length. The expression
samples[i] references the current row in the two-dimensional array so samples[i].length is the
number of elements in the current row. The outer loop iterates over the rows in the samples array,
and the inner loop iterates over all the elements in a row.

You can also achieve the same result with slightly less code using the fill() method from the Arrays
class that you saw earlier:

for(int i = 0; i < samples.length; i++) {

java.util.Arrays.fill(samples[i], 99.0f); // Initialize elements in a row to 99

}

Because the fill() method fills all the elements in a row, you need only one loop that iterates over the
rows of the array.

Multidimensional Arrays
You are not limited to two-dimensional arrays either. If you are an international java bean grower with
multiple farms across several countries, you could arrange to store the results of your bean counting in
the array declared and defined in the following statement:

long[][][] beans = new long[5][10][30];

The array, beans, has three dimensions. It provides for holding bean counts for each of up to 30 fields
per farm, with 10 farms per country in each of 5 countries.

You can envisage this as just a three-dimensional array, but remember that beans is really an array
of five elements, each of which holds a reference to a two-dimensional array, and each of these two-
dimensional arrays can be different. For example, if you really want to go to town, you can declare
the array beans with the statement:

long[][][] beans = new long[3][][]; // Three two-dimensional arrays

Each of the three elements in the first dimension of beans can hold a different two-dimensional array,
so you could specify the first dimension of each explicitly with the following statements:

beans[0] = new long[4][];

beans[1] = new long[2][];

beans[2] = new long[5][];

These three arrays have elements that each hold a one-dimensional array, and you can also specify the
sizes of these independently. Note how the empty square brackets indicate there is still a dimension
undefined. You could give the arrays in each of these elements random dimensions between 1 and 7
with the following code:

for(int i = 0; i<beans.length; i++) // Vary over 1st dimension

for(int j = 0; j<beans[i].length; j++) // Vary over 2nd dimension

beans[i][j] = new long[(int)(1.0 + 6.0*Math.random())];

If you can find a sensible reason for doing so, or if you are just a glutton for punishment, you can extend
this to four or more dimensions.

151

Arrays and Strings

Arrays of Characters
All the arrays you have defined have contained elements storing numerical values so far. You can also
have arrays of characters. For example, you can declare an array variable of type char[] to hold 50
characters with the following statement:

char[] message = new char[50];

Keep in mind that characters are stored as Unicode in Java so each element occupies 2 bytes.

If you wanted to initialize every element of this array to a space character, you could either use a for
loop to iterate over the elements of the array, or just use the fill() method in the Arrays class, like
this:

java.util.Arrays.fill(message, ‘ ‘); // Store a space in every element

Of course, you could use the fill() method to initialize the elements with any character you wish. If
you put ‘\n’ as the second argument to the fill() method, the array elements would all contain a
newline character.

You can also define the size of an array of type char[] by the characters it holds initially:

char[] vowels = { ‘a’, ‘e’, ‘i’, ‘o’, ‘u’};

This defines an array of five elements, initialized with the characters appearing between the braces. This
is fine for things like vowels, but what about proper messages?

Using an array of type char, you can write statements such as:

char[] sign = {‘F’, ‘l’, ‘u’, ‘e’, ‘n’, ‘t’, ‘ ‘,

‘G’, ‘i’, ‘b’, ‘b’, ‘e’, ‘r’, ‘i’, ‘s’, ‘h’, ‘ ‘,

‘s’, ‘p’, ‘o’, ‘k’, ‘e’, ‘n’, ‘ ‘,

‘h’, ‘e’, ‘r’, ‘e’};

Well, you get the message — just — but it’s not a very friendly way to deal with it. It looks like a collec-
tion of characters, which is what it is. What you really need is something a bit more integrated — some-
thing that looks like a message, but still gives you the ability to get at the individual characters if you
want. What you need is a String.

Strings
You will need to use character strings in most of your programs — headings, names, addresses, product
descriptions, messages — the list is endless. In Java, ordinary strings are objects of the class String. The
String class is a standard class that comes with Java, and it is specifically designed for creating and pro-
cessing strings. The definition of the String class is in the java.lang package so it will be accessible in
all your programs by default.

152

Chapter 4

String Literals
You have already made extensive use of string literals for output. Just about every time the println()
method was used in an example, you used a string literal as the argument. A string literal is a sequence
of characters between double quotes:

“This is a string literal!”

This is actually a String literal with a capital S— in other words, a constant object of the class String
that the compiler creates for use in your program.

As I mentioned in Chapter 2, some characters can’t be entered explicitly from the keyboard so you can’t
include them directly in a string literal. You can’t include a newline character by pressing the Enter key
since this will move the cursor to a new line. You also can’t include a double quote character as it is in a
string literal because this is used to indicate where a string literal begins and ends. You can specify all of
these characters in a string in the same way as you did for char constants in Chapter 2 — you use an
escape sequence. All the escape sequences you saw when you looked at char constants apply to strings.
The statement

System.out.println(“This is \na string constant!”);

will produce the output

This is

a string constant!

since \n is interpreted as a newline character. Like values of type char, strings are stored internally as
Unicode characters. You can also include Unicode character codes in a string as escape sequences of the
form \unnnn where nnnn are the four hexadecimal digits of the Unicode coding for a particular charac-
ter. The Greek letter π, for example, is \u03C0.

You will recall from my preliminary discussion of classes and objects in Chapter 1 that a class usually
contains data members and methods, and naturally, this is true of the String class. The sequence of
characters in the string is stored in a data member of the String object and the methods for the String
object enable you to process the data in a variety of ways. I’ll go into the detail of how a class is defined
in Chapter 5, so in this chapter I’ll concentrate on how you can create and use objects of the class String
without explaining the mechanics of why things work the way that they do. You already know how to
define a String literal. The next step is to learn how you declare a String variable and how you create
String objects.

Creating String Objects
Just to make sure there is no confusion in your mind, a String variable is simply a variable that stores a
reference to an object of the class String. You declare a String variable in much the same way as you
define a variable of one of the basic types. You can also initialize it in the declaration, which is generally
a good idea:

String myString = “My inaugural string”;

153

Arrays and Strings

This declares the variable myString as type String and initializes it with a reference to a String object
encapsulating the string “My inaugural string”. You can store a reference to another string in a
String variable, once you have declared it, by using an assignment. For example, you can change the
value of the String variable myString to the statement:

myString = “Strings can be knotty”;

The effect of this is illustrated in Figure 4-6:

Figure 4-6

The String object itself is distinct from the variable you use to refer to it. In the same way as you saw
with array objects, the variable myString stores a reference to a String object, not the object itself, so in
other words, a String variable records where the String object is in memory. When you declare and
initialize myString, it references the object corresponding to the initializing string literal. When you exe-
cute the assignment statement, the original reference is overwritten by the reference to the new string
and the old string is discarded. The variable myString then contains a reference to the new string.

String objects are said to be immutable — which just means that they cannot be changed. This means
that you cannot extend or otherwise modify the string that an object of type String represents. When
you execute a statement that combines existing String objects, you are always creating a new String
object as a result. When you change the string referenced by a String variable, you throw away the ref-
erence to the old string and replace it with a reference to a new one. The distinction between a String
variable and the string it references is not apparent most of the time, but you will see situations later in
this chapter where it is important to understand this, so keep it in mind.

You should also keep in mind that characters in a string are Unicode characters, so each one typically
occupies 2 bytes, with the possibility that they can be 4 bytes if you are using characters represented as

yt

gi nM

myString

String myString = "My inaugural string";

myString = "Strings can be knotty";

link

new link

discarded

y i n a l tga u u r s r

tn oS t r i n ng s c a eb k

gi nM y i n a l tga u u r s r

myString

154

Chapter 4

surrogates. This is also not something you need worry about most of the time, but there are occasions
where you need to be conscious of that, too.

Of course, you can declare a variable of type String in a method without initializing it:

String anyString; // Uninitialized String variable

The anyString variable that you have declared here does not refer to anything. However, if you try to
compile a program that attempts to use anyString before it has been initialized by some means, you
will get an error. If you don’t want a String variable to refer to anything at the outset — for example, if
you may or may not assign a String object to it before you use the variable — then you must initialize it
to a special null value:

String anyString = null; // String variable that doesn’t reference a string

The literal null is an object reference value that does not refer to anything. Because an array is essen-
tially an object, you can also use null as the value for an array variable that does not reference anything.

You can test whether a String variable refers to anything or not by a statement such as:

if(anyString == null) {

System.out.println(“anyString does not refer to anything!”);

}

The variable anyString will continue to be null until you use an assignment to make it reference a par-
ticular string. Attempting to use a variable that has not been initialized is an error. When you declare a
String variable, or any other variable that is not an array, in a block of code without initializing it, the
compiler can detect any attempts to use the variable before it has a value assigned and will flag it as an
error. As a rule, you should always initialize variables as you declare them.

You can use the literal null when you want to discard a String object that is currently referenced by a
variable. Suppose you define a String variable like this:

String message = “Only the mediocre are always at their best”;

A little later in the program, you want to discard the string that message references. You can just write
this statement:

message = null;

The value null replaces the original reference stored so message now does not refer to anything.

Arrays of Strings
You can create arrays of strings. You declare an array of String objects with the same mechanism that
you used to declare arrays of elements for the basic types. You just use the type String in the declara-
tion. For example, to declare an array of five String objects, you could use the statement:

String[] names = new String[5];

155

Arrays and Strings

It should now be apparent that the argument to the method main() is an array of String objects
because the definition of the method always looks like this:

public static void main(String[] args) {

// Code for method...

}

You could also declare an array of String objects where the initial values determine the size of the
array:

String[] colors = {“red”, “orange”, “yellow”, “green”, “blue”, “indigo”, violet”};

This array will have 7 elements because there are 7 initializing string literals between the braces.

Of course, as with arrays storing elements of primitive types, you can create arrays of strings with any
number of dimensions.

You can try out arrays of strings with a small example.

Try It Out Twinkle, Twinkle, Lucky Star
Let’s create a console program to generate your lucky star for the day:

public class LuckyStars {

public static void main(String[] args) {

String[] stars = {

“Robert Redford” , “Marilyn Monroe”,

“Boris Karloff” , “Lassie”,

“Hopalong Cassidy”, “Trigger”

};

System.out.println(“Your lucky star for today is “

+ stars[(int)(stars.length*Math.random())]);

}

}

When you compile and run this program, it will output your lucky star. For example, I was fortunate
enough to get the following result:

Your lucky star for today is Marilyn Monroe

How It Works
This program creates the array stars of type String[]. The array length will be set to however many
initializing values appear between the braces in the declaration statement, which is 6 in this case.

You select a random element from the array by creating a random index value within the output state-
ment with the expression (int)(stars.length*Math.random()). Multiplying the random number
produced by the method Math.random() by the length of the array, you will get a value between 0.0

156

Chapter 4

and 6.0 because the value returned by random() will be between 0.0 and 1.0. The result won’t ever be
exactly 6.0 because the value returned by the random() method is strictly less than 1.0, which is just as
well as this would be an illegal index value. The result is then cast to type int and will result in a value
from 0 to 5, making it a valid index value for the stars array.

Thus the program selects a random string from the array and displays it, so you should see different out-
put if you execute the program repeatedly.

Operations on Strings
There are many kinds of operations that can be performed on strings, but let’s start with one you have
used already, joining two or more strings together to form a new, combined string. This is often called
string concatenation.

Joining Strings
To join two String objects to form a new, single string you use the + operator, just as you have been
doing with the argument to the println() method in the program examples thus far. The simplest use
of this is to join two strings together:

myString = “The quick brown fox” + “ jumps over the lazy dog”;

This will join the two strings on the right of the assignment and store the result in the String variable
myString. The + operation generates a completely new String object that is separate from the two orig-
inal String objects that are the operands, and this new object is stored in myString. Of course, you also
use the + operator for arithmetic addition, but if either of the operands for the + operator is a String
object or literal, then the compiler will interpret the operation as string concatenation and will convert
the operand that is not a String object to a string.

Here’s an example of concatenation strings referenced by String variables:

String date = “31st “;

String month = “December”;

String lastDay = date + month; // Result is “31st December”

If a String variable that you use as one of the operands to + contains null, then this will automatically
be converted to the string “null”. So if the month variable contained null instead of a reference to the
string “December”, the result of the concatenation with date would be the string “31st null”.

Note that you can also use the += operator to concatenate strings. For example:

String phrase = “Too many”;

phrase += “ cooks spoil the broth”;

157

Arrays and Strings

After executing these statements, the variable phrase will refer to the string “Too many cooks spoil
the broth”. Of course, this does not modify the string “Too many”. The string that is referenced by
phrase after this statement has been executed is a completely new String object. This is illustrated in
Figure 4-7.

Figure 4-7

Let’s see how some variations on the use of the + operator with String objects work in an example.

Try It Out String Concatenation
Enter the following code for the class JoinStrings:

public class JoinStrings {

public static void main(String[] args) {

String firstString = “Many “;

String secondString = “hands “;

String thirdString = “make light work”;

String myString; // Variable to store results

// Join three strings and store the result

myString = firstString + secondString + thirdString;

System.out.println(myString);

// Convert an integer to String and join with two other strings

int numHands = 99;

myString = numHands + “ “ + secondString + thirdString;

System.out.println(myString);

// Combining a string and integers

"Too many"

phrase

string

+ " cooks spoil the broth."

String object String object

"Too many cooks spoil the broth."

Reference to original

Reference to new
String replaces old

String object

String objects are
combined to form

a new object

158

Chapter 4

myString = “fifty five is “ + 5 + 5;

System.out.println(myString);

// Combining integers and a string

myString = 5 + 5 + “ is ten”;

System.out.println(myString);

}

}

If you run this example, it will produce some interesting results:

Many hands make light work

99 hands make light work

fifty five is 55

10 is ten

How It Works
The first line of output is quite straightforward. It simply joins the three string values stored in the
String variables, firstString, secondString, and thirdString, into a single string and stores
this in the variable myString.

The second line of output is a use of the + operator you have used regularly with the println()
method, but clearly something a little more complicated is happening here. This is illustrated in
Figure 4-8.

Figure 4-8

Convert value
to a string

myString = numHands + " " + secondString + thirdString;

"99" + " "

1

2 Join strings

"99 " + secondString

3 Join strings

store
result

"99 hands" + thirdString

"99 hands make light work"myString

4

5

Join strings

159

Arrays and Strings

Behind the scenes, the value of the variable numHands is being converted to a string that represents this
value as a decimal number. This is prompted by the fact that it is combined with the string literal, “ “.
Dissimilar types in a binary operation cannot be operated on, so one operand must be converted to the
type of the other if the operation is to be possible. Here the compiler arranges that the numerical value
stored in numHands is converted to type String to match the type of the right operand of the + operator.
If you look back at the table of operator precedences, you’ll see that the associativity of the + operator is
from left to right, so the strings are combined in pairs starting from the left, as shown in Figure 4-8.

The left-to-right associativity of the + operator is important in understanding the next two lines of out-
put. The two statements involved in creating these strings look very similar. Why does 5 + 5 result in
55 in one statement, and 10 in the other? The reason is illustrated in Figure 4-9.

Figure 4-9

The essential difference between the two is that the first statement always has at least one operand of
type String, so the operation is one of string concatenation, whereas in the second statement the first
operation is an arithmetic addition because both operands are integers. In the first statement, each of the
integers is converted to type String individually. In the second, the numerical values are added, and
the result, 10, is converted to a string representation to allow the literal “ is ten” to be concatenated.

You don’t need to know about this at this point, but in case you were wondering, the conversion of val-
ues of the basic types to type String is actually accomplished by using a static method, toString(),
of a standard class that corresponds to the basic type. Each of the primitive types has an equivalent class
defined, so for the primitive types I have already discussed are the following wrapper classes:

Basic Type Wrapper Class

byte Byte

short Short

myString = "fifty five is " + 5 + 5?

1 Combines a string and
an integer

2

3

Combines a string and
an integer

"fifty five is 5" + 5;

"fifty five is 55"
store
result

myString

myString = 5 + 5 + " is ten"?

1 Combines two integers,
so a normal add

2

3

Combines a string and
an integer

10 + " is ten";

"10 is ten"
store
result

The associativity of the + operator accounts for the differences
between these two statements

myString

160

Chapter 4

Basic Type Wrapper Class

int Integer

long Long

float Float

double Double

boolean Boolean

char Character

The classes in the table are called wrapper classes because objects of each of these class types “wrap” a
value of the corresponding primitive type. Whenever a value of one of the basic types appears as an
operand to + and the other operand is a String object, the compiler arranges to pass the value of the
basic type as the argument to the toString() method that is defined in the corresponding wrapper
class. The toString() method returns the String equivalent of the value. All of this happens automat-
ically when you are concatenating strings using the + operator. As you will see, not only these classes
have a toString() method — all classes do. I won’t go into the further significance of these classes now,
as I’ll be covering these in more detail in Chapter 5.

The String class also defines a method, valueOf(), that will create a String object from a value of any
of the basic types. You just pass the value you want converted to a string as the argument to the method.
For example:

String doubleString = String.valueOf(3.14159);

You call the valueOf() method using the name of the class String, as shown in the preceding line.
This is because the method is a static member of the String class. You’ll learn what static means in
this context in Chapter 5. A literal or variable of any of the basic types can be passed to the valueOf()
method, and it will return a String representation of the value.

Comparing Strings
Here’s where the difference between the String variable and the string it references will become appar-
ent. To compare values stored in variables of the primitive types for equality, you use the == operator.
This does not apply to String objects (or any other objects). The expression

string1 == string2

will check whether the two String variables refer to the same string. If they reference separate strings,
this expression will have the value false, regardless of whether or not the strings happen to be identi-
cal. In other words, the expression above does not compare the strings themselves; it compares the refer-
ences to the strings, so the result will be true only if string1 and string2 both refer to one and the
same string. You can demonstrate this with a little example.

161

Arrays and Strings

Try It Out Two Strings, Identical but Not the Same
In the following code, you test to see whether string1 and string3 refer to the same string:

public class MatchStrings {

public static void main(String[] args) {

String string1 = “Too many “;

String string2 = “cooks”;

String string3 = “Too many cooks”;

// Make string1 and string3 refer to separate strings that are identical

string1 += string2;

// Display the contents of the strings

System.out.println(“Test 1”);

System.out.println(“string3 is now: “ + string3);

System.out.println(“string1 is now: “ + string1);

if(string1 == string3) // Now test for identity

System.out.println(“string1 == string3 is true.” +

“ string1 and string3 point to the same string”);

else

System.out.println(“string1 == string3 is false.” +

“ string1 and string3 do not point to the same string”);

// Now make string1 and string3 refer to the same string

string3 = string1;

// Display the contents of the strings

System.out.println(“\n\nTest 2”);

System.out.println(“string3 is now: “ + string3);

System.out.println(“string1 is now: “ + string1);

if(string1 == string3) // Now test for identity

System.out.println(“string1 == string3 is true.” +

“ string1 and string3 point to the same string”);

else

System.out.println(“string1 == string3 is false.” +

“ string1 and string3 do not point to the same string”);

}

}

You have created two scenarios in this example. In the first, the variables string1 and string3 refer to
separate String objects that happen to encapsulate identical strings. In the second, they both reference
the same String object. The program will produce the following output:

Test 1

string3 is now: Too many cooks

string1 is now: Too many cooks

string1==string3 is false. string1 and string3 do not point to the same string

Test 2

string3 is now: Too many cooks

string1 is now: Too many cooks

string1==string3 is true. string1 and string3 point to the same string

162

Chapter 4

How It Works
The three variables string1, string2, and string3 are initialized with the string literals you see. After
executing the assignment statement, the string referenced by string1 will be identical to that referenced
by string3, but as you see from the output, the comparison for equality in the if statement returns
false because the variables refer to two separate strings. Note that if you were to just initialize string1
and string2 with the same string literal, “Too many cooks”, only one String object would be cre-
ated, which both variables would reference. This would result in both comparisons being true.

Next you change the value of string3 so that it refers to the same string as string1. The output
demonstrates that the if expression has the value true, and that the string1 and string3 objects do
indeed refer to the same string. This clearly shows that the comparison is not between the strings them-
selves, but between the references to the strings. So how do you compare the strings?

Comparing Strings for Equality
To compare two String variables, that is, to decide whether the strings they reference are equal or not,
you must use the equals() method, which is defined for objects of type String . For example, to com-
pare the String objects referenced by the variables string1 and string3 you could write the state-
ment:

if(string1.equals(string3)) {

System.out.println(“string1.equals(string3) is true.” +

“ so strings are equal.”);

}

This calls the equals() method for the String object referenced by string1 and passes string3 as
the argument. The equals() method does a case-sensitive comparison of corresponding characters in
the strings and returns true if the strings are equal and false otherwise. Two strings are equal if they
are the same length, that is, have the same number of characters, and each character in one string is iden-
tical to the corresponding character in the other.

Of course, you could also use the equals() method for the string referenced by string3 to do the com-
parison:

if(string3.equals(string1)) {

System.out.println(“string3.equals(string1) is true.” +

“ so strings are equal.”);

}

This is just as effective as the previous version.

To check for equality between two strings ignoring the case of the string characters, you use the method
equalsIgnoreCase(). Let’s put these methods in the context of an example to see them working.

Try It Out String Identity
Make the following changes to the MatchStrings.java file of the previous example:

public class MatchStrings2 {

public static void main(String[] args) {

String string1 = “Too many “;

163

Arrays and Strings

String string2 = “cooks”;

String string3 = “Too many cooks”;

// Make string1 and string3 refer to separate strings that are identical

string1 += string2;

// Display the contents of the strings

System.out.println(“Test 1”);

System.out.println(“string3 is now: “ + string3);

System.out.println(“string1 is now: “ + string1);

if(string1.equals(string3)) { // Now test for equality

System.out.println(“string1.equals(string3) is true.” +

“ so strings are equal.”);

} else {

System.out.println(“string1.equals(string3) is false.” +

“ so strings are not equal.”);

}

// Now make string1 and string3 refer to strings differing in case

string3 = “TOO many cooks”;

// Display the contents of the strings

System.out.println(“\n\nTest 2”);

System.out.println(“string3 is now: “ + string3);

System.out.println(“string1 is now: “ + string1);

if(string1.equals(string3)) { // Compare for equality

System.out.println(“string1.equals(string3) is true “ +

“ so strings are equal.”);

} else {

System.out.println(“string1.equals(string3) is false” +

“ so strings are not equal.”);

}

if(string1.equalsIgnoreCase(string3)) { // Compare, ignoring case

System.out.println(“string1.equalsIgnoreCase(string3) is true” +

“ so strings are equal ignoring case.”);

} else {

System.out.println(“string1.equalsIgnoreCase(string3) is false” +

“ so strings are different.”);

}

}

}

Of course, if you don’t want to have to create another source file, leave the class name as it was before, as
MatchStrings. If you run this example, you should get the following output:

Test 1

string3 is now: Too many cooks

string1 is now: Too many cooks

string1.equals(string3) is true. so strings are equal.

Test 2

string3 is now: TOO many cooks

164

Chapter 4

string1 is now: Too many cooks

string1.equals(string3) is false so strings are not equal.

string1.equalsIgnoreCase(string3) is true so strings are equal ignoring case.

How It Works
In the if expression, you’ve called the equals() method for the object string1 to test for equality with
string3. This is the syntax you’ve been using to call the method println() in the object out. In gen-
eral, to call a method belonging to an object, you write the object name, then a period, and then the name
of the method. The parentheses following the method name enclose the information to be passed to the
method, which is string3 in this case. The general form for calling a method for an object is shown in
Figure 4-10.

Figure 4-10

The equals() method requires one argument that you put between the parentheses. This must be the
String object that is to be compared with the original object. As you saw earlier, the method returns
true if the string passed to it (string3 in the example) is identical to the string pointed to by the
String object that owns the method; in this case, string1. As you also saw in the previous section, you
could just as well call the equals() method for the object string3, and pass string1 as the argument
to compare the two strings. In this case, the expression to call the method would be:

string3.equals(string1)

and you would get exactly the same result.

The next line in the program code after outputting the values of string3 and string1 is:

if(string1.equals(string3)) { // Now test for equality

System.out.println(“string1.equals(string3) is true.” +

“ so strings are equal.”);

} else {

System.out.println(“string1.equals(string3) is false.” +

“ so strings are not equal.”);

}

You’ll learn more about this in Chapter 5, when you look at how to define your own
classes. For the moment, just note that you don’t necessarily need to pass any argu-
ments to a method because some methods don’t require any. On the other hand, sev-
eral arguments can be required. It all depends on how the method was defined in
the class.

Name of the
method

objectName . methodName (argl, arg2, ...)

Object owning
the method

Expressions specifying data to be
passed to the method

165

Arrays and Strings

The output from this shows that calling the equals() method for string1 with string3 as the argu-
ment returns true. After the if statement you make string3 reference a new string. You then compare
the values of string1 and string3 once more, and, of course, the result of the comparison is now
false.

Finally, you compare string1 with string3 using the equalsIgnoreCase() method. Here the result
is true since the strings differ only in the case of the first three characters.

String Interning
Having convinced you of the necessity for using the equals method for comparing strings, I can now
reveal that there is a way to make comparing strings with the == operator effective. The mechanism to
make this possible is called string interning. String interning ensures that no two String objects encap-
sulate the same string, so all String objects encapsulate unique strings. This means that if two String
variables reference strings that are identical, the references must be identical, too. To put it another way,
if two String variables contain references that are not equal, they must refer to strings that are different.
So how do you arrange that all String objects encapsulate unique strings? You just call the intern()
method for every new String object that you create. To show how this works, I can amend a bit of an
earlier example:

String string1 = “Too many “;

String string2 = “cooks”;

String string3 = “Too many cooks”;

// Make string1 and string3 refer to separate strings that are identical

string1 += string2;

string1 = string1.intern(); // Intern string1

The intern() method will check the string referenced by string1 against all the String objects cur-
rently in existence. If it already exists, the current object will be discarded, and string1 will contain a
reference to the existing object encapsulating the same string. As a result, the expression string1 ==
string3 will evaluate to true, whereas without the call to intern() it evaluated to false.

All string constants and constant String expressions are automatically interned. That’s why string1
and string3 would reference the same object if you were to use the same initializing string literal.
Suppose you add another variable to the previous code fragment:

String string4 = “Too “ +”many “;

The reference stored in string4 will be automatically the same as the reference stored in string1. Only
String expressions involving variables need to be interned explicitly by calling intern(). You could
have written the statement that created the combined string to be stored in string1 with this statement:

string1 = (string1 + string2).intern();

This now interns the result of the expression (string1 + string2), ensuring that the reference stored
in string1 will be unique.

String interning has two benefits. First, it reduces the amount of memory required for storing String
objects in your program. If your program generates a lot of duplicate strings then this will be significant.

166

Chapter 4

Second, it allows the use of == instead of the equals() method when you want to compare strings for
equality. Since the == operator just compares two references, it will be much faster than the equals()
method, which involves a sequence of character-by-character comparisons. This implies that you may
make your program run much faster, but only in certain cases. Keep in mind that the intern() method
has to use the equals() method to determine whether a string already exists. More than that, it will
compare the current string against a succession of, and possibly all, existing strings in order to deter-
mine whether the current string is unique. Realistically, you should stick to using the equals() method
in the majority of situations and use interning only when you are sure that the benefits outweigh the
cost.

Checking the Start and End of a String
It can be useful to be able to check just part of a string. You can test whether a string starts with a partic-
ular character sequence by using the startsWith() method for the String object. The argument to the
method is the string that you want to look for at the beginning of the string. The argument string can be
of any length, from one character up to the length of the original string you are testing. If string1 has
been defined as “Too many cooks”, the expression string1.startsWith(“Too”) will have the value
true. So would the expression string1.startsWith(“Too man”). Here’s an example of using the
method:

String string1 = “Too many cooks”;

if(string1.startsWith(“Too”)) {

System.out.println(“The string does start with \”Too\” too!”);

}

The comparison is case-sensitive so the expression string1.startsWith(“tOO”) would result in the
value false.

A complementary method endsWith() checks for what appears at the end of a string, so the expression
string1.endsWith(“cooks”) will have the value true. The test is case-sensitive here, too.

Sequencing Strings
You’ll often want to place strings in order — for example, when you have a collection of names. Testing
for equality doesn’t help because to sort strings you need to be able to determine whether one string is
greater than or less than another. What you need is the compareTo() method in the String class. This
method compares the String object for which it is called with the String argument you pass to it and
returns an integer that is negative if the String object is less than the argument that you passed, zero if
the String object is equal to the argument, and positive if the String object is greater than the argu-
ment. Of course, sorting strings requires a clear definition of what the terms less than, equal to, and greater
than mean when applied to strings, so I’ll explain that first.

The compareTo() method compares two strings by comparing successive corresponding characters,
starting with the first character in each string. The process continues until either corresponding charac-
ters are found to be different, or the last character in one or both strings is reached. Characters are com-
pared by comparing their Unicode representations — so two characters are equal if the numeric values of
their Unicode representations are equal. One character is greater than another if the numerical value of
its Unicode representation is greater than that of the other. A character is less than another if its Unicode
code is less than that of the other.

167

Arrays and Strings

One string is greater than another if the first character that differs from the corresponding character in
the other string is greater than the corresponding character in the other string. So if string1 has the
value “mad dog”, and string2 has the value “mad cat”, then the expression

string1.compareTo(string2)

will return a positive value as a result of comparing the fifth characters in the strings: the ‘d’ in
string1 with the ‘c’ in string2.

What if the corresponding characters in both strings are equal up to the end of the shorter string, but the
other string has more characters? In this case the longer string is greater than the shorter string, so
“catamaran” is greater than “cat”.

One string is less than another string if it has a character less than the corresponding character in the
other string, and all the preceding characters are equal. Thus, the following expression will return a neg-
ative value:

string2.compareTo(string1)

Two strings are equal if they contain the same number of characters and corresponding characters are
identical. In this case the compareTo() method returns 0.

You can exercise the compareTo() method in a simple example.

Try It Out Ordering Strings
In this example you’ll create three strings that you can compare using the compareTo() method. Enter
the following code:

public class SequenceStrings {

public static void main(String[] args) {

// Strings to be compared

String string1 = “A”;

String string2 = “To”;

String string3 = “Z”;

// Strings for use in output

String string1Out = “\”” + string1 + “\””; // string1 with quotes

String string2Out = “\”” + string2 + “\””; // string2 with quotes

String string3Out = “\”” + string3 + “\””; // string3 with quotes

// Compare string1 with string3

if(string1.compareTo(string3) < 0) {

System.out.println(string1Out + “ is less than “ + string3Out);

} else {

if(string1.compareTo(string3) > 0) {

System.out.println(string1Out + “ is greater than “ + string3Out);

} else {

System.out.println(string1Out + “ is equal to “ + string3Out);

}

168

Chapter 4

}

// Compare string2 with string1

if(string2.compareTo(string1) < 0) {

System.out.println(string2Out + “ is less than “ + string1Out);

} else {

if(string2.compareTo(string1) > 0) {

System.out.println(string2Out + “ is greater than “ + string1Out);

} else {

System.out.println(string2Out + “ is equal to “ + string1Out);

}

}

}

}

The example will produce the following output:

“A” is less than “Z”

“To” is greater than “A”

How It Works
You should have no trouble with this example. It declares and initializes three String variables,
string1, string2, and string3. You then create three further String variables that correspond to the
first three strings with double quote characters at the beginning and the end. This is just to simplify the
output statements. You then have an if with a nested if to compare string1 with string3:

if(string1.compareTo(string3) < 0) {

System.out.println(string1Out + “ is less than “ + string3Out);

} else {

if(string1.compareTo(string3) > 0) {

System.out.println(string1Out + “ is greater than “ + string3Out);

} else {

System.out.println(string1Out + “ is equal to “ + string3Out);

}

}

The outer if statement determines whether string1 is less than string3. If it is, then a message is dis-
played. If string1 is not less than string3, then either they are equal or string1 is greater than
string3. The inner if statement determines which is the case and outputs a message accordingly.

You compare string2 with string1 in the same way.

As with the equals() method, the argument to the method compareTo() can be any expression that
results in a String object.

Accessing String Characters
When you are processing strings, sooner or later you will need to access individual characters in a
String object. To refer to a character at a particular position in a string you use an index of type int
that is the offset of the character position from the beginning of the string.

169

Arrays and Strings

This is exactly the same principle you used for referencing an array element. The first character in a
string is at position 0, the second is at position 1, the third is at position 2, and so on. However, although
the principle is the same, the practice is not. You can’t use square brackets to access characters in a
string — you must use a method.

Extracting String Characters
You can extract a character from a String object by using the charAt() method. This accepts an integer
argument that is the offset of the character position from the beginning of the string — in other words, an
index. If you attempt to use an index that is less than 0 or greater than the index for the last position in
the string, you will cause an exception to be thrown, which will cause your program to be terminated. I
will discuss exactly what exceptions are, and how you should deal with them, in Chapter 7. For the
moment, just note that the specific type of exception thrown in this case is called
StringIndexOutOfBoundsException. Its name is rather a mouthful, but quite explanatory.

To avoid unnecessary errors of this kind, you obviously need to be able to determine the length of a
String object. To obtain the length of a string, you just need to call its length() method. Note the dif-
ference between this and the way you got the length of an array. Here you are calling a method,
length(), for a String object, whereas with an array you were accessing a data member, length. You
can explore the use of the charAt() and length() methods in the String class with another example.

Try It Out Getting at Characters in a String
In the following code, the soliloquy is analyzed character-by-character to determine the vowels, spaces,
and letters that appear in it:

public class StringCharacters {

public static void main(String[] args) {

// Text string to be analyzed

String text = “To be or not to be, that is the question;”

+”Whether ‘tis nobler in the mind to suffer”

+” the slings and arrows of outrageous fortune,”

+” or to take arms against a sea of troubles,”

+” and by opposing end them?”;

int spaces = 0, // Count of spaces

vowels = 0, // Count of vowels

letters = 0; // Count of letters

// Analyze all the characters in the string

int textLength = text.length(); // Get string length

for(int i = 0; i < textLength; i++) {

// Check for vowels

char ch = Character.toLowerCase(text.charAt(i));

if(ch == ‘a’ || ch == ‘e’ || ch == ‘i’ || ch == ‘o’ || ch == ‘u’) {

vowels++;

}

//Check for letters

if(Character.isLetter(ch)) {

letters++;

}

170

Chapter 4

// Check for spaces

if(Character.isWhitespace(ch)) {

spaces++;

}

}

System.out.println(“The text contained vowels: “ + vowels + “\n” +

“ consonants: “ + (letters-vowels) + “\n”+

“ spaces: “ + spaces);

}

}

Running the example, you’ll see:

The text contained vowels: 60

consonants: 93

spaces: 37

How It Works
The String variable text is initialized with the quotation you see. All the counting of letter characters
is done in the for loop, which is controlled by the index i. The loop continues as long as i is less than
the length of the string, which is returned by the method text.length() and which you saved in the
variable textLength.

Starting with the first character, which has the index value 0, you retrieve each character from the string
by calling its charAt() method. You use the loop index i as the index to the character position string.
The method returns the character at index position i as a value of type char, and you convert this to
lowercase, where necessary, by calling the static method toLowerCase() in the class Character. The
character to be converted is passed as an argument, and the method returns either the original character
or, if it is uppercase, the lowercase equivalent. This enables you to deal with all the characters in the
string as if they were lowercase.

There is an alternative to using the toLowerCase() method in the Character class. The String class
also contains a toLowerCase() method that will convert a whole string to lowercase and return a refer-
ence to the converted string. You could convert the string text to lowercase with the statement:

text = text.toLowerCase(); // Convert string to lower case

This statement replaces the original string with the lowercase equivalent. If you wanted to retain the
original, you could store the reference to the lowercase string in another variable of type String. The
String class also defines the toUpperCase() method for converting a string to uppercase, which you
use in the same way as the toLowerCase() method.

The if expression checks for any of the vowels by ORing the comparisons with the five vowels together.
If the expression is true, you increment the vowels count. To check for a letter of any kind you use the
isLetter() method in the Character class, and accumulate the total letter count in the variable
letters. This enables you to calculate the number of consonants by subtracting the number of vowels
from the total number of letters. Finally, the loop code checks for a space by using the isWhitespace()
method in the class Character. This method returns true if the character passed as an argument is a

171

Arrays and Strings

Unicode whitespace character. As well as spaces, whitespace in Unicode also includes horizontal and
vertical tab, newline, carriage return, and form-feed characters. If you just wanted to count the spaces in
the text, you could explicitly compare for a space character. After the for loop ends, you just output the
results.

Searching Strings for Characters
There are two methods available to you in the String class that will search a string: indexOf() and
lastIndexOf(). Each of these comes in four different flavors to provide a range of search possibilities.
The basic choice is whether you want to search for a single character or for a substring, so let’s look first
at the options for searching a string for a given character.

To search a string text for a single character, ‘a’ for example, you could write:

int index = 0; // Position of character in the string

index = text.indexOf(‘a’); // Find first index position containing ‘a’

The method indexOf() will search the contents of the string text forwards from the beginning and
return the index position of the first occurrence of ‘a’. If ‘a’ is not found, the method will return the
value -1.

If you wanted to find the last occurrence of ‘a’ in the String variable text, you just use the method
lastIndexOf():

index = text.lastIndexOf(‘a’); // Find last index position containing ‘a’

The method searches the string backwards, starting with the last character in the string. The variable
index therefore contains the index position of the last occurrence of ‘a’, or -1 if it is not found.

You can now find the first and last occurrences of a character in a string, but what about the ones in the
middle? Well, there’s a variation of each of the preceding methods that has a second argument to specify
a “from position” from which to start the search. To search forwards from a given position, startIndex,
you would write:

index = text.indexOf(‘a’, startIndex);

This is characteristic of both search methods in the class String. They always return
either the index position of what is sought or -1 if the search objective is not found.
It is important that you check the index value returned for -1 before you use it to
index a string; otherwise, you will get an error when you don’t find what you are
looking for.

172

Chapter 4

This version of the method indexOf() searches the string for the character specified by the first argu-
ment starting with the position specified by the second argument. You could use this to find the first ‘b’
that comes after the first ‘a’ in a string with the following statements:

int aIndex = -1; // Position of 1st ‘a’

int bIndex = -1; // Position of 1st ‘b’ after ‘a’

aIndex = text.indexOf(‘a’); // Find first ‘a’

if(aIndex >= 0) { // Make sure you found ‘a’

bIndex = text.indexOf(‘b’, ++aIndex); // Find 1st ‘b’ after 1st ‘a’

}

Once you have the index value from the initial search for ‘a’, you need to check that ‘a’ was really
found by verifying that aIndex is not negative. You can then search for ‘b’ from the position following
‘a’. As you can see, the second argument of this version of the method indexOf() is separated from
the first argument by a comma. Since the second argument is the index position from which the search is
to start, and aIndex is the position at which ‘a’ was found, you should increment aIndex to the posi-
tion following ‘a’ before using it in the search for ‘b’ to avoid checking for ‘b’ in the position you
already know contains ‘a’.

If ‘a’ happened to be the last character in the string, it wouldn’t matter, since the indexOf() method
just returns –1 if the index value is beyond the last character in the string. If you somehow supplied a
negative index value to the method, it would simply search the whole string from the beginning.

Of course, you could use the indexOf() method to count how many times a particular character
occurred in a string:

int aIndex = -1; // Search start position

int count = 0; // Count of ‘a’ occurrences

while((aIndex = text.indexOf(‘a’, ++aIndex)) > -1) {

++count;

}

The while loop condition expression calls the indexOf() method for the String object referenced by
text and stores the result in the variable aIndex. If the value stored is greater than -1, it means that ‘a’
was found, so the loop body executes and count is incremented. Because aIndex has -1 as its initial
value, the search starts from index position 0 in the string, which is precisely what you want. When a
search reaches the end of the string without finding ‘a’, -1 will be returned by the indexOf() method
and the loop will end.

Searching for Substrings
The indexOf() and lastIndexOf() methods also come in versions that accept a string as the first
argument, which will search for this string rather than a single character. In all other respects they work
in the same way as the character searching methods you have just seen. I can summarize the complete
set of indexOf() methods in the following table:

173

Arrays and Strings

Method Description

indexOf(int ch) Returns the index position of the first occurrence of the
character ch in the String for which the method is called. If
the character ch does not occur, -1 is returned.

indexOf(int ch, Same as the preceding method, but with the search starting
int index) at position index in the string. If the value of index is out-

side the legal limits for the String object, -1 is returned.

indexOf(String str) Returns the index position of the first occurrence of the sub-
string str in the String object for which the method is
called. If the substring str does not occur, -1 is returned.

indexOf(String str, Same as the preceding method, but with the search starting
int index) at position index in the string. If the value of index is out-

side the legal limits for the String object, -1 is returned.

The four flavors of the lastIndexOf() method have the same parameters as the four versions of the
indexOf() method. The difference is that the last occurrence of the character or substring that is sought
is returned by the lastIndexOf() method.

The startsWith() method that I mentioned earlier in the chapter also comes in a version that accepts
an additional argument that is an offset from the beginning of the string being checked. The check for
the matching character sequence then begins at that offset position. If you have defined a string as

String string1 = “The Ides of March”;

then the expression String1.startsWith(“Ides”, 4) will have the value true.

I can show the indexOf() and lastIndexOf() methods at work with substrings in an example.

Try It Out Exciting Concordance Entries
You’ll use the indexOf() method to search the quotation you used in the last “Try It Out” example for
“and” and the lastIndexOf() method to search for “the”.

public class FindCharacters {

public static void main(String[] args) {

// Text string to be analyzed

String text = “To be or not to be, that is the question;”

+ “ Whether ‘tis nobler in the mind to suffer”

+ “ the slings and arrows of outrageous fortune,”

+ “ or to take arms against a sea of troubles,”

+ “ and by opposing end them?”;

174

Chapter 4

int andCount = 0; // Number of and’s

int theCount = 0; // Number of the’s

int index = -1; // Current index position

String andStr = “and”; // Search substring

String theStr = “the”; // Search substring

// Search forwards for “and”

index = text.indexOf(andStr); // Find first ‘and’

while(index >= 0) {

++andCount;

index += andStr.length(); // Step to position after last ‘and’

index = text.indexOf(andStr, index);

}

// Search backwards for “the”

index = text.lastIndexOf(theStr); // Find last ‘the’

while(index >= 0) {

++theCount;

index -= theStr.length(); // Step to position before last ‘the’

index = text.lastIndexOf(theStr, index);

}

System.out.println(“The text contains “ + andCount + “ ands\n”

+ “The text contains “ + theCount + “ thes”);

}

}

The program will produce the following output:

The text contains 2 ands

The text contains 5 thes

How It Works
You define the String variable, text, as before, and set up two counters, andCount and theCount, for
the two words. The variable index keeps track of the current position in the string. You then have
String variables andStr and theStr holding the substrings you will be searching for.

To find the instances of “and”, you first find the index position of the first occurrence of “and” in the
string text. If this index is negative, text does not contain “and”, and the while loop will not execute,
as the condition is false on the first iteration. Assuming there is at least one “and”, the while loop
block executes and andCount is incremented for the instance of “and” you have just found. The
indexOf() method returns the index position of the first character of the substring, so you have to

If you were expecting the “the” count to be 3, note that there is one instance in
“whether” and another in “them”. If you want to find three, you need to refine your
program to eliminate such pseudo-occurrences by checking the characters on either
side of the “the” substring.

175

Arrays and Strings

move the index forward to the character following the last character of the substring you have just
found. This is done by adding the length of the substring, as shown in Figure 4-11.

Figure 4-11

You are then able to search for the next occurrence of the substring by passing the new value of index to
the indexOf() method. The loop continues as long as the index value returned is not -1.

To count the occurrences of the substring “the” the program searches the string text backwards, by
using the method lastIndexOf() instead of indexOf(). This works in much the same way, the only
significant difference being that you decrement the value of index, instead of incrementing it. This is
because the next occurrence of the substring has to be at least that many characters back from the first
character of the substring you have just found. If the string “the” happened to occur at the beginning of
the string you are searching, the lastIndexOf() method would be called with a negative value for
index. This would not cause any problem — it would just result in -1 being returned in any event.

swor r

text.indexOf(theStr)
returns the index of

this position

Add andStr.length() to the
index to get the new search

start position

Search direction

Searching forwards through a string for "and"

t h e s a nnl i g s d a

?met h

text.lastindexOf(theStr)
returns the index of

this position

Add andStr.length() to the
index to get the new search

start position

Search direction

Searching backwards through a string for "the"

b y po e nsp o i n g d

176

Chapter 4

Extracting Substrings
The String class includes the substring() method, which will extract a substring from a string. There
are two versions of this method. The first version will extract a substring consisting of all the characters
from a given index position up to the end of the string. This works as illustrated in the following code
fragment:

String place = “Palm Springs”;

String lastWord = place.substring(5);

After executing these statements, lastWord will contain the string “Springs”, which corresponds to
the substring starting at index position 5 in place through to the end of the string. The method copies
the substring from the original to form a new String object. This version of the method is useful when a
string has basically two constituent substrings, but a more common requirement is to be able to extract
several substrings from a string in which each substring is separated from the next by a particular delim-
iter character such as a comma, a slash, or even just a space. The second version of substring() will
help with this.

The second version of the substring() method enables you to extract a substring from a string by
specifying the index positions of the first character in the substring and one beyond the last character of
the substring as arguments to the method. With the variable place being defined as before, the follow-
ing statement will result in the variable segment being set to the string “ring”:

String segment = place.substring(7, 11);

You can see how substring() works with a more substantial example.

Try It Out Word for Word
You can use the indexOf() method in combination with the substring() method to extract a
sequence of substrings that are separated by spaces in a single string:

public class ExtractSubstrings {

public static void main(String[] args) {

String text = “To be or not to be”; // String to be segmented

int count = 0; // Number of substrings

char separator = ‘ ‘; // Substring separator

// Determine the number of substrings

int index = 0;

do {

++count; // Increment count of substrings

The substring() method is not like the indexOf() method when it comes to ille-
gal index values. The indexOf() method returns -1 when you supply an invalid
index value to it. With either version of the substring() method, an exception will
be thrown if you specify an index that is outside the bounds of the string. As with
the charAt() method, the substring() method will throw a
StringIndexOutOfBoundsException exception.

177

Arrays and Strings

++index; // Move past last position

index = text.indexOf(separator, index);

} while (index != -1);

// Extract the substring into an array

String[] subStr = new String[count]; // Allocate for substrings

index = 0; // Substring start index

int endIndex = 0; // Substring end index

for(int i = 0; i < count; i++) {

endIndex = text.indexOf(separator,index); // Find next separator

if(endIndex == -1) { // If it is not found

subStr[i] = text.substring(index); // extract to the end

} else { // otherwise

subStr[i] = text.substring(index, endIndex); // to end index

}

index = endIndex + 1; // Set start for next cycle

}

// Display the substrings

for(String s : subStr) { // For each string in subStr

System.out.println(s); // display it

}

}

}

When you run this example, you should get the following output:

To

be

or

not

to

be

How It Works
After setting up the string text to be segmented into substrings, a count variable to hold the number of
substrings, and the separator character, separator, the program has three distinct phases:

1. The first phase counts the number of substrings by using the indexOf() method to find separa-
tors. The number of separators is always one less than the number of substrings. By using the
do-while loop, you ensure that the value of count will be one more than the number of separa-
tors because there will always be one loop iteration for when the separator is not found.

2. The second phase extracts the substrings in sequence from the beginning of the string and stores
them in an array of String variables that has count elements. A separator follows each sub-
string from the first to the penultimate so you use the version of the substring() method that
accepts two index arguments for these. The last substring is signaled by a failure to find the sep-
arator character when index will be -1. In this case you use the substring() method with a
single argument to extract the substring through to the end of the string text.

178

Chapter 4

3. The third phase simply outputs the contents of the array by displaying each element in turn,
using a collection-based for loop. The String variable, s, defined in the loop will reference
each string in the array in turn. You display each string by passing s as the argument to the
println() method.

What you have been doing here is breaking a string up into tokens — substrings in other words — that
are separated by delimiters — characters that separate one token from the next. This is such a suffi-
ciently frequent requirement that Java provides you with an easier way to do this — using the split()
method in the String class.

Tokenizing a String
The split() method in the String class is specifically for splitting a string into tokens. It does this in a
single step, returning all the tokens from a string as an array of String objects. To do this it makes use
of a facility called regular expressions that I’ll discuss in detail in Chapter 15. However, you can still
make use of the split() method without knowing about how regular expressions work so I’ll largely
ignore this aspect here. Just keep the split() method in mind when you get to Chapter 15.

The split() method expects two arguments. The first argument is a String object that specifies a
pattern for a delimiter. Any delimiter that matches the pattern is assumed to be a separator for a token.
Here I will talk only about patterns that are simply a set of possible delimiter characters in the string. But
as you’ll see in Chapter 15, the pattern for delimiters can be much more sophisticated than this. The sec-
ond argument to the split() method is an integer value that is a count of the maximum number of
times the pattern can be applied to find tokens and, therefore, affects the maximum number of tokens
that can be found. If you specify the second argument as zero, the pattern will be applied as many times
as possible, and any trailing empty tokens will be discarded. This can arise if several delimiters at the
end of the string are being analyzed. If you specify the limit as a negative integer, the pattern will also be
applied as many times as possible, but trailing empty tokens will be retained and returned. As I said ear-
lier, the tokens found by the method are returned in an array of type String[].

The key to tokenizing a string is providing the appropriate pattern defining the set of possible delim-
iters. At its simplest, a pattern can be a string containing a sequence of characters, each of which is a
delimiter. You must specify the set of delimiters in the string between square brackets. This is necessary
to distinguish a simple set of delimiter characters from more complex patterns. Examples are the string
“[abc]” defining ‘a’, ‘b’, and ‘c’ as delimiters, or “[, .:;]” specifying a comma, a period, a space,
a colon, or a semicolon as delimiters. There are many more powerful ways of defining a pattern, but I
will defer discussing that until Chapter 15.

To see how the split() method works, consider the following code fragment:

String text = “to be or not to be, that is the question.”;

String[] words = text.split(“[, .]”, 0); // Delimiters are comma, space, or period

The first statement defines the string to be analyzed and split into tokens. The second statement calls the
split() method for the text object to tokenize the string. The first argument to the method specifies a
comma, a space, or a period as possible delimiters. The second argument specifies the limit on the num-
ber of applications of the delimiter pattern as zero, so it will be applied as many times as necessary to
tokenize the entire string. The split() method returns a reference to an array of strings that will be
stored in the words variable. In case you hadn’t noticed, these two lines of code do the same thing as
most of the code in main() in the previous working example!

179

Arrays and Strings

Another version of the split() method requires a single argument of type String specifying the pat-
tern. This is equivalent to using the version with two arguments, where the second argument is zero, so
you could write the second statement in the previous code fragment as:

String[] words = text.split(“[, .]”); // Delimiters are comma, space, or period

This will produce exactly the same result as when you specify the second argument as 0. Now, it’s time
to explore the behavior of the split() method in an example.

Try It Out Using a Tokenizer
Here you’ll split a string completely into tokens with alternative explicit values for the second argument
to the split() method to show the effect:

public class StringTokenizing {

public static void main(String[] args) {

String text = “To be or not to be, that is the question.”; // String to segment

String delimiters = “[, .]”; // Delimiters are comma, space, and period

int[] limits = {0, -1}; // Limit values to try

// Analyze the string

for(int limit : limits) {

System.out.println(“\nAnalysis with limit = “ + limit);

String[] tokens = text.split(delimiters, limit);

System.out.println(“Number of tokens: “ + tokens.length);

for(String token : tokens) {

System.out.println(token);

}

}

}

}

The program will generate two blocks of output. The first block of output corresponding to a limit value
of 0 is:

Analysis with limit = 0

Number of tokens: 11

To

be

or

not

to

be

that

is

the

question

The second block of output corresponding to a limit value of -1 is:

Analysis with limit = -1

Number of tokens: 12

180

Chapter 4

To

be

or

not

to

be

that

is

the

question

In this second case, you have an extra empty line at the end.

How It Works
The string identifying the possible delimiters for tokens in the text is defined by the statement

String delimiters = “[, .]”; // Delimiters are comma, space, and period

The characters between the square brackets are the delimiters, so here you have specified that comma,
space, and period are delimiters. If you want to include other characters as delimiters, just add them
between the square brackets. For example, the string “[, .:;!?]” adds a colon, a semicolon, an excla-
mation point, and a question mark to the original set of three delimiters.

You also have an array of values for the second argument to the split() method call:

int[] limits = {0, -1}; // Limit values to try

I included only two initial values for array elements to keep the amount of output in the book at a mini-
mum, but you should try a few extra values.

The outer collection-based for loop iterates over the limit values in the limits array. The limit vari-
able will be assigned the value of each element in the limits array in turn. The same string is split into
tokens on each iteration, with the current limit value as the second argument to the split() method.
You display the number of tokens produced by the split() method by outputting the length of the
array that it returns. You then output the contents of the array that the split() method returns in the
nested collection-based for loop. The loop variable, token, will reference each string in the tokens
array in turn.

If you look at the first block of output, you will see that an array of 11 tokens was returned by the
split() method. The text being analyzed contains 10 words, and the extra token arises because there
are two successive delimiters, a comma followed by a space, in the middle of the string, which causes an
empty token to be produced. It is possible to make the split() method recognize a comma followed (or
preceded) by one or more spaces as a single delimiter but you’ll have to wait until Chapter 15 to find out
how it’s done.

The second block of output has 12 tokens. This is because there is an extra empty token at the end of the
list of tokens that is eliminated when the second argument to the split() method is 0. The extra token
is there because the end of the string is always a delimiter, so the period followed by the end of the
string identifies an empty token.

181

Arrays and Strings

Modified Versions of String Objects
You can use a couple of methods to create a new String object that is a modified version of an existing
String object. These methods don’t change the original string, of course — as I said, String objects are
immutable.

To replace one specific character with another throughout a string, you can use the replace() method.
For example, to replace each space in the string text with a slash, you could write:

String newText = text.replace(‘ ‘, ‘/’); // Modify the string text

The first argument of the replace() method specifies the character to be replaced, and the second argu-
ment specifies the character that is to be substituted in its place. I have stored the result in a new variable
newText here, but you could save it back in the original String variable, text, if you wanted to effec-
tively replace the original string with the new modified version.

To remove whitespace from the beginning and end of a string (but not the interior) you can use the
trim() method. You could apply this to a string as follows:

String sample = “ This is a string “;

String result = sample.trim();

After these statements execute, the String variable result will contain the string “This is a
string”. This can be useful when you are segmenting a string into substrings and the substrings may
contain leading or trailing blanks. For example, this might arise if you were analyzing an input string
that contained values separated by one or more spaces.

Creating Character Arrays from String Objects
You can create an array of variables of type char from a String object by using the toCharArray()
method that is defined in the String class. Because this method creates an array of type char and
returns a reference to it, you only need to declare the array variable of type char[] to hold the array
reference—you don’t need to allocate the array. For example:

String text = “To be or not to be”;

char[] textArray = text.toCharArray(); // Create the array from the string

The toCharArray() method returns an array containing the characters of the String variable text,
one per element, so textArray[0] will contain ‘T’, textArray[1] will contain ‘o’, textArray[2]
will contain ‘ ‘, and so on.

You can also extract a substring as an array of characters using the method getChars(), but in this case
you do need to create an array that is large enough to hold the characters and pass it as an argument to
the method. Of course, you can reuse a single array to store characters when you want to extract and
process a succession of substrings one at a time and thus avoid having to repeatedly create new arrays.
Of necessity, the array you are using must be large enough to accommodate the longest substring. The
method getChars() expects four arguments. In sequence, these are:

❑ The index position of the first character to be extracted from the string (type int)

❑ The index position following the last character to be extracted from the string (type int)

182

Chapter 4

❑ The name of the array to hold the characters extracted (type char[])

❑ The index of the array element to hold the first character (type int)

You could copy a substring from text into an array with the following statements:

String text = “To be or not to be”;

char[] textArray = new char[3];

text.getChars(9, 12, textArray, 0);

This will copy characters from text at index positions 9 to 11 inclusive, so textArray[0] will be ‘n’,
textArray[1] will be ‘o’, and textArray[2] will be ‘t’.

Using the Collection-Based for Loop with a String
You can’t use a String object directly as the source of values for a collection-based for loop, but you
have seen already that you can use an array. The toCharArray() method therefore provides you with a
way to iterate over the characters in a string using a collection-based for loop. Here’s an example:

String phrase = “The quick brown fox jumped over the lazy dog.”;

int vowels = 0;

for(char ch : phrase.toCharArray()) {

ch = Character.toLowerCase(ch);

if(ch == ‘a’ || ch == ‘e’ || ch == ‘i’ || ch == ‘o’ || ch == ‘u’) {

++vowels;

}

}

System.out.println(“The phrase contains “ + vowels + “ vowels.”);

This fragment calculates the number of vowels in the String phrase by iterating over the array of type
char[] that the toCharArray() method for the string returns. The result of passing the value of the
loop variable ch to the static toLowerCase() method in the Character class is stored back in ch. Of
course, you could also use a numerical for loop to iterate over the element’s characters in the string
directly using the charAt() method.

Obtaining the Characters in a String as an Array of Bytes
You can extract characters from a string into a byte[] array using the getBytes() method in the class
String. This converts the original string characters into the character encoding used by the underlying
operating system — which is usually ASCII. For example:

String text = “To be or not to be”; // Define a string

byte[] textArray = text.getBytes(); // Get equivalent byte array

The byte array textArray will contain the same characters as in the String object, but stored as 8-bit
characters. The conversion of characters from Unicode to 8-bit bytes will be in accordance with the
default encoding for your system. This will typically mean that the upper byte of the Unicode character
is discarded, resulting in the ASCII equivalent. Of course, it is quite possible that a string may contain
Unicode characters that cannot be represented in the character encoding in effect on the local machine.
In this case, the effect of the getBytes() method is unspecified.

183

Arrays and Strings

Creating String Objects from Character Arrays
The String class also has a static method, copyValueOf(), to create a String object from an array of
type char[]. You will recall that a static method of a class can be used even if no objects of the class
exist.

Suppose you have an array defined as follows:

char[] textArray = {‘T’, ‘o’, ‘ ‘, ‘b’, ‘e’, ‘ ‘, ‘o’, ‘r’, ‘ ‘,

‘n’, ‘o’, ‘t’, ‘ ‘, ‘t’, ‘o’, ‘ ‘, ‘b’, ‘e’ };

You can then create a String object encapsulating these characters as a string with the following
statement:

String text = String.copyValueOf(textArray);

This will result in the object text referencing the string “To be or not to be”.

You could achieve the same result like this:

String text = new String(textArray);

This calls a constructor for the String class, which creates a new object of type String that encapsu-
lates a string containing the characters from the array. The String class defines several constructors for
defining String objects from various types of arrays. You’ll learn more about constructors in Chapter 5.

Another version of the copyValueOf() method can create a string from a subset of the array elements.
It requires two additional arguments to specify the index of the first character in the array to be extracted
and the count of the number of characters to be extracted. With the array defined as previously, the
statement

String text = String.copyValueOf(textArray, 9, 3);

extracts three characters starting with textArray[9], so text will contain the string “not” after this
operation.

There’s a class constructor that will do the same thing:

String text = new String(textArray, 9, 3);

The arguments are the same here as for the copyValueOf() method, and the result is the same.

Mutable Strings
String objects cannot be changed, but you have been creating strings that are combinations and modifi-
cations of existing String objects, so how is this done? Java has two other standard classes that encap-
sulate strings, the StringBuffer class and the StringBuilder class, and both StringBuffer and
StringBuilder objects can be altered directly. Strings that can be changed are referred to as mutable

184

Chapter 4

strings, in contrast to String objects that are immutable strings. Java uses objects of the StringBuffer
class type internally to perform many of the operations that involve combining String objects. Once the
required string has been formed as a StringBuffer object, it is then converted to an object of type
String.

You have the choice of using either a StringBuffer object or a StringBuilder object whenever you
need a string that you can change directly, so what’s the difference? In terms of the operations these two
classes provide, there is no difference, but StringBuffer objects are safe for use by multiple threads,
whereas StringBuilder objects are not. You’ll be learning about threads in Chapter 16, but in case
you’re not familiar with the term, threads are just independent execution processes within a program
that can execute concurrently. For example, an application that involves acquiring data from several
remote sites could implement the data transfer from each remote site as a separate thread. This would
allow these relatively slow operations to execute in parallel, sharing processor time in a manner deter-
mined by the operating system. This usually means that the elapsed time for acquiring all the data from
the remote sites would be much less than if the operations were executed sequentially in a single thread
of execution.

Of course, if concurrent threads of execution access the same object, there is potential for problems.
Complications can arise when one thread might be accessing an object while another is in the process of
modifying it. When this sort of thing is possible in your application, you must use the StringBuffer
class to define mutable strings if you want to avoid trouble. The StringBuffer class operations have
been coded to prevent errors arising from concurrent access by two or more threads. If you are sure that
your mutable strings will be accessed only by a single thread of execution, then you should use
StringBuilder objects because operations on these will be faster than with StringBuffer objects.

So when should you use mutable String objects rather than immutable String objects? StringBuffer
and StringBuilder objects come into their own when you are transforming strings frequently —
adding, deleting, or replacing substrings in a string. Operations will be faster and easier using mutable
objects. If you have mainly static strings that you occasionally need to concatenate in your application,
then String objects will be the best choice. Of course, if you want to, you can mix the use of both muta-
ble and immutable in the same program.

As I said, the StringBuilder class provides the same set of operations as the StringBuffer class. I’ll
describe mutable string operations in terms of the StringBuffer class for the rest of this chapter
because this is always a safe choice, but don’t forget that all the operations that I discuss in the context of
StringBuffer are available with the StringBuilder class, which will be faster but not thread-safe.

Creating StringBuffer Objects
You can create a StringBuffer object that contains a given string with the following statement:

StringBuffer aString = new StringBuffer(“A stitch in time”);

This declares a StringBuffer object, aString, and initializes it with the string “A stitch in time”.
When you are initializing a StringBuffer object, you must use this syntax, with the keyword new, the
StringBuffer class name, and the initializing value between parentheses. You cannot just use the
string as the initializing value as you did with String objects. This is because there is rather more to a
StringBuffer object than just the string that it contains initially, and, of course, a string literal is a
String object by definition.

185

Arrays and Strings

You can also create a StringBuffer object using a reference stored in a variable of type String:

String phrase = “Experience is what you get when you’re expecting something else.”;

StringBuffer buffer = new StringBuffer(phrase);

The StringBuffer object, buffer, will contain a string that is the same as that encapsulated by the
String object, phrase.

You can just create the StringBuffer variable, in much the same way as you created a String variable:

StringBuffer myString = null;

This variable does not refer to anything until you initialize it with a defined StringBuffer object. For
example, you could write:

myString = new StringBuffer(“Many a mickle makes a muckle”);

This statement creates a new StringBuffer object encapsulating the string “Many a mickle makes a
muckle” and stores the reference to this object in myString. You can also initialize a StringBuffer
variable with an existing StringBuffer object:

StringBuffer aString = myString;

Both myString and aString will now refer to a single StringBuffer object.

The Capacity of a StringBuffer Object
The String objects that you have been using each contain a fixed string, and when you create a String
object, memory is allocated to accommodate however many Unicode characters are in the string it
encapsulates. Everything is fixed so memory usage is not a problem. A StringBuffer object is a little
different. It contains a block of memory called a buffer, which may or may not contain a string, and if it
does, the string need not occupy the entire buffer. Thus, the length of a string in a StringBuffer object
can be different from the length of the buffer that the object contains. The length of the buffer is referred
to as the capacity of the StringBuffer object.

Once you have created a StringBuffer object, you can find the length of the string it contains, by using
the length() method for the object:

StringBuffer aString = new StringBuffer(“A stitch in time”);

int theLength = aString.length();

If the object aString were defined as in the preceding declaration, the variable theLength would have
the value 16. However, the capacity of the object is larger, as illustrated in Figure 4-12.

186

Chapter 4

Figure 4-12

When you create a StringBuffer object from an existing string, the capacity will be the length of the
string plus 16. Both the capacity and the length are in units of Unicode characters, so twice as many
bytes will be occupied in memory.

The capacity of a StringBuffer object is not fixed though. It grows automatically as you add to the
string to accommodate a string of any length. You can also specify the initial capacity when you create a
StringBuffer object. For example, the following statement creates a StringBuffer object with a spe-
cific value for the capacity:

StringBuffer newString = new StringBuffer(50);

This will create an object, newString, with the capacity to store 50 characters. If you omitted the capac-
ity value in this declaration, the object would have a default capacity of 16 characters. Thus, the
StringBuffer object that you create here has a buffer with a capacity of 50 characters that is initially
empty — no string is stored in it.

A String object is always a fixed string, so capacity is irrelevant — it is always just enough to hold the
characters in the string. A StringBuffer object on the other hand is a container in which you can store
a string of any length, and it has a capacity at any given instant for storing a string up to a given size.
Although you can set the capacity, it is unimportant in the sense that it is just a measure of how much
memory is available to store Unicode characters at this particular point in time. You can get by without
worrying about the capacity of a StringBuffer object at all since the capacity required to cope with
what your program is doing will always be provided automatically. It just gets increased as necessary.

So why have I mentioned the capacity of a StringBuffer object at all? While it’s true you can use
StringBuffer objects ignoring their capacity, the capacity of a StringBuffer object is important in the
sense that it affects the amount of overhead involved in storing and modifying a string. If the initial capac-
ity is small, and you store a string that is long, or you add to an existing string significantly, extra memory
will need to be allocated. Allocating additional memory will take time, and if it occurs frequently, it can
add a substantial overhead to the processor time your program needs to complete the task. It is more effi-
cient to make the capacity of a StringBuffer sufficient for the needs of your program.

StringBuffer aString = new StringBuffer("A stitch in time");

A s t i n mh

aString.length()
is 16

aString.capacity()
is 32

t c i t i e

187

Arrays and Strings

To find out what the capacity of a StringBuffer object is at any given time, you use the capacity()
method for the object:

int theCapacity = aString.capacity();

This method will return the number of Unicode characters the object can currently hold. For aString
defined as shown, this will be 32. When you create a StringBuffer object containing a string, its capac-
ity will be 16 characters greater than the minimum necessary to hold the string.

The ensureCapacity() method enables you to change the default capacity of a StringBuffer object.
You specify the minimum capacity you need as the argument to the method. For example:

aString.ensureCapacity(40);

If the current capacity of the aString object is less than 40, this will increase the capacity of aString by
allocating a new larger buffer, but not necessarily with a capacity of 40. The capacity will be the larger of
either the value that you specify, 40 in this case, or twice the current capacity plus 2, which is 66, given
that aString is defined as before. You might want to do this sort of thing when you are reusing an exist-
ing StringBuffer object in a new context where the strings are longer.

Changing the String Length for a StringBuffer Object
You can change the length of the string contained in a StringBuffer object with the method
setLength(). Note that the length is a property of the string the object holds, as opposed to the capac-
ity, which is a property of the string buffer. When you increase the length for a StringBuffer object,
you are adding characters to the existing string and the extra characters will contain ‘\u0000’. A more
common use of this method would be to decrease the length, in which case the string will be truncated.
If aString contains “A stitch in time”, the statement

aString.setLength(8);

will result in aString containing the string “A stitch”, and the value returned by the length()
method will be 8. The characters that were cut from the end of the string by this operation are lost.

To increase the length to what it was before, you could write:

aString.setLength(16);

Now aString will contain the string

“A stitch\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000”

The setLength() method does not affect the capacity of the object unless you set the length to be
greater than the capacity. In this case the capacity will be increased to accommodate the new string
length to a value that is twice the original capacity plus two if the length you set is less than this value. If
you specify a length that is greater than twice the original capacity plus two, the new capacity will be the
same as the length you set. If the capacity of aString is 66, executing the statement

aString.setLength(100);

188

Chapter 4

will set the capacity of the object, aString, to 134. If you supplied a value for the length of 150, then the
new capacity would be 150. You must not specify a negative length here. If you do, a
StringIndexOutOfBoundsException exception will be thrown.

Adding to a StringBuffer Object
The append() method enables you to add a string to the end of the existing string stored in a
StringBuffer object. This method comes in quite a few flavors, but perhaps the simplest adds a
String constant to a StringBuffer object.

Suppose you define a StringBuffer object with the following statement:

StringBuffer aString = new StringBuffer(“A stitch in time”);

You can add to it with the statement:

aString.append(“ saves nine”);

after which aString will contain “A stitch in time saves nine”. The length of the string con-
tained in the StringBuffer object is increased by the length of the string that you add. You don’t need
to worry about running out of space though. The capacity will always be increased automatically when-
ever necessary to accommodate the longer string.

The append() method returns a reference to the extended StringBuffer object, so you could also
assign it to another StringBuffer object. Instead of the previous statement, you could have written:

StringBuffer bString = aString.append(“ saves nine”);

Now both aString and bString point to the same StringBuffer object.

If you take a look at the operator precedence table back in Chapter 2, you will see that the ‘.’ operator
(sometimes called the member selection operator) that you use to execute a particular method for an
object has left-to-right associativity. You can therefore write multiple append operations in a single
statement:

StringBuffer proverb = new StringBuffer(); // Capacity is 16

proverb.append(“Many”).append(“ hands”).append(“ make”).

append(“ light”).append(“ work.”);

The second statement is executed from left to right, so that the string contained in the object proverb is
progressively extended until it contains the complete string. The reference that each call to append()
returns is used to call append() again for the same object, proverb.

Appending a Substring
Another version of the append() method adds part of a String object to a StringBuffer object. This
version of append() requires you to specify two additional arguments: the index position of the first
character in the String object that is to be appended and the total number of characters to be appended.

189

Arrays and Strings

To illustrate the workings of this, suppose you create a StringBuffer object and a String object with
the following statements:

StringBuffer buf = new StringBuffer(“Hard “);

String aString = “Waxworks”;

You can then append part of the aString object to the buf object with this statement:

buf.append(aString, 3, 4);

This operation is shown in Figure 4-13.

Figure 4-13

This operation appends a substring of aString consisting of four characters starting at index position 3
to the StringBuffer object buf. The object buf will then contain the string “Hard work”. The capacity
of the StringBuffer object is automatically increased by the length of the appended substring, if
necessary.

Appending Basic Types
You have a set of versions of the append() method that will enable you to append() the string equiva-
lent of values of any of the primitive types to a StringBuffer object. These versions of append() will
accept arguments of any of the following types: boolean, char, byte, short, int, long, float, or
double. In each case, the value is converted to a string equivalent of the value, which is appended to the
object, so a boolean variable will be appended as either “true” or “false”, and for numeric types the
string will be a decimal representation of the value. For example:

StringBuffer buf = new StringBuffer(“The number is “);

long number = 999;

buf.append(number);

will result in buf containing the string “The number is 999”.

count of characters is 4

H a odr w r k

H

StringBuffer buf = new StringBuffer("Hard ");

length is 5

String aString = "Waxworks";

buf.append(aString, 3, 4);

a dr

W a rWx o k s

offset is 3

count of characters is 4

length is 9

capacity is 21

capacity is 25

190

Chapter 4

There is nothing to prevent you from appending constants to a StringBuffer object. For example, if
you now execute the statement

buf.append(12.34);

the object buf will contain “The number is 99912.34”.

There is also a version of the append() method that accepts an array of type char as an argument. The
contents of the array are appended to the StringBuffer object as a string. A further variation on this
enables you to append a subset of the elements from an array of type char by using two additional
arguments: one to specify the index of the first element to be appended, and another to specify the total
number of elements to be appended. An example of how you might use this is as follows:

char[] text = { ‘i’, ‘s’, ‘ ‘, ‘e’, ‘x’, ‘a’, ‘c’, ‘t’, ‘l’, ‘y’};

buf.append(text, 2, 8);

This appends the string “exactly” to buf, so after executing this statement buf contains “The number
is 99912.34 exactly”.

You may be somewhat bemused by the plethora of append() method options, so let’s collect all the pos-
sibilities together. You can append any of the following types to a StringBuffer object:

boolean char String Object

int long float double

byte short

You can also append an array of type char[] and a subset of the elements of an array of type char[]. In
each case the String equivalent of the argument is appended to the string in the StringBuffer object.

I haven’t discussed type Object yet — I included it in the table here for the sake of completeness. You
will learn about this type of object in Chapter 6.

Finding the Position of a Substring
You can search the buffer of a StringBuffer object for a given substring by calling the lastIndexOf()
method. The simpler of the two versions of this method requires just one argument, which is the string
you are looking for, and the method returns the index position of the last occurrence of the string you are
searching for as a value of type int. The method returns -1 if the substring is not found. For example:

StringBuffer phrase = new StringBuffer(“one two three four”);

int position = phrase.lastIndexOf(“three”);

The value returned is the index position of the first character of “three” in phrase, which will be 8.
Remember, the first character is at index position 0. Of course, if the argument to the lastIndexOf()
method were “t”, the result would be the same because the method finds the last occurrence of the sub-
string in the buffer.

191

Arrays and Strings

The second version of the lastIndexOf() method requires an additional argument that specifies the
index position in the buffer where the search is to start. For example:

position = phrase.lastIndexOf(“three”, 6);

This statement starts the search at index position 6 so the first six characters (index values 0 to 5) in the
buffer will not be examined. Obviously, because the lastIndexOf() method finds the last occurrence of
the substring, this version of the method does not help you find multiple occurrences. It just provides a
way for you to avoid searching some initial part of the buffer when you know in advance where you
expect the substring to be found.

Replacing a Substring in the Buffer
You use the replace() method for a StringBuffer object to replace a contiguous sequence of charac-
ters with a given string. The string that you specify as the replacement can contain more characters than
the substring being replaced, in which case the string will be extended as necessary. The replace()
method requires three arguments. The first two are of type int and specify the start index in the buffer
and one beyond the end index of the substring to be replaced. The third argument is of type String and
is the string to be inserted. Here’s an example of how you might use the replace() method:

StringBuffer phrase = new StringBuffer(“one two three four”);

String substring = “two”;

String replacement = “twenty”;

int position = phrase.lastIndexOf(substring); // Find start of “two”

phrase.replace(position, position+substring.length(), replacement);

The first three statements define the original StringBuffer object, the substring to be replaced, and
the string to replace the substring. The next statement uses the lastIndexOf() method to find the
position of the first character of the last occurrence of substring in phrase. The last statement uses the
replace() method to substitute replacement in place of substring. To get the index value for one
beyond the last character of substring, you just add the length of substring to its position index.
Because replacement is a string containing more characters than substring, the length of the string in
phrase will be increased, and the new contents will be “one twenty three four”.

I have not bothered to insert code to check for the possibility of -1 being returned in the preceding code
fragment, but naturally in a real-world context it is essential to do this to avoid the program being termi-
nated when the substring is not present.

Inserting Strings
To insert a string into a StringBuffer object, you use the insert() method of the object. The first
argument specifies the index of the position in the object where the first character is to be inserted. For
example, if buf contains the string “Many hands make light work”, the statement

buf.insert(4, “ old”);

will insert the string “ old” starting at index position 4, so buf will contain the string “Many old
hands make light work” after executing this statement.

192

Chapter 4

Many versions of the insert() method accept a second argument of any of the same range of types that
apply to the append() method, so you can use any of the following with the insert() method:

boolean char String Object

int long float double

byte short

In each case the string equivalent of the second argument is inserted starting at the index position speci-
fied by the first argument. You can also insert an array of type char[], and if you need to insert a subset
of an array of type char[] into a StringBuffer object, you can call the version of insert() that
accepts four arguments:

Method Description

insert(int index, Inserts a substring into the StringBuffer object starting
char[] str, at position index. The substring is the String
int offset, representation of length characters from the str[]
int length) array, starting at position offset.

If the value of index is outside the range of the string in the StringBuffer object, or the offset or
length values result in illegal indexes for the array str, then an exception of type
StringIndexOutOfBoundsException will be thrown.

Extracting Characters from a Mutable String
The StringBuffer class includes the charAt() and getChars() methods, both of which work in the
same way as the methods of the same name in the String class which you’ve already seen. The
charAt() method extracts the character at a given index position, and the getChars() method extracts
a range of characters and stores them in an array of type char starting at a specified index position. You
should note that there is no equivalent to the getBytes() method for StringBuffer objects.

Other Mutable String Operations
You can change a single character in a StringBuffer object by using the setCharAt() method. The
first argument indicates the index position of the character to be changed, and the second argument
specifies the replacement character. For example, the statement

buf.setCharAt(3, ‘Z’);

will set the fourth character in the string to ‘Z’.

You use the deleteCharAt() method to remove a single character from a StringBuffer object at the
index position specified by the argument. For example:

StringBuffer phrase = new StringBuffer(“When the boats come in”);

phrase.deleteCharAt(10);

193

Arrays and Strings

After these statements have executed, phrase will contain the string “When the bats come in”.

If you want to remove several characters from a StringBuffer object you use the delete() method.
This method requires two arguments: The first is the index of the first character to be deleted and the
second is the index position following the last character to be deleted. For example:

phrase.delete(5, 9);

This statement will delete the substring “the “ from phrase, so it will then contain the string “When
bats come in”.

You can completely reverse the sequence of characters in a StringBuffer object with the reverse()
method. For example, if you define the object with the declaration

StringBuffer palindrome = new StringBuffer(“so many dynamos”);

you can then transform it with the statement

palindrome.reverse();

which results in palindrome containing the useful phrase “somanyd ynam os”.

Creating a String Object from a StringBuffer Object
You can produce a String object from a StringBuffer object by using the toString() method of the
StringBuffer class. This method creates a new String object and initializes it with the string con-
tained in the StringBuffer object. For example, to produce a String object containing the proverb that
you created in the previous section, you could write:

String saying = proverb.toString();

The object saying will contain “Many hands make light work”.

The toString() method is used extensively by the compiler together with the append() method to
implement the concatenation of String objects. When you write a statement such as:

String saying = “Many” + “ hands” + “ make” + “ light” + “ work”;

the compiler will implement this as:

String saying = new StringBuffer().append(“Many”).append(“ hands”).

append(“ make”).append(“ light”).

append(“ work”).toString();

The expression to the right of the = sign is executed from left to right, so the segments of the string are
appended to the StringBuffer object that is created until finally the toString() method is invoked to
convert it to a String object. String objects can’t be modified, so any alteration or extension of a
String object will involve the use of a StringBuffer object, which can be changed.

It’s time to see a StringBuffer object in action.

194

Chapter 4

Try It Out Using a StringBuffer Object to Assemble a String
This example just exercises some of the StringBuffer operations you have seen by assembling a string
from an array of words and then inserting some additional characters into the string:

public class UseStringBuffer {

public static void main(String[] args) {

StringBuffer sentence = new StringBuffer(20);

System.out.println(“\nStringBuffer object capacity is “+ sentence.capacity()+

“ and string length is “+sentence.length());

// Append all the words to the StringBuffer object

String[] words = {“Too” , “many”, “cooks”, “spoil”, “the” , “broth”};

sentence.append(words[0]);

for(int i = 1 ; i<words.length ; i++) {

sentence.append(‘ ‘).append(words[i]);

}

// Show the result

System.out.println(“\nString in StringBuffer object is:\n” +

sentence.toString());

System.out.println(“StringBuffer object capacity is now “+ sentence.capacity()+

“ and string length is “+sentence.length());

// Now modify the string by inserting characters

sentence.insert(sentence.lastIndexOf(“cooks”)+4,”ie”);

sentence.insert(sentence.lastIndexOf(“broth”)+5, “er”);

System.out.println(“\nString in StringBuffer object is:\n” + sentence);

System.out.println(“StringBuffer object capacity is now “+ sentence.capacity()+

“ and string length is “+sentence.length());

}

}

The output from this example will be:

StringBuffer object capacity is 20 and string length is 0

String in StringBuffer object is:

Too many cooks spoil the broth

StringBuffer object capacity is now 42 and string length is 30

String in StringBuffer object is:

Too many cookies spoil the brother

StringBuffer object capacity is now 42 and string length is 34

How It Works
You first create a StringBuffer object with a buffer capacity of 20 characters with the following
statement:

StringBuffer sentence = new StringBuffer(20);

195

Arrays and Strings

The output statement that follows just displays the buffer capacity and the initial string length. You
obtain these by calling the capacity() and length() methods, respectively, for the sentence object.
The string length is zero because you have not specified any buffer contents.

The next four statements create an array of words and append those words to sentence:

String[] words = {“Too” , “many”, “cooks”, “spoil”, “the” , “broth”};

sentence.append(words[0]);

for(int i = 1 ; i<words.length ; i++) {

sentence.append(‘ ‘).append(words[i]);

To start the process of building the string, you append the first word from the words array to sentence.
You then append all the subsequent words in the for loop, preceding each word with a space character.

The next output statement displays the buffer contents as a string by calling the toString() method for
sentence to create a String object. You then output the buffer capacity and string length for sentence
once more. The output shows that the capacity has been automatically increased to 42 and the length of
the string is 30.

In the last phase of the program you insert the string “ie” after the substring “cook” with the statement

sentence.insert(sentence.lastIndexOf(“cooks”)+4,”ie”);

The lastIndexOf() method returns the index position of the last occurrence of “cooks” in sentence

so you add 4 to this to specify the insertion position after the last letter of “cook”. You use the same
mechanism to insert the string “er” following “broth” in the buffer.

Finally, you output the string and the capacity and string length with the last two statements in main():

System.out.println(“\nString in StringBuffer object is:\n” + sentence);

System.out.println(“StringBuffer object capacity is now “+ sentence.capacity()+

“ and string length is “+sentence.length());

Note that the first output statement does not call the toString() method explicitly. The compiler will
insert the call for you to convert the StringBuffer object to a String object. This is necessary to make
it compatible with the + operator for String objects.

Summary
You should now be thoroughly familiar with how to create and use arrays. Most people have little trou-
ble dealing with one-dimensional arrays, but arrays of arrays are a bit trickier so try to practice using
these.

You have also acquired a good knowledge of what you can do with String objects, as well as
StringBuffer and StringBuilder objects. Most operations with these objects are very straightfor-
ward and easy to understand. Being able to decide which methods you should apply to the solution of
specific problems is a skill that will come with a bit of practice.

196

Chapter 4

The essential points that I have discussed in this chapter are:

❑ You use an array to hold multiple values of the same type, identified through a single variable
name.

❑ You reference an individual element of an array by using an index value of type int. The index
value for an array element is the offset of that element from the first element in the array.

❑ An array element can be used in the same way as a single variable of the same type.

❑ You can obtain the number of elements in an array by using the length member of the array
object.

❑ An array element can also contain an array, so you can define arrays of arrays, or arrays of
arrays of arrays, and so on.

❑ A String object stores a fixed character string that cannot be changed. However, you can assign
a given String variable to a different String object.

❑ You can obtain the number of characters stored in a String object by using the length()
method for the object.

❑ The String class provides methods for joining, searching, and modifying strings — the modifi-
cations being achieved by creating a new String object.

❑ StringBuffer and StringBuilder objects can store a string of characters that you can modify.

❑ StringBuffer and StringBuilder objects support the same set of operations. StringBuffer
objects are safe when accessed by multiple threads of execution whereas StringBuilder object
are not.

❑ You can get the number of characters stored in a StringBuffer object by calling its length()
method, and you can find out the current maximum number of characters it can store by using
its capacity() method.

❑ You can change both the length and the capacity for a StringBuffer object.

❑ You can create a String object from a StringBuffer object by using the toString() method
of the StringBuffer object.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Create an array of String variables and initialize the array with the names of the months from
January to December. Create an array containing 12 random decimal values between 0.0 and
100.0. Display the names of each month along with the corresponding decimal value. Calculate
and display the average of the 12 decimal values.

2. Write a program to create a rectangular array containing a multiplication table from 1 * 1 up to
12 * 12. Output the table as 13 columns with the numeric values right-aligned in columns. (The
first line of output will be the column headings, the first column with no heading, then the
numbers 1 to 12 for the remaining columns. The first item in each of the succeeding lines is the
row heading, which ranges from 1 to 12.)

197

Arrays and Strings

3. Write a program that sets up a String variable containing a paragraph of text of your choice.
Extract the words from the text and sort them into alphabetical order. Display the sorted list of
words. You could use a simple sorting method called the bubble sort. To sort an array into
ascending order the process is as follows:

a. Starting with the first element in the array, compare successive elements (0 and 1, 1 and
2, 2 and 3, and so on).

b. If the first element of any pair is greater than the second, interchange the two elements.

c. Repeat the process for the whole array until no interchanges are necessary. The array
elements will now be in ascending order.

4. Define an array of ten String elements each containing an arbitrary string of the form
“month/day/year”; for example,”10/29/99” or “12/5/01”. Analyze each element in the
array and output the date represented in the form 29th October 1999.

5. Write a program that will reverse the sequence of letters in each word of your chosen paragraph
from Exercise 3. For instance, “To be or not to be.” would become
“oT eb ro ton ot eb.”

198

Chapter 4

5
Defining Classes

In this chapter you’ll explore the heart of the Java language — classes. Classes specify the objects
you use in object-oriented programming. These form the basic building blocks of any Java pro-
gram, as you saw in Chapter 1. Every program in Java involves classes, since the code for a
program can appear only within a class definition.

You’ll be exploring the details of how a class definition is put together, how to create your own
classes, and how to use classes to solve your own computing problems. And in the next chapter,
you’ll build on this to look at how object-oriented programming helps you work with sets of
related classes.

By the end of this chapter you will have learned:

❑ What a class is, and how you define a class

❑ How to implement class constructors

❑ How to define class methods

❑ What method overloading is

❑ What a recursive method is and how it works

❑ How to create objects of a class type

❑ What packages are and how you can create and use them

❑ What access attributes are and how you should use them in your class definitions

❑ What nested classes are and how you use them

❑ When you should add the finalize() method to a class

❑ What native methods are

What Is a Class?
As you saw in Chapter 1, a class is a prescription for a particular kind of object — it defines a new type.
You use the definition of a class to create objects of that class type — that is, to create objects that incorpo-
rate all the components specified as belonging to that class.

In case that’s too abstract, look back to the previous chapter where you used the String class. The String
class is a comprehensive definition for a String object, with all the operations you are likely to need speci-
fied. Whenever you create a new String object, you are creating an object with all the characteristics and
operations specified by the class definition. Every String object has all the methods that the String class
defines built in. This makes String objects indispensable, and string handling within a program easy.

The String class lies toward one end of a spectrum in terms of complexity in a class. The String class
is intended to be usable in any program. It includes facilities and capabilities for operating on String
objects to cover virtually all circumstances in which you are likely to use strings. In most cases your own
classes won’t need to be this elaborate. You will typically be defining a class to suit your particular appli-
cation, and you will make it as simple or complex as necessary. Some classes, such as a Plane or a
Person, for example, may well represent objects that can potentially be very complicated, but the appli-
cation requirements may be very limited. A Person object might just contain a name, address, and
phone number, for example, if you are just implementing an address book. In another context, in a pay-
roll program perhaps, you might need to represent a Person with a whole host of properties, such as
age, marital status, length of service, job code, pay rate, and so on. How you define a class depends on
what you intend to do with objects of your class.

In essence, a class definition is very simple. There are just two kinds of things that you can include in a
class definition:

❑ Fields — These are variables that store data items that typically differentiate one object of the
class from another. They are also referred to as data members of a class.

❑ Methods — These define the operations you can perform for the class — so they determine what
you can do to, or with, objects of the class. Methods typically operate on the fields — the vari-
ables of the class.

The fields in a class definition can be of any of the primitive types, or they can be references to objects of
any class type, including the one that you are defining.

The methods in a class definition are named, self-contained blocks of code that typically operate on the
fields that appear in the class definition. Note, though, that this doesn’t necessarily have to be the case,
as you might have guessed from the main() methods you have written in all the examples up to now.

Fields in a Class Definition
An object of a class is also referred to as an instance of that class. When you create an object, the object
will contain all the fields that were included in the class definition. However, the fields in a class defini-
tion are not all the same — there are two kinds.

One kind of field is associated with the class, and is shared by all objects of the class. There is only one
copy of each of these kinds of fields no matter how many class objects are created, and they exist even if
no objects of the class have been created. This kind of variable is referred to as a class variable because
the field belongs to the class and not to any particular object, although as I’ve said, all objects of the class

200

Chapter 5

will share it. These fields are also referred to as static fields because you use the static keyword when
you declare them.

The other kind of field in a class is associated with each object uniquely — each instance of the class will
have its own copy of each of these fields, each with its own value assigned. These fields differentiate one
object from another, giving an object its individuality — the particular name, address, and telephone
number in a given Person object, for example. These are referred to as non-static fields or instance vari-
ables because you specify them without using the static keyword, and each instance of a class type
will have its own independent set.

Because this is extremely important to understand, let’s summarize the two kinds of fields that you can
include in your classes:

❑ Non-static fields, also called instance variables — Each object of the class will have its own
copy of each of the non-static fields or instance variables that appear in the class definition. Each
object will have its own values for each instance variable. The name instance variable originates
from the fact that an object is an instance or an occurrence of a class, and the values stored in the
instance variables for the object differentiate the object from others of the same class type. An
instance variable is declared within the class definition in the usual way, with a type name and a
variable name, and can have an initial value specified.

❑ Static fields, also called class variables — A given class will have only one copy of each of its
static fields or class variables, and these will be shared between and among all the objects of the
class. Each class variable exists even if no objects of the class have been created. Class variables
belong to the class, and they can be referenced by any object or class method, not just methods
belonging to instances of that class. If the value of a static field is changed, the new value is
available equally in all the objects of the class. This is quite different from non-static fields,
where changing a value for one object does not affect the values in other objects. A static field
must be declared using the keyword static preceding the type name.

Look at Figure 5-1, which illustrates the difference between class variables and instance variables.

Figure 5-1

Class Sphere Definition

Sphere Objects

Shared between all objects
Sphere.PI

globe
xCenter
yCenter
zCenter
radius

public class Sphere {

 // class variable
 static double PI=3.14;

 // instance variables
 double xCenter;
 double yCenter;
 double zCenter;
 double radius;
}

3.14

ball
xCenter
yCenter
zCenter
radius

Each object gets
its own copy

201

Defining Classes

Figure 5-1 shows a schematic of a class, Sphere, that has one class variable, PI, and four instance vari-
ables, radius, xCenter, yCenter, and zCenter. Each of the objects, globe and ball, will have its own
set of variables with the names radius, xCenter, yCenter, and zCenter, but both will share a single
copy of the class variable PI.

Why would you need two kinds of variables in a class definition? The instance variables are clearly nec-
essary since they store the values that distinguish one particular object from another. The radius and the
coordinates of the center of the sphere are fundamental to determining how big a particular Sphere
object is, and where it is in space. However, although the variable PI is a fundamental parameter for
every sphere — to calculate the volume, for example — it would be wasteful to store a value for PI in
every Sphere object, since it is always the same. As you know, it is also available from the standard class
Math so it is somewhat superfluous in this case, but you get the general idea. So one use for class vari-
ables is to hold constant values such as (that are common to all objects of the class.

Another use for class variables is to track data values that are common to all objects of a class and that
need to be available even when no objects have been defined. For example, if you wanted to keep a
count of how many objects of a class have been created in your program, you could define a variable to
store the count of the number of objects as a class variable. It would be essential to use a class variable,
because you would still want to be able to use your count variable even when no objects have been
declared.

Methods in a Class Definition
The methods that you define for a class provide the actions that can be carried out using the variables
specified in the class definition. Analogous to the variables in a class definition are two varieties of meth-
ods — instance methods and class methods. You can execute class methods even when no objects of a
class exist, whereas instance methods can be executed only in relation to a particular object, so if no
objects exist, you have no way to execute any of the instance methods defined in the class. Again, like
class variables, class methods are declared using the keyword static, so they are sometimes referred to
as static methods. You saw in the previous chapter that the valueOf() method is a static member of the
String class.

Since static methods can be executed when there are no objects in existence, they cannot refer to instance
variables. This is quite sensible if you think about it — trying to operate with variables that might not
exist would be bound to cause trouble. In fact the Java compiler won’t let you try. If you reference an
instance variable in the code for a static method, it won’t compile — you’ll just get an error message. The
main() method, where execution of a Java application starts, must always be declared as static, as you
have seen. The reason for this should be apparent by now. Before an application starts execution, no
objects exist, so to start execution, you need a method that is executable even though there are no objects
around — a static method therefore.

The Sphere class might well have an instance method volume() to calculate the volume of a particular
object. It might also have a class method objectCount() to return the current count of how many
objects of type Sphere have been created. If no objects exist, you could still call this method and get the
count 0.

Note that although instance methods are specific to objects of a class, there is only ever one copy of each
instance method in memory that is shared by all objects of the class, as it would be extremely expensive
to replicate all the instance methods for each object. A special mechanism ensures that each time you call
a method the code executes in a manner that is specific to an object, but I’ll defer explaining how this is
possible until a little later in this chapter.

202

Chapter 5

Apart from the main() method, perhaps the most common use for static methods is when you use a
class just as a container for a bunch of utility methods, rather than as a specification for a set of objects.
All executable code in Java has to be within a class, but lots of general-purpose functions you need don’t
necessarily have an object association — calculating a square root, for example, or generating a random
number. The mathematical functions that are implemented as class methods in the standard Math class
are good examples. These methods don’t relate to class objects at all — they operate on values of the
primitive types. You don’t need objects of type Math; you just want to use the methods from time to
time, and you can do this as you saw in Chapter 2. The Math class also contains some class variables
containing useful mathematical constants such as e and (.

Accessing Variables and Methods
You’ll normally want to access variables and methods that are defined within a class from outside it. You
will see later that it is possible to declare class members with restrictions on accessing them from out-
side, but let’s cover the principles that apply where the members are accessible. I’ll consider accessing
static members — that is, static fields and methods — and instance members separately.

You can access a static member of a class using the class name, followed by a period, followed by the
member name. With a class method you also need to supply the parentheses enclosing any arguments to
the method after the method name. The period here is called the dot operator. So, if you wanted to calcu-
late the square root of (, you could access the class method sqrt() and the class variable PI that are
defined in the Math class as follows:

double rootPi = Math.sqrt(Math.PI);

This shows how you call a static method — you just prefix it with the class name and put the dot opera-
tor between them. You also reference the static data member, PI, in the same way — as Math.PI. If you
have a reference to an object of a class type available, then you can also use that to access a static mem-
ber of the class because every object always has access to the static members of its class. You just use the
variable name, followed by the dot operator, followed by the member name.

Of course, as you’ve seen in previous chapters, you can import the names of the static members of the
class by using an import statement. You can then refer to the names of the static members you have
imported into your source file without qualifying their names at all.

Instance variables and methods can be called only using an object reference, because by definition they
relate to a particular object. The syntax is exactly the same as I have outlined for static members. You put
the name of the variable referencing the object followed by a period, followed by the member name. To
use a method volume() that has been declared as an instance method in the Sphere class, you might
write:

double ballVolume = ball.volume();

Here the variable ball is of type Sphere and it contains a reference to an object of this type. You call its
volume() method, which calculates the volume of the ball object, and the result that is returned is
stored in the variable ballVolume.

203

Defining Classes

Defining Classes
To define a class you use the keyword class followed by the name of the class, followed by a pair of
braces enclosing the details of the definition. Let’s consider a concrete example to see how this works in
practice. The definition of the Sphere class that I mentioned earlier could be:

class Sphere {

static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables

double radius; // Radius of a sphere

double xCenter; // 3D coordinates

double yCenter; // of the center

double zCenter; // of a sphere

// Plus the rest of the class definition...

}

You name a class using an identifier of the same sort you’ve been using for variables. By convention,
though, class names in Java begin with a capital letter, so the class name is Sphere with a capital S. If
you adopt this approach, you will be consistent with most of the code you come across. You could enter
this source code and save it as the file Sphere.java. You’ll be adding to this class definition and using it
in a working example a little later in this chapter.

You may have noticed that in the examples in previous chapters the keyword public in this context pre-
ceded the keyword class in the first line of the class definition. The effect of the keyword public is
bound up with the notion of a package containing classes, but I’ll defer discussing this until a little later
in this chapter when you have a better idea of what makes up a class definition.

The keyword static in the first line of the Sphere class definition specifies the variable PI as a class
variable rather than an instance variable. The variable PI is also initialized with the value 3.14. The key-
word final tells the compiler that you do not want the value of this variable to be changed, so the com-
piler will check that this variable is not modified anywhere in your program. Obviously, this is a very
poor value for (. You would normally use Math.PI— which is defined to 20 decimal places, close
enough for most purposes.

You have also declared the next variable, count, using the keyword static. All objects of the Sphere
class will have access to and share the one copy of count and the one copy of PI that exist. You have ini-
tialized the variable count to 0, but since you have not declared it using the keyword final, you can
change its value.

The next four variables in the class definition are instance variables, as they don’t have the keyword
static applied to them. Each object of the class will have its own separate set of these variables, storing

Whenever you want to fix the initial value that you specify for a variable — that is,
make it a constant — you just need to declare the variable with the keyword final.
By convention, constants have names in capital letters.

204

Chapter 5

the radius and the coordinates of the center of the sphere. Although you haven’t put initial values for
these variables here, you could do so if you wanted. If you don’t specify an initial value, a default value
will be assigned automatically when the object is created. Fields of numeric types will be initialized with
zero, fields of type char will be initialized with ‘\u000’, and fields that store class references or refer-
ences to arrays will be initialized with null.

There has to be something missing from the definition of the Sphere class — there is no way to set the
value of radius and the other instance variables once a particular Sphere object is created. There is
nothing to update the value of count either. Adding these things to the class definition involves using
methods, so the next step is to understand how a method is put together.

Defining Methods
You have been producing versions of the main() method since Chapter 1, so you already have an idea
of how a method is constructed. Nonetheless, I’ll go through how you define methods from the begin-
ning to make sure everything is clear.

I’ll start with the fundamental concepts. A method is a self-contained block of code that has a name, and
has the property that it is reusable — the same method can be executed from as many different points in
a program as you require. Methods also serve to break up large and complex calculations that might
involve many lines of code into more manageable chunks. You execute a method by calling it using its
name, and the method may or may not return a value when its execution finishes. Methods that do not
return a value are always called in a statement that just specifies the call. Methods that do return a value
are usually called from within an expression, and the value that is returned by such a method is used in
the evaluation of the expression. If a method that returns a value is called by itself in a statement, not in
an expression in other words, then the value it returns is discarded.

The basic structure of a method is shown in Figure 5-2.

Figure 5-2

The type of the value to be
returned which can be any
type or class. If you specify
this as void, the method
does not return a value.

The specifications of the
parameters for the method,
separated by commas. If the
method has no parameters,
you leave the parentheses

empty.

Name of the
method.

This is
called the
body of

the
method.

return_type methodName(arg1, arg2, ..., argn){

}

// Executable code goes here

205

Defining Classes

When you specify the return type for a method, you are defining the type for the value that will be
returned by the method when you execute it. The method must always return a value of this type. To
define a method that does not return a value, you specify the return type as void. Something called an
access attribute can optionally precede the return type in a method definition, but I’ll defer looking into
this until later in this chapter.

The parameters to a method appear in its definition between the parentheses following the method
name. These specify what information is to be passed to the method when you execute it, and the values
that you supply for the parameters when you call a method are described as arguments. The parameter
names are used in the body of the method to refer to the corresponding argument values that you sup-
ply when you call the method. Your methods do not have to have parameters specified. A method that
does not require any information to be passed to it when it is executed has an empty pair of parentheses
after the name.

Returning from a Method
To return a value from a method when its execution is complete you use a return statement. For
example:

return return_value; // Return a value from a method

After executing the return statement in a method, the program continues from the point where the
method was called. The value return_value that is returned by the method can be any expression that
produces a value of the type specified for the return value in the declaration of the method. Methods
that return a value — that is, methods declared with a return type other than void— must always finish
by executing a return statement that returns a value of the appropriate type. Note, though, that you can
put several return statements within a method if the logic requires this. If a method does not return a
value, you can just use the keyword return by itself to end execution of the method:

return; // Return from a method

For methods that do not return a value, falling through the closing brace enclosing the body of the
method is equivalent to executing a return statement.

The Parameter List
The parameter list appears between the parentheses following the method name. This specifies the type
of each value that can be passed as an argument to the method, and the variable name that is used in the
body of the method to refer to each argument value passed to the method when it is called. The differ-
ence between a parameter and an argument is sometimes confusing because people often, incorrectly,
use them interchangeably. I will try to differentiate them consistently, as follows:

❑ A parameter has a name and a type and appears in the parameter list in the definition of a
method. A parameter defines the type of value that can be passed to the method when it is
called.

❑ An argument is a value that is passed to a method when it is executed, and the value of the argu-
ment is referenced by the parameter name during execution of the method. Of course, the type
of the argument value must be consistent with the type specified for the corresponding parame-
ter in the definition of the method.

206

Chapter 5

This is illustrated in Figure 5-3.

Figure 5-3

In Figure 5-3 you have the definition of a method mean(). The definition of this method can appear only
within the definition of a class, but the rest of the class definition has been omitted so as not to clutter up
the diagram. You can see that the method has two parameters, value1 and value2, both of which are of
type double. The parameter names are used to refer to the arguments 3.0 and 5.0, respectively, within
the body of the method when it is called by the statement shown. Since this method has not been
defined as static, you can call it only for an object of the class. In the example, the mean() method for
the object obj is called.

When you call the mean() method from another method (from main() in this case, but it could be from
some other method), the values of the arguments you pass are the initial values assigned to the corre-
sponding parameters before execution of the body of the method begins. You can use any expression
you like for an argument when you call a method, as long as the value it produces is of the same type as
the corresponding parameter in the definition of the method. With the method mean(), both parameters
are of type double, so both argument values must always be of type double.

The method mean() declares the variable result, which exists only within the body of the method. This
variable will be newly created each time you execute the method and will be destroyed when execution
of the method ends. All the variables that you declare within the body of a method are local to the
method, and are only around while the method is being executed. Variables declared within a method
are called local variables because they are local to the method. The scope of a local variable is as I dis-
cussed in Chapter 2, from the point at which you declare it to the closing brace of the immediately
enclosing block, and local variables are not initialized automatically. If you want your local variables to
have initial values, you must supply the initial value when you declare them.

This is the value
returned by the
method

This variable exists
only while the method
is executing

public static void main(String[] args){

double mean(double value1 , double value2){

double result = (value1 + value2)/ 2.0;

return result;

}

...

x = obj.mean(3.0 , 5.0);
...

}

This value substitutes
for the method name
where it was called

This value
is used for
value2

This value
is used for
value1

207

Defining Classes

How Argument Values Are Passed to a Method
You need to be clear about how the argument values are passed to a method; otherwise, you may run
into problems. In Java, all argument values are transferred to a method using what is called the pass-by-
value mechanism. Figure 5-4 illustrates how this works.

Figure 5-4

Pass-by-value just means that for each argument value that you pass to a method, a copy of the value is
made, and it is the copy that is passed to the method and referenced through the parameter name, not
the original value. This implies that if you use a variable of any of the primitive types as an argument,
the method cannot modify the value of this variable in the calling program. In the example shown in
Figure 5-4, the change() method will modify the copy of i that is created automatically and referenced
using the parameter name j. Thus, the value of j that is returned will be 11, and this will be stored in the
variable x when the return from the method executes. However, the original value of i will remain at 10.

While the pass-by-value mechanism applies to all types of arguments, the effect for
objects is different from that for variables of the primitive types. You can change an
object, as you will see a little later in this chapter, because a variable of a class type
contains a reference to an object, not the object itself. Thus, when you use a variable
of a class type as an argument to a method, a copy of a reference to the object is
passed to the method, not a copy of the object itself. Because a copy of a reference
still refers to the same object, the parameter name used in the body of a method will
refer to the original object that was passed as the argument.

copy of i

j refers to
the copy

This statement
modifies the copy,
not the original

public static void main(String[]args){ i

int change(int j){

}

++j;

return j;

int i = 10;
...

...
int x = obj.change(i);

}

10

10

acts on

208

Chapter 5

Final Parameters
You can specify any of the parameters for a method as final. This has the effect of preventing modifica-
tion of any argument value that is substituted for the parameter when you call the method. The compiler
will check that your code in the body of the method does not attempt to change any final parameters.
Since the pass-by-value mechanism makes copies of values of the basic types, final really makes sense
only when it is applied to parameters that are references to class objects, as you’ll see later on.

Specifying a parameter of a class as final is of limited value. It does prevent accidental modification of
the object reference that is passed to the method, but it does not prevent modification of the object itself.

A much more important use for the final keyword is for declaring classes or method as final, and
you’ll learn more about this in Chapter 6.

Defining Class Methods
You define a class method by adding the keyword static to its definition. For example, the class
Sphere could have a class method to return the value stored in the static variable count:

class Sphere {

// Class definition as before...

// Static method to report the number of objects created

static int getCount() {

return count; // Return current object count

}

}

This method needs to be a class method because you want to be able to get at the count of the number of
objects that exist even when it is zero. You can amend the Sphere.java file to include the definition of
getCount().

Accessing Class Data Members in a Method
An instance method can access any of the data members of the class, just by using the appropriate name.
Let’s extend the class Sphere a little further by adding a method to calculate the volume of a Sphere
object:

class Sphere {

static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables

double radius; // Radius of a sphere

Remember that you cannot directly refer to any of the instance variables in the class
within a static method. This is because a static method can be executed when no
objects of the class have been created, and therefore no instance variables exist.

209

Defining Classes

double xCenter; // 3D coordinates

double yCenter; // of the center

double zCenter; // of a sphere

// Static method to report the number of objects created

static int getCount(){

return count; // Return current object count

}

// Instance method to calculate volume

double volume() {

return 4.0/3.0*PI*radius*radius*radius;

}

// Plus the rest of the class definition...

}

You can see that the volume() method is an instance method because it is not declared as static. It has
no parameters, but it does return a value of type double— the required volume. The method uses the
class variable PI and the instance variable radius in the volume calculation — this is the expression
4.0/3.0*PI*radius*radius*radius (corresponding to (4/3)(r3) in the return statement. The value
that results from this expression will be returned to the point where the method is called for a Sphere
object.

You know that each object of the class will have its own separate set of instance variables, so how is an
instance variable for a particular object selected in a method? How does the volume() method pick up
the value of a radius variable for a particular Sphere object?

The Variable this
Every instance method has a variable with the name this that refers to the current object for which the
method is being called. The compiler uses this implicitly when your method refers to an instance vari-
able of the class. For example, when the method volume() refers to the instance variable radius, the
compiler will insert the this object reference so that the reference will be equivalent to this.radius.
The return statement in the definition of the volume() method is actually:

return 4.0/3.0*PI*this.radius*this.radius*this.radius;

The statement actually refers to the radius field for the object referenced by the variable this. In gen-
eral, every reference to an instance variable is in reality prefixed with this. You could put it in yourself,
but there’s no need, the compiler does it for you. In fact, it is not good practice to clutter up your code
with this unnecessarily. However, there are occasions where you have to include it, as you will see.

When you execute a statement such as

double ballVolume = ball.volume();

where ball is an object of the class Sphere, the variable this in the method volume() will refer to the
object ball, so the instance variable radius for the ball object will be used in the calculation.

210

Chapter 5

You have seen that there are four different potential sources of data available to you when you write the
code for a method:

❑ Arguments passed to the method, which you refer to by using the parameter names

❑ Data members, both instance variables and class variables, which you refer to by their names

❑ Local variables that you declare in the body of the method

❑ Values that are returned by other methods that are called from within the method

The names of variables that are declared within a method are local to the method. You can use a name
for a local variable or a parameter in a method that is the same as that of a instance variable. If you find
it necessary or convenient to do this, then you must use the name this when you refer to the data mem-
ber of the class from within the method. The variable name by itself will always refer to the variable that
is local to the method, not the instance variable.

For example, suppose you wanted to add a method to change the radius of a Sphere object to a new
radius value that is passed as an argument. You could code this as:

void changeRadius(double radius) {

// Change the instance variable to the argument value

this.radius = radius;

}

In the body of the changeRadius() method, this.radius refers to the instance variable, and radius
by itself refers to the parameter. No confusion in the duplication of names exists here. It is clear that you
are receiving a radius value as a parameter with the name radius and storing it in the radius variable
for the class object.

Initializing Data Members
You have seen how you were able to supply an initial value for the static members PI and count in the
Sphere class with the following declaration:

class Sphere {

static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Rest of the class...

}

I mentioned earlier that only one copy of each instance method for a class exists in
memory, even though there may be many different objects. You can see that the vari-
able this allows the same instance method to work for different class objects. Each
time an instance method is called, the this variable is set to reference the particular
class object to which it is being applied. The code in the method will then relate to
the specific members of the object referred to by this.

211

Defining Classes

You can also initialize ordinary non-static data members in the same way. For example:

class Sphere {

static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables

double radius = 5.0; // Radius of a sphere

double xCenter = 10.0; // 3D coordinates

double yCenter = 10.0; // of the center

double zCenter = 10.0; // of a sphere

// Rest of the class...

}

Now every object of type Sphere will start out with a radius of 5.0 and have the center at the point 10.0,
10.0, 10.0.

Some things can’t be initialized with a single expression. For example, if you had a large array as a data
member that you wanted to initialize, with a range of values that required some kind of calculation, this
could be a job for an initialization block.

Using Initialization Blocks
An initialization block is a block of code between braces that is executed before an object of the class is
created. There are two kinds of initialization blocks:

❑ A static initialization block is a block defined using the keyword static and is executed once
when the class is loaded. A static initialization block can initialize only static data members of
the class.

❑ A non-static initialization block is executed for each object that is created and thus can initial-
ize instance variables in a class.

This is easiest to understand by considering a working example.

Try It Out Using an Initialization Block
Let’s define a simple class with a static initialization block first of all:

class TryInitialization {

static int[] values = new int[10]; // Static array member

// Initialization block

static {

System.out.println(“Running initialization block.”);

for(int i=0; i<values.length; i++) {

values[i] = (int)(100.0*Math.random());

}

}

212

Chapter 5

// List values in the array for an object

void listValues() {

System.out.println(); // Start a new line

for(int value : values) {

System.out.print(“ “ + value); // Display values

}

System.out.println(); // Start a new line

}

public static void main(String[] args) {

TryInitialization example = new TryInitialization();

System.out.println(“\nFirst object:”);

example.listValues();

example = new TryInitialization();

System.out.println(“\nSecond object:”);

example.listValues();

}

}

When you compile and run this, you will get identical sets of values for the two objects — as might be
expected since the values array is static:

Running initialization block.

First object:

40 97 88 63 58 48 84 5 32 67

Second object:

40 97 88 63 58 48 84 5 32 67

How It Works
The TryInitialization class has a static member, values, that is an array of 10 integers. The static
initialization block is the code

static {

System.out.println(“Running initialization block.”);

for(int i=0; i<values.length; i++) {

values[i] = (int)(100.0*Math.random());

}

}

This initializes the values array with pseudo-random integer values generated in the for loop. The out-
put statement in the block is there just to record when the initialization block executes. Because this ini-
tialization block is static, it is only ever executed once during program execution, when the class is
loaded.

The listValues() method provides you with a means of outputting the values in the array. The
print() method you are using in the listValues() method works just like println(), but without
starting a new line before displaying the output, so you get all the values on the same line.

213

Defining Classes

In main(), you generate an object of type TryInitialization and then call its listValues()
method. You then create a second object and call the listValues() method for that. The output
demonstrates that the initialization block only executes once, and that the values reported for both
objects are the same.

Because the values array is a static member of the class, you could list the element’s values through a
static method that would not require any objects to have been created. Try temporarily adding the key-
word static to the declaration of the listValues() method in the class:

static void listValues() {

System.out.println(); // Start a new line

for(int value : values) {

System.out.print(“ “ + value); // Display values

}

System.out.println(); // Start a new line

}

You can now call the method using the class name, so add two extra statements at the beginning of
main():

System.out.println(“\nNo object:”);

TryInitialization.listValues();

If you compile and execute the program with these changes, you will get an additional record of the val-
ues in the values array. You still get the output from calling listValues() using the two object refer-
ences. Every object has access to the static members of its class. Of course, the values in the output will
be different from the previous execution because they are pseudo-random values.

If you restore the program to its original state, and then delete the static modifier before the initializa-
tion block and recompile and run the program again, you will get the output along the lines of:

Running initialization block.

First object:

66 17 98 59 99 18 40 96 40 21

Running initialization block.

Second object:

57 86 79 31 75 99 51 5 31 44

Now you have a non-static initialization block. You can see from the output that the values are different
for the second object because the non-static initialization block is executed each time an object is created.
In fact, the values array is static, so the array is shared between all objects of the class. You could
demonstrate this by amending main() to store each object separately and calling listValues() for the
first object after the second object has been created. Amend the main() method in the program to read
as follows:

214

Chapter 5

public static void main(String[] args) {

TryInitialization example = new TryInitialization();

System.out.println(“\nFirst object:”);

example.listValues();

TryInitialization nextexample = new TryInitialization();

System.out.println(“\nSecond object:”);

nextexample.listValues();

example.listValues();

}

While you have demonstrated that this is possible, you will not normally want to initialize static vari-
ables with a non-static initialization block.

As I said at the outset, a non-static initialization block can initialize instance variables, too. If you want to
demonstrate this, you just need to remove the static modifier from the declaration of values and
compile and run the program once more.

You can have multiple initialization blocks in a class, in which case they execute in the sequence in
which they appear. The static blocks execute when the class is loaded, and the non-static blocks execute
when each object is created. Initialization blocks are useful, but you need more than that to create objects
properly.

Constructors
When you create an object of a class, a special kind of method called a constructor is always invoked. If
you don’t define any constructors for your class, the compiler will supply a default constructor in the
class, which does nothing. The default constructor is also described as the no-arg constructor because it
requires no arguments to be specified when it is called. The primary purpose of a constructor is to pro-
vide you with the means of initializing the instance variables uniquely for the object that is being cre-
ated. If you are creating a Person object with the name John Doe, then you want to be able to initialize
the member holding the person’s name to “John Doe”. This is precisely what a constructor can do. Any
initialization blocks that you have defined in a class are always executed before a constructor.

A constructor has two special characteristics that differentiate it from other class methods:

❑ A constructor never returns a value, and you must not specify a return type — not even of
type void.

❑ A constructor always has the same name as the class.

To see a practical example you could add a constructor to the Sphere class definition:

class Sphere {

static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables

double radius; // Radius of a sphere

215

Defining Classes

double xCenter; // 3D coordinates

double yCenter; // of the center

double zCenter; // of a sphere

// Class constructor

Sphere(double theRadius, double x, double y, double z) {

radius = theRadius; // Set the radius

// Set the coordinates of the center

xCenter = x;

yCenter = y;

zCenter = z;

++count; // Update object count

}

// Static method to report the number of objects created

static int getCount() {

return count; // Return current object count

}

// Instance method to calculate volume

double volume() {

return 4.0/3.0*PI*radius*radius*radius;

}

}

The definition of the constructor is shaded above. You are accumulating quite a lot of code to define the
Sphere class, but as it’s just an assembly of the pieces you have been adding, you should find it all quite
straightforward.

As you can see, the constructor has the same name as the class and has no return type specified. A con-
structor can have any number of parameters, including none. The default constructor has no parameters,
as is indicated by its alternative description — the no-arg constructor. In this case the Sphere class con-
structor has four parameters, and each of the instance variables is initialized with the value of the appro-
priate parameter. Here’s a situation where you might have used the name radius for the parameter, in
which case you would need to use the keyword this to refer to the instance variable of the same name.
The last action of the constructor is to increment the class variable count by 1, so that count accumu-
lates the total number of objects created.

The Default Constructor
As I said, if you don’t define any constructors for a class, the compiler will supply a default constructor
that has no parameters and does nothing. Before you defined a constructor for the Sphere class, the
compiler would have supplied one, defined like this:

Sphere() {

}

It has no parameters and no statements in its body so it does nothing — except enable you to create an
object of type Sphere, of course. The object created by the default constructor will have fields with their
default values set. If you have defined any non-static initialization blocks within a class, they will be exe-

216

Chapter 5

cuted each time any constructor executes, immediately before the execution of the code in the body of
the constructor. Whenever you create an object, a constructor will be called. When you have not defined
any constructors for a class, the default constructor will be called each time you create an object of that
class type.

Note that if you define a constructor of any kind for a class, the compiler will not supply a default con-
structor. If you still need a default constructor — and you will find many occasions when you do — you
must define it explicitly in addition to the other constructors in the class.

Creating Objects of a Class
When you declare a variable of type Sphere with the following statement:

Sphere ball; // Declare a variable

no constructor is called because no object is created. All you have created at this point is the variable
ball, which can store a reference to an object of type Sphere, if and when you create one. Figure 5-5
shows this.

Figure 5-5

You will recall from the discussion of String objects and arrays that the variable and the object it refer-
ences are distinct entities. To create an object of a class you must use the keyword new followed by a call
to a constructor. To initialize ball with a reference to an object, you could write:

ball = new Sphere(10.0, 1.0, 1.0, 1.0); // Create a sphere

Now you have a Sphere object with a radius of 10.0 located at the coordinates (1.0, 1.0, 1.0). The object is
created in memory and will occupy a sufficient number of bytes to accommodate all the data necessary

creates a memory location
to hold a reference to an
object of type Sphere.

No object is created and no
memory is allocated for an

object.

Sphere ball;

ball

creates a Sphere object in
memory and sets ball to

reference it.

ball=new Sphere(10.0,1.0,1.0,1.0);

radius 10.0

xCenter 1.0

yCenter 1.0

zCenter 1.0

217

Defining Classes

to define the object. The variable ball records where in memory the object is — it acts as a reference to
the object. This is illustrated in Figure 5-5.

Of course, you can do the whole thing in one step, with the following statement:

Sphere ball = new Sphere(10.0, 1.0, 1.0, 1.0); // Create a sphere

This declares the variable ball and defines the Sphere object to which it refers.

You can create another variable that refers to the same object as ball:

Sphere myBall = ball;

Now the variable myBall refers to the same object as ball. You still have only one object, but you have
two different variables that reference it. You could have as many variables as you like referring to the
same object.

As I mentioned earlier, the separation of the variable and the object has an important effect on how
objects are passed to a method, so let’s look at that in more detail.

Passing Objects to a Method
When you pass an object as an argument to a method, the mechanism that applies is called pass-by-
reference, because a copy of the reference contained in the variable is transferred to the method, not a
copy of the object itself. The effect of this is shown in Figure 5-6.

Figure 5-6

...
Sphere ball = new Sphere(10.0, 1.0, 1.0, 1.0);
obj.change(ball);

...

ball and the copy
both refer to

the original object

This statement
modifies the
original object
through a copy
of ball

s refers to
the copy of
ball

This causes a copy
of ball to be made,
but not the Sphere
object

copy made

public static void main(String[] args){

s.changeRadius(1.0);
return s;

Sphere change(Sphere s){

}

}
ball

reference copy
of ball
reference

Sphere object

radius: 10.0
xCenter: 1.0
yCenter: 1.0
zCenter: 1.0

acts on

218

Chapter 5

Figure 5-6 presumes you have defined a method, changeRadius(), in the class Sphere, that will alter
the radius value for an object, and that you have a method change() in some other class that calls
changeRadius(). When the variable ball is used as an argument to the method change(), the pass-
by-reference mechanism causes a copy of the contents of ball to be made and stored in s. The variable
ball just stores a reference to the Sphere object, and the copy contains that same reference and there-
fore refers to the same object. No copying of the actual object occurs. This is a major plus in terms of effi-
ciency when passing arguments to a method. Objects can be very complex, involving a lot of instance
variables. If objects themselves were always copied when passed as arguments, it could be very time-
consuming and make the code very slow.

Since the copy of the reference from ball refers to the same object as the original, when the
changeRadius() method is called, the original object will be changed. You need to keep this in mind
when writing methods that have objects as parameters because this is not always what you want.

In the example shown, the method change() returns the modified object. In practice, you would proba-
bly want this to be a distinct object, in which case you would need to create a new object from s. You
will see how you can write a constructor to do this a little later in this chapter.

The Lifetime of an Object
The lifetime of an object is determined by the variable that holds the reference to it — assuming there is
only one. If you have the declaration

Sphere ball = new Sphere(10.0, 1.0, 1.0, 1.0); // Create a sphere

then the Sphere object that the variable ball refers to will die when the variable ball goes out of scope.
This will be at the end of the block containing this declaration. Where an instance variable is the only
one referencing an object, the object survives as long as the instance variable owning the object survives.

As you have seen before, you can reset a variable to refer to nothing by setting its value to null. If you
write the statement

ball = null;

the variable ball no longer refers to an object, and assuming there is no other object referencing it, the
Sphere object it originally referenced will be destroyed. Note that while the object has been discarded, the
variable ball still continues to exist and you can use it to store a reference to another Sphere object. The
lifetime of an object is determined by whether any variable anywhere in the program still references it.

A slight complication can arise with objects, though. As you have seen, several vari-
ables can reference a single object. In this case, the object survives as long as a vari-
able still exists somewhere that references the object.

Remember that this only applies to objects. If you pass a variable of type int or
double to a method, for example, a copy of the value is passed. You can modify the
value passed as much as you want in the method, but it won’t affect the original
value.

219

Defining Classes

The process of disposing of dead objects is called garbage collection. Garbage collection is automatic in
Java, but this doesn’t necessarily mean that objects disappear from memory straight away. It can be
some time after the object becomes inaccessible to your program. This won’t affect your program
directly in any way. It just means you can’t rely on memory occupied by an object that is done with
being available immediately. For the most part it doesn’t matter; the only circumstances where it might
would be if your objects were very large, millions of bytes, say, or you were creating and getting rid of
very large numbers of objects. In this case, if you are experiencing problems you can try to call the static
gc() method that is defined in the System class to encourage the Java Virtual Machine (JVM) to do
some garbage collecting and recover the memory that the objects occupy:

System.gc();

This is a best efforts deal on the part of the JVM. When the gc() method returns, the JVM will have tried
to reclaim the space occupied by discarded objects, but there’s no guarantee that it will all be recovered.
There’s also the possibility that calling the gc() method may make things worse. If the garbage collector
is executing some preparations for recovering memory, your call will undo that and in this way slow
things up.

Defining and Using a Class
To put what you know about classes to use, you can use the Sphere class in an example.

You will be creating two source files. In a moment you’ll create the file CreateSpheres.java, which
will contain the definition of the CreateSpheres class that will have the method main() defined as a
static method. As usual, this is where execution of the program starts. The other file will be the
Sphere.java file, which contains the definition of the Sphere class that you have been assembling. The
Sphere class definition should look like this:

class Sphere {

static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables

double radius; // Radius of a sphere

double xCenter; // 3D coordinates

double yCenter; // of the center

double zCenter; // of a sphere

// Class constructor

Sphere(double theRadius, double x, double y, double z) {

radius = theRadius; // Set the radius

// Set the coordinates of the center

xCenter = x;

yCenter = y;

zCenter = z;

++count; // Update object count

}

// Static method to report the number of objects created

220

Chapter 5

static int getCount() {

return count; // Return current object count

}

// Instance method to calculate volume

double volume() {

return 4.0/3.0*PI*radius*radius*radius;

}

}

Both files need to be in the same directory or folder — I suggest you name the directory
CreateSpheres. Then copy or move the latest version of Sphere.java to this directory.

Try It Out Using the Sphere Class
Enter the following code for the file CreateSpheres.java:

class CreateSpheres {

public static void main(String[] args) {

System.out.println(“Number of objects = “ + Sphere.getCount());

Sphere ball = new Sphere(4.0, 0.0, 0.0, 0.0); // Create a sphere

System.out.println(“Number of objects = “ + ball.getCount());

Sphere globe = new Sphere(12.0, 1.0, 1.0, 1.0); // Create a sphere

System.out.println(“Number of objects = “ + Sphere.getCount());

// Output the volume of each sphere

System.out.println(“ball volume = “ + ball.volume());

System.out.println(“globe volume = “ + globe.volume());

}

}

Compile the source files and then run CreateSpheres, and you should get the following output:

Number of objects = 0

Number of objects = 1

Number of objects = 2

ball volume = 267.94666666666666

globe volume = 7234.559999999999

This is the first time you have run a program involving two source files. If you are using the JDK
compiler, then compile CreateSpheres.java with the current directory as CreateSpheres using the
command:

javac CreateSpheres.java

The compiler will find and compile the Sphere.java source file automatically. If all the source files for a
program are in the current directory, then compiling the file containing a definition of main() will com-
pile all the source files for the program.

221

Defining Classes

Note that by default the .class files generated by the compiler are stored in the current directory — that
is, the directory containing your source code. If you want the .class files stored in a different directory,
then you can use the –d option with the Java compiler to specify where they should go. For example, to
store the class files in a directory called C:\classes, you would type:

javac –d C:/classes CreateSpheres.java

How It Works
The Sphere class definition includes a constructor that will create objects, and the method volume() to
calculate the volume of a particular sphere. It also contains the static method getCount() you saw
earlier, which returns the current value of the class variable count. You need to define this method as
static because you want to able to call it regardless of how many objects have been created, including
the situation when there are none.

The method main() in the CreateSpheres class puts the Sphere class through its paces. When the pro-
gram is compiled, the compiler will look for a file with the name Sphere.class. If it does not find the
.class file, it will look for Sphere.java to provide the definition of the class Sphere. As long as this
file is in the current directory, the compiler will be able to find it and compile it.

The first thing the program does is call the static method getCount(). Because no objects exist, you
must use the class name to call it at this point. You then create the object ball, which is a Sphere object,
with a radius of 4.0 and its center at the origin point (0.0, 0.0, 0.0). You call the getCount() method
again, this time using the object name. This demonstrates that you can call a static method through an
object. You create another Sphere object, globe, with a radius of 12.0. You call the getCount() method
again, this time using the class name. Static methods like this are usually called using the class name.
After all, the reason for calling this particular method would be to find out how many objects exist, so
presumably you cannot be sure that any objects exist at that point. A further reason to use the class name
rather than a reference to an object when calling a static method is that it makes it quite clear in the
source code that it is a static method that is being called. You can’t call a non-static method using the
class name.

The program finally outputs the volume of both objects by calling the volume() method for each, from
within the expressions, specifying the arguments to the println() method calls.

Method Overloading
Java allows you to define several methods in a class with the same name, as long as each method has a
unique set of parameters. Defining two or more methods with the same name in a class is called method
overloading.

The name of a method together with the types and sequence of the parameters form the signature of the
method; the signature of each method in a class must be distinct to allow the compiler to determine
exactly which method you are calling at any particular point. The return type has no effect on the signa-
ture of a method. You cannot differentiate between two methods just by the return type. This is because
the return type is not necessarily apparent when you call a method. For example, suppose you write a
statement such as:

Math.round(value);

222

Chapter 5

Although the preceding statement is pointless since it discards the value that the round() method pro-
duces, it does illustrate why the return type cannot be part of the signature for a method. The compiler
has no way to know from this statement what the return type of the method round() is supposed to be.
Thus, if there were several different versions of the method round(), and the return type were the only
distinguishing aspect of the method signature, the compiler would be unable to determine which ver-
sion of round() you wanted to use.

You will find many circumstances where it is convenient to use method overloading. You have already
seen that the Math class contains two versions of the method round(), one that accepts an argument of
type float and the other that accepts an argument of type double. You can see now that method over-
loading makes this possible. It would be rather tedious to have to use a different name for each version
of round() when they both do essentially the same thing. The valueOf() method in the String class is
another example. There is a version of this method for each of the basic types. One context in which you
will regularly need to use overloading is when you write constructors for your classes, which you’ll look
at now.

Multiple Constructors
Constructors are methods that can be overloaded, just like any other method in a class. In most situa-
tions, you will want to generate objects of a class from different sets of initial defining data. If you just
consider the Sphere class, you could conceive of a need to define a Sphere object in a variety of ways.
You might well want a constructor that accepted just the (x, y, z) coordinates of a point, and have a
Sphere object created with a default radius of 1.0. Another possibility is that you may want to create a
default Sphere with a radius of 1.0 positioned at the origin, so no arguments would be specified at all.
This requires two constructors in addition to the one you have already written. Let’s try it then.

Try It Out Multiple Constructors for the Sphere Class
The code for the extra constructors is as follows:

class Sphere {

// First Constructor and variable declarations

...

// Construct a unit sphere at a point

Sphere(double x, double y, double z) {

xCenter = x;

yCenter = y;

zCenter = z;

radius = 1.0;

++count; // Update object count

}

// Construct a unit sphere at the origin

Sphere() {

xCenter = 0.0;

yCenter = 0.0;

zCenter = 0.0;

radius = 1.0;

++count; // Update object count

}

// The rest of the class as before...

}

223

Defining Classes

The statements in the default constructor that set three fields to zero are not really necessary, as the fields
would be set to zero by default. They are there just to emphasize that the primary purpose of a construc-
tor is to enable you to set initial values for the fields.

If you add the following statements to the CreateSpheres class, you can test out the new constructors:

public class CreateSpheres {

public static void main(String[] args) {

System.out.println(“Number of objects = “ + Sphere.getCount());

Sphere ball = new Sphere(4.0, 0.0, 0.0, 0.0); // Create a sphere

System.out.println(“Number of objects = “ + ball.getCount());

Sphere globe = new Sphere(12.0, 1.0, 1.0, 1.0); // Create a sphere

System.out.println(“Number of objects = “ + Sphere.getCount());

Sphere eightBall = new Sphere(10.0, 10.0, 0.0);

Sphere oddBall = new Sphere();

System.out.println(“Number of objects = “ + Sphere.getCount());

// Output the volume of each sphere

System.out.println(“ball volume = “ + ball.volume());

System.out.println(“globe volume = “ + globe.volume());

System.out.println(“eightBall volume = “ + eightBall.volume());

System.out.println(“oddBall volume = “ + oddBall.volume());

}

}

Now the program should produce the following output:

Number of objects = 0

Number of objects = 1

Number of objects = 2

Number of objects = 4

ball volume = 267.94666666666666

globe volume = 7234.559999999999

eightBall volume = 4.1866666666666665

oddBall volume = 4.1866666666666665

How It Works
When you create a Sphere object, the compiler selects the constructor to use based on the types of the
arguments you have specified. So, the first of the new constructors is applied in the first statement that
you added to main(), as its signature fits with the argument types used. The second statement that you
added clearly selects the last constructor, as no arguments are specified. The other additional statements
are there just to generate some output corresponding to the new objects. You can see from the volumes of
eightBall and oddBall that they both are of radius 1 — in both instances the result is the value of 4π/3.

It is the number and types of the parameters that affect the signature of a method, not the parameter
names. If you wanted a constructor that defined a Sphere object at a point, by specifying the diameter
rather than the radius, you have a problem. You might try to write it as:

224

Chapter 5

// Illegal constructor!!!

// This WON’T WORK because it has the same signature as the original!!!

Sphere(double diameter, double x, double y, double z) {

xCenter = x;

yCenter = y;

zCenter = z;

radius = diameter/2.0;

++count;

}

If you add this method to the Sphere class and recompile, you’ll get a compile-time error. This construc-
tor has four arguments of type double, so its signature is identical to the first constructor that you wrote
for the class. This is not permitted — hence the compile-time error. When the number of parameters is
the same in two overloaded methods, at least one pair of corresponding parameters must be of different
types.

Calling a Constructor from a Constructor
One class constructor can call another constructor in the same class in its first executable statement. This
can often save duplicating a lot of code. To refer to another constructor in the same class, you use this
as the method name, followed by the appropriate arguments between parentheses. In the Sphere class,
you could have defined the constructors as:

class Sphere {

// Construct a unit sphere at the origin

Sphere() {

radius = 1.0;

// Other data members will be zero by default

++count; // Update object count

}

// Construct a unit sphere at a point

Sphere(double x, double y, double z)

{

this(); // Call the constructor with no arguments

xCenter = x;

yCenter = y;

zCenter = z;

}

Sphere(double theRadius, double x, double y, double z) {

this(x, y, z); // Call the 3 argument constructor

radius = theRadius; // Set the radius

}

// The rest of the class as before...

}

In the constructor that accepts the point coordinates as arguments, you call the default constructor to set
the radius and increment the count of the number of objects. In the constructor that sets the radius, as
well as the coordinates, you call the constructor with three arguments to set the coordinates, which in
turn will call the constructor that requires no arguments.

225

Defining Classes

Duplicating Objects Using a Constructor
When you were looking at how objects were passed to a method, you came across a requirement for
duplicating an object. The need to produce an identical copy of an object occurs surprisingly often.

Suppose you declare a Sphere object with the following statement:

Sphere eightBall = new Sphere(10.0, 10.0, 0.0);

Later in your program you want to create a new object newBall, which is identical to the object
eightBall. If you write

Sphere newBall = eightBall;

this will compile okay but it won’t do what you want. You might remember from my earlier discussion
that the variable newBall references the same object as eightBall. You don’t have a distinct object. The
variable newBall, of type Sphere, is created but no constructor is called, so no new object is created.

Of course, you could create newBall by specifying the same arguments to the constructor as you used to
create eightBall. In general, however, it may be that eightBall has been modified in some way dur-
ing execution of the program, so you don’t know that its instance variables have the same values — for
example, the position might have changed. This presumes that you have some other class methods that
alter the instance variables. You could provide the capability for duplicating an existing object by adding
a constructor to the class that will accept an existing Sphere object as an argument:

// Create a sphere from an existing object

Sphere(final Sphere oldSphere) {

radius = oldSphere.radius;

xCenter = oldSphere.xCenter;

yCenter = oldSphere.yCenter;

zCenter = oldSphere.yCenter;

++count; // Increment the object count

}

This works by copying the values of the instance variables of the Sphere object that is passed as the
argument to the corresponding instance variables of the new object. Thus the new object that this con-
structor creates will be identical to the Sphere object that is passed as the argument.

Now you can create newBall as a distinct object by writing:

Sphere newBall = new Sphere(eightBall); // Create a copy of eightBall

The next section recaps what you have learned about methods and constructors with another example.

Java provides a clone() method, but the details of using it must wait for the next
chapter.

226

Chapter 5

Using Objects
You’ll create a program to do some simple 2D geometry. This will give you an opportunity to use more
than one class. You’ll define two classes, a class that represents point objects and a class that represents
line objects; you’ll then use these to find the point at which two lines intersect. Call the example
TryGeometry, so this will be the name of the directory or folder in which you should save the program
files. Quite a few lines of code are involved, so you’ll put it together piecemeal and get an understanding
of how each piece works as you go.

Try It Out The Point Class
You first define a basic class for point objects:

import static java.lang.Math.sqrt;

class Point {

// Coordinates of the point

double x;

double y;

// Create a point from coordinates

Point(double xVal, double yVal) {

x = xVal;

y = yVal;

}

// Create a point from another Point object

Point(final Point oldPoint) {

x = oldPoint.x; // Copy x coordinate

y = oldPoint.y; // Copy y coordinate

}

// Move a point

void move(double xDelta, double yDelta) {

// Parameter values are increments to the current coordinates

x += xDelta;

y += yDelta;

}

// Calculate the distance to another point

double distance(final Point aPoint) {

return sqrt((x – aPoint.x)*(x – aPoint.x) + (y – aPoint.y)*(y – aPoint.y));

}

// Convert a point to a string

public String toString() {

return Double.toString(x) + “, “ + y; // As “x, y”

}

}

You should save this as Point.java in the directory TryGeometry.

227

Defining Classes

How It Works
This is a simple class that has just two instance variables, x and y, which are the coordinates of the
Point object. At the moment you have two constructors. One will create a Point object from a coordi-
nate pair passed as arguments of type double, and the other will create a new Point object from an
existing one.

Three methods are included in the class. First you have the move() method, which moves a Point to
another position by adding an increment to each of the coordinates. You also have the distance()
method, which calculates the distance from the current Point object to the Point object passed as the
argument. This uses the Pythagorean theorem to compute the distance, as shown in Figure 5-7.

Figure 5-7

Finally, you have a method toString(), which returns a string representation of the coordinates of the
current point. If a class defines the toString() method, an object of that class can be used as an
operand of the string concatenation operator +, so you can implement this in any of your classes to allow
objects to be used in this way. The compiler will automatically insert a call to toString() when neces-
sary. For example, suppose thePoint is an object of type Point, and you write the statement:

System.out.println(“The point is at “ + thePoint);

The toString() method will be automatically invoked to convert the object referenced by the variable
thePoint to a String, and the resultant string will be appended to the String literal. You have speci-
fied the toString() method as public, as this is essential here for the class to compile. I will defer
explanations as to why this is necessary until a little later in this chapter.

Note how you use the static toString() method defined in the Double class to convert the x value to a
String. The compiler will insert a call to the same method automatically for the y value, as the left
operand of the + operation is a String object. Note that you could equally well have used the
valueOf() method in the String class. In this case the statement would be written like this:

return String.valueOf(x) + “, “ + y; // As “x, y”

x2–x 1

{(x2–x 1)
2 +(y2–y 1)

2 }1
/2

y2–y 1

x1,y1

x2,y2

x2

x1

y 2

y 1

X-Axis

Y-
Ax

is

228

Chapter 5

Try It Out The Line Class
You can use Point objects in the definition of the class Line:

class Line {

Point start; // Start point of line

Point end; // End point of line

// Create a line from two points

Line(final Point start, final Point end) {

this.start = new Point(start);

this.end = new Point(end);

}

// Create a line from two coordinate pairs

Line(double xStart, double yStart, double xEnd, double yEnd) {

start = new Point(xStart, yStart); // Create the start point

end = new Point(xEnd, yEnd); // Create the end point

}

// Calculate the length of a line

double length() {

return start.distance(end); // Use the method from the Point class

}

// Convert a line to a string

public String toString() {

return “(“ + start+ “):(“ + end + “)”; // As “(start):(end)”

} // that is, “(x1, y1):(x2, y2)”

}

You should save this as the file Line.java in the TryGeometry directory.

How It Works
You shouldn’t have any difficulty with this class definition, as it is very straightforward. The Line class
stores two Point objects as instance variables. There are two constructors for Line objects — one accept-
ing two Point objects as arguments and the other accepting the (x, y) coordinates of the start and end
points. You can see how you use the variable this to differentiate the class instance variables, start
and end, from the parameter names in the constructor.

Note how the constructor that accepts Point objects works:

// Create a line from two points

Line(final Point start, final Point end) {

this.start = new Point(start);

this.end = new Point(end);

}

229

Defining Classes

With this implementation of the constructor, two new Point objects are created that will be identical to,
but independent of, the objects passed to the constructor. If you don’t think about what happens, you
might be tempted to write it as:

// Create a line from two points - a poor implementation!

Line(final Point start, final Point end) {

this.start = start; // Dependent on external object!!!

this.end = end; // Dependent on external object!!!

}

The important thing you should notice here is that the way the constructor is implemented could cause
problems that might be hard to track down. In this version of the constructor no new points are created.
The start and end members of the object refer to the Point objects that passed as arguments. The Line
object will be implicitly dependent on the Point objects that are used to define it. If these were changed
outside the Line class, by using the move() method, for example, this would “silently” modify the Line
object. You might consciously decide that this is what you want, so the Line object continues to be
dependent on its associated Point objects. The rationale for this in a drawing package, for example,
might be that this would allow a point to be moved, and all lines based on the point would also be
moved accordingly. However, this is different from allowing such interdependencies by accident. In gen-
eral, you should take care to avoid creating implicit dependencies between objects unless they are what
you intended.

In the toString()method for the Line class, you are able to use the Point objects directly in the forma-
tion of the String representation of a Line object. This works because the Point class also defines a
toString() method.

You’ve now defined two classes. In these class definitions, you’ve included the basic data that defines an
object of each class type. You’ve also defined some useful methods for operating on objects, and added
constructors for a variety of input parameters. Note how the Point class is used in the definition of the
Line class. It is quite natural to define a line in terms of two Point objects, and the Line class is much
simpler and more understandable than if it were defined entirely in terms of the individual x and y coor-
dinates. To further demonstrate how classes can interact, and how you can solve problems directly, in
terms of the objects involved, let’s devise a method to calculate the intersection of two Line objects.

Creating a Point from Two Lines
You can add the method to determine the point of intersection between two lines to the Line class.
Figure 5-8 illustrates how the mathematics works out.

You can ignore the mathematics if you want to, as it is not the most important aspect of the example. If
you are willing to take the code in the new constructor on trust, then skip to the next “Try It Out” sec-
tion. On the other hand, you shouldn’t find it too difficult if you can still remember what you did in high
school.

One way to get the intersection of two lines is to use equations like those shown. These are called para-
metric equations because they use a parameter value (s or t) as the variable for determining points on
each line. The parameters s and t vary between 0 and 1 to give points on the lines between the defined
start and end points. When a parameter s or t is 0 the equations give the coordinates of the start point of
a line, and when the parameter value is 1 you get the end point of the line.

230

Chapter 5

Where two lines intersect, the equations for the lines must produce the same (x, y) values, so, at this
point, the right-hand sides of the equations for x for the two lines must be equal, and the same goes for
the equations for y. This will give you two equations in s and t, and with a bit of algebraic juggling you
can eliminate s to get the equation shown for t. You can then replace t in the equations, defining line 1
to get x and y for the intersection point.

Figure 5-8

Try It Out Calculating the Intersection of Two Lines
You can use these results to write the additional method you need in the Line class. Add the following
code to the class definition in Line.java:

// Return a point as the intersection of two lines

Point intersects(final Line line1) {

Point localPoint = new Point(0, 0);

double num = (this.end.y – this.start.y)*(this.start.x – line1.start.x) -

(this.end.x – this.start.x)*(this.start.y – line1.start.y);

double denom = (this.end.y – this.start.y)*(line1.end.x – line1.start.x) -

(this.end.x – this.start.x)*(line1.end.y – line1.start.y);

localPoint.x = line1.start.x + (line1.end.x – line1.start.x)*num/denom;

localPoint.y = line1.start.y + (line1.end.y – line1.start.y)*num/denom;

return localPoint;

}

Since the Line class definition refers to the Point class, the Line class can’t be compiled without the
other being available. When you compile the Line class, the compiler will compile the other class, too.

X-Axis

line1

line2

You can calculate x,y for the
intersection by substituting t

back in the equations for line 1.

At the intersection point:
x3+(x4–x 3)s = x1+(x2–x 1)t

x = x3+(x4–x 3)s
y = y3+(y4–y 3)s

x = x1+(x2–x 1)t
y = y1+(y2–y 1)t

x1,y1

x3,y3 x2,y2

x4,y4

y3+(y4–y 3)s = y1+(y2–y 1)t

from which you get:

Y-
Ax

is

t = (y4–y 3)(x3–x 1) – (y 3–y 1)(x4–x 3)
(y4–y 3)(x2–x 1) – (y 2–y 1)(x4–x 3)

231

Defining Classes

How It Works
The intersects() method is called for one Line object and takes another Line object as the argument.
In the code, the local variables num and denom are the numerator and denominator in the expression for
t in Figure 5-8. You then use these values to calculate the x and y coordinates for the intersection point.

Note how you get at the values of the coordinates for the Point objects defining the lines. The dot nota-
tion for referring to a member of an object is just repeated when you want to reference a member of a
member. For example, for the object line1, the expression line1.start refers to the Point object at
the beginning of the line. Therefore, line1.start.x refers to its x coordinate, and line1.start.y
accesses its y coordinate.

Now you have a Line class defined that you can use to calculate the intersection point of two Line
objects. You need a program to test the code out.

Try It Out The TryGeometry Class
You can exercise the two classes you have defined with the following code in the method main():

public class TryGeometry {

public static void main(String[] args) {

// Create two points and display them

Point start = new Point(0.0, 1.0);

Point end = new Point(5.0, 6.0);

System.out.println(“Points created are “ + start + “ and “ + end);

// Create two lines and display them

Line line1 = new Line(start, end);

Line line2 = new Line(0.0, 3.0, 3.0, 0.0);

System.out.println(“Lines created are “ + line1 + “ and “ + line2);

// Display the intersection

System.out.println(“Intersection is “ + line2.intersects(line1));

// Now move the end point of line1 and show the new intersection

end.move(1.0, -5.0);

System.out.println(“Intersection is “ + line1.intersects(line2));

}

}

Save the TryGeometry.java file in the TryGeometry directory along with the other two class files,
Point.java and Line.java. The program will produce the following output:

Points created are 0.0, 1.0 and 5.0, 6.0

Lines created are (0.0, 1.0):(5.0, 6.0) and (0.0, 3.0):(3.0, 0.0)

Intersection is 1.0, 2.0

Intersection is 1.0, 2.0

If the lines are parallel, the denominator in the equation for t will be zero, some-
thing you should really check for in the code. For the moment you’ll ignore it and
end up with coordinates that are Infinity if it occurs.

232

Chapter 5

How It Works
You first create two Point objects, which you will use later in the program to create the object line1.
You then display the points using the println() method. The toString()method that you defined in
the Point class is used automatically to generate the String representation for each Point object.

After creating line1 from the two points, you use the other constructor in the Line class to create
line2 from two pairs of coordinates. You then display the two lines. The toString() member of the
Line class is invoked here to create the String representation of each Line object, and this in turn calls
the toString() method in the Point class.

The next statement calls the intersects() method from the line2 object and returns the Point object
at the intersection of the two lines, line1 and line2, as part of the argument to the println() method
that outputs the point. As you see, you are not obliged to save an object when you create it. Here you
just use it to create the string to be displayed. Once the output statement has executed, the intersection
point object is discarded.

You use the move() method in the class Point to modify the coordinates of the object end that you used
to create line1. You then get the intersection of the two lines again, this time calling the intersects()
method from line1. The output demonstrates that line1 is independent of the object end, as moving
the point has made no difference to the intersection.

If you change the constructor in the Line class to the version you saw earlier that does not create new
Point objects to define the line, you can run the example again to see the effect. The output will be:

Points created are 0.0, 1.0 and 5.0, 6.0

Lines created are (0.0, 1.0):(5.0, 6.0) and (0.0, 3.0):(3.0, 0.0)

Intersection is 1.0, 2.0

Intersection is 2.0, 1.0

Changing the end object now alters the line, so you get a different intersection point for the two lines
after you move the end point. This is because the Line object, line1, contains references to the Point
objects defined in main(), not references to independent Point objects.

Recursion
The methods you have seen so far have been called from within other methods, but a method can also
call itself. A method that calls itself is described as a recursive method, and the process is referred to as
recursion. You can also have indirect recursion where a method A calls another method B, which in turn
calls the method A. Clearly you must include some logic in a recursive method so that it will eventually
stop calling itself if the process is not to continue indefinitely. You can see how this might be done with a
simple example.

You can write a method that will calculate integer powers of a variable — in other words, evaluate xn, or
x*x...*x where x is multiplied by itself n times. You can use the fact that you can obtain xn by multiply-
ing xn-1 by x. To put this in terms of a specific example, you can calculate 24 as 23 multiplied by 2, and
you can get 23 by multiplying 22 by 2, and 22 is produced by multiplying 21, which is 2, of course, by 2.

233

Defining Classes

Try It Out Calculating Powers
Here is the complete program, including the recursive method power():

public class PowerCalc {

public static void main(String[] args) {

double x = 5.0;

System.out.println(x + “ to the power 4 is “ + power(x,4));

System.out.println(“7.5 to the power 5 is “ + power(7.5,5));

System.out.println(“7.5 to the power 0 is “ + power(7.5,0));

System.out.println(“10 to the power -2 is “ + power(10,-2));

}

// Raise x to the power n

static double power(double x, int n) {

if(n > 1)

return x*power(x, n-1); // Recursive call

else if(n < 0)

return 1.0/power(x, -n); // Negative power of x

else

return n == 0 ? 1.0 : x; // When n is 0 return 1, otherwise x

}

}

This program will produce the following output:

5.0 to the power 4 is 625.0

7.5 to the power 5 is 23730.46875

7.5 to the power 0 is 1.0

10 to the power -2 is 0.01

How It Works
The power() method has two parameters, the value x and the power n. The method performs four dif-
ferent actions, depending on the value of n:

n > 1 A recursive call to power() is made with n reduced by 1, and the value that is
returned is multiplied by x. This is effectively calculating xn as x times xn-1.

n < 0 x-n is equivalent to 1/xn so this is the expression for the return value. This involves
a recursive call to power() with the sign of n reversed.

n = 0 x0 is defined as 1, so this is the value returned.

n = 1 x1 is x, so x is returned.

Just to make sure the process is clear you can work through the sequence of events as they occur in the
calculation of 54.

234

Chapter 5

Level Description Relevant Code

1 The first call of the power() method power(5.0, 4) {

passes 5.0 and 4 as arguments. if(n > 1)

Since the second argument, n, is return 5.0*power(5.0, 4-1);

greater than 1, the power() method ...

is called again in the return statement, }

with the second argument reduced by 1.

2 The second call of the power() method power(5.0, 3) {

passes 5.0 and 3 as arguments. Since if(n > 1)

the second argument, n, is still greater return 5.0*power(5.0, 3-1);

than 1, the power() method is called ...

again in the return statement, with }

the second argument reduced by 1.

3 The third call of the power() method power(5.0, 2) {

passes 5.0 and 2 as arguments. Since if(n > 1)

the second argument, n, is still greater return 5.0*power(5.0, 2-1);

than 1, the power() method is called ...

again, with the second argument again }

reduced by 1.

4 The fourth call of the power() method power(5.0, 1) {

passes 5.0 and 1 as arguments. Since the if(n > 1)

second argument, n, is not greater than 1, ...

the value of the first argument, 5.0, is else

returned to level 3. return 5.0;

}

3 Back at level 3, the value returned, 5.0, power(5.0, 2) {

is multiplied by the first argument, if(n>1)

5.0, and returned to level 2. ...

else

return 5.0*5.0;

}

2 Back at level 2, the value returned, power(5.0, 3) {

25.0, is multiplied by the first argument, if(n > 1)

5.0, and returned to level 1. ...

else

return 5.0*25.0;

}

1 Back at level 1, the value returned, power(5.0, 4) {

125.0, is multiplied by the first if(n > 1)

argument, 5.0, and 625.0 is returned as ...

the result of calling the method in the else

first instance. return 5.0*125.0;

}

235

Defining Classes

You can see from this that the power() method is called four times in all. The calls cascade down
through four levels until the value of n is such that it allows a value to be returned. The return values
ripple up through the levels until you are eventually back at the top, and 625.0 is returned to the original
calling point.

As a rule, you should use recursion only where there are evident advantages in the approach, as recur-
sive method calls have quite of lot of overhead. This particular example could be more easily pro-
grammed as a loop, and it would execute much more efficiently. You could also use the Math.pow()
method to produce the result. One example of where recursion can be applied very effectively is in the
handling of data structures such as trees. Unfortunately these don’t make convenient illustrations of
how recursion works at this stage of the learning curve because of their complexity.

Before you can dig deeper into classes, you need to take an apparent detour to understand what a pack-
age is in Java.

Understanding Packages

Packages are implicit in the organization of the standard classes as well as your own programs, and they
influence the names you can use for classes and the variables and methods they contain. Essentially, a
package is a uniquely named collection of classes. The primary reason for grouping classes in packages
is to avoid possible name clashes with your own classes when you are using prewritten classes in an
application. The names used for classes in one package will not interfere with the names of classes in
another package or your program because the class names in a package are all qualified by the package
name. Thus, the String class you have been using is in the java.lang package, so the full name of the
class is java.lang.String. You have been able to use the unqualified name because all the classes in
the java.lang package are always available in your program code; there’s an implicit import state-
ment in effect for all the names in the java.lang package. If you happened to have defined a class of
your own with the name String, using the name String would refer to your class, but you could still
use the library class that has the same name by using its full name in your code, java.lang.String.

Every class in Java is contained in a package, including all those you have defined in the examples. You
haven’t seen many references to package names so far because you have been implicitly using the
default package to hold your classes, and this doesn’t have a name.

All of the standard classes in Java are contained within a set of packages, and each package contains
classes that are related in some way. The package that contains most of the standard classes that you
have used so far is called java.lang, so called because the classes in this package provide Java lan-
guage–related support. You haven’t seen any explicit reference to java.lang in your code either,
because this package is automatically available to your programs. Things are arranged this way because
some of the classes in java.lang, such as String, are used in every program. If you use a class from
the other packages containing standard classes, you will need either to use the fully qualified name of
the class or to explicitly import the full class name into your program in a way that I’ll come to shortly.

Packages are fundamental to Java programs so make sure you understand this section.

236

Chapter 5

Packaging Up Your Classes
Putting one of your classes in a named package is very simple. You just add a package statement as the
first statement in the source file containing the class definition. Note that it must always be the first state-
ment. Only comments or blank lines are allowed to precede the package statement. A package statement
consists of the keyword package followed by the package name and is terminated by a semicolon. If
you want the classes in a package to be accessible outside the package, you must declare the class using
the keyword public in the first line of your class definition. Class definitions that aren’t preceded by the
keyword public are accessible only from methods in classes that belong to the same package.

For example, to include the Sphere class in a package called Geometry, the contents of the file
Sphere.java would need to be:

package Geometry;

public class Sphere {

// Details of the class definition

}

Each class that you want to include in the package Geometry must contain the same package statement
at the beginning, and you must save all the files for the classes in the package in a directory with the
same name as the package, that is, Geometry. Note the use of the public keyword in the definition of
the Sphere class. This makes the class accessible generally. If you omit the public keyword from the
class definition, the class would be accessible only from methods in classes that are in the Geometry
package.

Note that you would also need to declare the constructors and methods in the class as public if you
want them to be accessible from outside of the package. I will return to this in more detail a little later in
this chapter.

Packages and the Directory Structure
Packages are actually a little more complicated than they appear at first sight, because a package is inti-
mately related to the directory structure in which it is stored. You already know that the definition of a
class with the name ClassName must be stored in a file with the name ClassName.java, and that all the
files for classes within a package PackageName must be included in a directory with the name
PackageName. You can compile the source for a class within a package and have the .class file that is
generated stored in a different directory, but the directory name must still be the same as the package
name.

As you are aware from the existence of the java.lang package that contains the String class, a pack-
age can have a composite name that is a combination of two or more simple names. You can specify a
package name as any sequence of names separated by periods. For example, you might have developed
several collections of classes dealing with geometry, perhaps one that works with 2D shapes and another
with 3D shapes. In this case you might include the class Sphere in a package with the statement:

package Geometry.Shapes3D;

and the class for circles in a package using the statement:

package Geometry.Shapes2D;

237

Defining Classes

In this situation, the files containing the classes in the Geometry.Shapes3D packages are expected to be
in the directory Shapes3D and the files containing the classes in the Geometry.Shapes2D packages are
expected to be in the directory Shapes2D. Both of these directories must be subdirectories of a directory
with the name Geometry. In general, you can have as many names as you like separated by periods to
identify a package, but the package name must reflect the directory structure in which the package is
stored. This is illustrated in Figure 5-9.

Figure 5-9

Compiling a Package
Compiling the classes in a package can be a bit tricky unless you are clear on how you go about it. I’ll
describe what you need to do assuming you are using the JDK under Microsoft Windows. The path
to the package directory must be explicitly made known to the compiler in the value that is set for
CLASSPATH, even when the current directory is the one containing the package. The easiest way to
specify CLASSPATH is by using the -classpath option when you invoke the compiler.

The path to the package directory is the path to the directory that contains the package directory, and
therefore does not include the package directory itself. For example, if you have stored the source files
for classes that are in the Geometry package in the directory with the path C:\Beg Java Stuff\
Geometry, then the path to the Geometry directory is C:\Beg Java Stuff. Many beginners mistak-
enly specify the path as C:\Beg Java Stuff\Geometry, in which case the package will not be found.

As I said, you can tell the compiler about the path to your package by using the –classpath option on
the command line. Assuming that the Geometry directory is a subdirectory of C:\Beg Java Stuff,
you could compile the Line.java source file with the command:

javac -classpath “C:\Beg Java Stuff” Line.java

This will result in both the Line.java and Point.java files being compiled, since Line.java refers to
the other class. Because the directory in the path contains spaces, you have to enclose the path string
between double quotes.

If the Point and Line classes were not interrelated, you could still compile the two source files or,
indeed, any number of source files, in the Geometry package with the following command:

javac -classpath “C:\Beg Java Stuff” *.java

Package Geometry.Shapes2D

Packages Geometry.Shapes3D

238

Chapter 5

Accessing a Package
How you access a package when you are compiling a program that uses the package depends on where
you have put it. There are a couple of options here. The first, but not the best, is to leave the .class files
for the classes in the package in the directory with the package name.

Let’s look at that before going on to the second possibility.

With the .class files in the original package directory, either the path to your package must appear in
the string that has been set for the CLASSPATH environment variable, or you must use the -classpath
option on the command line when you invoke the compiler or the interpreter. This overrides the
CLASSPATH environment variable if it happens to be set. Note that it is up to you to make sure that the
classes in your package are in the right directory. Java will not prevent you from saving a file in a direc-
tory that is quite different from that appearing in the package statement. Of the two options here, using
the –classpath option on the command line is preferable, because it sets the classpath transiently
each time and can’t interfere with anything you do subsequently. In any event, you can explore both
possibilities.

If you elect to use the CLASSPATH environment variable, it needs to contain only the paths to your pack-
ages. The standard packages that are supplied with Java do not need to be considered, as the compiler
and the interpreter can always find them. For example, you might set it under Windows 98 by adding
the following command to your autoexec.bat file:

set CLASSPATH=.;C:\MySource;C:\MyPackages

Now the compiler and the interpreter will look for program files and the directories containing your
packages in the current directory, which is specified by the period in the classpath string, and the direc-
tories C:\MySource and C:\MyPackages. Of course, you can have as many paths as you want defined
in CLASSPATH. They just need to be separated by semicolons under Windows. If you are using Windows
XP, then you can create and set environment variables through the Advanced tab in the System
Properties dialog that you can access through Control Panel.

Under Unix, the equivalent mechanism to set CLASSPATH might be:

CLASSPATH=.:/usr/local/mysource:/usr/local/mypackages

If you are using the JDK, you can always specify where your packages can be found by using the
-classpath option when you execute the Java compiler or the interpreter. This has the advantage that
it applies only for the current compilation or execution, so you can easily set it to suit each run. The

command to compile MyProgram.java defining the classpath as in the preceding environment variable
would be:

javac –classpath “.;C:\MySource;C:\MyPackages” MyProgram.java

If you don’t set the classpath in one of these ways, or you set it incorrectly, Java will not be able to find
the classes in any new packages you might create. Remember that the period identifies the current direc-
tory as one of the directories in which files can be found. If you forget to specify the period in the
-classpath string when compiling your program, the compiler will not be able to find your program
source file. If you omit the period from the -classpath string when executing your program, you will
get a message to the effect that main() cannot be found and your program will not run.

239

Defining Classes

Another way to make your packages available once you have compiled them is by making them
extensions to the set of standard packages.

Using Extensions
Extensions are .jar files stored within the ext directory that is created when you install the JDK. The
default directory structure that is created is shown in Figure 5-10.

Figure 5-10

The classes and packages in the .jar archives that you place in the ext directory will automatically be
accessible when you compile or run your Java programs, without the need to set the CLASSPATH environ-
ment variable or use the –classpath command-line option. When you create a .jar file for a package,
you need to make sure that you add the .class files with the directory structure corresponding to the
package name — you can’t just add the .class files to the archive. For example, suppose you want to
store the Geometry package in an archive. Assuming you have already compiled the package and the cur-
rent directory contains the package directory, the following command can be used to create the archive:

C:\Beg Java Stuff>jar cvf Geometry.jar Geometry*.class

This will create the archive Geometry.jar, and add all the .class files that are in the Geometry direc-
tory to it. All you now need to do to make the package available to any program that needs it is to copy
it to the ext directory in the JDK directory hierarchy shown in Figure 5-10.

The jar utility does a lot more than I have described here. If you want to know more about what it can
do, look into the “Tools and Utilities” section of the JDK documentation.

SDK Directory Structure

Contains compiler,
interpreter, tools,

etc.

Contains executables
& DLLs for use by
tools & libraries.

Contains rt.jar archive containing
the standard packages.

The ext directory is for storing .jar files containing
extensions to the standard packages.

You can put your own .jar archives in here and
they will be found automatically.

jdk1.5.0

bin jre ...others

lib

...othersext

bin

240

Chapter 5

Adding Classes from a Package to Your Program
You used the import statement frequently in examples but nonetheless I’ll describe it here from the
ground up. Assuming they have been defined with the public keyword, you can add all or any of the
classes in a named package to the code in your program by using an import statement. You can then
reference the classes that you make available to your program through the import statement just by
using the class names. For example, to make available all the classes in the package
Geometry.Shapes3D to a source file, you just need to add the following import statement to the begin-
ning of the file:

import Geometry.Shapes3D.*; // Include all classes from this package

The keyword import is followed by the specification of what you want to import. The wildcard *, fol-
lowing the period after the package name, selects all the classes in the package, rather like selecting all
the files in a directory. Now you can refer to any public class in the package just by using the class name.
Again, the names of other classes in your program must be different from the names of the classes in the
package. Importing all the names in a package is not an approach you should adopt generally as it
defeats the primary objective of putting classes in packages. It’s usually better to import just the names
from a package that your code references.

If you want to add a particular class rather than an entire package, you specify its name explicitly in the
import statement:

import Geometry.Shapes3D.Sphere; // Include the class Sphere

This includes only the Sphere class in the source file. By using a separate import statement for each
individual class from the package, you ensure that your source file includes only the classes that you
need. This reduces the likelihood of name conflicts with your own classes, particularly if you are not
fully familiar with the contents of the package and it contains a large number of classes.

Packages and Names in Your Programs
A package creates a self-contained environment for naming your classes. As I’ve said, this is the primary
reason for having packages in Java. You can specify the names for classes in one package without worry-
ing about whether the same names have been used elsewhere. Java makes this possible by treating the
package name as part of the class name — actually as a prefix. This means that the class Sphere in the
package Geometry.Shapes3D has the full name Geometry.Shapes3D.Sphere. If you don’t use an
import statement to incorporate the class in your program, you can still make use of the class by refer-
ring to it using its full class name. If you needed to do this with the class Sphere, you might declare a
variable with the statement:

Geometry.Shapes3D.Sphere ball = new Geometry.Shapes3D.Sphere(10.0, 1.0, 1.0, 1.0);

Note that the * can be used only to select all the classes in a package. You can’t use
Geometry.* to select all the packages in the Geometry directory.

241

Defining Classes

While this is rather verbose and certainly doesn’t help the readability of the program, it does ensure you
will have no conflict between this class and any other Sphere class that might be part of your program.
You can usually contrive that your class names do not conflict with those in the commonly used stan-
dard Java packages, but in cases where you can’t manage this, you can always fall back on using fully
qualified class names. Indeed, on some occasions, you have to do this. This is necessary when you are
using two different classes from different packages that share the same basic class name.

Importing Static Class Members
As you have seen in some of the examples, you can import the names of static members of a class from a
named package into your program. This allows you to reference such static members by their simple
unqualified names. In the Sphere class that you developed earlier in this chapter, you could have used
the constant PI that is defined in the Math class by using its fully qualified name, Math.PI, in the defini-
tion of the volume method:

double volume() {

return 4.0/3.0*Math.PI*radius*radius*radius;

}

This obviates the need for the static member of the Sphere class with the name PI and would provide a
much more accurate definition of the value of π.

However, the Math prefix to the name PI doesn’t really add to the clarity of the code, and it would be
better without it. You can remove the need for prefixing PI with the Math class name by importing the
PI member name from the Math class:

import static java.lang.Math.PI;

class Sphere {

// Class details as before...

double volume() {

return 4.0/3.0*PI*radius*radius*radius;

}

}

It is clear what PI means here and the code is not cluttered up with the class name prefix.

You can also import all the static members of a class using * notation. For example:

import static java.lang.Math.*; // Import all static members of the Math class

With this statement at the beginning of a source file, you can refer to any of the static members of the
Math class without qualifying them with the class name. Thus you can use methods such as sqrt(),
abs(), random(), and so on, without the need for the Math prefix to the method names. Of course,
using the * notation to import all the static names in a class does increase the risk of clashes between the
names you are importing and the names you define in your code.

Note that the import statement, and that includes its use for importing static members of a class, applies
only to classes that are defined in a named package. This is particularly relevant in the context of static
import. If you want to import the names of a static member of a class that you define, then you must put

242

Chapter 5

the definition of a class in a named package. You cannot import the names of static members of a class
that is defined in the default package that has no name. The class name in a static import statement
must always be qualified with its package name.

Standard Packages
All of the standard classes that are provided with Java are stored in standard packages. There is a sub-
stantial and growing list of standard packages (more than 150 in JDK 5) but some of the ones you may
hear about most frequently are:

java.lang Contains classes that are fundamental to Java (e.g., the Math class)
and all of these are available in your programs automatically. You do
not need an import statement to include them.

java.io Contains classes supporting stream input/output operations.

java.nio Contains classes supporting the new input/output operations that
were introduced in JDK1.4 — especially with files.

java.nio.channels Contains more classes supporting new input/output operations —
the ones that actually read and write files.

java.awt Contains classes that support Java’s graphical user interface (GUI).
While you can use these classes for GUI programming, it is almost
always easier and better to use the alternative Swing classes.

javax.swing Provides classes supporting the “Swing” GUI components. These are
not only more flexible and easier to use than the java.awt equiva-
lents, but they are also implemented largely in Java with minimal
dependency on native code.

javax.swing.border Classes to support generating borders around Swing components.

javax.swing.event Classes supporting event handling for Swing components.

java.awt.event Contains classes that support event handling.

java.awt.geom Contains classes for drawing and operating with 2D geometric
entities.

java.applet Contains classes that enable you to write applets — programs that are
embedded in a web page.

java.util Contains classes that support a range of standard operations for
managing collections of data, accessing date and time information,
and analyzing strings.

The standard packages and the classes they contain cover an enormous amount of ground, so even in a
book of this size it is impossible to cover them all exhaustively. There are now many more classes in the
standard packages included with JDK 5 than there are pages in this book. However, you will be apply-
ing some classes from all of the packages in the preceding table, plus one or two others besides, in later
chapters of the book.

243

Defining Classes

Standard Classes Encapsulating the Primitive Data Types
You saw in the previous chapter that you have classes available that allow you to define objects that
encapsulate values of each of the primitive data types in Java. These classes are:

Boolean Character Byte

Short Integer Long

Float Double

These are all contained in the package java.lang along with quite a few other classes, such as the
String and StringBuffer classes that you saw in Chapter 4. Each of these classes encapsulates a value
of the corresponding primitive type and includes methods for manipulating and interrogating objects of
the class, as well as a number of very useful static methods that provide utility functions for the underly-
ing primitive types.

You have methods in these classes for converting from values of primitive types to strings. Each class
provides a static toString() method to convert a value of the corresponding primitive type to a
String object, as you saw in the last chapter. There is also a non-static toString()method in each class
that returns a String representation of a class object.

Conversely, there are methods to convert from a String object to a primitive type. For example, the
static parseInt() member in the Integer class accepts a String representation of an integer as an
argument and returns the equivalent value as type int. An alternative version of this method accepts a
second argument of type int that specifies the radix to be used when interpreting the string. This
enables you to parse strings that are hexadecimal or octal values, for example. If the String object can-
not be parsed for any reason, if it contains invalid characters, for example, the method will throw an
exception of type NumberFormatException. All the standard classes encapsulating numerical primitive
types define static methods to parse strings. You have the methods parseShort(), parseByte(),
parseInt(), and parseLong() in the classes for integer types, and parseFloat() and
parseDouble() for floating-point classes. The Boolean class defines a static method valueOf() that
converts a string to the Boolean value true if the string is equal to “true” ignoring case. Any other
string will result in false being returned.

Each class also defines a value() method that returns the value that is encapsulated by an object as a
value of the corresponding primitive type. For example, if you have created an object number of type
Double that encapsulates the value 1.14159, then the expression number.value() will result in the
value 1.14159 as type double.

The classes that wrap numerical primitive types each contain the static final constants MAX_VALUE
and MIN_VALUE that define the maximum and minimum values that can be represented. The floating-
point classes also define the constants POSITIVE_INFINITY, NEGATIVE_INFINITY, and NaN (it stands
for Not a Number, as it is the result of 0/0), so you can use these in comparisons to test whether such
values have arisen during calculations. Alternatively, you can test floating-point values with the static
methods isInfinite() and isNaN()— you pass your variable as an argument, and the methods
return true for an infinite value or the NaN value, respectively. Remember that an infinite value can arise
without necessarily dividing by zero. Any computation that results in an exponent that is too large to be
represented will produce either POSITIVE_INFINITY or NEGATIVE_INFINITY.

244

Chapter 5

Many other operations are supported by these classes, so it is well worth browsing the JDK documenta-
tion for them. In particular, the Character class defines a large number of static methods for testing and
classifying characters.

Autoboxing Values of Primitive Types
Circumstances can arise surprisingly often where you want to pass values of a primitive type to a
method that requires the argument to be a reference to an object. The compiler will supply automatic
conversions of primitive values to the corresponding class type when circumstances permit this. This
can arise when you pass a value of type int to a method where the parameter type is type Integer, for
example. Conversions from a primitive type to the corresponding class type are called boxing conver-
sions, and automatic conversions of this kind are described as autoboxing.

The compiler will also insert unboxing conversions when necessary to convert a reference to an object of
a wrapper class for a primitive type such as double to the value that it encapsulates. The compiler does
this by inserting a call to the value() method for the object. You can see this in action in the following
little example.

Try It Out Autoboxing in Action
This program is contrived to force boxing and unboxing conversions to occur:

public class AutoboxingInAction {

public static void main(String[] args) {

int[] values = { 3, 97, 55, 22, 12345 };

Integer[] objs = new Integer[values.length]; // Array to store Integer objects

// Call method to cause boxing conversions

for(int i = 0 ; i<values.length ; i++) {

objs[i] = boxInteger(values[i]);

}

// Use method to cause unboxing conversions

for(Integer intObject : objs) {

unboxInteger(intObject);

}

}

// Method to cause boxing conversion

public static Integer boxInteger(Integer obj) {

return obj;

}

// Method to cause unboxing conversion

public static void unboxInteger(int n) {

System.out.println(“value = “ + n);

}

}

245

Defining Classes

This example will produce the following output:

value = 3

value = 97

value = 55

value = 22

value = 12345

How It Works
You have defined the boxInteger() method with a parameter type of type Integer. When you call
this method in the first for loop in main(), you pass values of type int to it from the values array.
Because the boxInteger() method requires the argument to be a reference to an object of type
Integer, the compiler arranges for autoboxing to occur by inserting a boxing conversion to convert the
integer value to an object of type Integer. The method returns a reference to the object that results, and
you store this in the Integer[] array objs.

The second for loop in main() passes each reference to an Integer object from the objs array to the
unboxInteger() method. Because you have specified the method parameter type as type int, the
method cannot accept a reference to an object of type Integer as the argument directly. The compiler
inserts an unboxing convert to obtain the value of type int that the object encapsulates. This value is
then passed to the method, and you output it.

Autoboxing is particular useful when you need to insert values of primitive types into a collection —
you will meet the collection classes that are available in the class libraries in Chapter 14, but you’ll see
more on boxing and unboxing conversions in Chapter 13.

Controlling Access to Class Members
I have not yet discussed in any detail how you control the accessibility of class members from outside
the class — from a method in another class in other words. You know that you can refer to any of the
static members of the same class in the code for a static class method, and a non-static method can refer
to any member of the same class. The degree to which variables and methods within one class are acces-
sible from other classes is a bit more complicated. It depends on what access attributes you have speci-
fied for the members of a class, whether the classes are in the same package, and whether you have
declared the class as public. This is why you had to understand packages first.

Using Access Attributes
Let’s start by considering classes that are in the same package. Within a given package, any class has
direct access to any other class name in the same package — for declaring variables or specifying method
parameter types, for example — but the variables and methods that are members of that other class are
not necessarily accessible. The accessibility of these is controlled by access attributes. The name of a
class in one package can be accessed from a class in another package only if the class to be accessed is
declared as public. Classes not declared as public can be accessed only by classes within the same
package.

246

Chapter 5

You have four possibilities when specifying an access attribute for a class member, and each possibility
has a different effect overall. The options you have for specifying the accessibility of a variable or a
method in a class are:

Attribute Permitted Access

No access attribute From methods in any class in the same package

public From methods in any class anywhere as long as the class has been
declared as public

private Accessible only from methods inside the class. No access from outside
the class at all.

protected From methods in any class in the same package and from any subclass
anywhere

The table shows you how the access attributes you set for a class member determine the parts of the Java
environment from which you can access it. I will discuss subclasses in the next chapter, so don’t worry
about these for the moment. I will describe how and when you use the protected attribute then. Note that
public, private, and protected are all keywords. Specifying a member as public makes it completely
accessible, and at the other extreme, making it private restricts access to members of the same class.

This may sound more complicated than it actually is. Look at Figure 5-11, which shows the access
allowed between classes within the same package.

Figure 5-11

Within a package such as package1 in Figure 5-11, only the private members of the class Class1 can’t
be directly accessed by methods in other classes in the same package. If you declare a class member to be
private, it can be accessed only by methods in the same class.

Class1

Package1

int a;

public int b;

protected int c;

private int e;

Class2 SubClass1

No

OK

OK

OK

No

OK

OK

OK

247

Defining Classes

As I said earlier, a class definition must have an access attribute of public if it is to be accessible from
outside the package that contains it. Figure 5-12 shows the situation where the classes seeking access to
the members of a public class are in different packages.

Figure 5-12

Here access is more restricted. The only members of Class1 that can be accessed from an ordinary class,
Class2, in another package, are those specified as public. Keep in mind that the class Class1 must
also have been defined with the attribute public for this to be the case. A class that is not defined as
public cannot be accessed at all from a class in another package.

From a subclass of Class1 that is in another package, the members of Class1 without an access
attribute cannot be reached, and neither can the private members — these can never be accessed
externally under any circumstances.

Specifying Access Attributes
As you probably gathered from the diagrams in the previous section, to specify an access attribute for a
class member, you just add the appropriate keyword to the beginning of the declaration. Here is the
Point class you saw earlier, but now with access attributes defined for its members:

Try It Out Accessing the Point Class
Make the following changes to your Point class. If you save it in a new directory, do make sure
Line.java is copied there as well. It will be useful later if they are in a directory with the name
Geometry.

import static java.lang.Math.sqrt;

public class Point {

// Create a point from its coordinates

public Class1

int a;

public int b;

protected int c;

private int e;

Class2 SubClass1

Package1Package3 Package2

No

No

OK

No

No

OK

OK

No

248

Chapter 5

public Point(double xVal, double yVal) {

x = xVal;

y = yVal;

}

// Create a Point from an existing Point object

public Point(final Point aPoint) {

x = aPoint.x;

y = aPoint.y;

}

// Move a point

public void move(double xDelta, double yDelta) {

// Parameter values are increments to the current coordinates

x += xDelta;

y += yDelta;

}

// Calculate the distance to another point

public double distance(final Point aPoint) {

return sqrt((x – aPoint.x)*(x – aPoint.x)+(y – aPoint.y)*(y – aPoint.y));

}

// Convert a point to a string

public String toString() {

return Double.toString(x) + “, “ + y; // As “x, y”

}

// Coordinates of the point

private double x;

private double y;

}

The members have been resequenced within the class, with the private members appearing last. You
should maintain a consistent ordering of class members according to their access attributes, as it makes
the code easier to follow. The ordering adopted most frequently is for the most accessible members to
appear first and the least accessible last, but a consistent order is more important than the particular
order you choose.

How It Works
Now the instance variables x and y cannot be accessed or modified from outside the class, as they are
private. The only way these can be set or modified is through methods within the class, either with con-
structors or the move() method. If it is necessary to obtain the values of x and y from outside the class,
as it might well be in this case, a simple function would do the trick. For example:

public double getX() {

return x;

}

Couldn’t be easier really, could it? This makes x freely available, but prevents modification of its value
from outside the class. In general, such methods are referred to as accessor methods and usually have

249

Defining Classes

the form getXXX(). Methods that allow a private data member to be changed are called mutator meth-
ods and are typically of the form setXXX(), where a new value is passed as an argument. For example:

public void setX(double inputX) {

x = inputX;

}

It may seem odd to use a method to alter the value of a private data member when you could just
make it public. The main advantage of using a method in this way is that you can apply validity checks
on the new value that is to be set and prevent inappropriate values from being assigned. Of course, if
you really don’t want to allow the value of a private member to be changed, you don’t include a mutator
method for the class.

Choosing Access Attributes
As you can see from the table of access attributes, all the classes you have defined so far have had mem-
bers that are freely accessible within the same package. This applies both to the methods and the vari-
ables that were defined in the classes. This is not good object-oriented programming practice. As I said
in Chapter 1, one of the ideas behind objects is to keep the data members encapsulated so they cannot be
modified by all and sundry, even from other classes within the same package. On the other hand, the
methods in your classes that provide the operations you want to allow with objects of the class type gen-
erally need to be accessible. They provide the outside interface to the class and define the set of opera-
tions that are possible with objects of the class. Therefore, in the majority of situations with simple
classes (i.e., no subclasses), you should be explicitly specifying your class members as either public or
private, rather than omitting the access attributes.

Broadly, unless you have good reasons for declaring them otherwise, the variables in a public class
should be private and the methods that will be called from outside the class should be public. Even
where access to the values of the variables from outside a class is necessary, you don’t need to make
them public or leave them without an access attribute. As you’ve just seen, you can provide access
quite easily by adding a simple public method to return the value of a data member.

Of course, there are always exceptions:

❑ For classes in a package that are not public, and therefore not accessible outside the package, it
may sometimes be convenient to allow other classes in the package direct access to the data
members.

❑ If you have data members that have been specified as final so that their values are fixed and
they are likely to be useful outside the class, you might as well declare them to be public.

❑ You may well have methods in a class that are intended to be used only internally by other
methods in the same class. In this case you should specify these as private.

❑ In a class like the standard class Math, which is just a convenient container for utility functions
and standard data values, you’ll want to make everything public.

All of this applies to simple classes. You’ll see in the next chapter, when you will be looking at sub-
classes, that there are some further aspects of class structure that you must take into account.

250

Chapter 5

Using Package and Access Attributes
Let’s put together an example that uses a package that you will create. You could put the Point and
Line classes that you defined earlier in a package you could call Geometry. You can then write a pro-
gram that will import these classes and test them. You should already have the Geometry directory set
up if you followed my suggestion with the previous example.

Try It Out Packaging Up the Line and Point Classes
The source and .class files for each class in the package must be in a directory with the name
Geometry. Remember that you need to ensure the path to the directory (or directories if you are storing
.class files separately) Geometry appears in the CLASSPATH environment variable setting before you
try to compile or use either of these two classes. You can best do this by specifying the -classpath
option when you run the compiler or the interpreter.

To include the class Point in the package, the code in Point.java will be:

package Geometry;

import static java.lang.Math.sqrt;

public class Point {

// Create a point from its coordinates

public Point(double xVal, double yVal) {

x = xVal;

y = yVal;

}

// Create a Point from an existing Point object

public Point(final Point aPoint) {

x = aPoint.x;

y = aPoint.y;

}

// Move a point

public void move(double xDelta, double yDelta) {

// Parameter values are increments to the current coordinates

x += xDelta;

y += yDelta;

}

// Calculate the distance to another point

public double distance(final Point aPoint) {

return sqrt((x – aPoint.x)*(x – aPoint.x)+(y – aPoint.y)*(y – aPoint.y));

}

// Convert a point to a string

public String toString() {

return Double.toString(x) + “, “ + y; // As “x, y”

}

251

Defining Classes

// Retrieve the x coordinate

public double getX() {

return x;

}

// Retrieve the y coordinate

public double getY() {

return y;

}

// Set the x coordinate

public void setX(double inputX) {

x = inputX;

}

// Set the y coordinate

public void setY(double inputY) {

y = inputY;

}

// Coordinates of the point

private double x;

private double y;

}

Note that you have added the getX(), getY(), setX(), and setY() methods to the class to make the
private data members accessible.

The Line class also needs to be amended to make the methods public and to declare the class as public.
You’ll have to change its intersects() method so that it can access the private data members of Point
objects using the set...() and get...() methods in the Point class. The code in Line.java, with
changes highlighted, will be:

package Geometry;

public class Line {

// Create a line from two points

public Line(final Point start, final Point end) {

this.start = new Point(start);

this.end = new Point(end);

}

// Create a line from two coordinate pairs

public Line(double xStart, double yStart, double xEnd, double yEnd) {

start = new Point(xStart, yStart); // Create the start point

end = new Point(xEnd, yEnd); // Create the end point

}

// Calculate the length of a line

public double length() {

return start.distance(end); // Use the method from the Point class

252

Chapter 5

}

// Return a point as the intersection of two lines -- called from a Line object

public Point intersects(final Line line1) {

Point localPoint = new Point(0, 0);

double num =(this.end.getY() – this.start.getY())

* (this.start.getX()–line1.start.getX())

- (this.end.getX() – this.start.getX())

* (this.start.getY() – line1.start.getY());

double denom = (this.end.getY() – this.start.getY())

* (line1.end.getX() – line1.start.getX())

- (this.end.getX() – this.start.getX())

* (line1.end.getY() – line1.start.getY());

localPoint.setX(line1.start.getX() + (line1.end.getX() –

line1.start.getX())*num/denom);

localPoint.setY(line1.start.getY() + (line1.end.getY() –

line1.start.getY())*num/denom);

return localPoint;

}

// Convert a line to a string

public String toString() {

return “(“ + start+ “):(“ + end + “)”; // As “(start):(end)”

} // that is, “(x1, y1):(x2, y2)”

// Data members

Point start; // Start point of line

Point end; // End point of line

}

Here you have left the data members of the class without an access attribute so they are accessible from
the Point class, but not from classes outside the Geometry package.

How It Works
The package statement at the beginning of each source file defines the package to which the class
belongs. Remember, you still have to save it in the correct directory, Geometry. Without the public
attribute, the classes would not be available to classes outside the Geometry package.

Since you have declared the data members in the class Point as private, they will not be accessible
directly. You have added the methods getX(), getY(), setX(), and setY() to the Point class to make
the values accessible to any class that needs them.

The static import statement that you added earlier for the sqrt() method in the Math class allows the
distance() method to access the sqrt() method without using the Math qualifier.

253

Defining Classes

The Line class hasn’t been updated since the earlier example, so you first have to sort out the access
attributes. The two instance variables are declared as before, without any access attribute, so they can be
accessed from within the package but not from classes outside the package. This is an occasion where
exposing the data members within the package is very convenient, and you can do it without exposing
the data members to any classes using the package. And you have updated the intersects() method to
reflect the changes in accessibility made to the members of the Point class.

You can now write the program that is going to import and use the package that you have just created.

Try It Out Testing the Geometry Package
You can create a succession of points, and create a line joining each pair of successive points in the
sequence. You can then calculate the total line length.

import Geometry.*; // Import the Point and Line classes

public class TryPackage {

public static void main(String[] args) {

double[][] coords = { {1.0, 0.0}, {6.0, 0.0}, {6.0, 10.0},

{10.0,10.0}, {10.0, -14.0}, {8.0, -14.0}};

// Create an array of points and fill it with Point objects

Point[] points = new Point[coords.length];

for(int i = 0; i < coords.length; i++)

points[i] = new Point(coords[i][0],coords[i][1]);

// Create an array of lines and fill it using Point pairs

Line[] lines = new Line[points.length – 1];

double totalLength = 0.0; // Store total line length here

for(int i = 0; i < points.length – 1; i++) {

lines[i] = new Line(points[i], points[i+1]); // Create a Line

totalLength += lines[i].length(); // Add its length

System.out.println(“Line “+(i+1)+’ ‘ +lines[i] +

“ Length is “ + lines[i].length());

}

// Output the total length

System.out.println(“\nTotal line length = “ + totalLength);

}

}

You should save this as TryPackage.java in the directory TryPackage. If the path to your Geometry
directory on a PC running Windows is C:\Packages\Geometry, you can compile this with the follow-
ing command:

javac –classpath “.;C:\Packages” TryPackage.java

This assumes the current directory is the one containing the TryPackage.java file, which will be the
TryPackage directory if you followed my suggestion. The -classpath option specifies two paths sepa-
rated by a semicolon. The first path, specified by a period, is the current directory. This is necessary to
enable the TryPackage.java source file to be found. The second path is C:\Packages, which is the
directory containing your Geometry package. Without this the compiler will not be able to find the
classes in the Geometry package, and the compilation will fail.

254

Chapter 5

Once you have a successful compilation, you can execute the program with the command:

java –classpath “.;C:\Packages” TryPackage

When the program executes, you should see the following output:

Line 1 (1.0, 0.0):(6.0, 0.0) Length is 5.0

Line 2 (6.0, 0.0):(6.0, 10.0) Length is 10.0

Line 3 (6.0, 10.0):(10.0, 10.0) Length is 4.0

Line 4 (10.0, 10.0):(10.0, -14.0) Length is 24.0

Line 5 (10.0, -14.0):(8.0, -14.0) Length is 2.0

Total line length = 45.0

How It Works
This example is a handy review of how you can define arrays and also shows that you can declare an
array of objects in the same way as you declare an array of one of the basic types. The dimensions of the
array of arrays, coords, are determined by the initial values that you specified between the braces. The
number of values within the outer braces determines the first dimension. Each of the elements in the
array is itself an array of length two, with each pair of element values enclosed within their own braces.

Since there are six sets of these, you have an array of six elements, each of which is itself an array of two
elements. Each of these elements corresponds to the (x, y) coordinates of a point.

You can see from this that you could create an array of arrays with each row having a different number
of elements. The number of initializing values that appear between each inner pair of braces determines
the length of each row, so the rows could all be of different lengths in the most general case.

You declare an array of Point objects with the same length as the number of (x, y) pairs in the coords
array. This array is filled with Point objects in the for loop, which you create using the pairs of coordi-
nate values from the coords array.

Since each pair of Point objects will define a Line object, you need one less element in the lines array
than you have in the points array. You create the elements of the lines array in the second for loop
using successive Point objects and accumulate the total length of all the line segments by adding the
length of each Line object to totalLength as it is created. On each iteration of the for loop, you output
the details of the current line. Finally, you output the value of totalLength, which in this case is 45.

Note that the import statement in TryPackage.java adds the classes from the Geometry package to
your program. These classes can be added to any application using the same import statement. You
might like to try putting the classes in the Geometry package in a .jar file and try it out as an exten-
sion. Let’s look at one other aspect of generating your own packages — compiling just the classes in the
package without any program that makes use of them. You can try this out on the Geometry package if
you delete the Line.class and Point.class files from the package directory.

First, make the directory, C:\Packages, that contains the package directory current. Now you can com-
pile just the classes in the Geometry package with the following command:

javac -classpath “C:\Packages” Geometry/*.java

255

Defining Classes

This will compile both the Line and Point classes so you should see the .class files restored in the
Geometry directory. The files to be compiled are specified relative to the current directory as
Geometry/*.java. Under Microsoft Windows this could equally well be Geometry*.java. This spec-
ifies all files in the Geometry subdirectory to the current directory. The classpath must contain the path
to the package directory; otherwise, the compiler will not be able to find the package. You have defined
it here using the -classpath option. You haven’t specified the current directory in the classpath string
because you do not have any files there that need to be compiled. If you had included it in the classpath
string, it would not have made any difference — the classes in the Geometry package would compile just
the same.

Nested Classes
All the classes you have defined so far have been separate from each other — each stored away in its
own source file. Not all classes have to be defined like this. You can put the definition of one class inside
the definition of another class. The inside class is called a nested class. A nested class can itself have
another class nested inside it, if need be.

When you define a nested class, it is a member of the enclosing class in much the same way as the other
class members. A nested class can have an access attribute just like other class members, and the accessi-
bility from outside the enclosing class is determined by the attributes in the same way:

public class Outside {

// Nested class

public class Inside {

// Details of Inside class...

}

// More members of Outside class...

}

Here the class Inside is nested inside the class Outside. The Inside class is declared as a public mem-
ber of Outside, so it is accessible from outside Outside. Obviously, a nested class should have some
specific association with the enclosing class. Arbitrarily nesting one class inside another would not be
sensible. The enclosing class here is referred to as a top-level class. A top-level class is a class that con-
tains a nested class but is not itself a nested class.

The nested class here has meaning only in the context of an object of type Outside. This is because the
Inside class is not declared as a static member of the class Outside. Until an object of type Outside
has been created, you can’t create any Inside objects. However, when you declare an object of a class
containing a nested class, no objects of the nested class are necessarily created — unless of course the
enclosing class’s constructor creates them. For example, suppose you create an object with the following
statement:

Outside outer = new Outside();

No objects of the nested class, Inside, are created. If you now wish to create an object of the type of the
nested class, you must refer to the nested class type using the name of the enclosing class as a qualifier.

256

Chapter 5

For instance, having declared an object of type Outside, you can create an object of type Inside as
follows:

Outside.Inside inner = outer.new Inside(); // Define a nested class object

Here you have created an object of the nested class type that is associated with the object outer that you
created earlier. You are creating an object of type Inside in the context of the object outer. Within non-
static methods that are members of Outside, you can use the class name Inside without any qualifica-
tion, as it will be automatically qualified by the compiler with the this variable. So you could create a
new Inside object from within the method of the object Outside:

Inside inner = new Inside(); // Define a nested class object

This statement is equivalent to:

this.Inside inner = this.new Inside(); // Define a nested class object

All this implies that a static method cannot create objects of a non-static nested class type. Because the
Inside class is not a static member of the Outside class, such a member could refer to an object which
does not exist — which would be an error if there are no Inside objects extant in the context of an
Outside object. Because Inside is not a static member of the Outside class, if a static method in
the Outside class tried to create an object of type Inside directly, without first invoking an object
of type Outside, it would be trying to create an object outside of that object’s legitimate scope — an
illegal maneuver.

Further, because the Inside class is not a static member of the Outside class, it cannot in turn contain
any static data members itself. Since Inside is not static, it cannot act as a freestanding class with static
members — this would be a logical contradiction.

You typically use nested classes to define objects that at least have a strong association with objects of
the enclosing class type, and often there is a tight coupling between the two. A further use for nested
classes is for grouping a set of related classes under the umbrella of an enclosing class. You will be using
this approach in examples later on in the book.

Static Nested Classes
To make objects of a nested class type independent of objects of the enclosing class type, you can declare
the nested class as static:

public class Outside {

public static class Skinside {

// Details of Skinside

}

// Nested class

public class Inside {

// Details of Inside class...

}

// More members of Outside class...

}

257

Defining Classes

Now with Skinside inside Outside declared as static, you can declare objects of this nested class
type independent from any objects of type Outside, and regardless of whether you have created any
Outside objects or not. For example:

Outside.Skinside example = new Outside.Skinside();

This is significantly different from what you needed to do for a non-static nested class. Now you must
use the nested class name qualified by the enclosing class name as the type for creating the object. Thus,
the name of a static nested class exists within the context of the outer class and therefore the nested class
name is qualified by the enclosing class name. Note that a static nested class can have static members,
whereas a non-static nested class cannot. A class containing both a static and a non-static nested class is
illustrated in Figure 5-13.

Figure 5-13

If the preceding discussion seems a bit confusing in the abstract, you will get a better idea of how a
nested class works in practice with a simple example. You will create a class MagicHat that will define
an object containing a variable number of Rabbit objects. You will put the definition for the class
Rabbit inside the definition of the class MagicHat, so Rabbit will be an example of a nested class. The
basic structure of MagicHat.java will be:

public class MagicHat {

// Definition of the MagicHat class...

Top-level class

Members of a static nested
class can access static

members of the
top-level class

A non-static nested class
can access any members

of the top-level class,
regardless of their access

attributes. A non-static
nested class can access
static members of any
static nested classes
within the same top-

level class
A non-static nested class

cannot have static members

class Outside{

}

static members

non-static members

static class Skinside{

}

class Inside{

}

non-static members

non-static members

static members

258

Chapter 5

// Nested class to define a rabbit

static class Rabbit {

// Definition of the Rabbit class...

}

}

Here the nested class is defined as static because you want to be able to have static members of this
class. You will see a little later in the chapter how it might work with a non-static nested class.

Try It Out Rabbits out of Hats
Let’s add the detail of the MagicHat class definition:

import java.util.Random; // Import Random class

public class MagicHat {

static int maxRabbits = 5; // Maximum rabbits in a hat

static Random select = new Random(); // Random number generator

// Constructor for a hat

public MagicHat(String hatName) {

this.hatName = hatName; // Store the hat name

rabbits = new Rabbit[1+select.nextInt(maxRabbits)]; // Random rabbits

for(int i = 0; i < rabbits.length; i++) {

rabbits[i] = new Rabbit(); // Create the rabbits

}

}

// String representation of a hat

public String toString() {

// Hat name first...

String hatString = “\n” + hatName + “ contains:\n”;

for(Rabbit rabbit : rabbits) {

hatString += “ “ + rabbit; // Add the rabbits strings

}

return hatString;

}

private String hatName; // Name of the hat

private Rabbit rabbits[]; // Rabbits in the hat

// Nested class to define a rabbit

static class Rabbit {

// Definition of the Rabbit class...

}

}

You can save the source file in a new directory, TryNestedClass. Instead of the old Math.random()
method that you have been using up to now to generate pseudo-random values, you are using an object
of the class Random that is defined in the java.util package. An object of type Random has a variety of

259

Defining Classes

methods to generate pseudo-random values of different types, and with different ranges. The method
nextInt() that you are using here returns an integer that is zero or greater, but less than the integer
value you pass as an argument. Thus, if you pass the length of an array to it, it will generate a random
index value that will always be legal for the array size.

You can now add the definition of the Rabbit class. When you create a Rabbit object, you want it to
have a unique name so you can distinguish one Rabbit from another. You can generate unique names
by selecting one of a limited set of fixed names and then appending an integer that is different each time
the base name is used. Here’s what you need to add for the Rabbit class definition:

public class MagicHat {

// Definition of the MagicHat class – as before...

// Nested class to define a rabbit

static class Rabbit {

// A name is a rabbit name from rabbitNames followed by an integer

static private String[] rabbitNames = {“Floppsy”, “Moppsy”,

“Gnasher”, “Thumper”};

static private int[] rabbitNamesCount = new int[rabbitNames.length];

private String name; // Name of the rabbit

// Constructor for a rabbit

public Rabbit() {

int index = select.nextInt(rabbitNames.length); // Get random name index

name = rabbitNames[index] + (++rabbitNamesCount[index]);

}

// String representation of a rabbit

public String toString() {

return name;

}

}

}

Note that the constructor in the Rabbit class can access the select member of the enclosing class,
MagicHat, without qualification. This is possible only with static members of the enclosing class — you
can’t refer to non-static members of the enclosing class here because there is no object of type MagicHat
associated with it.

You can use the following application class to try out the nested class:

public class TryNestedClass {

static public void main(String[] args) {

// Create three magic hats and output them

System.out.println(new MagicHat(“Gray Topper”));

System.out.println(new MagicHat(“Black Topper”));

System.out.println(new MagicHat(“Baseball Cap”));

}

}

260

Chapter 5

You should save this source file in the same directory as MagicHat.java. When I ran the program, I got
the following output:

Gray Topper contains:

Floppsy1 Moppsy1 Gnasher1 Floppsy2 Thumper1

Black Topper contains:

Moppsy2 Gnasher2 Floppsy3 Floppsy4

Baseball Cap contains:

Moppsy3

You are likely to get something different.

How It Works
Each MagicHat object will contain a random number of Rabbit objects. The constructor for a
MagicHat object stores the name of the hat in its private member hatName and generates a Rabbit
array with at least one, and up to maxRabbits, elements. This is done with the expression
1+select.nextInt(maxRabbits). Calling nextInt() with the argument maxRabbits will return a
value that is from 0 to maxRabbits-1, inclusive. Adding 1 to this will result in a value from 1 to
maxRabbits, inclusive. The array so created is then filled with Rabbit objects.

The MagicHat class also has a toString() method that returns a String object containing the name of
the hat and the names of all the rabbits in the hat. This assumes that the Rabbit class also has a
toString() method defined. You will be able to use the toString() implicitly in an output statement
when you create and display MagicHat class objects.

The base names that you use to generate rabbit names are defined in the static array rabbitNames[]

in the Rabbit class. The count for each base name, which you will append to the base name to produce a
unique name for a rabbit, is stored in the static array rabbitNamesCount[]. This has the same num-
ber of elements as the rabbitNames array, and each element stores a value to be appended to the corre-
sponding name in the rabbitNames array. The Rabbit class has the data member name to store a name
that is initialized in the constructor. A random base name is selected from the rabbitNames[] array
using an index value from 0 up to one less than the length of this array. You then append the current
count for the name incremented by 1, so successive uses of any base name, such as Gnasher, for exam-
ple, will produce names Gnasher1, Gnasher2, and so on. The toString() method for the class returns
the name for the Rabbit object.

The main() method in TryNestedClass creates three MagicHat objects and outputs the string repre-
sentation of each of them. Putting the object as an argument to the println() method will call the
toString() method for the object automatically, and the String object that is returned will be output
to the screen.

If you look at the .class files that are produced by the compiler, the Rabbit class has its own file with
the name MagicHat$Rabbit.class. Thus the name of the nested Rabbit class is qualified by the name
of the class that contains it, MagicHat.

261

Defining Classes

Using a Non-Static Nested Class
In the previous example, you could make the Rabbit class non-static by deleting the keyword static
from its definition. However, if you try that, the program will no longer compile and run. The problem is
the static data members rabbitNames and rabbitNamesCount in the Rabbit class. You saw earlier that
a non-static nested class cannot have static members, so you must find an alternative way of dealing
with names if you want to make Rabbit a non-static nested class.

You could consider making these arrays non-static. This has several disadvantages. First, each Rabbit
object would have its own copy of these arrays — an unnecessary duplication of data. A more serious
problem is that the naming process would not work. Because each object has its own copy of the
rabbitNamesCount array, the names that are generated are not going to be unique.

The answer is to keep rabbitNames and rabbitNamesCount as static, but put them in the MagicHat
class instead. Let’s see that working.

Try It Out Accessing the Top-Level Class Members
You need to modify the class definition to the following:

public class MagicHat {

static int maxRabbits = 5; // Maximuum rabbits in a hat

static Random select = new Random(); // Random number generator

static private String[] rabbitNames = {“Floppsy”, “Moppsy”,

“Gnasher”, “Thumper”};

static private int[] rabbitNamesCount = new int[rabbitNames.length];

// Constructor for a hat

public MagicHat(final String hatName) {

this.hatName = hatName; // Store the hat name

rabbits = new Rabbit[1+select.nextInt(maxRabbits)]; // Random rabbits

for(int i = 0; i < rabbits.length; i++) {

rabbits[i] = new Rabbit(); // Create the rabbits

}

}

// String representation of a hat

public String toString() {

// Hat name first...

String hatString = “\n” + hatName + “ contains:\n”;

for(Rabbit rabbit : rabbits) {

hatString += “ “ + rabbit; // Add the rabbits strings

}

return hatString;

}

private String hatName; // Name of the hat

private Rabbit rabbits[]; // Rabbits in the hat

// Nested class to define a rabbit

class Rabbit {

private String name; // Name of the rabbit

262

Chapter 5

// Constructor for a rabbit

public Rabbit() {

int index = select.nextInt(rabbitNames.length); // Get random name index

name = rabbitNames[index] + (++rabbitNamesCount[index]);

}

// String representation of a rabbit

public String toString() {

return name;

}

}

}

The only changes are the deletion of the static keyword in the definition of the Rabbit class and the
movement of data members relating to rabbit names to the MagicHat class. You can run this with the
same version of TryNestedClass, and it should produce output much the same as before.

How It Works
Although the output is much the same, what is happening is distinctly different. The Rabbit objects that
are created in the MagicHat constructor are now associated with the current MagicHat object that is
being constructed. The Rabbit() constructor call is actually this.Rabbit().

Using a Nested Class Outside the Top-Level Class
You can create objects of an inner class outside the top-level class containing the inner class. As I dis-
cussed, how you do this depends on whether the nested class is a static member of the enclosing class.
With the first version of the MagicHat class, with a static Rabbit class, you could create an independent
rabbit by adding the following statement to the end of main():

System.out.println(“An independent rabbit: “ + new MagicHat.Rabbit());

This Rabbit object is completely free — there is no MagicHat object to contain and restrain it. In the case
of a non-static Rabbit class, things are different. Let’s try this using a modified version of the previous
program.

Try It Out Free-Range Rabbits (Almost)
You can see how this works by modifying the main() method in TryNestedClass to create another
MagicHat object, and then create a Rabbit object for it:

static public void main(String[] args) {

// Create three magic hats and output them

System.out.println(new MagicHat(“Gray Topper”));

System.out.println(new MagicHat(“Black Topper”));

System.out.println(new MagicHat(“Baseball Cap”));

MagicHat oldHat = new MagicHat(“Old hat”); // New hat object

MagicHat.Rabbit rabbit = oldHat.new Rabbit(); // Create rabbit object

System.out.println(oldHat); // Show the hat

System.out.println(“\nNew rabbit is: “ + rabbit); // Display the rabbit

}

263

Defining Classes

The output produced is as follows:

Gray Topper contains:

Thumper1

Black Topper contains:

Moppsy1 Thumper2 Thumper3

Baseball Cap contains:

Floppsy1 Floppsy2 Thumper4

Old hat contains:

Floppsy3 Thumper5 Thumper6 Thumper7 Thumper8

New rabbit is: Thumper9

How It Works
The new code first creates a MagicHat object, oldHat. This will have its own rabbits. You then use this
object to create an object of the class MagicHat.Rabbit. This is how a nested class type is referenced —
with the top-level class name as a qualifier. You can only call the constructor for the nested class in this
case by qualifying it with a MagicHat object name. This is because a non-static nested class can refer to
members of the top-level class — including instance members. Therefore, an instance of the top-level
class must exist for this to be possible.

Note how the top-level object is used in the constructor call. The object name qualifier goes before the
keyword new, which precedes the constructor call for the inner class. This creates an object, rabbit, in
the context of the object oldHat. This doesn’t mean oldHat has rabbit as a member. It means that if
top-level members are used in the inner class, they will be the members for oldHat. You can see from
the example that the name of the new rabbit is not part of the oldHat object, although it is associated
with oldHat. You could demonstrate this by modifying the toString() method in the Rabbit class to:

public String toString() {

return name + “ parent: “+hatName;

}

If you run the program again, you will see that when each Rabbit object is displayed, it will also show
its parent hat.

Local Nested Classes
You can define a class inside a method — where it is called a local nested class. It is also referred to as a
local inner class, since a non-static nested class is often referred to as an inner class. You can create
objects of a local inner class only locally — that is, within the method in which the class definition
appears. This is useful when the computation in a method requires the use of a specialized class that is
not required or used elsewhere. A good example is listeners for events that arise as a result of user inter-
action with an application. You’ll learn about listeners in Chapter 18.

A local inner class can refer to variables declared in the method in which the definition appears, but only
if they are final.

264

Chapter 5

The finalize() Method
You have the option of including a method finalize() in a class definition. This method is called auto-
matically by Java before an object is finally destroyed and the space it occupies in memory is released. In
practice this may be some time after the object is inaccessible in your program. When an object goes out
of scope, it is dead as far as your program is concerned, but the Java Virtual Machine may not get
around to disposing of the remains until later. When it does, it calls the finalize() method for the
object. The form of the finalize() method is:

protected void finalize() {

// Your clean-up code...

}

This method is useful if your class objects use resources that require some special action when they are
destroyed. Typically these are resources that are not within the Java environment and not guaranteed to
be released by the object itself. These could be such things as graphics resources, fonts or other drawing-
related resources that are supplied by the host operating system, or external files on the hard disk.
Leaving these around after an object is destroyed wastes system resources and, in some circumstances
(with graphics resources under some older versions of Windows, for example) if you waste enough of
them, your program, and possibly other programs the system is supporting, may stop working. For
most classes this is not necessary, but if an object opened a disk file for example, but did not guarantee
its closure, you would want to make sure that the file was closed when the object was destroyed. You
can implement the finalize() method to take care of this.

Another use for the finalize() method is to record the fact that the object has been destroyed. You
could implement the finalize() method for the Sphere class to decrement the value of the static
member count, for example. This would make count a measure of how many Sphere objects were
around, rather than how many had been created. It would, however, not be an accurate measure for rea-
sons that I will come to in a moment.

You cannot rely on an object being destroyed when it is no longer available to your program code.
Unless your program calls the System.gc() method, the Java Virtual Machine will get rid of unwanted
objects and free the memory they occupy only if it runs out of memory, or if there is no activity within
your program — for example, when waiting for input. As a result, objects may not get destroyed until
execution of your program ends. You also have no guarantee as to when a finalize() method will be
called. All you are assured is that it will be called before the memory that the object occupied is freed.
Nothing time-sensitive should be left to the finalize() method.

If you don’t allow for the possibility of your objects hanging around, this can cause problems. For exam-
ple, suppose you create an object in a method that opens a file, and rely on the finalize() method to
close it. If you then call this method in a loop, you may end up with a large number of files open at one
time, since the object that is created in each call of the method will not necessarily be destroyed immedi-
ately on return from the method. This introduces the possibility of your program attempting to have
more files open simultaneously than the host operating system allows. In this situation, you should
make sure a file is closed when you have finished with it, by including an object method to close it
explicitly — for example, close().

265

Defining Classes

The System class also provides another possible approach. You can suggest to the JVM that the
finalize() methods for all discarded objects should be run, if they haven’t been already. You just
call the runFinalization() method:

System.runFinalization();

This is another of those “best efforts” deals on the part of the JVM. It will do its very best to run
finalize() for any dead objects that are lying around before returning from the runFinalization()
method, but like with a lot of things in this life, there are no guarantees.

Native Methods
It is possible to include in a class a method that is implemented in some other programming language,
such as C or C++, external to the Java Virtual Machine. To specify such a method within a class defini-
tion, you use the keyword native in the declaration of the method. For example:

public native long getData(); // Declare a method that is not in Java

Of course, the method will have no body in Java since it is defined elsewhere, where all the work is
done, so the declaration ends with a semicolon. The implementation of a native method will need to use
an interface to the Java environment. The standard API for implementing native methods in C, for exam-
ple, is called JNI — the Java Native Interface.

The major drawback to using native methods in Java is that your program will no longer be portable.
Security requirements for applets embedded in web pages require that the code must all be written in
Java — using native methods in an applet is simply not possible. Since the primary reasons for using
Java are the portability of the code and the ability to produce applets, the need for you to add native
methods to your Java programs will be minimal. I will therefore not delve any deeper into this topic.

Summary
In this chapter you’ve learned all the essentials of defining your own classes. You can now create your
own class types to fit the context of the problems you are dealing with. You will build on this in the next
chapter to enable you to add more flexibility to the operations on your class objects by learning how to
realize polymorphism.

The important points covered in this chapter are:

❑ A class definition specifies the variables and methods that are members of the class.

❑ Each class must be saved in a file with the same name as the class, and with the extension
.java.

❑ Class variables are declared using the keyword static, and one instance of each class variable
is shared among all objects of a class.

266

Chapter 5

❑ Each object of a class will have its own instance variables — these are variables declared without
using the keyword static.

❑ Methods that are specified as static can be called even if no class objects exist, but a static
method cannot refer to instance variables.

❑ Methods that are not specified as static can access any of the variables in the class directly.

❑ Recursive methods are methods that call themselves.

❑ Access to members of a class is determined by the access attributes that are specified for each of
them. These can be public, private, protected, package private, or nothing at all.

❑ Classes can be grouped into a package. If a class in a package is to be accessible from outside the
package, the class must be declared using the keyword public.

❑ To designate that a class is a member of a package, you use a package statement at the begin-
ning of the file containing the class definition.

❑ To add classes from a package to a file, you use an import statement immediately following
any package statement in the file.

❑ A nested class is a class that is defined within the definition of another class. Objects of a nested
class type can be created only in the context of an object of the outer class type.

❑ Objects of a static nested class type can be created independently, but the static nested class
name must be qualified by the outer class name.

❑ A native method is a method implemented in a language other than Java. Java programs con-
taining native methods cannot be applets and are no longer portable.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Define a class for rectangle objects defined by two points, the top-left and bottom-right corners
of the rectangle. Include a constructor to copy a rectangle, a method to return a rectangle object
that encloses the current object and the rectangle passed as an argument, and a method to dis-
play the defining points of a rectangle. Test the class by creating four rectangles and combining
these cumulatively to end up with a rectangle enclosing them all. Output the defining points of
all the rectangles you create.

2. Define a class, mcmLength, to represent a length measured in meters, centimeters, and millime-
ters, each stored as integers. Include methods to add and subtract objects, to multiply and
divide an object by an integer value, to calculate an area resulting from the product of two
objects, and to compare objects. Include constructors that accept three arguments — meters, cen-
timeters, and millimeters; one integer argument in millimeters; one double argument in cen-
timeters; and no arguments, which creates an object with the length set to zero. Check the class
by creating some objects and testing the class operations.

267

Defining Classes

3. Define a class, tkgWeight, to represent a weight in tons, kilograms, and grams, and include a
similar range of methods and constructors as the previous example. Demonstrate this class by
creating and combining some class objects.

4. Put both the previous classes in a package called Measures. Import this package into a program
that will calculate and display the total weight of the following: 200 carpets — size: 4 meters by
2 meters 9 centimeters, that weigh 1.25 kilograms per square meter; and 60 carpets — size: 3
meters 57 centimeters by 5 meters, that weigh 1.05 kilograms per square meter.

268

Chapter 5

6
Extending Classes and

Inheritance

A very important part of object-oriented programming allows you to create a new class based on a
class that has already been defined. The class that you use as the base for your new class can be
one that you have defined, a standard class in Java, or a class defined by someone else — perhaps
from a package supporting a specialized application area.

This chapter focuses on how you can reuse existing classes by creating new classes based on the
ones you have and explores the ramifications of using this facility, and the additional capabilities it
provides. You will also delve into an important related topic — interfaces — and how you can use
them.

In this chapter you will learn:

❑ How to reuse classes by defining a new class based on an existing class

❑ What polymorphism is and how to define your classes to take advantage of it

❑ What an abstract method is

❑ What an abstract class is

❑ What an interface is and how you can define your own interfaces

❑ How to use interfaces in your classes

❑ How interfaces can help you implement polymorphic classes

Using Existing Classes
Let’s start by understanding the jargon. Defining a new class based on an existing class is called
derivation. The new class, or derived class, is referred to as a direct subclass of the class from
which it is derived. The original class is called a base class because it forms the base for the defini-
tion of the derived class. The original class is also referred to as a superclass of the derived class.

You can also derive a new class from a derived class, which in turn was derived from some other
derived class, and so on. This is illustrated in Figure 6-1.

Figure 6-1

This shows just three classes in a hierarchy, but there can be as many as you like.

Let’s consider a more concrete example. You could define a class Dog that could represent a dog of any
kind:

class Dog {

// Members of the Dog class...

}

This might contain a data member identifying the name of a particular dog, such as Lassie or Poochy, and
another data member to identify the breed, such as Border Collie or Pyrenean Mountain Dog. From the Dog
class, you could derive a Spaniel class that represented dogs that were spaniels:

class Spaniel extends Dog {

// Members of the Spaniel class...

}

direct superclass of B
indirect superclass of C

class A

direct subclass of A
direct superclass of C

class B

direct subclass of B
indirect subclass of A

class C

derived from

derived from

270

Chapter 6

The extends keyword that you use here identifies that Dog is a base class for Spaniel, so an object of
type Spaniel will have members that are inherited from the Dog class, in addition to the members of the
Spaniel class that appear in its definition. The breed would be Spaniel for all instances of the class
Spaniel although in general the name for each spaniel would be different. The Spaniel class might
have some additional data members that characterize the specifics of what it means to be a spaniel. You
will see in a moment how you can arrange for the base class data members to be set appropriately.

A Spaniel object is a specialized instance of a Dog object. This reflects real life. A spaniel is obviously a
dog and will have all the properties of a basic dog, but it has some unique characteristics of its own that
distinguish it from all the dogs that are not spaniels. The inheritance mechanism that adds all the prop-
erties of the base class —Dog in this instance — to those in the derived class is a good model for the real
world. The members of the derived class define the properties that differentiate it from the base type, so
when you derive one class from another, you can think of your derived class as a specification for objects
that are specializations of the base class object. Another way of thinking about this is that the base class
defines a set of objects and a derived class defines a specific subset of those that have particular defining
characteristics.

Class Inheritance
In summary, when you derive a new class from a base class, the process is additive in terms of what
makes up a class definition. The additional members that you define in the new class establish what
makes a derived class object different from a base class object. Any members that you define in the new
class are in addition to those that are already members of the base class. For your Spaniel class that you
derived from Dog, the data members to hold the name and the breed that are defined for the class Dog
would automatically be in the class Spaniel. A Spaniel object will always have a complete Dog object
inside it — with all its data members and methods. This does not mean that all the members defined in
the Dog class are available to methods that are specific to the Spaniel class. Some are and some aren’t.
The inclusion of members of a base class in a derived class so that they are accessible in that derived
class is called class inheritance. An inherited member of a base class is one that is accessible within the
derived class. If a base class member is not accessible in a derived class, then it is not an inherited mem-
ber of the derived class, but base class members that are not inherited still form part of a derived class
object.

An inherited member of a derived class is a full member of that class and is freely accessible to any
method in the class. Objects of the derived class type will contain all the inherited members of the base
class — both fields and methods, as well as the members that are specific to the derived class. Remember
that a derived class object always contains a complete base class object within it, including all the fields
and methods that are not inherited. The next step is to take a closer look at how inheritance works and
how the access attribute of a base class member affects its visibility in a derived class.

You need to consider several aspects of defining and using a derived class. First of all, you need to know
which members of the base class are inherited in the derived class. I will explain what this implies for
data members and methods separately — there are some subtleties here you should be quite clear on. I
will also look at what happens when you create an object of the derived class. There are some wrinkles
in this context that require closer consideration. Let’s start by looking at the data members that are inher-
ited from a base class.

271

Extending Classes and Inheritance

Inheriting Data Members
Figure 6-2 shows which access attributes permit a class member to be inherited in a subclass. It shows
what happens when the subclass is defined in either the same package or a different package from that
containing the base class. Remember that inheritance implies accessibility of the member in a derived
class, not just presence.

Figure 6-2

As you can see from Figure 6-2, a subclass that you define in the same package as its base class inherits
everything except for private data members of the base. If you define a subclass outside the package
containing the base class, the private data members are not inherited, and neither are any data mem-
bers in the base class that you have declared without access attributes. Members defined as private in
the base class are never inherited under any circumstances. The base class, MyClass, must be declared as
public in Package1, otherwise it would not be accessible from Package2 as the base class for
SubClass2.

You should also be able to see where the explicit access specifiers now sit in relation to one another. The
public specifier is the least restrictive on class members since a public member is available every-
where, protected comes next, and prevents access from classes outside of a package, but does not limit

Remember that a class itself can be specified as public. This makes the class acces-
sible from any package anywhere. A class that is not declared as public can be
accessed only from classes within the same package. This means, for example, that
you cannot define objects of a non-public class type within classes in other pack-
ages. It also means that to derive a new class from a class in a different package, the
base class must be declared as public. If the base class is not declared as public, it
cannot be reached directly from outside the package.

public int b;

protected int c;

SubClass2

Package2 Package1

public int b;

protected int c;

int a;

public MyClass

private int e;

public int b;

protected int c;

int a;

SubClass1

No No

No

inherited

inherited inherited

inherited

inherited

272

Chapter 6

inheritance — provided the class itself is public. Putting no access specifier on a class member limits
access to classes within the same package and prevents inheritance in subclasses that are defined in a
different package. The most restrictive is private since access is constrained to the same class.

The inheritance rules apply to members of a class that you have declared as static— as well as non-
static members. You will recall that only one occurrence of each static variable in a class exists and is
shared by all objects of the class, whereas each object has its own set of instance variables. So, for exam-
ple, a variable that you declare as private and static in the base class is not inherited in a derived
class, whereas a variable that you declare as protected and static will be inherited and will be shared
between all objects of a derived class type, as well as objects of the base class type.

Hidden Data Members
You can define a data member in a derived class with the same name as a data member in the base class.
This is not a recommended approach to class design generally, but it’s possible that it can arise uninten-
tionally. When it occurs, the base class data member may still be inherited, but will be hidden by the
derived class member with the same name. The hiding mechanism applies regardless of whether the
respective types or access attributes are the same or not — the base class member will be hidden in the
derived class if the names are the same.

Any use of the derived class member name will always refer to the member defined as part of the
derived class. To refer to the inherited base class member, you must qualify it with the keyword super
to indicate it is the member of the superclass that you want. Suppose you have a data member value as
a member of the base class, and a data member with the same name in the derived class. In the derived
class, the name value references the derived class member, and the name super.value refers to the
member inherited from the base class. Note that you cannot use super.super.something to refer to a
member name hidden in the base class of a base class.

In most situations you won’t need to refer to inherited data members in this way, as you would not
deliberately set out to use duplicate names. The situation can commonly arise if you are using a class as
a base that is subsequently modified by adding data members — it could be a Java library class, for
example, or some other class in a package designed and maintained by someone else. Since your code
did not presume the existence of the base class member with the same name as your derived class data
member, hiding the inherited member is precisely what you want. It allows the base class to be altered
without breaking your code.

Inherited Methods
Ordinary methods in a base class, by which I mean methods that are not constructors, are inherited
in a derived class in the same way as the data members of the base class. Those methods declared as
private in a base class are not inherited, and those that you declare without an access attribute are
inherited only if you define the derived class in the same package as the base class. The rest are all
inherited.

Constructors are different from ordinary methods. Constructors in the base class are never inherited,
regardless of their attributes. You can look into the intricacies of constructors in a class hierarchy by con-
sidering how derived class objects are created.

273

Extending Classes and Inheritance

Objects of a Derived Class
I said at the beginning of this chapter that a derived class extends a base class. This is not just jargon — it
really does do this. As I have said several times, inheritance is about what members of the base class are
accessible in a derived class, not what members of the base class exist in a derived class object. An object
of a subclass will contain all the members of the original base class, plus any new members that you
have defined in the derived class. This is illustrated in Figure 6-3.

Figure 6-3

The base members are all there in a derived class object — you just can’t access some of them in the
methods that you have defined for the derived class. The fact that you can’t access some of the base class
members does not mean that they are just excess baggage — they are essential members of your derived
class objects. A Spaniel object needs all the Dog attributes that make it a Dog object, even though some
of these may not be accessible to the Spaniel methods. Of course, the base class methods that are inher-
ited in a derived class can access all the base class members, including those that are not inherited.

Though the base class constructors are not inherited in your derived class, you can still call them to ini-
tialize the base class members. More than that, if you don’t call a base class constructor from your
derived class constructor, the compiler will try to arrange to do it for you. The reasoning behind this is
that since a derived class object has a base class object inside it, a good way to initialize the base part of a
derived class object is using a base class constructor.

To understand this better, let’s take a look at how it works in practice.

Base Class

public
protected

no attribute
private
constructors

Subclass Object

Inherited Members
public
protected

Inaccessible
Basic Members

New Members
subclass constructors
subclass data members
subclass methods

Subclass

Members of a Subclass Object

Inherited public
protected

subclass constructors
subclass data members
subclass methods

274

Chapter 6

Deriving a Class
Let’s take a simple example. Suppose you have defined a class to represent an animal as follows:

public class Animal {

public Animal(String aType) {

type = new String(aType);

}

public String toString() {

return “This is a “ + type;

}

private String type;

}

This has a member, type, to identify the type of animal, and its value is set by the constructor. You also
have a toString() method for the class to generate a string representation of an object of the class.

You can now define another class, based on the class Animal, to define dogs. You can do this immedi-
ately, without affecting the definition of the class Animal. You could write the basic definition of the
class Dog as:

public class Dog extends Animal {

// constructors for a Dog object

private String name; // Name of a Dog

private String breed; // Dog breed

}

You use the keyword extends in the definition of a subclass to identify the name of the direct super-
class. The class Dog will inherit only the method toString() from the class Animal, since the private
data member and the constructor cannot be inherited. Of course, a Dog object will have a type data
member that needs to be set to “Dog”, it just can’t be accessed by methods that you define in the Dog
class. You have added two new instance variables in the derived class. The name member holds the
name of the particular dog, and the breed member records the kind of dog it is. All you need to add is
the means of creating Dog class objects.

Derived Class Constructors
You can define two constructors for the subclass Dog, one that just accepts an argument for the name of a
dog and another that accepts both a name and the breed of the Dog object. For any derived class object,
you need to make sure that the private base class member, type, is properly initialized. You do this by
calling a base class constructor from the derived class constructor:

public class Dog extends Animal {

public Dog(String aName) {

super(“Dog”); // Call the base constructor

name = aName; // Supplied name

breed = “Unknown”; // Default breed value

}

275

Extending Classes and Inheritance

public Dog(String aName, String aBreed) {

super(“Dog”); // Call the base constructor

name = aName; // Supplied name

breed = aBreed; // Supplied breed

}

private String name; // Name of a Dog

private String breed; // Dog breed

}

The statement in the derived class constructors that calls the base class constructor is:

super(“Dog”); // Call the base constructor

The use of the super keyword here as the method name calls the constructor in the superclass — the
direct base class of the class Dog, which is the class Animal. This will initialize the private member
type to “Dog” since this is the argument passed to the base constructor. The superclass constructor is
always called in this way in the subclass, using the name super rather than the base class constructor
name Animal. The super keyword has other uses in a derived class. You have already seen that you can
access a hidden member of the base class by qualifying the member name with super.

Calling the Base Class Constructor
You should always call an appropriate base class constructor from the constructors in your derived class.
The base class constructor call must be the first statement in the body of the derived class constructor. If
the first statement in a derived class constructor is not a call to a base class constructor, the compiler will
insert a call to the default base class constructor for you:

super(); // Call the default base constructor

Unfortunately, this can result in a compiler error, even though the offending statement was inserted
automatically. How does this come about?

When you define your own constructor in a class, as is the case for the Animal class, no default construc-
tor is created by the compiler. It assumes you are taking care of all the details of object construction,
including any requirement for a default constructor. If you have not defined your own default construc-
tor in a base class — that is, a constructor that has no parameters — when the compiler inserts a call to
the default constructor from your derived class constructor, you will get a message saying that the con-
structor is not there.

Try It Out Testing a Derived Class
You can try out the Dog class with the following code:

public class TestDerived {

public static void main(String[] args) {

Dog aDog = new Dog(“Fido”, “Chihuahua”); // Create a dog

Dog starDog = new Dog(“Lassie”); // Create a Hollywood dog

276

Chapter 6

System.out.println(aDog); // Let’s hear about it

System.out.println(starDog); // and the star

}

}

Of course, the files containing the Dog and Animal class definition must be in the same directory as
TestDerived.java. The example produces the following rather uninformative output:

This is a Dog

This is a Dog

How It Works
Here you create two Dog objects and then output information about them using the println() method.
This will implicitly call the toString() method for each. You could try commenting out the call to
super() in the constructors of the derived class to see the effect of the compiler’s efforts to call the
default base class constructor.

You have called the inherited method toString() successfully, but this knows only about the base class
data members. At least you know that the private member, type, is being set up properly. What you
really need though is a version of toString() for the derived class.

Overriding a Base Class Method
You can define a method in a derived class that has the same signature as a method in the base class. The
access attribute for the method in the derived class can be the same as that in the base class or less
restrictive, but it cannot be more restrictive. This means that if you declare a method as public in the
base class, for example, any derived class definition of the method must also be declared as public. You
cannot omit the access attribute in the derived class in this case, or specify it as private or protected.

When you define a new version of a base class method in this way, the derived class method will be
called for a derived class object, not the method inherited from the base class. The method in the derived
class overrides the method in the base class. The base class method is still there though, and it is still
possible to call it in a derived class. Let’s see an overriding method in a derived class in action.

Try It Out Overriding a Base Class Method
You can add the definition of a new version of toString() to the definition of the derived class, Dog:

// Present a dog’s details as a string

public String toString() {

return “It’s “ + name + “ the “ + breed;

}

With this change to the example, the output will now be:

It’s Fido the Chihuahua

It’s Lassie the Unknown

277

Extending Classes and Inheritance

How It Works
The toString() method in the Dog class overrides the base class method because it has the same signa-
ture. You will recall from the last chapter that the signature of a method is determined by its name and
the parameter list. So, now whenever you use the toString() method for a Dog object either explicitly
or implicitly, this method will be called — not the base class method.

Of course, ideally you would like to output the member, type, of the base class, but you can’t reference
this in the derived class because it is not inherited. However, you can still call the base class version of
toString(). It’s another job for the super keyword.

Try It Out Calling a Base Class Method from a Derived Class
You can rewrite the derived class version of toString() to call the base method:

// Present a dog’s details as a string

public String toString() {

return super.toString() + “\nIt’s “ + name + “ the “ + breed;

}

Running the example again will produce the following output:

This is a Dog

It’s Fido the Chihuahua

This is a Dog

It’s Lassie the Unknown

How It Works
You use the super keyword to identify the base class version of toString() that is hidden by the
derived class version. You used the same notation to refer to superclass data members that were hidden
by derived class data members with the same name. Calling the base class version of toString()
returns the String object for the base part of the object. You then append extra information to this about
the derived part of the object to produce a String object specific to the derived class.

Note that you are obliged to declare the toString() method as public. When you
override a base class method, you cannot change the access attributes of the new ver-
sion of the method to be more stringent than that of the base class method that it over-
rides. Since public is the least stringent access attribute, you have no other choice.

278

Chapter 6

Choosing Base Class Access Attributes
You now know the options available to you in defining the access attributes for classes you expect to use
to define subclasses. You know what effect the attributes have on class inheritance, but how do you
decide which you should use?

There are no hard and fast rules — what you choose will depend on what you want to do with your
classes in the future, but there are some guidelines you should consider. They follow from basic object-
oriented principles:

❑ You should declare the methods that make up the external interface to a class as public. As long
as there are no overriding methods defined in a derived class, public base class methods will be
inherited and fully available as part of the external interface to the derived class. You should not
normally make data members public unless they are constants intended for general use.

❑ If you expect other people will use your classes as base classes, your classes will be more secure
if you keep data members private, and provide public methods for accessing and manipulat-
ing them when necessary. In this way you control how a derived class object can affect the base
class data members.

❑ Making base class members protected allows them to be accessed from other classes in the
same package, but prevents direct access from a class in another package. Base class members
that are protected are inherited in a subclass and can, therefore, be used in the implementation
of a derived class. You can use the protected option when you have a package of classes in
which you want uninhibited access to the data members of any class within the same package —
because they operate in a closely coupled way, for instance — but you want free access to be
limited to subclasses in other packages.

❑ Omitting the access attribute for a class member makes it directly available to other classes in
the same package, while preventing it from being inherited in a subclass that is not in the same
package — it is effectively private when viewed from another package.

Polymorphism
Class inheritance is not just about reusing classes that you have already defined as a basis for defining a
new class. It also adds enormous flexibility to the way in which you can program your applications,
with a mechanism called polymorphism. So what is polymorphism?

The word polymorphism generally means the ability to assume several different forms or shapes. In pro-
gramming terms it means the ability of a single variable of a given type to be used to reference objects of
different types and to automatically call the method that is specific to the type of object the variable ref-
erences. This enables a single method call to behave differently, depending on the type of the object to
which the call applies. This is illustrated in Figure 6-4.

279

Extending Classes and Inheritance

Figure 6-4

A few requirements must be fulfilled to get polymorphic behavior, so let’s step through them.

First of all, polymorphism works with derived class objects. It also depends on a new capability that is
possible within a class hierarchy that you haven’t met before. Up to now you have always been using a
variable of a given type to reference objects of the same type. Derived classes introduce some new flexi-
bility in this. Of course, you can store a reference to a derived class object in a variable of the derived
class type, but you can also store it in a variable of any direct or indirect base class type. More than that,
a reference to a derived class object must be stored in a variable of a direct or indirect class type for poly-
morphism to work. For example, Figure 6-4 illustrates how a variable of type Dog can be used to store a
reference to an object of any type derived from Dog. If the Dog class were derived from the Animal class
here, a variable of type Animal could also be used to reference Spaniel, Chihuahua, or Collie objects.

Polymorphism means that the actual type of the object involved in a method call determines which
method is called, rather than the type of the variable being used to store the reference to the object. In
Figure 6-4, if aDog contains a reference to a Spaniel object, the bark() method for that object will be

Dog aDog; // Variable to hold any kind of dog object

aDog.bark()

Dog

bark()

Spaniel

bark()

Chihuahua

bark()

Collie

bark()

Call any of these methods depending on the object type

The variable aDog can be used to refer to an object of the
base class type, or an object of any of the derived class types.

280

Chapter 6

called. If it contains a reference to a Collie object, the bark() method in the Collie class will be called.
To get polymorphic operation when calling a method, the method must be declared as a member of the
base class — the class type of the variable you are using — as well as being declared as a member of the
class type of the object involved. So in the example, the Dog class must contain a bark() method, as
must each of the derived classes. You cannot call a method for a derived class object using a variable of a
base class type if the method is not a member of the base class. Any definition of the method in a derived
class must have the same signature as in the base class and must have an access specifier that is no more
restrictive.

Methods that have the same signature have the same name, and have parameter lists with the same
number of parameters where corresponding parameters are of the same type. You have a bit more flexi-
bility with the return type when you are defining a polymorphic method. For polymorphic behavior,
the return type of the method in the derived class must either be the same as that of the base class
method, or must be of a type that is a subclass of the base class type. Where the return types are different
but the return type of the method in the derived class is a subclass of the return type in the base class,
the return types are said to be covariant. Thus the type of object returned by the derived class method is
just a specialization of the type returned by the base class method. For example, suppose that you have a
method defined in a base class Animal that has a return type of type Animal:

public class Animal {

Animal createCreature() {

// Code to create an Animal object and return a reference to it...

}

// Rest of the class definition...

}

You can redefine the createCreature() method in a derived class Dog like this:

public class Dog extends Animal {

Dog createCreature() {

// Code to create a Dog object and return a reference to it...

}

// Rest of the class definition...

}

As long as the return type for the method in the derived class is a subclass of the base class type, as you
have here, even though the return types are different you can still get polymorphic behavior. I can sum-
marize the conditions that need to be met if you want to use polymorphism as follows:

❑ The method call for a derived class object must be through a variable of a base class type.

❑ The method called must be defined in the derived class.

❑ The method called must also be declared as a member of the base class.

❑ The method signatures for the method in the base and derived classes must be the same.

❑ Either the method return type must be the same in the base and derived classes or the return
type must be covariant.

❑ The method access specifier must be no more restrictive in the derived class than in the base.

281

Extending Classes and Inheritance

When you call a method using a variable of a base class type, polymorphism results in the method that
is called being selected based on the type of the object stored, not the type of the variable. Because a vari-
able of a base type can store a reference to an object of any derived type, the kind of object stored will
not be known until the program executes. Thus the choice of which method to execute has to be made
dynamically when the program is running — it cannot be determined when the program is compiled.
The bark() method that is called through the variable of type Dog in the earlier illustration may do dif-
ferent things depending on what kind of object the variable references. As you will see, this introduces a
whole new level of capability in programming using objects. It implies that your programs can adapt at
run time to accommodate and process different kinds of data quite automatically.

Note that polymorphism applies only to methods. It does not apply to data members. When you access
a data member of a class object, the variable type always determines the class to which the data member
belongs. This implies that a variable of type Dog can only be used to access data members of the Dog
class. Even when it references an object of type Spaniel, for example, you can only use it to access data
members of the Dog part of a Spaniel object.

Using Polymorphism
As you have seen, polymorphism relies on the fact that you can assign an object of a subclass type to a
variable that you have declared as being of a superclass type. Suppose you declare the variable:

Animal theAnimal = null; // Declare a variable of type Animal

You can quite happily make theAnimal refer to an object of any of the subclasses of the class Animal.
For example, you could use it to reference an object of type Dog:

theAnimal = new Dog(“Rover”);

As you might expect, you could also initialize the variable theAnimal to reference an object when you
declare it:

Animal theAnimal = new Dog(“Rover”);

This principle applies quite generally. You can use a variable of a base class type to store a reference to an
object of any class type that you have derived, directly or indirectly, from the base. You can see what
magic can be wrought with this in practice by extending the previous example. You can add a new
method to the class Dog that will display the sound a Dog makes. You can add a couple of new sub-
classes that represent some other kinds of animals.

Try It Out Enhancing the Dog Class
First of all you will enhance the class Dog by adding a method to display the sound that a dog makes:

public class Dog extends Animal {

// A barking method

public void sound() {

System.out.println(“Woof Woof”);

}

// Rest of the class as before...

}

282

Chapter 6

You can also derive a class Cat from the class Animal:

public class Cat extends Animal {

public Cat(String aName) {

super(“Cat”); // Call the base constructor

name = aName; // Supplied name

breed = “Unknown”; // Default breed value

}

public Cat(String aName, String aBreed) {

super(“Cat”); // Call the base constructor

name = aName; // Supplied name

breed = aBreed; // Supplied breed

}

// Return a String full of a cat’s details

public String toString() {

return super.toString() + “\nIt’s “ + name + “ the “ + breed;

}

// A miaowing method

public void sound() {

System.out.println(“Miiaooww”);

}

private String name; // Name of a cat

private String breed; // Cat breed

}

Just to make it a crowd, you can derive another class — of ducks:

public class Duck extends Animal {

public Duck(String aName) {

super(“Duck”); // Call the base constructor

name = aName; // Supplied name

breed = “Unknown”; // Default breed value

}

public Duck(String aName, String aBreed) {

super(“Duck”); // Call the base constructor

name = aName; // Supplied name

breed = aBreed; // Supplied breed

}

// Return a String full of a duck’s details

public String toString() {

return super.toString() + “\nIt’s “ + name + “ the “ + breed;

}

// A quacking method

public void sound() {

System.out.println(“Quack quackquack”);

}

283

Extending Classes and Inheritance

private String name; // Duck name

private String breed; // Duck breed

}

You can fill the whole farmyard, if you need the practice, but three kinds of animal are sufficient to show
you how polymorphism works.

You need to make one change to the class Animal. To select the method sound() dynamically for
derived class objects, it needs to be a member of the base class. You can add a content-free version of
sound() to the class Animal:

class Animal {

// Rest of the class as before...

// Dummy method to be implemented in the derived classes

public void sound(){}

}

Only a particular Animal object will make a specific sound, so the sound() method in the class does
nothing. You need a program that will use these classes. To give the classes a workout, you can create an
array of type Animal and populate its elements with different subclass objects. You can then select an
object random from the array, so that there is no possibility that the type of the object selected is known
ahead of time. Here’s the code to do that:

import java.util.Random;

public class TryPolymorphism {

public static void main(String[] args) {

// Create an array of three different animals

Animal[] theAnimals = {

new Dog(“Rover”, “Poodle”),

new Cat(“Max”, “Abyssinian”),

new Duck(“Daffy”,”Aylesbury”)

};

Animal petChoice; // Choice of pet

Random select = new Random(); // Random number generator

// Make five random choices of pet

for(int i = 0; i < 5; i++) {

// Choose a random animal as a pet

petChoice = theAnimals[select.nextInt(theAnimals.length)];

System.out.println(“\nYour choice:\n” + petChoice);

petChoice.sound(); // Get the pet’s reaction

}

}

}

284

Chapter 6

When I ran this I got the following output:

Your choice:

This is a Duck

It’s Daffy the Aylesbury

Quack quackquack

Your choice:

This is a Cat

It’s Max the Abyssinian

Miiaooww

Your choice:

This is a Duck

It’s Daffy the Aylesbury

Quack quackquack

Your choice:

This is a Duck

It’s Daffy the Aylesbury

Quack quackquack

Your choice:

This is a Cat

It’s Max the Abyssinian

Miiaooww

The chances are good that you will get a different set from this, and a different set again when you rerun
the example. The output from the example clearly shows that the methods are being selected at run time,
depending on which object happens to get stored in the variable petChoice.

How It Works
The definition of the sound() method in the Animal class has no statements in the body, so it will do
nothing if it is executed. You will see a little later in this chapter how you can avoid including the empty
definition for the method but still get polymorphic behavior in the derived classes.

You need the import statement because you use a Random class object in the example to produce
pseudo-random index values in the way you have seen before. The array theAnimals of type Animal
contains a Dog object, a Cat object, and a Duck object. You select objects randomly from this array in the
for loop using the Random object select, and store the selection in petChoice. You then call the
toString() and sound() methods using the object reference stored. The effect is that the appropriate
method is selected automatically to suit the object stored, so the program operates differently depending
on what type of object is referenced by petChoice.

Of course, you call the toString() method implicitly in the argument to println(). The compiler will
insert a call to this method to produce a String representation of the object referenced by petChoice.
The particular toString() method will automatically be selected to correspond with the type of object
referenced by petChoice. This would still work even if you had not included the toString() method
in the base class. You’ll see a little later in this chapter that there is a toString() method in every class
that you define, regardless of whether you define one or not.

285

Extending Classes and Inheritance

Polymorphism is a fundamental part of object-oriented programming. You’ll be making extensive use of
polymorphism in many of the examples you will develop later in the book, and you will find that you
use it often in your own applications and applets. But this is not all there is to polymorphism in Java,
and I will come back to it again later in this chapter.

Multiple Levels of Inheritance
As I indicated at the beginning of the chapter, there is nothing to prevent a derived class from being
used as a base class. For example, you could derive a class Spaniel from the class Dog without any
problem:

Try It Out A Spaniel Class
Start the Spaniel class off with this minimal code:

class Spaniel extends Dog {

public Spaniel(String aName) {

super(aName, “Spaniel”);

}

}

To try this out you can add a Spaniel object to the array theAnimals in the previous example, by
changing the statement to:

Animal[] theAnimals = {

new Dog(“Rover”, “Poodle”),

new Cat(“Max”, “Abyssinian”),

new Duck(“Daffy”,”Aylesbury”),

new Spaniel(“Fido”)

};

Don’t forget to add in the comma after the Duck object. Try running the example again a few times.

How It Works
The class Spaniel will inherit members from the class Dog, including the members of Dog that are
inherited from the class Animal. The class Dog is a direct superclass, and the class Animal is an indirect
superclass of the class Spaniel. The only additional member of Spaniel is the constructor. This calls
the Dog class constructor using the keyword super and passes the value of aName and the String object
“Spaniel” to it.

If you run the TryPolymorphism class a few times, you should get a choice of the Spaniel object from
time to time. Thus, the class Spaniel is also participating in the polymorphic selection of the methods
toString() and sound(), which in this case are inherited from the parent class, Dog. The inherited
toString() method works perfectly well with the Spaniel object, but if you wanted to provide a
unique version, you could add it to the Spaniel class definition. This would then be automatically
selected for a Spaniel object rather than the method inherited from the Dog class.

286

Chapter 6

Abstract Classes
In the Animal class, you introduced a version of the sound() method that did nothing because you
wanted to call the sound() method in the subclass objects dynamically. The method sound() has no
meaning in the context of the generic class Animal, so implementing it does not make much sense. This
situation often arises in object-oriented programming. You will often find yourself creating a superclass
from which you will derive a number of subclasses, just to take advantage of polymorphism.

To cater for this, Java has abstract classes. An abstract class is a class in which one or more methods are
declared, but not defined. The bodies of these methods are omitted, because, as in the case of the method
sound() in the Animal class, implementing the methods does not make sense. Since they have no defi-
nition and cannot be executed, they are called abstract methods. The declaration for an abstract method
ends with a semicolon and you specify the method with the keyword abstract to identify it as such. To
declare that a class is abstract you just use the keyword abstract in front of the class keyword in the
first line of the class definition.

You could have defined the class Animal as an abstract class by amending it as follows:

public abstract class Animal {

public abstract void sound(); // Abstract method

public Animal(String aType) {

type = new String(aType);

}

public String toString() {

return “This is a “ + type;

}

private String type;

}

The previous program will work just as well with these changes. It doesn’t matter whether you prefix
the class name with public abstract or abstract public, they are equivalent, but you should be
consistent in your usage. The sequence public abstract is typically preferred. The same goes for the
declaration of an abstract method, but both public and abstract must precede the return type specifi-
cation, which is void in this case.

An abstract method cannot be private since a private method cannot be inherited and therefore
cannot be redefined in a subclass.

You cannot instantiate an object of an abstract class, but you can declare a variable of an abstract class
type. With the new abstract version of the class Animal, you can still write:

Animal thePet = null; // Declare a variable of type Animal

just as you did in the TryPolymorphism class. You can then use this variable to store objects of the sub-
classes, Dog, Spaniel, Duck, and Cat.

When you derive a class from an abstract base class, you don’t have to define all the abstract methods in
the subclass. In this case the subclass will also be abstract and you won’t be able to instantiate any
objects of the subclass either. If a class is abstract, you must use the abstract keyword when you define

287

Extending Classes and Inheritance

it, even if it only inherits an abstract method from its superclass. Sooner or later you must have a sub-
class that contains no abstract methods. You can then create objects of this class type.

The Universal Superclass
I must now reveal something I have been keeping from you. All the classes that you define are sub-
classes by default — whether you like it or not. All your classes have a standard class, Object, as a base,
so Object is a superclass of every class. You never need to specify the class Object as a base in the def-
inition of your classes — it happens automatically.

There are some interesting consequences of having Object as a universal superclass. For one thing, a
variable of type Object can store a reference to an object of any class type. This is useful when you want
to write a method that needs to handle objects of unknown type. You can define a parameter to the
method of type Object, in which case a reference to any type of object can be passed to the method.
When necessary you can include code in the method to figure out what kind of object it actually is
(you’ll see some of the tools that will enable you to do this a little later in this chapter).

Of course, your classes will inherit members from the class Object. These all happen to be methods, of
which seven are public, and two are protected. The seven public methods are:

Method Purpose

toString() This method returns a String object that describes the current object. In the
inherited version of the method, this will be the name of the class, followed by
‘@’ and the hexadecimal representation for the object. This method is called
automatically when you concatenate objects with String variables using +. You
can override this method in your classes to return your own String object for
your class.

equals() This compares the reference to the object passed as an argument with the reference
to the current object and returns true if they are equal. Thus true is returned if the
current object and the argument are the same object (not just equal — they must be
one and the same object). It returns false if they are different objects, even if the
objects have identical values for their data members.

getClass() This method returns an object of type Class that identifies the class of the cur-
rent object. You’ll see a little more about this later in this chapter.

hashCode() This method calculates a hashcode value for an object and returns it as type int.
Hashcode values are used in classes defined in the package java.util for stor-
ing objects in hash tables. You’ll see more about this in Chapter 14.

notify() This is used to wake up a thread associated with the current object. I’ll discuss
how threads work in Chapter 16.

notifyAll() This is used to wake up all threads associated with the current object. I’ll also dis-
cuss this in Chapter 16.

wait() This method causes a thread to wait for a change in the current object. I’ll discuss
this method in Chapter 16, too.

288

Chapter 6

Note that getClass(), notify(), notifyAll(), and wait() cannot be overridden in your own class
definitions — they are fixed with the keyword final in the class definition for Object (see the section on
the final modifier later in this chapter).

It should be clear now why you could get polymorphic behavior with toString() in your derived
classes when your base class did not define the method. There is always a toString() method in all
your classes that is inherited from Object.

The two protected methods that your classes inherit from Object are:

Method Purpose

clone() This will create an object that is a copy of the current object regardless of
type. This can be of any type, as an Object variable can refer to an object
of any class. Note that this does not work with all class objects and does
not always do precisely what you want, as you will see later in this section.

finalize() This is the method that is called to clean up when an object is destroyed.
As you saw in the previous chapter, you can override this to add your own
clean-up code.

Since all your classes will inherit the methods defined in the Object class you should look at them in a
little more detail.

The toString() Method
You have already made extensive use of the toString() method, and you know that it is used by the
compiler to obtain a String representation of an object when necessary. It is obvious now why you must
always declare the toString() method as public in a class. It is declared as such in the Object class
and you can’t declare it as anything else.

You can see what the toString() method that is inherited from the Object class will output for an
object of one of your classes by commenting out the toString() method in Animal class in the previ-
ous example. A typical sample of the output for an object is:

Your choice:

Spaniel@b75778b2

It’s Fido the Spaniel

Woof Woof

The second line here is generated by the toString() method implemented in the Object class. This
will be inherited in the Animal class, and it is called because you no longer override it. The hexadecimal
digits following the @ in the output are the hashcode of the object.

Determining the Type of an Object
The getClass() method that all your classes inherit from Object returns an object of type Class that
identifies the class of an object. Suppose you have a variable pet of type Animal that might contain a

289

Extending Classes and Inheritance

reference to an object of type Dog, Cat, Duck, or even Spaniel. To figure out what sort of thing it really
refers to, you could write the following statements:

Class objectType = pet.getClass(); // Get the class type

System.out.println(objectType.getName()); // Output the class name

The method getName() is a member of the Class class, and it returns the fully qualified name of the
actual class of the object for which it is called as a String object. Thus, the second statement will output
the name of the class for the pet object. If pet referred to a Duck object, this would output:

Duck

This is the fully qualified name in this case, as the class is in the default package, which has no name. For
a class defined in a named package, the class name would be prefixed with the package name. If you just
wanted to output the class identity, you need not explicitly store the Class object. You can combine both
statements into one:

System.out.println(pet.getClass().getName()); // Output the class name

This will produce the same output as before.

Remember that the Class object returns the actual class of an object. Suppose you define a String
object like this:

String saying = “A stitch in time saves nine.”;

You could store a reference to this String object as type Object:

Object str = saying;

The following statement will display the type of str:

System.out.println(str.getClass().getName());

This statement will output the type name as java.lang.String. The fact that the reference is stored in
a variable of type Object does not affect the underlying type of the object itself.

When your program is executing, there are instances of the Class class in existence that represent each
of the classes and interfaces in your program (I’ll explain what an interface type is a little later in this
chapter). There is also a Class object for each array type in your program as well as every primitive
type. The Java Virtual Machine generates these when your program is loaded. Since Class is primarily
intended for use by the Java Virtual Machine, it has no public constructors, so you can’t create objects of
type Class yourself.

Although you can use the forName() method to get the Class object corresponding to a particular “class
or interface type, there is a more direct way. If you append .class to the name of any class, interface, or
primitive type, you have a reference to the Class object for that class. For example, java.lang.String.
class references the Class object for the String class and Duck.class references the Class object for
the Duck class. Similarly, int.class is the class object for the primitive type, int, and double.class is

290

Chapter 6

the one corresponding to type double. This may not seem particularly relevant at this point, but keep it in
mind. Because there is only one Class object for each class or interface type, you can test for the class of an
object programmatically. Given a variable pet of type Animal, you could check whether the object refer-
enced was of type Duck with the following statement:

if(pet.getClass()== Duck.class) {

System.out.println(“By George – it is a duck!”);

}

This tests whether the object referenced by pet is of type Duck. Because each Class object is unique, this
is a precise test. If pet contained a reference to an object that was a subclass of Duck, the result of the
comparison in the if would be false. You’ll see a little later in this chapter that you have an operator
in Java, instanceof, that does almost the same thing — but not quite.

Note that the Class class is not an ordinary class. It is an example of a generic type. I’ll discuss generic
types in detail in Chapter 13, but for now be aware that Class really defines a set of classes. Each class,
interface, array type, and primitive type that you use in your program will be represented by an object of
a unique class from the set defined by the Class generic type.

Copying Objects
As you saw in the summary at the beginning of this section, the protected method clone() that is
inherited from the Object class will create a new object that is a copy of the current object. It will do this
only if the class of the object to be cloned indicates that cloning is acceptable. This is the case if the class
implements the Cloneable interface. Don’t worry about what an interface is at this point — you’ll learn
about this a little later in this chapter.

The clone() method that is inherited from Object clones an object by creating a new object of the same
type as the current object and setting each of the fields in the new object to the same value as the corre-
sponding fields in the current object. When the data members of the original object refer to class objects,
the objects referred to are not duplicated when the clone is created — only the references are copied
from the fields in the old object to the fields in the cloned object. This isn’t typically what you want to
happen — both the old and the new class objects can now be modifying a single shared object that is
referenced through their corresponding data members, not recognizing that this is occurring.

If objects are to be cloned, the class must implement the Cloneable interface. I will discuss interfaces
later in this chapter where you will see that implementing an interface typically involves implementing
a specific set of methods. All that is required to make a class implement this interface is to declare it in
the first line of the class definition. This is done using the implements keyword. For example:

class Dog implements Cloneable {

// Details of the definition of the class...

}

This makes Dog objects cloneable because you have declared that the class implements the interface.

You will understand the implications of the inherited clone() method more clearly if you consider a
simple specific instance. Let’s suppose you define a class Flea that has a method that allows the name to
be changed:

291

Extending Classes and Inheritance

public class Flea extends Animal implements Cloneable {

// Constructor

public Flea(String aName, String aSpecies) {

super(“Flea”); // Pass the type to the base

name = aName; // Supplied name

species = aSpecies; // Supplied species

}

// Change the flea’s name

public void setName(String aName) {

name = aName; // Change to the new name

}

// Return the flea’s name

public String getName() {

return name;

}

// Return the species

public String getSpecies() {

return species;

}

public void sound() {

System.out.println(“Psst”);

}

// Present a flea’s details as a String

public String toString() {

return super.toString() + “\nIt’s “ + name + “ the “ + species;

}

// Override inherited clone() to make it public

public Object clone() throws CloneNotSupportedException {

return super.clone();

}

private String name; // Name of flea!

private String species; // Flea species

}

You have defined accessor methods for the name and the species. You don’t need them now but they
will be useful later. By implementing the Cloneable interface you are indicating that you are happy to
clone objects of this class. Since you have said that Flea is cloneable, you must implement the
Cloneable interface in the base class too, so the Animal class needs to be changed to:

public class Animal implements Cloneable {

// Details of the class as before...

}

No other changes are necessary to the Animal class here. You can now define a class PetDog that con-
tains a Flea object as a member that is also cloneable:

292

Chapter 6

public class PetDog extends Animal implements Cloneable {

// Constructor

public PetDog(String name, String breed) {

super(“Dog”);

petFlea = new Flea(“Max”,”circus flea”); // Initialize petFlea

this.name = name;

this.breed = breed;

}

// Rename the dog

public void setName(String name) {

this.name = name;

}

// Return the dog’s name

public String getName() {

return name;

}

// Return the breed

public String getBreed() {

return breed;

}

// Return the flea

public Flea getFlea() {

return petFlea;

}

public void sound() {

System.out.println(“Woof”);

}

// Return a String for the pet dog

public String toString() {

return super.toString() + “\nIt’s “ + name + “ the “

+ breed + “ & \n” + petFlea;

}

// Override inherited clone() to make it public

public Object clone() throws CloneNotSupportedException {

return super.clone();

}

private Flea petFlea; // The pet flea

private String name; // Dog’s name

private String breed; // Dog’s breed

}

To make it possible to clone a PetDog object, you override the inherited clone() method with
a public version that calls the base class version. Note that the inherited method throws the
CloneNotSupportedException so you must declare the method as shown — otherwise, it won’t
compile. You will be looking into what exceptions are in the next chapter.

293

Extending Classes and Inheritance

You can now create a PetDog object with the statement:

PetDog myPet = new PetDog(“Fang”, “Chihuahua”);

After seeing my pet, you want one just like it, so you can clone him:

PetDog yourPet = (PetDog)myPet.clone();

Now you have individual PetDog objects that regrettably contain references to the same Flea object.
The clone() method will create the new PetDog object, yourPet, and copy the reference to the Flea
object from the petFlea data member in myPet to the member with the same name in yourPet. If you
decide that you prefer the name “Gnasher” for yourPet, you can change the name of your pet with the
statement:

yourPet.setName(“Gnasher”);

Your dog will probably like a personalized flea, too, so you can change the name of its flea with the
statement:

yourPet.getFlea().setName(“Atlas”);

Unfortunately, Fang’s flea will also be given the name Atlas because, under the covers, Fang and
Gnasher both share a common Flea. If you want to demonstrate this, you can put all the classes
together in an example, with the following class:

// Test cloning

public class TestCloning {

public static void main(String[] args) {

try {

PetDog myPet = new PetDog(“Fang”, “Chihuahua”);

PetDog yourPet = (PetDog)myPet.clone();

yourPet.setName(“Gnasher”); // Change your dog’s name

yourPet.getFlea().setName(“Atlas”); // Change your dog’s flea’s name

System.out.println(“\nYour pet details:\n”+yourPet);

System.out.println(“\nMy pet details:\n”+ myPet);

} catch(CloneNotSupportedException e) {

e.printStackTrace(System.err);

}

}

}

Don’t worry about the try and catch blocks — these are necessary to deal with the exception that I
mentioned earlier. You’ll learn all about exceptions in Chapter 7. Just concentrate on the code between
the braces following try. If you run the example, it will output the details on myPet and yourPet after
the name for yourPet has been changed. Both names will be the same, so the output will be:

C:\Java\3668\Ch06\TestFlea>java TestFlea

Your pet details:

This is a Dog

It’s Gnasher the Chihuahua &

This is a Flea

It’s Atlas the circus flea

294

Chapter 6

My pet details:

This is a Dog

It’s Fang the Chihuahua &

This is a Flea

It’s Atlas the circus flea

Choosing a name for your pet’s flea has changed the name for my pet’s flea, too. Unless you really want
to share objects between the variables in two separate objects, you should implement the clone() method
in your class to do the cloning the way you want. As an alternative to cloning (or in addition to), you
could add a constructor to your class to create a new class object from an existing object. This creates a
duplicate of the original object properly. You saw how you can do this in the previous chapter. If you
implement your own public version of clone() to override the inherited version, you would typically
code this method in the same way as you would the constructor to create a copy of an object. You could
implement the clone() method in the PetDog class like this:

public Object clone() throws CloneNotSupportedException {

PetDog pet = new PetDog(name, breed);

pet.setName(“Gnasher”);

pet.getFlea().setName(“Atlas”);

return pet;

}

Here the method creates a new PetDog object using the name and breed of the current object. You then
call the two objects’ setName() methods to set the clones’ names. If you compile and run the program,
again with this change, altering the name of myPet will not affect yourPet. Of course, you could use the
inherited clone() method to duplicate the current object and then explicitly clone the Flea member to
refer to an independent object:

// Override inherited clone() to make it public

public Object clone() throws CloneNotSupportedException {

PetDog pet = (PetDog)super.clone();

pet.petFlea = (Flea)petFlea.clone();

return pet;

}

The new object created by the inherited clone() method is of type PetDog, but it is returned as a refer-
ence of type Object. To access the thePet member, you need a reference of type PetDog, so the cast is
essential. The same is true of the cloned Flea object. The effect of this version of the clone() method is
the same as the previous version.

Methods Accepting a Variable
Number of Arguments

You can write a method so that it will accept an arbitrary number of arguments when it is called, and
the arguments that are passed do not need to be of the same type. The reason I have waited until now to
mention this is that understanding how this works depends on having an understanding of the role of

295

Extending Classes and Inheritance

the Object class. You indicate that a method will accept a variable number of arguments by specifying
the last parameter as follows:

Object ... args

The method can have zero or more parameters preceding this, but this must be last for obvious reasons.
The ellipsis (three periods) between the type name Object and the parameter name args enables the
compiler to determine that the argument list is variable. The parameter name args represents an array
of type Object[], and the argument values are available in the elements of the array as type Object.
Within the body of the method, the length of the args array tells you how many arguments were supplied.

Let’s consider a very simple example to demonstrate the mechanism. Suppose you want to implement
a static method that will accept any number of arguments and output the arguments to the command
line — whatever they are. You could code it like this:

public static void printAll(Object ... args) {

for(Object arg : args) {

System.out.print(“ “+arg);

}

System.out.println();

}

The arguments can be anything at all. Values of primitive types will be autoboxed because the method
expects reference arguments. The loop will output the string representation of each of the arguments on a
single line, the string being produced by invoking the toString() method for whatever the argument is.

Let’s see it working.

Try It Out Displaying Any Old Arguments
Here’s a program that will exercise the printAll() method:

public class TryVariableArgumentList {

public static void main(String[] args) {

printAll(2, “two”, 4, “four”, 4.5, “four point five”); // Six arguments

printAll(); // No arguments

printAll(25, “Anything goes”, true, 4E4, false); // Five arguments

}

public static void printAll(Object ... args) {

for(Object arg : args) {

System.out.print(“ “+arg);

}

System.out.println();

}

}

This program will produce the following output:

2 two 4 four 4.5 four point five

25 Anything goes true 40000.0 false

296

Chapter 6

How It Works
You can see from the output that the printAll() works as advertised and will accept an arbitrary num-
ber of arguments. The first call of the printAll() method mixes arguments of type int, type String,
and type double. The numerical values are converted to objects the corresponding wrapper class types
by boxing conversions that the compiler inserts. The output strings are then produced by calls to the
toString() method for the objects, also expedited by the compiler. The second call to the method
results in an empty line. The last line of output shows that autoboxing works with boolean values as
well as values of the other primitive types.

One use for the variable argument list capability in the class libraries is to define the printf() method
in the PrintStream class. This method will produce formatted output for an arbitrary sequence of val-
ues of various types, where the formatting is specified by the first argument to the method. System.out
happens to be of type PrintStream so you can use printf() to produce formatted output to the com-
mand line. I’ll discuss how you use the printf() method to produce output with more precise control
over the format in which it is displayed in Chapter 8 in the context of streams.

Limiting the Types in a Variable Argument List
You don’t have to specify the type of the variable argument list as type Object; you can specify it as any
class or interface type. The arguments must be of the type that you specify, or any subtype of that type.
Specifying the type of the variable argument list as Object maximizes flexibility because any types of
argument can be supplied, but there may be occasions where you want to restrict the types of the argu-
ments that can be supplied. For example, if you want to define a method that computes the average of
an arbitrary number of values that are to be supplied as individual arguments, then you really want to
be sure that the arguments can only be numerical values. Here’s how you could do this:

public static double average(Double ... args) {

if(args.length == 0) {

return 0.0;

}

double ave = 0.0;

for(double value : args) {

ave += value;

}

return ave/args.length;

}

In this case the arguments must be of type Double or of a type derived from Double, or — because of
autoboxing conversion supplied by the compiler — of type double. You could try this out in an example.

Try It Out Limiting the Types Allowed in a Variable Argument List
You need to add only a simple version of main() to call the average() method a few times to show it
in action:

public class TryLimitedVariableArgumentList {

public static void main(String[] args) {

System.out.println(average(1.0,2.0,3.0,4.0,5.0));

System.out.println(average(3.14, 1.414, 1.732));

297

Extending Classes and Inheritance

System.out.println(average(new Double(7),new Double(8),new Double(9),

new Double(10)));

}

// Average of a variable number of values

public static double average(Double ... args) {

if(args.length == 0) {

return 0.0;

}

double ave = 0.0;

for(double value : args) {

ave += value;

}

return ave/args.length;

}

}

This example produces the following output:

3.0

2.0953333333333335

8.5

How It Works
The average() method allows an arbitrary number of arguments to be supplied when it is called. The
arguments can be references of type Double or a type derived from Double, or of type double. When
the arguments are of type double, the compiler inserts autoboxing conversions to type Double for them
so the values are received in the method as that type. If you were to attempt to pass values of type int
as arguments to the average() method, the compiler would flag this as an error because there is no
automatic conversion from type int to type Double.

Casting Objects
You can cast an object to another class type, but only if the current object type and the new class type are
in the same hierarchy of derived classes, and one is a superclass of the other. For example, earlier in this
chapter you defined the classes Animal, Dog, Spaniel, Cat, and Duck, and these classes are related in
the hierarchy shown in Figure 6-5.

You can cast a reference to an object of a class upwards through its direct and indirect superclasses. For
example, you could cast a reference to an object of type Spaniel directly to type Dog, type Animal, or
type Object. You could write:

Spaniel aPet = new Spaniel(“Fang”);

Animal theAnimal = (Animal)aPet; // Cast the Spaniel to Animal

When you are assigning an object reference to a variable of a superclass type, you do not have to include
the cast. You could write the assignment as:

Animal theAnimal = aPet; // Cast the Spaniel to Animal

298

Chapter 6

Figure 6-5

This would work just as well. The compiler is always prepared to insert a cast to a superclass type when
necessary.

When you cast an object reference to a superclass type, Java retains full knowledge of the actual class
to which the object belongs. If this were not the case, polymorphism would not be possible. Since infor-
mation about the original type of an object is retained, you can cast down a hierarchy as well. However,
you must always write the cast explicitly since the compiler is not prepared to insert it. For the cast to
work, the object must be a legitimate instance of the class you are casting to — that is, the class you are
casting to must be the original class of the object, or must be a superclass of the object. For example, you
could cast a reference stored in the variable theAnimal shown in the preceding example to type Dog or
type Spaniel, since the object was originally a Spaniel, but you could not cast it to Cat or Duck, since
an object of type Spaniel does not have Cat or Duck as a superclass. To cast theAnimal to type Dog,
you would write:

Dog aDog = (Dog)theAnimal; // Cast from Animal to Dog

Now the variable aDog refers to an object of type Spaniel that also happens to be a Dog. Remember,
you can only use the variable aDog to call the polymorphic methods from the class Spaniel that over-
ride methods that exist in Dog. You can’t call methods that are not defined in the Dog class. If you want
to call a method that is in the class Spaniel and not in the class Dog, you must first cast aDog to type
Spaniel.

class Object

is derived from

class Animal

class Cat

is derived from

class Dog class Duck

is derived from

class Spaniel

is derived from is derived from

299

Extending Classes and Inheritance

Although you cannot cast between unrelated objects, from Spaniel to Duck for example, you can achieve
a conversion by writing a suitable constructor, but obviously only where it makes sense to do so. You
just write a constructor in the class to which you want to convert and make it accept an object of the
class you are converting from as an argument. If you really thought Spaniel to Duck was a reasonable
conversion, you could add the constructor to the Duck class:

public Duck(Spaniel aSpaniel) {

// Back legs off, and staple on a beak of your choice...

super(“Duck”); // Call the base constructor

name = aSpaniel.getName();

breed = “Barking Coot”; // Set the duck breed for a converted Spaniel

}

This assumes you have added a method, getName(), in the class Dog, which will be inherited in the
class Spaniel, and which returns the value of name for an object. This constructor accepts a Spaniel
and turns out a Duck. This is quite different from a cast though. This creates a completely new object that
is separate from the original, whereas a cast presents the same object as a different type.

When to Cast Objects
You will have cause to cast objects in both directions through a class hierarchy. For example, whenever
you execute methods polymorphically, you will be storing objects in a variable of a base class type and
calling methods in a derived class. This will generally involve casting the derived class objects to the
base class. Another reason you might want to cast up through a hierarchy is to pass an object of several
possible subclasses to a method. By specifying a parameter as base class type, you have the flexibility to
pass an object of any derived class to it. You could pass a Dog, Duck, or Cat object to a method as an
argument for a parameter of type Animal, for example.

The reason you might want to cast down through a class hierarchy is to execute a method unique to a
particular class. If the Duck class has a method layEgg(), for example, you can’t call this using a vari-
able of type Animal, even though it references a Duck object. As I said, casting downwards through a
class hierarchy always requires an explicit cast.

Try It Out Casting Down to Lay an Egg
Let’s amend the Duck class and use it along with the Animal class in an example. Add layEgg() to the
Duck class as:

public class Duck extends Animal {

public void layEgg() {

System.out.println(“Egg laid”);

}

// Rest of the class as before...

}

If you now try to use this with the code:

public class LayEggs {

public static void main(String[] args) {

Duck aDuck = new Duck(“Donald”, “Eider”);

300

Chapter 6

Animal aPet = aDuck; // Cast the Duck to Animal

aPet.layEgg(); // This won’t compile!

}

}

you will get a compiler message to the effect that layEgg() is not found in the class Animal.

Since you know this object is really a Duck, you can make it work by writing the call to layEgg() in the
preceding code as:

((Duck)aPet).layEgg(); // This works fine

The object pointed to by aPet is first cast to type Duck. The result of the cast is then used to call the method
layEgg(). If the object were not of type Duck, the cast would cause an exception to be thrown.

Identifying Objects
There are circumstances when you may not know exactly what sort of object you are dealing with. This
can arise if a derived class object is passed to a method as an argument for a parameter of a base class
type for example, in the way I discussed in the previous section. In some situations you may need to cast
the object to its actual class type, perhaps to call a class-specific method. If you try to make the cast and it
turns out to be illegal, an exception will be thrown, and your program will end unless you have made
provision for catching the exception. One way to obviate this situation is to verify that the object is of the
type you expect before you make the cast.

You saw earlier in this chapter how you could use the getClass() method to obtain the Class object
corresponding to the class type, and how you could compare it to a Class instance for the class you are
looking for. You can also do this using the instanceof operator. For example, suppose you have a vari-
able pet of type Animal, and you want to cast it to type Duck. You could code this as:

Duck aDuck; // Declare a duck

if(pet instanceof Duck) {

aDuck = (Duck)pet; // It is a duck so the cast is OK

aDuck.layEgg(); // and You can have an egg for tea

}

If pet does not refer to a Duck object, an attempt to cast the object referenced by pet to Duck would cause
an exception to be thrown. This code fragment will execute the cast and lay an egg only if pet does point to
a Duck object. The preceding code fragment could have been written much more concisely as:

if(pet instanceof Duck) {

((Duck)pet).layEgg(); // It is a duck so You can have an egg for tea

}

In general, you should avoid explicitly casting objects as much as possible because
it increases the potential for an invalid cast and can therefore make your programs
unreliable. Most of the time, you should find that if you design your classes care-
fully, you won’t need explicit casts very often.

301

Extending Classes and Inheritance

So what is the difference between this and using getClass()? Well, it’s quite subtle. The instanceof
operator checks whether a cast of the object referenced by the left operand to the type specified by the
right operand is legal. The result will be true if the object is the same type as the right operand, or of any
subclass type. You can illustrate the difference by choosing a slightly different example.

Suppose pet stores a reference to an object of type Spaniel. You want to call a method defined in the
Dog class, so you need to check that pet does really reference a Dog object. You can check whether you
have a Dog object or not with the following statements:

if(pet instanceof Dog) {

System.out.println(“You have a dog!”);

} else {

System.out.println(“It’s definitely not a dog!”);

}

You will get confirmation that you have a Dog object here even though it is actually a Spaniel object.
This is fine though for casting purposes. As long as the Dog class is in the class hierarchy for the object,
the cast will work okay, so the operator is telling you what you need to know. However, suppose you
write:

if(pet.getClass() == Dog.class)

System.out.println(“You have a dog!”);

else

System.out.println(“It’s definitely not a dog!”);

Here the if expression will be false because the class type of the object is Spaniel, so its Class object
is different from that of Dog.class— you would have to write Spaniel.class instead of Dog.class
to get the value true from the if expression.

You can conclude from this that for casting purposes you should always use the instanceof operator to
check the type of a reference. You only need to resort to checking the Class object corresponding to a
reference when you need to confirm the exact type of the reference.

More on Enumerations
When I introduced enumerations in Chapter 2, I said that there was more to enumerations than simply a
type with a limited range of integer values. In fact, an enumeration type is a special form of class. When
you define an enumeration type in your code, the enumeration constants that you specify are created as
instances of a class that has the Enum class, which is defined in the java.lang package, as a superclass.
The object that corresponds to each enumeration constant stores the name of the constant in a field, and
the enumeration class type inherits the toString method from the Enum class. The toString() method
in the Enum class returns the original name of the enumeration constant, so that’s why you get the name
you gave to an enumeration constant displayed when you output it using the println() method.

You have seen that you can put the definition of an enumeration type within the definition of a class.
You can also put the definition is a separate source file. In this case you specify the name of the file con-
taining the enumeration type definition in the same way as for any other class type. An enumeration
that you define in its own source file can be accessed by any other source file in exactly the same way as
any other class definition.

302

Chapter 6

An object representing an enumeration constant also stores an integer field. By default, each constant in
an enumeration will be assigned an integer value that is different from all the other constants in the enu-
meration. The values are assigned to the enumeration constants in the sequence in which you specify
them, starting with zero for the first constant, 1 for the second, and so on. You can retrieve the value for
a constant by calling its ordinal() method, but you should not need to do this in general.

You have already seen back in Chapter 3 that you can compare values of an enumeration type for equality
using the equals() method. For example, assuming that you have defined an enumeration type, Season,
with enumeration constants spring, summer, fall, and winter, you could write the following:

Season now = Season.winter;

if(now.equals(Season.winter))

System.out.println(“It is definitely winter!”);

The equals() method is inherited from the Enum class in your enumeration class type. Your enumeration
class type will also inherit the compareTo() method that compares instances of the enumeration based on
their ordinal values. It returns a negative integer if the value for the instance for which the method is called
is less than the instance that you pass as the argument, 0 if they are equal, and a positive integer if the value
of the current instance is greater than the value for the argument. Thus, the sequence in which you specify
the enumeration constants when you define them determines the order that the compareTo() method
implements. You might use it like this:

if(now.compareTo(Season.summer) > 0)

System.out.println(“It is definitely getting colder!”);

The values() method for an enumeration that I introduced in Chapter 3 is a static member of your enu-
meration class type. This method returns a collection object containing all the enumeration constants
that you can use in a collection-based for loop. You’ll learn about collection classes in Chapter 14.

Adding Members to an Enumeration Class
Because an enumeration is a class, you have the possibility to add your own methods and fields when
you define the enumeration type. You can also add your own constructors to initialize any additional
fields you introduce. Let’s take an example. Suppose you want to define an enumeration for clothing
sizes — jackets, say. Your initial definition might be like this:

public enum JacketSize { small, medium, large, extra_large, extra_extra_large }

You then realize that you would really like to record the average chest size applicable to each jacket size.
You could amend the definition of the enumeration like this:

public enum JacketSize { small(36), medium(40), large(42),

extra_large(46), extra_extra_large(48);

// Constructor

JacketSize(int chestSize) {

this.chestSize = chestSize;

}

// Method to return the chest size for the current jacket size

303

Extending Classes and Inheritance

public int chestSize() {

return chestSize;

}

private int chestSize; // Field to record chest size

}

Note how the list of enumeration constants now ends with a semicolon. Each constant in the list has the
corresponding chest size between parentheses, and this value will be passed to the constructor that you
have added to the class. In the previous definition of JacketSize, the appearance of each enumeration
constant results in a call to the default constructor for the class. In fact, you could put an empty pair of
parentheses after the name of each constant, and it would still compile. However, this would not improve
the clarity of the code. Because you have defined a constructor, no default destructor will be defined
for the enumeration class, so you cannot write enumeration constants just as names. You must put the
parentheses enclosing a value for the chest size following each enumeration constant. Of course, if you
wanted to have the option of omitting the chest size for some of the constants in the enumeration, you
could define your own default constructor and assign a default value for the chestSize field.

Even though you have added your own constructor, the fields inherited from the base class, Enum, that
store the name of the constant and its ordinal value, will still be set appropriately. The ordering of the
constants that compareTo() implements will still be determined by the sequence in which the constants
appear in the definition. Note that you must not declare a constructor in an enumeration class as public.
If you do, the enum class definition will not compile. The only modifier that you are allowed to apply to
a constructor in class defining an enumeration is private, which will result in the constructor being
callable only from inside the class.

The chest size is recorded in a private data member so there is also a chestSize() method to allow the
value of chestSize to be retrieved.

Let’s see it working.

Try It Out Embroidering an Enumeration
First, create a new directory for the example and save the JacketSize.java file containing the defini-
tion of the enumeration from the previous section in it. Now create another file containing the following
definition:

public enum JacketColor { red, orange, yellow, blue, green }

This should be in a file with the name JacketColor.java.

Now you can define a class that represents a jacket:

public class Jacket {

public Jacket(JacketSize size, JacketColor color) {

this.size = size;

this.color = color;

}

public String toString() {

StringBuffer str = new StringBuffer(“Jacket “);

304

Chapter 6

return str.append(size).append(“ in “).append(color).toString();

}

private JacketSize size;

private JacketColor color;

}

Finally, you need a file containing code to try out some jackets:

public class TryEnumeration {

public static void main(String[] args) {

// Define some jackets

Jacket[] jackets = { new Jacket(JacketSize.medium, JacketColor.red),

new Jacket(JacketSize.extra_large, JacketColor.yellow),

new Jacket(JacketSize.small, JacketColor.green),

new Jacket(JacketSize.extra_extra_large, JacketColor.blue)

};

// Output colors available

System.out.println(“Jackets colors available are:\n”);

for(JacketColor color: JacketColor.values()) {

System.out.print(“ “ + color);

}

// Output sizes available

System.out.println(“\n\nJackets sizes available are:\n”);

for(JacketSize size: JacketSize.values()) {

System.out.print(“ “ + size);

}

System.out.println(“\n\nJackets in stock are:”);

for(Jacket jacket: jackets) {

System.out.println(jacket);

}

}

}

When you compile and execute this program you will get the following output:

Jackets colors available are:

red orange yellow blue green

Jackets sizes available are:

small medium large extra_large extra_extra_large

Jackets in stock are:

Jacket medium in red

Jacket extra_large in yellow

Jacket small in green

Jacket extra_extra_large in blue

305

Extending Classes and Inheritance

How It Works
The main() method in the TryEnumeration class defines an array of Jacket objects. It then lists the
sizes and colors available for a jacket simply by using the collection-based for loop to list the constants
in each enumeration. Because the enumeration constants are objects, the compiler inserts a call to the
toString() method for the objects to produce the output. You use the same kind of for loop to list the
contents of the array of Jacket objects. This also involves an implicit call to the toString() method for
each Jacket object.

Because you have defined the JacketSize and JacketColor enumerations in separate classes, they
are accessible from any source file in the same directory. To make them even more widely available, you
could put them in a package.

The Jacket class uses the enumeration types to define private fields recording the size and color of a
jacket. Note how the toString() method in the Jacket class is able to use the size and color members
as though they were strings. The compiler will insert a call to the toString() method for the enumera-
tion type that applies. You can override the toString() method for an enumeration type. For example,
you might decide you prefer to define the toString() method in the JacketSize enumeration like this:

public String toString() {

switch(this) {

case small:

return “S”;

case medium:

return “M”;

case large:

return “L”;

case extra_large:

return “XL”;

case extra_extra_large:

return “XXL”;

}

}

Note how you can use this as the control expression for the switch statement. This is because this refer-
ences the current instance, which is an enumeration constant. Because the expression is an enumeration
constant, the case labels are the constant names. They do not need to be qualified by the name of the enu-
meration. With this implementation of toString() in the JacketSize enumeration, the output will be:

Jackets colors available are:

red orange yellow blue green

Jackets sizes available are:

S M L XL XXL

Jackets in stock are:

Jacket M in red

Jacket XL in yellow

Jacket S in green

Jacket XXL in blue

Thus, you can see from this example that you can treat an enumeration type just like any other class type.

306

Chapter 6

Designing Classes
A basic problem in object-oriented programming is deciding how the classes in your program should
relate to one another. One possibility is to create a hierarchy of classes by deriving classes from a base
class that you have defined and adding methods and data members to specialize the subclasses. The
Animal class and the subclasses derived from it are an example of this. Another possibility is to define
a set of classes that are not hierarchical, but that have data members that are themselves class objects.
A Zoo class might well have objects of types derived from Animal as members, for example. You can
have class hierarchies that contain data members that are class objects — you already have this with the
classes derived from Animal since they have members of type String. The examples so far have been
relatively clear-cut as to which approach to choose, but it is not always so evident. Quite often you will
have a choice between defining your classes as a hierarchy and defining classes that have members that
are class objects. Which is the best approach to take?

Like almost all questions of this kind, there are no clear-cut answers. If object-oriented programming
were a process that you could specify by a fixed set of rules that you could just follow blindly, you could
get the computer to do it. There are some guidelines though, and some contexts in which the answer
may be more obvious.

Aside from the desirability of reflecting real-world relationships between types of objects, the need to
use polymorphism is a primary reason for using subclasses (or interfaces, as you’ll see shortly). This is
the essence of object-oriented programming. Having a range of related objects that can be treated equiv-
alently can greatly simplify your programs. You have seen how having various kinds of animals speci-
fied by classes derived from a common base class, Animal, allows us to act on different types of animals
as though they are the same, producing different results depending on what kind of animal is being
dealt with, and all this automatically.

A Classy Example
Many situations involve making judgments about the design of your classes. The way to go may well
boil down to a question of personal preference. Let’s try to see how the options look in practice by con-
sidering a simple example. Suppose you want to define a class PolyLine to represent geometric entities
that consist of a number of connected line segments, as illustrated in the Figure 6-6.

Figure 6-6

X-Axis

P
P

P

P

P P

P
P

P

P

Y-
Ax

is

307

Extending Classes and Inheritance

Figure 6-6 shows two polylines, one defined by four points, the other defined by six points.

It seems reasonable to represent points as objects of a class Point. Points are well-defined objects that
will occur in the context of all kinds of geometric entities. You have seen a class for points earlier, which
you put in the Geometry package. Rather than repeat the whole class, let’s just define the bare bones of
what you need in this context:

public class Point {

// Create a point from its coordinates

public Point(double xVal, double yVal) {

x = xVal;

y = yVal;

}

// Create a point from another point

public Point(Point point) {

x = point.x;

y = point.y;

}

// Convert a point to a string

public String toString() {

return x+”,”+y;

}

// Coordinates of the point

protected double x;

protected double y;

}

Save the source file containing this code in a new directory, TryPolyLine. You’ll add all the files for the
example to this directory. Both data members of Point will be inherited in any subclass because they are
specified as protected. They are also insulated from interference from outside the package containing
the class. The toString() method will allow Point objects to be concatenated to a String object for
automatic conversion — in an argument passed to the println() method, for example.

The next question you might ask is, “Should I derive the class PolyLine from the class Point?” This
has a fairly obvious answer. A polyline is clearly not a kind of point, so it is not logical to derive the class
PolyLine from the Point class. This is an elementary demonstration of what is often referred to as the
“is a” test. If you can say that one kind of object “is a” specialized form of another kind of object, you
may have a good case for a derived class (but not always — there may be other reasons not to!). If not,
you don’t.

The complement to the “is a” test is the “has a” test. If one object “has a” component that is an object of
another class, you have a case for a class member. A House object “has a” door, so a variable of type
Door is likely to be a member of the class House. The PolyLine class will contain several points, which
looks promising, but you should look a little more closely at how you might store them, as there are
some options.

308

Chapter 6

Designing the PolyLine Class
With the knowledge you have of Java, an array of Point objects looks like a good candidate to be a mem-
ber of the class. There are disadvantages, though. A common requirement with polylines is to be able to
add a segment or two to an existing object. With an array storing the points you will need to create a
new array each time you add a segment, then copy all the points from the old array to the new one. This
could be time-consuming if you have a PolyLine object with a lot of segments.

You have another option. You could create a linked list of points. In its simplest form, a linked list of
objects is an arrangement where each object in the list has a reference to the next object as a data mem-
ber. As long as you have a variable containing a reference to the first Point object, you can access all
the points in the list, as shown in Figure 6-7.

Figure 6-7

Figure 6-7 illustrates the basic structure you might have for a linked list of points stored as a PolyLine.
The points are stored as members of ListPoint objects. In addition to constructors, the PolyLine class
will need a method to add points, but before you look into that, let’s consider the ListPoint class in
more detail.

You could take one of at least three approaches to define the ListPoint class, and you could make
arguments in favor of all three.

❑ You could define the ListPoint class with the x and y coordinates stored explicitly. The main
argument against this would be that you have already encapsulated the properties of a point in
the Point class, so why not use it?

❑ You could regard a ListPoint object as something that contains a reference to a Point object,
plus members that refer to previous and following ListPoint objects in the list. This is not an
unreasonable approach. It is easy to implement and not inconsistent with an intuitive idea of a
ListPoint.

double x;
double y;

ListPoint next;

ListPoint

double x;
double y;

ListPoint next;

ListPoint

double x;
double y;

ListPoint next;

ListPoint

ListPoint end;
ListPoint start;

PolyLine

double x;
double y;

ListPoint next;

null

ListPoint

refers torefers to

309

Extending Classes and Inheritance

❑ You could view a ListPoint object as a specialized kind of Point, so you would derive the
ListPoint class from Point. Whether or not this is reasonable depends on whether you see
this as valid. To my mind, this is stretching the usual notion of a point somewhat — I would not
use this.

The best option looks to me to be the second approach. You could implement the ListPoint class with
a data member of type Point, which defines a basic point with its coordinates. A ListPoint object
would have an extra data member, next, of type ListPoint that is intended to contain a reference to
the next object in the list. With this arrangement, you can find all the points in a Polyline object by
starting with its start member, which stores a reference to its first ListPoint object. This contains a
reference to the next ListPoint object in its next member, which in turn contains a reference to the
next, and so on through to the last ListPoint object. You’ll know it is the last one because its next
member, which usually points to the next ListPoint object, will be null. Let’s try it.

Try It Out The ListPoint Class
You can define the ListPoint class using the Point class with the following code:

public class ListPoint {

// Constructor

public ListPoint(Point point) {

this.point = point; // Store point reference

next = null; // Set next ListPoint as null

}

// Set the pointer to the next ListPoint

public void setNext(ListPoint next) {

this.next = next; // Store the next ListPoint

}

// Get the next point in the list

public ListPoint getNext() {

return next; // Return the next ListPoint

}

// Return String representation

public String toString() {

return “(“ + point + “)”;

}

private ListPoint next; // Refers to next ListPoint in the list

private Point point; // The point for this list point

}

Save this file in the same directory as the Point class, TryPolyLine.

How It Works
A ListPoint object is a means of creating a list of Point objects that originate elsewhere so you don’t
need to worry about duplicating Point objects stored in the list. You can just store the reference to the
Point object passed to the constructor in the data member, point. The data member, next, should contain
a reference to the next ListPoint in the list, and since that is not defined here, you set next to null.

310

Chapter 6

The setNext() method will enable the next data member to be set for the existing last point in the list
when a new point is added to the list. A reference to the new ListPoint object will be passed as an
argument to the method. The getNext() method enables the next point in the list to be determined, so
this method is the means by which you can iterate through the entire list.

By implementing the toString() method for the class, you enable the automatic creation of a String
representation for a ListPoint object when required. Here you differentiate the String representation
of the ListPoint object by enclosing the String representation of point between parentheses.

You could now have a first stab at implementing the PolyLine class.

Try It Out The PolyLine Class
You can define the PolyLine class to use the ListPoint class as follows:

public class PolyLine {

// Construct a polyline from an array of points

public PolyLine(Point[] points) {

if(points != null) { // Make sure there is an array

for(Point p : points) {

addPoint(p);

}

}

}

// Add a Point object to the list

public void addPoint(Point point) {

ListPoint newEnd = new ListPoint(point); // Create a new ListPoint

if(start == null) {

start = newEnd; // Start is same as end

} else {

end.setNext(newEnd); // Set next variable for old end as new end

}

end = newEnd; // Store new point as end

}

// String representation of a polyline

public String toString() {

StringBuffer str = new StringBuffer(“Polyline:”);

ListPoint nextPoint = start; // Set the 1st point as start

while(nextPoint != null) {

str.append(“ “+ nextPoint); // Output the current point

nextPoint = nextPoint.getNext(); // Make the next point current

}

return str.toString();

}

private ListPoint start; // First ListPoint in the list

private ListPoint end; // Last ListPoint in the list

}

This source file also goes in the TryPolyLine directory.

311

Extending Classes and Inheritance

You might want to be able to add a point to the list by specifying a coordinate pair. You could overload
the addPoint() method to do this:

// Add a point defined by a coordinate pair to the list

public void addPoint(double x, double y) {

addPoint(new Point(x, y));

}

You just created a new Point object in the expression that is the argument to the other version of
addPoint().

You might also want to create a PolyLine object from an array of coordinates. The constructor to do this
would be:

// Construct a polyline from an array of coordinates

public PolyLine(double[][] coords) {

if(coords != null) {

for(int i = 0; i < coords.length ; i++) {

addPoint(coords[i][0], coords[i][1]);

}

}

}

How It Works
The PolyLine class has the data members start and end that you saw in Figure 6-7. These will refer-
ence the first and last points of the list, or null if the list is empty. Storing the end point in the list is not
essential since you can always find it by going through the list starting with start. However, having a
reference to the last point saves a lot of time when you want to add a point to the list. The constructor
accepts an array of Point objects and starts the process of assembling the object, by creating a list con-
taining one ListPoint object produced from the first element in the array. It then uses the addPoint()
method to add all the remaining points in the array to the list.

Adding a point to the list is deceptively simple. All the addPoint() method does is create a ListPoint
object from the Point object passed as an argument, sets the next member of the old end point in the
list to refer to the new point, and finally stores a reference to the new end point in the member end.

The toString() method will return a string representing the PolyLine object as a list of point coordi-
nates. Note how the next member of the ListPoint objects controls the loop that runs through the list.
When the last ListPoint object is reached, the next member will be returned as null, and the while
loop will end. You can now give the PolyLine class a whirl.

Try It Out Using PolyLine Objects
You can create a simple example to illustrate use of the PolyLine class:

public class TryPolyLine {

public static void main(String[] args) {

// Create an array of coordinate pairs

double[][] coords = { {1., 1.}, {1., 2.}, { 2., 3.},

{-3., 5.}, {-5., 1.}, {0., 0.} };

312

Chapter 6

// Create a polyline from the coordinates and display it

PolyLine polygon = new PolyLine(coords);

System.out.println(polygon);

// Add a point and display the polyline again

polygon.addPoint(10., 10.);

System.out.println(polygon);

// Create Point objects from the coordinate array

Point[] points = new Point[coords.length];

for(int i = 0; i < points.length; i++)

points[i] = new Point(coords[i][0],coords[i][1]);

// Use the points to create a new polyline and display it

PolyLine newPoly = new PolyLine(points);

System.out.println(newPoly);

}

}

Remember that all three classes, Point, ListPoint, and PolyLine, need to be together in the same
directory as this class, which will be the TryPolyLine directory if you followed my initial suggestion.
If you have keyed everything in correctly, the program will output three PolyLine objects:

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0)

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0)

(10.0,10.0)

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0)

The first and the third lines of output are the same, with the coordinates from the coords array. The sec-
ond has the extra point (10, 10) at the end.

The PolyLine class works well enough but it doesn’t seem very satisfactory. Adding all the code to
create and manage a list for what is essentially a geometric entity is not very object-oriented is it? Come
to think of it, why are you making a list of points? Apart from the type of the data members of the
ListPoint class, there’s very little to do with Point objects in its definition; it’s all to do with the link-
ing mechanism. You might also have lots of other requirements for lists. If you were implementing an
address book for instance, you would want a list of names. A cookery program would need a list of
recipes. You might need lists for all kinds of things — maybe even a list of lists! Let’s see if there’s a bet-
ter approach.

Let’s put together a more general-purpose linked list and then use it to store polylines as before. You
should save the source files for this in a new directory, as you will implement it as a whole new example.
I’ll put the source files in a directory with the name TryLinkedList in the code download for the book.

A General-Purpose Linked List
The key to implementing a simple, general-purpose linked list is the Object class discussed earlier in
this chapter. Because the Object class is a superclass of every class, a variable of type Object can be
used to store any kind of object. You could re-implement the ListPoint class in the form of a ListItem
class. This will represent an element in a linked list that can reference any type of object:

313

Extending Classes and Inheritance

class ListItem {

// Constructor

public ListItem(Object item) {

this.item = item; // Store the item

next = null; // Set next as end point

}

// Return class name & object

public String toString() {

return “ListItem “ + item ;

}

ListItem next; // Refers to next item in the list

Object item; // The item for this ListItem

}

It’s basically similar to the ListPoint class except that you have omitted the methods to set and retrieve
the next member reference. You’ll see why these are not necessary in a moment. The toString() method
assumes that the object referenced by item implements a toString() method. You won’t use the
toString() method here when you come to exercise the general linked list class you’re implementing,
but it is a good idea to implement the toString() method for your classes anyway. If you do, class
objects can always be output using the println() method, which is very handy for debugging.

You can now use objects of this class in a definition of a class that will represent a linked list.

Defining a Linked List Class
The mechanics of creating and handling the linked list will be similar to what you had in the PolyLine
class, but externally you need to deal in the objects that are stored in the list, not in terms of ListItem
objects. In fact, you don’t need to have the ListItem class separate from the LinkedList class. You can
make it an inner class:

public class LinkedList {

// Default constructor – creates an empty list

public LinkedList() {}

// Constructor to create a list containing one object

public LinkedList(Object item) {

if(item != null) {

current=end=start=new ListItem(item); // item is the start and end

}

}

// Construct a linked list from an array of objects

public LinkedList(Object[] items) {

if(items != null) {

// Add the items to the list

for(int i = 0; i < items.length; i++) {

addItem(items[i]);

}

current = start;

}

}

314

Chapter 6

// Add an item object to the list

public void addItem(Object item) {

ListItem newEnd = new ListItem(item); // Create a new ListItem

if(start == null) { // Is the list empty?

start = end = newEnd; // Yes, so new element is start and end

} else { // No, so append new element

end.next = newEnd; // Set next variable for old end

end = newEnd; // Store new item as end

}

}

// Get the first object in the list

public Object getFirst() {

current = start;

return start == null ? null : start.item;

}

// Get the next object in the list

public Object getNext() {

if(current != null) {

current = current.next; // Get the reference to the next item

}

return current == null ? null : current.item;

}

private ListItem start = null; // First ListItem in the list

private ListItem end = null; // Last ListItem in the list

private ListItem current = null; // The current item for iterating

private class ListItem {

// ListItem class definition as before...

}

}

Save this source file in the new directory for the example. You can use this class to create a linked list
containing any types of objects. The class has data members to track the first and last items in the list,
plus the member current, which will be used to iterate through the list. You have three class construc-
tors. The default constructor creates an empty list. You have a constructor to create a list with a single
object, and another to create a list from an array of objects. Any list can also be extended by means of
the addItem() method. Each of the constructors, apart from the default, sets the current member to
the first item in the list, so if the list is not empty, this will refer to a valid first item.

You can see that because the ListItem class is a member of the LinkedList class, you can refer to its
data members directly within methods in the LinkedList class. This obviates the need for any methods
in the ListItem class to get or set its fields. Since it is private it will not be accessible outside the
LinkedList class so there is no risk associated with this — as long as you code the LinkedList class
correctly, of course.

The addItem() method works in much the same way as the addPoint() method did in the PolyLine
class. It creates a new ListItem object and updates the next member of the previous last item to refer to
the new one. The complication is the possibility that the list might be empty. The check in the if takes
care of this. You take special steps if start holds a null reference.

315

Extending Classes and Inheritance

The getFirst() and getNext() methods are intended to be used together to access all the objects
stored in the list. The getFirst() method returns the object stored in the first ListItem object in the
list and sets the current data member to refer to the first ListItem object. After calling the getFirst()
method, successive calls to the getNext() method will return subsequent objects stored in the list. The
method updates current to refer to the next ListItem object, each time it is called. When the end of the
list is reached, getNext() returns null.

Try It Out Using the General Linked List
You can now define the PolyLine class so that it uses a LinkedList object. All you need to do is put a
LinkedList variable as a class member that you initialize in the class constructors, and implement all
the other methods you had in the previous version of the class to use the LinkedList object:

public class PolyLine {

// Construct a polyline from an array of coordinate pairs

public PolyLine(double[][] coords) {

Point[] points = new Point[coords.length]; // Array to hold points

// Create points from the coordinates

for(int i = 0; i < coords.length ; i++) {

points[i] = new Point(coords[i][0], coords[i][1]);

}

// Create the polyline from the array of points

polyline = new LinkedList(points);

}

// Construct a polyline from an array of points

public PolyLine(Point[] points) {

polyline = new LinkedList(points); // Create the polyline

}

// Add a Point object to the list

public void addPoint(Point point) {

polyline.addItem(point); // Add the point to the list

}

// Add a point from a coordinate pair to the list

public void addPoint(double x, double y) {

polyline.addItem(new Point(x, y)); // Add the point to the list

}

// String representation of a polyline

public String toString() {

StringBuffer str = new StringBuffer(“Polyline:”);

Point point = (Point) polyline.getFirst();

// Set the 1st point as start

while(point != null) {

str.append(“ (“+ point+ “)”); // Append the current point

point = (Point)polyline.getNext(); // Make the next point current

}

return str.toString();

316

Chapter 6

}

private LinkedList polyline; // The linked list of points

}

You can exercise this using the same code as last time — in the TryPolyLine.java file. Copy this file to
the directory for this example.

How It Works
The PolyLine class implements all the methods that you had in the class before, so the main() method
in the TryPolyLine class works just the same. Under the covers, the methods in the PolyLine class
work a little differently. The work of creating the linked list is now in the constructor for the LinkedList
class. The PolyLine class constructors just assemble a point array if necessary, and call the LinkedList
constructor. Similarly, the addPoint() method creates a Point object from the coordinate pair it receives
and passes it to the addItem() method for the LinkedList object, polyline.

Note that the cast from Point to Object when the addItem() method is called is automatic. A cast from
any class type to type Object is always automatic because the cast is up the class hierarchy — remember
that all classes have Object as a base. In the toString() method, you must insert an explicit cast to store
the object returned by the getFirst() or the getNext() method. This cast is down the hierarchy so you
must specify the cast explicitly.

You could use a variable of type Object to store the objects returned from getFirst() and getNext(),
but this would not be a good idea. You would not need to insert the explicit cast, but you would lose a
valuable check on the integrity of the program. You put objects of type Point into the list, so you would
expect objects of type Point to be returned. An error in the program somewhere could result in an object
of another type being inserted. If the object is not of type Point— due to the said program error, for
example — the cast to type Point will fail and you will get an exception. A variable of type Object can
store anything. If you use this, and something other than a Point object is returned, it would not regis-
ter at all.

Now that you have gone to the trouble of writing your own general linked list class, you may be wonder-
ing why someone hasn’t done it already. Well, they have! The java.util package defines a LinkedList
class that is much better than this one. Still, putting your own together was good experience, and I hope
you found it educational, if not interesting. The way you have implemented the LinkedList class here
is not the best approach. In Chapter 13 you will learn about generic types, which enable you to define a
linked list class that is type-safe. You’ll look at the standard class in the java.util package that imple-
ments a linked list using the generic types capability described in Chapter 14.

Using the final Modifier
You have already used the final keyword to fix the value of a static data member of a class. You can
also apply this keyword to the definition of a method, and to the definition of a class.

It may be that you want to prevent a subclass from overriding a method in your class. When this is the
case, simply declare that method as final. Any attempt to override a final method in a subclass will
result in the compiler flagging the new method as an error. For example, you could declare the method
addPoint() as final within the class PolyLine by writing its definition in the class as:

317

Extending Classes and Inheritance

public final void addPoint(Point point) {

ListPoint newEnd = new ListPoint(point); // Create a new ListPoint

end.setNext(newEnd); // Set next variable for old end as new end

end = newEnd; // Store new point as end

}

Any class derived from PolyLine would not be able to redefine this method. Obviously, an abstract
method cannot be declared as final— because it must be defined in a subclass somewhere.

If you declare a class as final, you prevent any subclasses from being derived from it. To declare the
class PolyLine as final, you would define it as:

public final class PolyLine {

// Definition as before...

}

If you now attempt to define a class based on PolyLine, you will get an error message from the com-
piler. An abstract class cannot be declared as final since this would prevent the abstract methods in the
class from ever being defined. Declaring a class as final is a drastic step that prevents the functionality
of the class being extended by derivation, so you should be very sure that you want to do this.

Interfaces
In the classes that you derived from the class Animal, you had a common method, sound(), that was
implemented individually in each of the subclasses. The method signature was the same in each class,
and the method could be called polymorphically. The main point to defining the class Animal first and
then subsequently defining the classes Dog, Cat, and so on, from it was to be able to get polymorphic
behavior. When all you want is a set of one or more methods to be implemented in a number of different
classes so that you can call them polymorphically, you can dispense with the base class altogether.

You can achieve the same result much more simply by using a Java facility called an interface. The name
indicates its primary use — specifying a set of methods that represent a particular class interface, which
can then be implemented appropriately in a number of different classes. All of the classes will then share
this common interface, and the methods in it can be called polymorphically through a variable of the
interface type. This is just one aspect of what you can do using an interface. I will start by examining
what an interface is from the ground up and then look at what you can do with it.

An interface is essentially a collection of related constants and/or abstract methods, and in most cases it
will contain just methods. An interface doesn’t define what a method does. It just defines its form — its
name, its parameters, and its return type, so by definition the methods in an interface are abstract.

To make use of an interface, you implement the interface in a class — that is, you declare that the class
implements the interface and you write the code for each of the methods that the interface declares as
part of the class definition. When a class implements an interface, any constants that were defined in the
interface definition are available directly in the class, just as though they were inherited from a base
class. An interface can contain either constants, or abstract methods, or both.

318

Chapter 6

As Figure 6-8 illustrates, the methods in an interface are always public and abstract, so you do not
need to specify them as such; it is considered bad programming practice to specify any attributes for
them, and you definitely cannot add any attributes other than the defaults, public and abstract. This
implies that methods declared in an interface can never be static, so an interface always declares
instance methods. The constants in an interface are always public, static, and final, so you do not
need to specify the attributes for these either.

Figure 6-8

An interface is defined just like a class, but using the keyword interface rather than the keyword
class. You store an interface definition in a .java file with the same name as the interface. The name
that you give to an interface must be different from that of any other interface or class in the same pack-
age. Just as for classes, the members of the interface — the constants and/or method declarations —
appear between a pair of braces that delimit the body of the interface definition.

Encapsulating Constants in a Program
You will often find that a program makes use of a set of constant values that you really want to define
only once. You might have values representing standard colors that your program uses or perhaps con-
stants that are used in calculations such as conversion factors from one set of units to another. In Java
versions prior to 5.0, a common approach was to define a set of related constants in an interface and then
implement the interface in any class that used any of the constants. This approach has largely been made
obsolete by the static import capability.

The capability to import static members of a class that was introduced in Java 5 provides an excellent
way of dealing with constants in a program. However, the use of an interface for such purposes has
been very widespread in the past, so I’ll first explain briefly how that works to equip you for when you
run into it. I’ll then explain how you use static import to access constants that you have defined in a
class, which is a much cleaner and better way of making a set of constants available wherever they are
needed.

Methods

Interface3

Constants
and

Methods

Interface2

Constants

Interface1

Constants in an interface
are always

public, static, and final
by default

Methods in an interface
are always

public and abstract
by default

319

Extending Classes and Inheritance

Constants in an Interface
Suppose you are writing a program that converts measurements between metric and imperial units.
Here’s how the constants that such a program might use could be defined in an interface:

public interface ConversionFactors {

double INCH_TO_MM = 25.4;

double OUNCE_TO_GRAM = 28.349523125;

double POUND_TO_GRAM = 453.5924;

double HP_TO_WATT = 745.7;

double WATT_TO_HP = 1.0/HP_TO_WATT;

}

The ConversionFactors interface defines five constants for conversions of various kinds. Constants
defined in an interface are automatically public, static, and final. You have no choice about this —
constants defined in an interface always have these attributes. Since they are static and final, you must
always supply initializing values for constants defined in an interface. The names given to these in the
ConversionFactors interface use capital letters to indicate that they are final and cannot be altered —
this is a common convention in Java. You can define the value of one constant in terms of a preceding
constant, as in the definition of WATT_TO_HP. If you try to use a constant that is defined later in the
interface — if, for example, the definition for WATT_TO_HP appeared first — your code will not compile.

Because you have declared the interface as public, the constants are also available outside the package
containing the ConversionFactors interface. You can access constants defined in an interface in the
same way as for public and static fields in a class — by just qualifying the name with the name of the
interface. For example, you could write:

public class MyClass {

// This class can access any of the constants defined in ConversionFactors

// by qualifying their names...

public static double poundsToGrams(double pounds) {

return pounds*ConversionFactors.POUND_TO_GRAM;

}

// Plus the rest of the class definition...

}

Since the ConversionFactors interface includes only constants, a class can gain access to them using
their unqualified names by declaring that it implements the interface. This has been the technique
employed in the past. For example, here’s a class that implements the ConversionFactors interface:

public class MyOtherClass implements ConversionFactors {

// This class can access any of the constants defined in ConversionFactors

// using their unqualified names, and so can any subclasses of this class...

public static double poundsToGrams(double pounds) {

return pounds*POUND_TO_GRAM;

}

// Plus the rest of the class definition...

}

The constants defined in the ConversionFactors interface are now members of MyOtherClass and
therefore will be inherited in any derived classes.

320

Chapter 6

While this technique of using an interface as a container for constants works and has been widely used
in the past, using a class to contain the constants as static fields and then importing the names of the
fields as required provides a simpler more effective approach. This is now the recommended technique
for handling sets of constants in a program. Let’s see how it works.

Constants Defined in a Class
You could define a class to hold the same set of constants that you saw defined in an interface in the pre-
vious section, like this:

package conversions; // Package for conversions

public class ConversionFactors {

public static final double INCH_TO_MM = 25.4;

public static final double OUNCE_TO_GRAM = 28.349523125;

public static final double POUND_TO_GRAM = 453.5924;

public static final double HP_TO_WATT = 745.7;

public static final double WATT_TO_HP = 1.0/HP_TO_WATT;

}

Of course, you can access the members of the ConversionsFactors class from outside by using the
qualified names of the data members —ConversionFactors.HP_TO_WATT, for example. An alternative
and possibly more convenient approach is to import the static members of the class into any class that
needs to use any of the constants. This will allow the constants to be referred to by their unqualified
names. In this case, the class must be in a named package, because the import statement cannot be
applied to the unnamed package.

Here’s how you might use it:

import static conversions.ConversionFactors.*; // Import static members

public class MyOtherClass {

// This class can access any of the constants defined in ConversionFactors

public static double poundsToGrams(double pounds) {

return pounds*POUND_TO_GRAM;

}

// Plus the rest of the class definition...

}

Now you can access any of the static members of the ConversionFactors class using their unqualified
names from any source file. All that is necessary is the import statement for the static members of the
class. Alternatively, you could just import the static members you want to use. For example, you could
use the following import statement if you just wanted to use the constant with the name
POUND_TO_GRAM:

import static conversions.ConversionFactors.POUND_TO_GRAM;

Let’s see it working in an example.

321

Extending Classes and Inheritance

Try It Out Importing Constants into a Program
Save the ConversionFactors class definition ConversionFactors.java in a directory with the name
conversions. Here’s a simple class that uses the constants defined in the utility class
ConversionFactors:

import static conversions.ConversionFactors.*; // Import static members

public class TryConversions {

public static double poundsToGrams(double pounds) {

return pounds*POUND_TO_GRAM;

}

public static double inchesToMillimeters(double inches) {

return inches*INCH_TO_MM;

}

public static void main(String args[]) {

int myWeightInPounds = 180;

int myHeightInInches = 75;

System.out.println(“My weight in pounds: “ +myWeightInPounds +

“ \t-in grams: “+ (int)poundsToGrams(myWeightInPounds));

System.out.println(“My height in inches: “ +myHeightInInches +

“ \t-in millimeters: “+ (int)inchesToMillimeters(myHeightInInches));

}

}

Save the TryConversions.java file in the TryConversions directory. Don’t forget that you must include
the path to your conversions package when you compile this program. If the conversions directory is a
subdirectory of C:\MyPackages, the command to compile the program with TryConversions as the cur-
rent directory would be:

javac -classpath .:C:\MyPackages TryConversions.java

When you compile and execute this example, you should see the following output:

My weight in pounds: 180 -in grams: 81646

My height in inches: 75 -in millimeters: 1905

How It Works
The fact that you have used only static methods to access the constants from the utility class is
unimportant — it’s just to keep the example simple. They are equally accessible from instance
methods in a class.

The two conversion methods use the conversion factors defined in the ConversionFactors class.
Because you have imported the static fields from the ConversionFactors class in the conversions
package into the TryConversion.java source file, you can use the unqualified names to refer to the
constants.

322

Chapter 6

Interfaces Declaring Methods
The primary use for an interface is to define the external form of a set of methods that represent a partic-
ular functionality. Let’s consider an example. Suppose that you want to define an interface declaring a
set of methods to be used for conversions between metric and imperial measurements. You could define
such an interface like this:

public interface Conversions {

double inchesToMillimeters (double inches);

double ouncesToGrams(double ounces);

double poundsToGrams(double pounds);

double hpToWatts(double hp);

double wattsToHP(double watts);

}

This interface declares five methods to perform conversions. Every method declared in the interface
must have a definition within the class that implements the interface if you are going to create objects of
the class. A class that implements this interface would look like this:

public class MyClass implements Conversions {

// Implementations for the methods in the Conversions interface

// Definitions for the other class members...

}

Since the methods in an interface are, by definition, public, you must use the public keyword when you
define them in your class — otherwise, your code will not compile. The implementation of an interface
method in a class must not have an access specifier that is more restrictive than that implicit in the
abstract method declaration, and you can’t get less restrictive than public.

A class can implement more than one interface. In this case, you write the names of all the interfaces that
the class implements separated by commas following the implements keyword. Here’s an example:

public class MyClass implements Conversions, Definitions, Detections {

// Definition of the class including implementation of interface methods

}

This class implements three interfaces with the names Conversions, Definitions, and Detections.
The class body will contain definitions for the methods declared in all three interfaces.

Try It Out Implementing an Interface
You can use the Conversions interface in a modified version of the previous example. Redefine the
TryConversions class in the TryConversions.java source file as follows:

import static conversions.ConversionFactors.*; // Import static members

public class TryConversions implements Conversions {

public double wattsToHP (double watts) {

return watts*WATT_TO_HP;

}

public double hpToWatts (double hp) {

return hp*HP_TO_WATT;

}

323

Extending Classes and Inheritance

public double ouncesToGrams(double ounces) {

return ounces*OUNCE_TO_GRAM;

}

public double poundsToGrams(double pounds) {

return pounds*POUND_TO_GRAM;

}

public double inchesToMillimeters(double inches) {

return inches*INCH_TO_MM;

}

public static void main(String args[]) {

int myWeightInPounds = 180;

int myHeightInInches = 75;

TryConversions converter = new TryConversions();

System.out.println(“My weight in pounds: “ +myWeightInPounds +

“ \t-in grams: “+ (int)converter.poundsToGrams(myWeightInPounds));

System.out.println(“My height in inches: “ + myHeightInInches

+ “ \t-in millimeters: “

+ (int)converter.inchesToMillimeters(myHeightInInches));

}

}

Save the file in a new directory, TryConversion2, and add a source file containing the definition for
the Conversions interface to the same directory. You name a file containing an interface definition
in a similar way to that of a class — the file name should be the same as the interface name, with
the extension .java. Thus, the source file containing the Conversions interface definition will be
Conversions.java.

How It Works
The methods you were using in the original definition of the class are now not declared as static.
Since interface methods are by definition instance methods, you cannot declare them as static in the
class that implements the interface. As the methods are now instance methods, you have to create a
TryConversions object, converter, to call them.

Of course, in this particular instance, statically importing the constants that are used by the interface
method implementations is a clumsy way of doing things. Since the constants are clearly related to the
methods, it would probably be better to define all the constants in the Conversions interface in addi-
tion to the method declarations.

Of course, you don’t have to implement every method in the interface, but there are some consequences if
you don’t.

A Partial Interface Implementation
You can omit the implementation of one or more of the methods from an interface in a class that imple-
ments the interface, but in this case the class inherits some abstract methods from the interface so you
would need to declare the class itself as abstract:

324

Chapter 6

import static conversions.ConversionFactors.INCH_TO_MM;

import static conversions.ConversionFactors.OUNCE_TO_GRAM;

public abstract class MyClass implements Conversions {

// Implementation of two of the methods in the interface

public double inchesToMillimeters(double inches) {

return inches*INCH_TO_MM;

}

public double ouncesToGrams(double ounces) {

return ounces*OUNCE_TO_GRAM;

}

// Definition of the rest of the class...

}

You cannot create objects of type MyClass. To arrive at a useful class, you must define a subclass of
MyClass that implements the remaining methods in the interface. The declaration of the class as abstract
is mandatory when you don’t implement all of the methods that are declared in an interface. The com-
piler will complain if you forget to do this.

Now that you know how to write the code to implement an interface, you can tie up a loose end that
was left earlier in this chapter. I mentioned that you need to implement the interface Cloneable to use
the inherited method clone(). In fact this interface is empty with no methods or constants, so all you
need to do to implement it in a class is to specify that the class in question implements it. This means
that you just need to write something like:

public MyClass implements Cloneable {

// Detail of the class...

}

The sole purpose of the Cloneable interface is to act as a flag signaling that you are prepared to allow
objects of your class to be cloned. Even though you have defined a public clone() method in your class,
the compiler will not permit the clone() method to be called for objects of your class type unless you
also specify that your class implements Cloneable.

Extending Interfaces
You can define one interface based on another by using the keyword extends to identify the base inter-
face name. This is essentially the same form as you use to derive one class from another. The interface
doing the extending acquires all the methods and constants from the interface it extends. For example,
the interface Conversions would perhaps be more useful if it contained the constants that the original
interface ConversionFactors contained. This would obviate the need for a separate class containing
the constants, so there would be no need for the static import statement.

You could do this by defining the interface Conversions as follows:

public interface Conversions extends ConversionFactors {

double inchesToMillimeters (double inches);

double ouncesToGrams(double ounces);

325

Extending Classes and Inheritance

double poundsToGrams(double pounds);

double hpToWatts(double hp);

double wattsToHP(double watts);

}

Now the interface Conversions also contains the members of the interface ConversionFactors. Any
class implementing the Conversions interface will have the constants from ConversionFactors avail-
able to implement the methods. Analogous to the idea of a superclass, the interface ConversionFactors
is referred to as a super-interface of the interface Conversions.

Of course, since the constants and the methods involved in conversion operations are closely related, it
would have been much better to put them all in a single interface definition. But then it wouldn’t demon-
strate one interface extending another.

Interfaces and Multiple Inheritance
Unlike a class, which can extend only one other class, an interface can extend any number of other inter-
faces. To define an interface that inherits the members of several other interfaces, you specify the names
of the interfaces separated by commas following the keyword extends. For example:

public interface MyInterface extends HisInterface, HerInterface {

// Interface members – constants and abstract methods...

}

Now MyInterface will inherit all the methods and constants that are members of HisInterface and
HerInterface. This is described as multiple inheritance. In Java, classes do not support multiple
inheritance, only interfaces do.

Some care is necessary when you use this capability. If two or more super-interfaces declare a method
with the same signature — that is, with identical names and parameters — the method must have the
same return type in all the interfaces that declare it. If they don’t, the compiler will report an error. This
is because it would be impossible for a class to implement both methods, as they have the same signa-
ture. If the method is declared identically in all the interfaces that declare it, then a single definition in
the class will satisfy all the interfaces. As I said in the previous chapter, every method in a class must
have a unique signature, and the return type is not part of it.

Using Interfaces
What you have seen up to now has primarily illustrated the mechanics of creating an interface and
incorporating it into a class. The really interesting question is — what should you use interfaces for?

An interface that declares methods defines a standard set of operations. Different classes can add such
a standard interface by implementing it. Thus, objects of a number of different class types can share a
common set of operations. Of course, a given operation in one class may be implemented quite differ-
ently from how it is implemented in another class. But the way in which you invoke the operation is the
same for objects of all class types that implement the interface. For this reason it is often said that an
interface defines a contract for a set of operations.

I hinted at the third and perhaps most important use of interfaces at the beginning of this discussion.
An interface defines a type, so you can expedite polymorphism across a set of classes that implement the
same interface. This is an extremely useful and powerful facility. Let’s have a look at how this works.

326

Chapter 6

Interfaces and Polymorphism
You can’t create objects of an interface type, but you can create a variable of an interface type. For example:

Conversions converter = null; // Variable of the Conversions interface type

If you can’t create objects of type Conversions, what good is it? Well, you use it to store a reference to
an object of any class type that implements Conversions. This means that you can use this variable to
call the methods declared in the Conversions interface polymorphically. The Conversions interface is
not a good example to show how this works. Let’s consider a real-world parallel that I can use to better
demonstrate this idea, that of home audio/visual equipment and a remote control. I’m grateful to John
Ganter who suggested this idea to me after reading a previous edition of this book.

You almost certainly have a TV, a hi-fi, a VCR, and maybe a DVD player around your home, and each of
them will have its own remote control. All the remote controls will probably have some common subset
of buttons — power on/off, volume up, volume down, mute, and so on. Once you have more than four
or so remotes cluttering the place up, you might consider one of those fancy universal remote control
devices to replace them — sort of a single definition of a remote control, to suit all equipment.

A universal remote has a lot of similarities to an interface. By itself a universal remote does nothing. It
defines a set of buttons for standard operations, but the operation of each button must be programmed
specifically to suit each kind of device that you want to control. You can represent the TV, VCR, DVD,
and so on by classes, each of which will make use of the same remote control interface — the set of but-
tons if you like — but each in a different way. Even though it uses the same button on the remote, Power
On for the TV, for example, is quite different from Power On for the VCR. Let’s see how that might look
in a concrete example.

Try It Out Defining Interfaces
Here’s how you might define an interface to model a simple universal remote:

public interface RemoteControl {

boolean powerOnOff(); // Returns new state, on = true

int volumeUp(int increment); // Returns new volume level

int volumeDown(int decrement); // Returns new volume level

void mute(); // Mutes sound output

int setChannel(int channel); // Set the channel number and return it

int channelUp(); // Returns new channel number

int channelDown(); // Returns new channel number

}

The methods declared here in the RemoteControl interface should be self-explanatory. I have included
just a few of the many possible remote operations here to conserve space in the book. You could add
more if you want. You could have separate power on and power off methods, for example, tone controls,
and so on. There is no definition for any of these methods here. Methods declared in an interface are
always abstract— by definition. Nor is there an access attribute for any of them. Methods declared in
an interface are always public by default.

Now any class that requires the use of the functionality provided by a RemoteControl just has to declare
that it implements the interface and include the definitions for each of the methods in the interface. For
example, here’s the TV:

327

Extending Classes and Inheritance

import static java.lang.Math.max;

import static java.lang.Math.min;

public class TV implements RemoteControl {

public TV(String make, int screensize) {

this.make = make;

this.screensize = screensize;

// In practice you would probably have more

// arguments to set the max and min channel

// and volume here plus other characteristics for a particular TV.

}

public boolean powerOnOff() {

power = !power;

System.out.println(make + “ “+ screensize + “ inch TV power “

+ (power ? “on.”:”off.”));

return power;

}

public int volumeUp(int increment) {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Set volume – must not be greater than the maximum

volume += increment;

volume = min(volume, MAX_VOLUME);

System.out.println(make + “ “+ screensize + “ inch TV volume level: “

+ volume);

return volume;

}

public int volumeDown(int decrement) {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Set volume – must not be less than the minimum

volume -= decrement;

volume = max(volume, MIN_VOLUME);

System.out.println(make + “ “+ screensize + “ inch TV volume level: “

+ volume);

return volume;

}

public void mute() {

if(!power) { // If the power is off

return; // Nothing works

}

volume = MIN_VOLUME;

System.out.println(make + “ “+ screensize + “ inch TV volume level: “

+ volume);

}

328

Chapter 6

public int setChannel(int newChannel) {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Channel must be from MIN_CHANNEL to MAX_CHANNEL

if(newChannel>=MIN_CHANNEL && newChannel<=MAX_CHANNEL)

channel = newChannel;

System.out.println(make + “ “+ screensize + “ inch TV tuned to channel: “

+ channel);

return channel;

}

public int channelUp() {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Wrap channel up to MIN_CHANNEL when MAX_CHANNEL is reached

channel = channel<MAX_CHANNEL ? ++channel : MIN_CHANNEL;

System.out.println(make + “ “+ screensize + “ inch TV tuned to channel: “

+ channel);

return channel;

}

public int channelDown() {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Wrap channel down to MAX_CHANNEL when MIN_CHANNEL is reached

channel = channel>MIN_CHANNEL ? --channel : MAX_CHANNEL;

System.out.println(make + “ “+ screensize + “ inch TV tuned to channel: “

+ channel);

return channel;

}

private String make = null;

private int screensize = 0;

private boolean power = false;

private int MIN_VOLUME = 0;

private int MAX_VOLUME = 100;

private int volume = MIN_VOLUME;

private int MIN_CHANNEL = 0;

private int MAX_CHANNEL = 999;

private int channel = 0;

}

This class implements all the methods declared in the RemoteControl interface, and each method out-
puts a message to the command line so you’ll know when it is called. Of course, if you omitted any of
the interface method definitions in the class, the class would be abstract and you would have to declare
it as such.

329

Extending Classes and Inheritance

A VCR class might also implement RemoteControl:

import static java.lang.Math.max;

import static java.lang.Math.min;

public class VCR implements RemoteControl {

public VCR(String make) {

this.make = make;

}

public boolean powerOnOff() {

power = !power;

System.out.println(make + “ VCR power “+ (power ? “on.”:”off.”));

return power;

}

public int volumeUp(int increment) {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Set volume – must not be greater than the maximum

volume += increment;

volume = min(volume, MAX_VOLUME);

System.out.println(make + “ VCR volume level: “+ volume);

return volume;

}

public int volumeDown(int decrement) {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Set volume – must not be less than the minimum

volume -= decrement;

volume = max(volume, MIN_VOLUME);

System.out.println(make + “ VCR volume level: “+ volume);

return volume;

}

public void mute() {

if(!power) { // If the power is off

return; // Nothing works

}

volume = MIN_VOLUME;

System.out.println(make + “ VCR volume level: “+ volume);

}

public int setChannel(int newChannel) {

if(!power) { // If the power is off

return 0; // Nothing works

}

330

Chapter 6

// Channel must be from MIN_CHANNEL to MAX_CHANNEL

if(newChannel>=MIN_CHANNEL && newChannel<=MAX_CHANNEL) {

channel = newChannel;

}

System.out.println(make + “ VCR tuned to channel: “+ channel);

return channel;

}

public int channelUp() {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Wrap channel round to MIN_CHANNEL when MAX_CHANNEL is reached

channel = channel<MAX_CHANNEL ? ++channel : MIN_CHANNEL;

System.out.println(make + “ VCR tuned to channel: “+ channel);

return channel;

}

public int channelDown() {

if(!power) { // If the power is off

return 0; // Nothing works

}

// Wrap channel round to MAX_CHANNEL when MIN_CHANNEL is reached

channel = channel>MIN_CHANNEL ? --channel : MAX_CHANNEL;

System.out.println(make + “ VCR tuned to channel: “+ channel);

return channel;

}

private String make = null;

private boolean power = false;

private int MIN_VOLUME = 0;

private int MAX_VOLUME = 100;

private int volume = MIN_VOLUME;

private int MIN_CHANNEL = 0;

private int MAX_CHANNEL = 99;

private int channel = 0;

}

Of course, you could continue and define classes for other kinds of devices that used the remote, but
these two are sufficient to demonstrate the principle.

Let’s see how you can use the RemoteControl interface and these two classes in a working example.

Try It Out Polymorphism Using an Interface Type
You want to demonstrate polymorphic behavior with these classes. By introducing a bit of “random-
ness” into the example, you can avoid having any prior knowledge of the objects involved. Here’s the
class to operate both TV and VCR objects via a variable of type RemoteControl:

331

Extending Classes and Inheritance

import static java.lang.Math.random;

public class TryRemoteControl {

public static void main(String args[]) {

RemoteControl remote = null;

// You will create five objects to operate using our remote

for(int i = 0 ; i<5 ; i++) {

// Now create either a TV or a VCR at random

if(random()<0.5)

// Random choice of TV make and screen size

remote = new TV(random()<0.5 ? “Sony” : “Hitachi”,

random()<0.5 ? 32 : 28);

else // Random choice of VCR

remote = new VCR(random()<0.5 ? “Panasonic”: “JVC”);

// Now operate it, whatever it is

remote.powerOnOff(); // Switch it on

remote.channelUp(); // Set the next channel up

remote.volumeUp(10); // Turn up the sound

}

}

}

This should be in the same directory as the source files for the other two classes and the interface. When
you compile and run this, you should see output recording a random selection of five TV and VCR objects
operated by the RemoteControl variable. I got:

Sony 28 inch TV power on.

Sony 28 inch TV tuned to channel: 1

Sony 28 inch TV volume level: 10

Panasonic VCR power on.

Panasonic VCR tuned to channel: 1

Panasonic VCR volume level: 10

Sony 32 inch TV power on.

Sony 32 inch TV tuned to channel: 1

Sony 32 inch TV volume level: 10

JVC VCR power on.

JVC VCR tuned to channel: 1

JVC VCR volume level: 10

Sony 28 inch TV power on.

Sony 28 inch TV tuned to channel: 1

Sony 28 inch TV volume level: 10

How It Works
The variable remote is of type RemoteControl so you can use it to store a reference to any class object
that implements the RemoteControl interface. Within the for loop, you create either a TV or a VCR
object at random. The TV or VCR object will be of a randomly chosen make, and any TV object will be
either 28 inches or 32 inches — again chosen at random. The object that is created is then operated through
remote by calling its powerOnOff(), channelUp(), and volumeUp() methods. Since the type of the
object is determined at run time, and at random, the output demonstrates you are clearly seeing poly-
morphism in action here through a variable of an interface type.

332

Chapter 6

Using Multiple Interfaces
Of course, a RemoteControl object in the previous example can be used to call only the methods that
are declared in the interface. If a class implements some other interface besides RemoteControl, then to
call the methods declared in the second interface you would need either to use a variable of that inter-
face type to store the object reference or to cast the object reference to its actual class type. Suppose you
have a class defined as:

public MyClass implements RemoteControl, AbsoluteControl {

// Class definition including methods from both interfaces...

}

Since this class implements RemoteControl and AbsoluteControl, you can store an object of type
MyClass in a variable of either interface type. For example:

AbsoluteControl ac = new MyClass();

Now you can use the variable ac to call methods declared in the AbsoluteControl interface. However,
you cannot call the methods declared in the RemoteControl interface using ac, even though the object
reference that it holds has these methods. One possibility is to cast the reference to the original class type,
like this:

((MyClass)ac).powerOnOff();

Since you cast the reference to type MyClass, you can call any of the methods defined in that class. You
can’t get polymorphic behavior like this though. The compiler will determine the method that is called
when the code is compiled. To call the methods in the RemoteControl interface polymorphically, you
would have to have the reference stored as that type. Provided you know that the object is of a class type
that implements the RemoteControl interface, you can get from the reference store in the variable ac to
a reference of type RemoteControl. Like this, for example:

if(ac instanceof RemoteControl)

((RemoteControl)ac).mute();

Even though the interfaces RemoteControl and AbsoluteControl are unrelated, you can cast the
reference in ac to type RemoteControl. This is possible because the object that is referenced by ac is
actually of type MyClass, which happens to implement both interfaces and therefore incorporates both
interface types.

If you got a bit lost in this last section don’t worry about it. You won’t need this level of knowledge
about interfaces very often.

Method Parameters of Interface Types
Of course, you can specify that a parameter to a method is of an interface type. This has a special signifi-
cance in that a reference to an object of any type can be passed as an argument as long as the object type
implements the interface. By specifying a parameter as an interface type you are implying that the method
is interested only in the interface methods. As long as an object is of a type that implements those methods,
it is acceptable as an argument.

333

Extending Classes and Inheritance

This technique of making a parameter an interface type is used extensively within the class libraries. The
String, StringBuilder, and StringBuffer classes (plus the CharBuffer class that you’ll meet later
in the book) all implement the CharSequence interface. You’ll see lots of class methods that have a
parameter of type CharSequence, in which case such methods will accept references to any of the class
types I’ve mentioned as arguments. For example, the StringBuilder and StringBuffer classes both
have constructors with a parameter of type CharSequence. You can therefore create new objects of these
two class types from any of the four classes that implement the interface.

Nesting Classes in an Interface Definition
You can put the definition of a class inside the definition of an interface. The class will be an inner class
to the interface. An inner class to an interface will be static and public by default. The code structure
would be like this:

interface Port {

// Methods & Constants declared in the interface...

class Info {

// Definition of the class...

}

}

This declares the interface Port with an inner class Info. Objects of the inner class would be of type
Port.Info. You might create one with a statement like this:

Port.Info info = new Port.Info();

The standard class library includes a number of interfaces with inner classes, including one with the
name Port (in the javax.sound.sampled package) that has an inner class with the name Info, although
the Info class does not have the default constructor that I have used in the illustration here. The circum-
stances where you might define a class as an inner class to an interface would be when objects of the
inner class type have a strong logical association with the interface.

A class that implements the interface would have no direct connection with the inner class to the
interface — it would just need to implement the methods declared by the interface, but it is highly
likely it would make use of objects of the inner class type.

Interfaces and the Real World
An interface type is sometimes used to reference an object that encapsulates something that exists out-
side of Java, such as a particular physical device. This is done when the external device does not require
methods implemented in Java code because all the function is provided externally. The interface method
declarations just identify the mechanism for operating on the external object.

The example of the Port interface in the library is exactly that. A reference of type Port refers to an object
that is a physical port on a sound card, such as that for the speaker or the microphone. The inner class,
Port.Info, defines objects that encapsulate data to define a particular port. You can’t create a Port
object directly since there is no class of type Port. Indeed, it doesn’t necessarily make sense to do so
since your system may not have any ports. Assuming your PC has sound ports, you obtain a reference

334

Chapter 6

of type Port to an object that encapsulates a real port, such as the microphone, by calling a static method
defined in another class. The argument to the method would be a reference to an object of type Port.Info
specifying the kind of port that you want. All of the methods defined in the Port interface would corre-
spond to methods written in native machine code that would operate on the port. To call them you just
use the Port reference that you have obtained.

Anonymous Classes
There are occasions where you need to define a class for which you will only ever want to define one
object in your program, and the only use for the object is to pass it directly as an argument to a method.
In this case, as long as your class extends an existing class, or implements an interface, you have the
option of defining the class as an anonymous class. The definition for an anonymous class appears in
the new expression, in the statement where you create and use the object of the class, so that there is no
necessity to provide a name for the class.

I will illustrate how this is done using an example. Suppose you want to define an object of a class that
implements the interface ActionListener for one-time use. You could do this as follows:

pickButton.addActionListener(new ActionListener() {

// Code to define the class

// that implements the ActionListener interface

}

);

The class definition appears in the new expression that creates the argument to the addActionListener()
method. This method requires a reference of type ActionListener— in other words, a reference to a class
that implements the ActionListener interface. The parentheses following the name of the interface indi-
cate you are creating an object reference of this type, and the details of the class definition appear between
the parentheses. The anonymous class can include data members as well as methods, but obviously not
constructors because the class has no name. Here, all the methods declared in the ActionListener inter-
face would need to be defined. You’ll be using this approach in practice when you are implementing
window-based applications later in the book.

If the anonymous class extends an existing class, the syntax is much the same. In this case, you are call-
ing a constructor for the base class and, if this is not a default constructor, you can pass arguments to it
by specifying them between the parentheses following the base class name. The definition of the anony-
mous class must appear between braces, just as in the previous example.

An anonymous class can be convenient where the class definition is short and simple. You shouldn’t use
the approach to define classes of any complexity as it will make the code very difficult to understand.

Summary
You should now understand polymorphism and how to apply it. You will find that this technique can
be utilized to considerable advantage in the majority of your Java programs. It will certainly appear in
many of the examples in the remaining chapters.

335

Extending Classes and Inheritance

The important points I have covered in this chapter are:

❑ An abstract method is a method that has no body defined for it and is declared using the key-
word abstract.

❑ An abstract class is a class that contains one or more abstract methods. It must be defined with
the attribute abstract.

❑ You can define one class based on another. This is called class derivation or inheritance. The
base class is called a superclass, and the derived class is called a subclass. A superclass can also
be a subclass of another superclass.

❑ A subclass inherits certain members of its superclass. An inherited member of a class can be ref-
erenced and used as though it were declared as a normal member of the class.

❑ A subclass does not inherit the superclass constructors.

❑ The private members of a superclass are not inherited in a subclass. If the subclass is not in the
same package as the superclass, then members of the superclass that do not have an access
attribute are not inherited.

❑ The first statement in the body of a constructor for a subclass should call a constructor for
the superclass. If it does not, the compiler will insert a call for the default constructor for the
superclass.

❑ A subclass can re-implement, or overload, the methods inherited from its superclass. If two or
more subclasses, with a common base class, re-implement a common set of methods, these
methods can be selected for execution at run time.

❑ A variable of a superclass can point to an object of any of its subclasses. Such a variable can then
be used to execute the subclass methods inherited from the superclass.

❑ A subclass of an abstract class must also be declared as abstract if it does not provide defini-
tions for all of the abstract methods inherited from its superclass.

❑ You can import the static members of a class that is defined in a named package to allow the
static members to be referenced by their unqualified names.

❑ An enumeration type is a specialized form of class, and the enumeration constants that you
define are instances of the enumeration class type.

❑ A class defined inside another class is called a nested class or inner class. An inner class may
itself contain inner classes.

❑ An interface can contain constants, abstract methods, and inner classes.

❑ A class can implement one or more interfaces by declaring them in the class definition and
including the code to implement each of the interface methods.

❑ A class that does not define all the methods for an interface it implements must be declared as
abstract.

❑ If several classes implement a common interface, the methods declared as members of the inter-
face can be executed polymorphically.

336

Chapter 6

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Define an abstract base class Shape that includes protected data members for the (x, y) posi-
tion of a shape, a public method to move a shape, and a public abstract method show()

to output a shape. Derive subclasses for lines, circles, and rectangles. Also, define the class
PolyLine that you saw in this chapter with Shape as its base class. You can represent a line as
two points, a circle as a center and a radius, and a rectangle as two points on diagonally oppo-
site corners. Implement the toString() method for each class. Test the classes by selecting ten
random objects of the derived classes, and then invoking the show() method for each. Use the
toString() methods in the derived classes.

2. Define a class, ShapeList, that can store an arbitrary collection of any objects of subclasses of
the Shape class.

3. Implement the classes for shapes using an interface for the common methods, rather than inher-
itance from the superclass, while still keeping Shape as a base class.

4. Extend the LinkedList class that you defined in this chapter so that it supports traversing the
list backwards as well as forwards.

5. Add methods to the class LinkedList to insert and delete elements at the current position.

6. Implement a method in the LinkedList class to insert an object following an object passed as
an argument. (Assume the objects stored in the list implement an equals() method that com-
pares the This object with an object passed as an argument and returns true if they are equal.)

337

Extending Classes and Inheritance

7
Exceptions

Java uses exceptions as a way of signaling serious problems when you execute a program. The
standard classes use them extensively. Since they arise in your Java programs when things go
wrong, and if something can go wrong in your code, sooner or later it will, they are a very basic
consideration when you are designing and writing your programs.

The reason I’ve been sidestepping the question of exceptions for the past six chapters is that you
first needed to understand classes and inheritance before you could understand what an exception
is and appreciate what happens when an exception occurs. Now that you have a good grasp of
these topics I can delve into how to use and deal with exceptions in a program.

In this chapter you’ll learn:

❑ What an exception is

❑ How you handle exceptions in your programs

❑ The standard exceptions in Java

❑ How to guarantee that a particular block of code in a method will always be executed

❑ How to define and use your own types of exceptions

❑ How to throw exceptions in your programs

The Idea Behind Exceptions
An exception usually signals an error and is so called because errors in your Java programs are
bound to be the exception rather than the rule — by definition! An exception doesn’t always indi-
cate an error though — it can also signal some particularly unusual event in your program that
deserves special attention.

If you try to deal with the myriad and often highly unusual error conditions that might arise in the
midst of the code that deals with the normal operation of the program, your program structure
will soon become very complicated and difficult to understand. One major benefit of having an

error signaled by an exception is that it separates the code that deals with errors from the code that is
executed when things are moving along smoothly. Another positive aspect of exceptions is that they
provide a way of enforcing a response to particular errors. With many kinds of exceptions, you must
include code in your program to deal with them; otherwise, your code will not compile.

One important idea to grasp is that not all errors in your programs need to be signaled by exceptions.
Exceptions should be reserved for the unusual or catastrophic situations that can arise. A user entering
incorrect input to your program for instance is a normal event and should be handled without recourse
to exceptions. The reason for this is that dealing with exceptions involves quite a lot of processing over-
head, so if your program is handling exceptions a lot of the time it will be a lot slower than it needs to be.

An exception in Java is an object that’s created when an abnormal situation arises in your program. This
exception object has fields that store information about the nature of the problem. The exception is said
to be thrown — that is, the object identifying the exceptional circumstance is tossed as an argument to a
specific piece of program code that has been written specifically to deal with that kind of problem. The
code receiving the exception object as a parameter is said to catch it.

The situations that cause exceptions are quite diverse, but they fall into four broad categories:

Code or data errors For example, you attempt an invalid cast of an object, you try to
use an array index that’s outside the limits for the array, or an
integer arithmetic expression has a zero divisor.

Standard method For example, if you use the substring() method in the String
exceptions class, it can throw a StringIndexOutOfBoundsException

exception.

Throwing your own You’ll see later in this chapter how you can throw a few of your
exceptions own when you need to.

Java errors These can be due to errors in executing the Java Virtual Machine,
which runs your compiled program, but usually arise as a
consequence of an error in your program.

Before you look at how you make provision in your programs for dealing with exceptions, you should
understand what specific classes of exceptions could arise.

Types of Exceptions
An exception is always an object of some subclass of the standard class Throwable. This is true for
exceptions that you define and throw yourself, as well as the standard exceptions that arise due to errors
in your code. It’s also true for exceptions that are thrown by methods in one or another of the standard
packages.

Two direct subclasses of the class Throwable— the class Error and the class Exception— cover all the
standard exceptions. Both these classes themselves have subclasses that identify specific exception con-
ditions. Figure 7-1 shows the hierarchy to which these classes belong.

340

Chapter 7

Figure 7-1

Error Exceptions
The exceptions that are defined by the Error class and its subclasses are characterized by the fact that they
all represent conditions that you aren’t expected to do anything about, so you aren’t expected to catch
them. Error has three direct subclasses —ThreadDeath, LinkageError, and VirtualMachineError:

❑ The first of these sounds the most serious, but in fact it isn’t. A ThreadDeath exception is thrown
whenever an executing thread is deliberately stopped, and for the thread to be destroyed prop-
erly, you should not catch this exception. In some circumstances you might want to catch it —
for clean-up operations, for example — in which case you must be sure to rethrow the exception
to allow the thread to die peacefully. When a ThreadDeath exception is thrown and not caught,
it’s the thread that ends, not the program. I will deal with threads in detail in Chapter 16.

❑ The LinkageError exception class has subclasses that record serious errors with the classes
in your program. Incompatibilities between classes or attempting to create an object of a non-
existent class type are the sorts of things that cause these exceptions to be thrown.

❑ The VirtualMachineError class has four subclasses that specify exceptions that will be
thrown when a catastrophic failure of the Java Virtual Machine occurs. You aren’t prohibited
from trying to deal with these exceptions, but in general, there’s little point in attempting to
catch them.

The exceptions that correspond to objects of classes derived from LinkageError and
VirtualMachineError are all the result of catastrophic events or conditions. You can do little or
nothing to recover from them during the execution of the program. In these sorts of situations, all you

Object

derived from

Throwable

Error Exception

derived from

derived from derived from

Exceptions you should not catch

derived from

derived from derived from

Exceptions you can catch

341

Exceptions

can usually do is read the error message that is generated by the exception being thrown and then, par-
ticularly in the case of a LinkageError exception, try to figure out what might be wrong with your code
to cause the problem.

RuntimeException Exceptions
For almost all the exceptions that are represented by subclasses of the Exception class, you must
include code in your programs to deal with them if your code may cause them to be thrown. If a method
in your program has the potential to generate an exception of a type that has Exception as a superclass,
you must either handle the exception within the method or register that your method may throw such
an exception. If you don’t, your program will not compile. You’ll see in a moment how to handle excep-
tions and how to specify that a method can throw an exception.

One group of subclasses of Exception that is exempted from this is comprised of those derived from
RuntimeException. The reason that RuntimeException exceptions are treated differently, and that the
compiler allows you to ignore them, is that they generally arise because of serious errors in your code. In
most cases you can do little to recover the situation. However, in some contexts for some of these excep-
tions, this is not always the case, and you may well want to include code to recognize them. Quite a lot
of subclasses of RuntimeException are used to signal problems in various packages in the Java class
library. Let’s look at the exception classes that have RuntimeException as a base that are defined in the
java.lang package.

The subclasses of RuntimeException defined in the standard package java.lang are:

Class Name Exception Condition Represented

ArithmeticException An invalid arithmetic condition has arisen, such as an
attempt to divide an integer value by zero.

IndexOutOfBoundsException You’ve attempted to use an index that is outside the
bounds of the object it is applied to. This may be an
array, a String object, or a Vector object. The Vector
class is defined in the standard package java.util.
You will be looking into the Vector class in Chapter 14.

NegativeArraySizeException You tried to define an array with a negative dimension.

NullPointerException You used an object variable containing null, when it
should refer to an object for proper operation — for
example, calling a method or accessing a data member.

ArrayStoreException You’ve attempted to store an object in an array that isn’t
permitted for the array type.

ClassCastException You’ve tried to cast an object to an invalid type — the
object isn’t of the class specified, nor is it a subclass or a
superclass of the class specified.

IllegalArgumentException You’ve passed an argument to a method that doesn’t
correspond with the parameter type.

342

Chapter 7

Class Name Exception Condition Represented

SecurityException Your program has performed an illegal operation that is
a security violation. This might be trying to read a file
on the local machine from an applet.

IllegalMonitorStateException A thread has tried to wait on the monitor for an object
that the thread doesn’t own. (You’ll look into threads in
Chapter 16.)

IllegalStateException You tried to call a method at a time when it was not
legal to do so.

UnsupportedOperationException This is thrown if you request an operation to be carried
out that is not supported.

In the normal course of events you shouldn’t meet up with the last three of these. The
ArithmeticException turns up quite easily in your programs, as does the
IndexOutOfBoundsException. A mistake in a for loop limit will produce the latter. In fact there
are two subclasses of IndexOutOfBoundsException that specify the type of exception thrown
more precisely —ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
A NullPointerException can also turn up relatively easily, as can ArrayStoreException,
ClassCastException, and IllegalArgumentException, surprisingly enough. The last three here
arise when you are using a base class variable to call methods for derived class objects. Explicit attempts
to perform an incorrect cast, or store a reference of an incorrect type, or pass an argument of the wrong
type to a method will all be picked up by the compiler. These exceptions can, therefore, arise only from
using a variable of a base type to hold references to a derived class object.

The IllegalArgumentException class is a base class for two further exception classes,
IllegalThreadStateException and NumberFormatException. The former arises when you attempt
an operation that is illegal in the current thread state. The NumberFormatException exception is thrown
by the valueOf() or decode() methods in the classes representing integers — that is, the classes Byte,
Short, Integer, and Long. The parseXXX() methods in these classes can also throw this exception.
The exception is thrown if the String object you pass as an argument to the conversion method is not
a valid representation of an integer — if it contains invalid characters, for example. In this case a special
return value cannot be used, so throwing an exception is a very convenient way to signal that the argu-
ment is invalid.

You’ll be trying out some of the RuntimeException exceptions later in the chapter, as some of them are
very easy to generate, but let’s see what other sorts of exception classes have Exception as a base.

Other Subclasses of Exception
For all the other classes derived from the class Exception, the compiler will check that you’ve either
handled the exception in a method where the exception may be thrown or that you’ve indicated that the
method can throw such an exception. If you do neither, your code won’t compile. You’ll look more at
how you ensure that the code does compile in the next two sections.

343

Exceptions

Apart from a few that have RuntimeException as a base, all exceptions thrown by methods in the Java
class library are of a type that you must deal with. In Chapter 8 you will be looking at input and output
where the code will be liberally sprinkled with provisions for exceptions being thrown.

Dealing with Exceptions
As I discussed in the previous sections, if your code can throw exceptions other than those of type Error
or type RuntimeException (you can assume that I generally include the subclasses when I talk about
Error and RuntimeException exceptions), you must do something about it. Whenever you write code
that can throw an exception, you have a choice. You can supply code within the method to deal with any
exception that is thrown, or you can essentially ignore it by enabling the method containing the exception-
throwing code to pass it on to the code that called the method.

Let’s first see how you can pass an exception on.

Specifying the Exceptions a Method Can Throw
Suppose you have a method that can throw an exception that is neither a subclass of RuntimeException
nor of Error. This could be an exception of type IOException, for example, which can be thrown if
your method involves some file input or output operations. If the exception isn’t caught and disposed
of in the method, you must at least declare that the exception can be thrown. But how do you do that?

You do it simply by adding a throws clause in the definition of the method. Suppose you write a
method that uses the methods from classes that support input/output that are defined in the package
java.io. You’ll see in the chapters devoted to I/O operations that some of these can throw exceptions
represented by objects of classes IOException and FileNotFoundException. Neither of these is a
subclass of RuntimeException or Error, so the possibility of an exception being thrown needs to be
declared. Since the method can’t handle any exceptions it might throw, for the simple reason that you
don’t know how to do it yet, it must be defined as:

double myMethod() throws IOException, FileNotFoundException {

// Detail of the method code...

}

As the preceding fragment illustrates, to declare that your method can throw exceptions you just put the
throws keyword after the parameter list for the method. Then add the list of classes for the exceptions
that might be thrown, separated by commas. This has a knock-on effect — if another method calls this
method, it too must take account of the exceptions this method can throw. After all, calling a method

You’ll see later in this chapter that when you want to define your own exceptions,
you do this by subclassing the Exception class. Wherever your exception can be
thrown by a method, the compiler will verify either that it is caught in the method or
that the method definition indicates that it can be thrown by the method, just as it
does for the built-in exceptions.

344

Chapter 7

that can throw an exception is clearly code where an exception may be thrown. The calling method defi-
nition must either deal with the exceptions or declare that it can throw these exceptions as well. It’s a
simple choice. You either pass the buck or decide that the buck stops here. The compiler checks for this
and your code will not compile if you don’t do one or the other. The reasons for this will become obvi-
ous when you look at the way a Java program behaves when it encounters an exception.

Handling Exceptions
If you want to deal with the exceptions where they occur, you can include three kinds of code blocks in
a method to handle them —try, catch, and finally blocks:

❑ A try block encloses code that may give rise to one or more exceptions. Code that can throw an
exception that you want to catch must be in a try block.

❑ A catch block encloses code that is intended to handle exceptions of a particular type that may
be thrown in the associated try block. I’ll get to how a catch block is associated with a try
block in a moment.

❑ The code in a finally block is always executed before the method ends, regardless of whether
any exceptions are thrown in the try block.

Let’s dig into the detail of try and catch blocks first and then come back to the application of a finally
block a little later.

The try Block
When you want to catch an exception, the code in the method that might cause the exception to be
thrown must be enclosed in a try block. Code that can cause exceptions need not be in a try block, but
in this case, the method containing the code won’t be able to catch any exceptions that are thrown and
the method must declare that it can throw the types of exceptions that are not caught.

A try block is simply the keyword try, followed by braces enclosing the code that can throw the
exception:

try {

// Code that can throw one or more exceptions

}

Although I am discussing primarily exceptions that you must deal with here, a try block is also neces-
sary if you want to catch exceptions of type Error or RuntimeException. When you come to a work-
ing example in a moment, you will use an exception type that you don’t have to catch, simply because
exceptions of this type are easy to generate.

The catch Block
You enclose the code to handle an exception of a given type in a catch block. The catch block must
immediately follow the try block that contains the code that may throw that particular exception. A
catch block consists of the keyword catch followed by a single parameter between parentheses that

345

Exceptions

identifies the type of exception that the block is to deal with. This is followed by the code to handle the
exception enclosed between braces:

try {

// Code that can throw one or more exceptions

} catch(ArithmeticException e) {

// Code to handle the exception

}

This catch block handles only ArithmeticException exceptions. This implies that this is the only kind
of exception that can be thrown in the try block. If others can be thrown, this won’t compile. I will come
back to handling multiple exception types in a moment.

In general, the parameter for a catch block must be of type Throwable or one of the subclasses of the
class Throwable. If the class that you specify as the parameter type has subclasses, the catch block will
be expected to process exceptions of that class type, plus all subclasses of the class. If you specified the
parameter to a catch block as type RuntimeException, for example, the code in the catch block
would be invoked for exceptions defined by the class RuntimeException, or any of its subclasses.

You can see how this works with a simple example. It doesn’t matter what the code does — the impor-
tant thing is that it throws an exception you can catch.

Try It Out Using a try and a catch Block
The following code is really just an exhaustive log of the program’s execution:

public class TestTryCatch {

public static void main(String[] args) {

int i = 1;

int j = 0;

try {

System.out.println(“Try block entered “ + “i = “+ i + “ j = “+j);

System.out.println(i/j); // Divide by 0 - exception thrown

System.out.println(“Ending try block”);

} catch(ArithmeticException e) { // Catch the exception

System.out.println(“Arithmetic exception caught”);

}

System.out.println(“After try block”);

return;

}

}

If you run the example, you should get the following output:

Try block entered i = 1 j = 0

Arithmetic exception caught

After try block

346

Chapter 7

How It Works
The variable j is initialized to 0, so that the divide operation in the try block will throw an
ArithmeticException exception. You must use the variable j with the value 0 here because the Java
compiler will not allow you to explicitly divide by zero — that is, the expression i/0 will not compile.
The first line in the try block will enable you to track when the try block is entered, and the second
line will throw an exception. The third line can be executed only if the exception isn’t thrown — which
can’t occur in this example.

This shows that when the exception is thrown, control transfers immediately to the first statement in the
catch block. It’s the evaluation of the expression that is the argument to the println() method that
throws the exception, so the println() method never gets called. After the catch block has been exe-
cuted, execution then continues with the statement following the catch block. The statements in the
try block following the point where the exception occurred aren’t executed. You could try running the
example again after changing the value of j to 1 so that no exception is thrown. The output in this case
will be:

Try block entered i = 1 j = 1

1

Ending try block

After try block

From this you can see that the entire try block is executed. Execution then continues with the statement
after the catch block. Because no arithmetic exception was thrown, the code in the catch block isn’t
executed.

The catch block itself is a separate scope from the try block. If you want the catch block to output
information about objects or values that are set in the try block, make sure the variables are declared in
an outer scope.

try catch Bonding
The try and catch blocks are bonded together. You must not separate them by putting statements
between the two blocks, or even by putting braces around the try keyword and the try block itself. If
you have a loop block that is also a try block, the catch block that follows is also part of the loop. You
can see this with a variation of the previous example.

Try It Out A Loop Block That Is a try Block
You can make j a loop control variable and count down so that eventually you get a zero divisor in the
loop:

public class TestLoopTryCatch {

public static void main(String[] args) {

You need to take care when adding try blocks to existing code. A try block is no
different to any other block between braces when it comes to variable scope.
Variables declared in a try block are available only until the closing brace for the
block. It’s easy to enclose the declaration of a variable in a try block, and, in doing
so, inadvertently limit the scope of the variable and cause compiler errors.

347

Exceptions

int i = 12;

for(int j=3 ;j>=-1 ; j--)

try {

System.out.println(“Try block entered “ + “i = “+ i + “ j = “+j);

System.out.println(i/j); // Divide by 0 - exception thrown

System.out.println(“Ending try block”);

} catch(ArithmeticException e) { // Catch the exception

System.out.println(“Arithmetic exception caught”);

}

System.out.println(“After try block”);

return;

}

}

This will produce the following output:

Try block entered i = 12 j = 3

4

Ending try block

Try block entered i = 12 j = 2

6

Ending try block

Try block entered i = 12 j = 1

12

Ending try block

Try block entered i = 12 j = 0

Arithmetic exception caught

Try block entered i = 12 j = -1

-12

Ending try block

After try block

How It Works
The try and catch blocks are all part of the loop because the catch is inextricably bound to the try.
You can see this from the output. On the fourth iteration, you get an exception thrown because j is 0.
However, after the catch block is executed, you still get one more iteration with j having the value –1.
Of course, it would be better programming style to include braces for the loop block that enclosed the
try/catch combination, but then it would have been obvious that they were both in the loop and
would not demonstrate the point of the example.

Even though the try and catch blocks are both within the for loop, they have separate scopes. Variables
declared within the try block cease to exist when an exception is thrown. You can demonstrate that this is
so by declaring an arbitrary variable —k, say — in the try block, and then adding a statement to output k
in the catch block. Your code will not compile in this case.

Suppose you wanted the loop to end when an exception was thrown. You can easily arrange for this.
Just put the whole loop in a try block, thus:

348

Chapter 7

public static void main(String[] args) {

int i = 12;

try {

System.out.println(“Try block entered.”);

for(int j=3 ;j>=-1 ; j--) {

System.out.println(“Loop entered “ + “i = “+ i + “ j = “+j);

System.out.println(i/j); // Divide by 0 - exception thrown

}

System.out.println(“Ending try block”);

} catch(ArithmeticException e) { // Catch the exception

System.out.println(“Arithmetic exception caught”);

}

System.out.println(“After try block”);

return;

}

With this version of main(), the previous program will produce the following output:

Try block entered.

Loop entered i = 12 j = 3

4

Loop entered i = 12 j = 2

6

Loop entered i = 12 j = 1

12

Loop entered i = 12 j = 0

Arithmetic exception caught

After try block

Now, you no longer get the output for the last iteration because control passes to the catch block when
the exception is thrown, and that is now outside the loop.

Multiple catch Blocks
If a try block can throw several different kinds of exception, you can put several catch blocks after the
try block to handle them:

try {

// Code that may throw exceptions

} catch(ArithmeticException e) {

// Code for handling ArithmeticException exceptions

} catch(IndexOutOfBoundsException e) {

// Code for handling IndexOutOfBoundsException exceptions

}

// Execution continues here...

Exceptions of type ArithmeticException will be caught by the first catch block, and exceptions of type
IndexOutOfBoundsException will be caught by the second. Of course, if an ArithmeticException
exception is thrown, only the code in that catch block will be executed. When it is complete, execution
continues with the statement following the last catch block.

349

Exceptions

When you need to catch exceptions of several different types that may be thrown in a try block, the
order of the catch blocks can be important. When an exception is thrown, it will be caught by the first
catch block that has a parameter type that is the same as that of the exception, or a type that is a super-
class of the type of the exception. An extreme case would be if you specified the catch block parameter
as type Exception. This will catch any exception that is of type Exception, or of a class type that is
derived from Exception. This includes virtually all the exceptions you are likely to meet in the normal
course of events.

This has implications for multiple catch blocks relating to exception class types in a hierarchy. The catch
blocks must be in sequence with the most derived type first, and the most basic type last. Otherwise, your
code will not compile. The simple reason for this is that if a catch block for a given class type precedes a
catch block for a type that is derived from the first, the second catch block can never be executed, and the
compiler will detect that this is the case.

Suppose you have a catch block for exceptions of type ArithmeticException and another for excep-
tions of type Exception as a catch-all. If you write them in the following sequence, exceptions of type
ArithmeticException could never reach the second catch block because they will always be caught
by the first:

// Invalid catch block sequence – won’t compile!

try {

// try block code

} catch(Exception e) {

// Generic handling of exceptions

} catch(ArithmeticException e) {

// Specialized handling for these exceptions

}

Of course, this won’t get past the compiler — it would be flagged as an error.

To summarize — if you have catch blocks for several exception types in the same class hierarchy, you
must put the catch blocks in order, starting with the lowest subclass first and then progressing to the
highest superclass.

In principle, if you’re only interested in generic exceptions, all the error handling code can be localized
in one catch block for exceptions of the superclass type. However, in general it is more useful and better
practice to have a catch block for each of the specific types of exceptions that a try block can throw.

The finally Block
The immediate nature of an exception being thrown means that execution of the try block code breaks
off, regardless of the importance of the code that follows the point at which the exception was thrown.
This introduces the possibility that the exception leaves things in an unsatisfactory state. You might have
opened a file, for example, and because an exception was thrown, the code to close the file is not executed.

The finally block provides the means for you to clean up at the end of executing a try block. You use
a finally block when you need to be sure that some particular code is run before a method returns, no

350

Chapter 7

matter what exceptions are thrown within the associated try block. A finally block is always executed,
regardless of whether or not exceptions are thrown during the execution of the associated try block. If a
file needs to be closed, or a critical resource released, you can guarantee that it will be done if the code to
do it is put in a finally block.

The finally block has a very simple structure:

finally {

// Clean-up code to be executed last

}

Just like a catch block, a finally block is associated with a particular try block, and it must be located
immediately following any catch blocks for the try block. If there are no catch blocks, then you posi-
tion the finally block immediately after the try block. If you don’t do this, your program will not
compile.

Structuring a Method
You’ve looked at the blocks you can include in the body of a method, but it may not always be obvious
how they are combined. The first thing to get straight is that a try block plus any corresponding catch
blocks and the finally block all bunch together in that order:

try {

// Code that may throw exceptions...

} catch(ExceptionType1 e) {

// Code to handle exceptions of type ExceptionType1 or subclass

} catch(ExceptionType2 e) {

// Code to handle exceptions of type ExceptionType2 or subclass

... // more catch blocks if necessary

} finally {

// Code always to be executed after try block code

}

You can’t have just a try block by itself. Each try block must always be followed by at least one block
that is either a catch block or a finally block.

The primary purpose for the try block is to identify code that may result in an
exception being thrown. However, you can use it to contain code that doesn’t throw
exceptions for the convenience of using a finally block. This can be useful when
the code in the try block has several possible exit points —break or return state-
ments, for example — but you always want to have a specific set of statements exe-
cuted after the try block has been executed to make sure things are tidied up, such
as closing any open files. You can put these in a finally block. Note: If a value
is returned within a finally block, this return overrides any return statement
executed in the try block.

351

Exceptions

You must not include other code between a try block and its catch blocks, or between the catch blocks
and the finally block. You can have other code that doesn’t throw exceptions after the finally block,
and you can have multiple try blocks in a method. In this case, your method might be structured as
shown in Figure 7-2.

Figure 7-2

In many cases, a method will need only a single try block followed by all the catch blocks for the excep-
tions that need to be processed in the method, perhaps followed by a finally block. Java, however, gives
you the flexibility to have as many try blocks as you want. This makes it possible for you to separate vari-
ous operations in a method by putting each of them in their own try block — an exception thrown as a
result of a problem with one operation does not prevent subsequent operations from being executed.

The throws clause that follows the parameter list for the method identifies exceptions that can be thrown
in this method, but which aren’t caught by any of the catch blocks within the method. You saw this ear-
lier in this chapter. Exceptions that aren’t caught can be thrown by code anywhere in the body of the
method — in code not enclosed by a try block.

Execution Sequence
You saw how the sequence of execution proceeds with the simple case of a try block and a single catch
block. You also need to understand the sequence in which code executes when you have the try-catch-
finally combinations of blocks, when different exceptions are thrown. This is easiest to comprehend by
considering an example. You can use the following code to create a range of exceptions and conditions.

Try It Out Execution Sequence of a try Block
It will be convenient, in this example, to use an input statement to pause the program. The method you
will use can throw an exception of a type defined in the java.io package. You’ll start by importing the
java.io.IOException class name into the source file. Give the class that contains main() the name

In general there can be as many catch
blocks as required, and there may be none.

The finally block is optional if there is a catch block.

Typical
Structure

double doSomething(int aParam)
 throws ExceptionType1, ExceptionType2{

try{

 //Code that does throw exceptions

}

catch(MyException1 e){

 //Code to process exception

}

catch(MyException2 e){

 //Code to process exception

}

finally{

 //Code to execute after the try block

}

}

//Code that does not throw exceptions

//Set of try/catch/finally blocks...

//Code that does not throw exceptions

//Set of try/catch/finally blocks...

//Code that does not throw exceptions

//Set of try/catch/finally blocks...

//Code that does not throw exceptions

//...

352

Chapter 7

TryBlockTest. You’ll define another method, divide(), in this class that will be called in main(). The
overall structure of the TryBlockTest class source file will be:

import java.io.IOException;

public class TryBlockTest {

public static void main(String[] args) {

// Code for main()..

}

// Divide method

public static int divide(int[] array, int index) {

// Code for divide()...

}

}

The idea behind the divide() method is to pass it an array and an index as arguments. By choosing
the values in the array and the index value judiciously, you’ll be able to cause exceptions of type
ArithmeticException and ArrayIndexOutOfBoundsException to be thrown. You’ll need a try
block plus two catch blocks for the exceptions, and you’ll throw in a finally block for good measure.
Here’s the code for divide():

public static int divide(int[] array, int index) {

try {

System.out.println(“\nFirst try block in divide() entered”);

array[index + 2] = array[index]/array[index + 1];

System.out.println(“Code at end of first try block in divide()”);

return array[index + 2];

} catch(ArithmeticException e) {

System.out.println(“Arithmetic exception caught in divide()”);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println(“Index-out-of-bounds exception caught in divide()”);

} finally {

System.out.println(“finally block in divide()”);

}

System.out.println(“Executing code after try block in divide()”);

return array[index + 2];

}

You can define the main() method with the following code:

public static void main(String[] args) {

int[] x = {10, 5, 0}; // Array of three integers

// This block only throws an exception if the divide() method does

try {

System.out.println(“First try block in main() entered”);

System.out.println(“result = “ + divide(x,0)); // No error

x[1] = 0; // Will cause a divide by zero

System.out.println(“result = “ + divide(x,0)); // Arithmetic error

x[1] = 1; // Reset to prevent divide by zero

System.out.println(“result = “ + divide(x,1)); // Index error

353

Exceptions

} catch(ArithmeticException e) {

System.out.println(“Arithmetic exception caught in main()”);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println(“Index-out-of-bounds exception caught in main()”);

}

System.out.println(“Outside first try block in main()”);

System.out.println(“\nPress Enter to exit”);

// This try block is just to pause the program before returning

try {

System.out.println(“In second try block in main()”);

System.in.read(); // Pauses waiting for input...

return;

} catch(IOException e) { // The read() method can throw exceptions

System.out.println(“I/O exception caught in main()”);

} finally { // This will always be executed

System.out.println(“finally block for second try block in main()”);

}

System.out.println(“Code after second try block in main()”);

}

Because the read() method for the object in (this object represents the standard input stream and com-
plements the out object, which is the standard output stream) can throw an I/O exception, it must be
called in a try block and have an associated catch block, unless you choose to add a throws clause to
the header line of main().

If you run the example, it will produce the following output:

First try block in main()entered

First try block in divide() entered

Code at end of first try block in divide()

finally block in divide()

result = 2

First try block in divide() entered

Arithmetic exception caught in divide()

finally block in divide()

Executing code after try block in divide()

result = 2

First try block in divide() entered

Index-out-of-bounds exception caught in divide

finally block in divide()

Executing code after try block in divide()

Index-out-of-bounds exception caught in main()

Outside first try block in main()

Press Enter to exit

In second try block in main()

finally block for second try block in main()

354

Chapter 7

How It Works
All the try, catch, and finally blocks in the example have output statements so you can trace the
sequence of execution.

Within the divide() method, the code in the try block can throw an exception of type
ArithmeticException if the element array[index + 1] of the array passed to it is 0. It can also
throw an ArrayIndexOutOfBoundsException exception in the try block if the index value passed
to it is negative, or it results in index + 2 being beyond the array limits. Both these exceptions are
caught by one or other of the catch blocks, so they will not be apparent in the calling method main().

Note, however, that the last statement in divide() can also throw an exception of type
ArrayIndexOutOfBoundsException:

return array[index+2];

This statement is outside the try block, so the exception will not be caught. The exception will therefore
be thrown by the method when it is called in main(). However, you aren’t obliged to declare that the
divide() method throws this exception because the ArrayIndexOutOfBoundsException class is a
subclass of RuntimeException and is therefore exempted from the obligation to deal with it.

The main() method has two try blocks. The first try block encloses three calls to the divide() method.
The first call will execute without error; the second call will cause an arithmetic exception in the method;
and the third call will cause an index-out-of-bounds exception. There are two catch blocks for the first
try block in main() to deal with these two potential exceptions.

The read() method in the second try block in main() can cause an I/O exception to be thrown. Since
this is one of the exceptions that the compiler will check for, you must either put the statement that calls
the read() method in a try block and have a catch block to deal with the exception or declare that
main() throws the IOException exception. If you don’t do one or the other, the program will not compile.

Using the read() method in this way has the effect of pausing the program until the Enter key is pressed.
You’ll be looking at read(), and other methods for I/O operations, in the next four chapters. The
IOException class is in the package java.io, so you need the import statement for this class because
you refer to it in the catch block using its unqualified name. Of course, if you referred to it as java.io
.IOException, you would not need to import the class name. Remember that only classes defined in
java.lang are included in your program automatically.

Normal Execution of a Method
The first line of output from the TryBlockTest example indicates that execution of the try block in
main() has begun. The next block of four lines of output from the example is the result of a straight-
forward execution of the divide() method. No exceptions occur in divide(), so no catch blocks are
executed.

The code at the end of the divide() method, following the catch blocks, isn’t executed because the
return statement in the try block ends the execution of the method. However, the finally block in
divide() is executed before the return to the calling method occurs. If you comment out the return
statement at the end of the divide() method’s try block and run the example again, the code that fol-
lows the finally block will be executed.

355

Exceptions

The sequence of execution when no exceptions occur is shown in Figure 7-3.

Figure 7-3

Figure 7-3 illustrates the normal sequence of execution in an arbitrary try-catch-finally set of blocks.
If there’s a return statement in the try block, this will be executed immediately after the finally block
completes execution — so this prevents the execution of any code following the finally block. A return
statement in a finally block will cause an immediate return to the calling point, and the code following
the finally block wouldn’t be executed in this case.

Execution When an Exception Is Thrown
The next block of five lines in the output correspond to an ArithmeticException being thrown and
caught in the divide() method. The exception is thrown because the value of the second element in the
array x is zero. When the exception occurs, execution of the code in the try block is stopped, and you
can see that the code that follows the catch block for the exception in the divide() method is then exe-
cuted. The finally block executes next, followed by the code after the finally block. The value in the
last element of the array isn’t changed from its previous value, because the exception occurs during the
computation of the new value, before the result is stored.

The general sequence of execution in an arbitrary try-catch-finally set of blocks when an exception
occurs is shown in Figure 7-4.

Execution of the try block stops at the point where the exception occurs, and the code in the catch
block for the exception is executed immediately. If there is a return statement in the catch block, this
isn’t executed until after the finally block has been executed. As I discussed earlier, if a return state-
ment that returns a value is executed within a finally block, that value will be returned, not the value
from any previous return statement.

Normal Execution Sequence

After a normal
exit from a

try block, the
finally block is
executed, before

any return in
the try block.

Execution starts
as the beginning
of the try block.

If there is no return statement
in the try or finally blocks,
execution continues with code
following the finally block.

try{

 //Code that can throw exceptions

}

catch(MyException1 e){

 //Code to process exception

}

catch(MyException2 e){

 //Code to process exception

}

finally{

 //Code to execute after the try block

}

356

Chapter 7

Figure 7-4

Execution When an Exception Is Not Caught
The next block of six lines in the output is a consequence of the third call to the divide() method. This
causes an ArrayIndexOutOfBoundsException to be thrown in the try block, which is then caught.
However, the code at the end of the method, which is executed after the finally block, throws another
exception of this type. This can’t be caught in the divide() method because the statement causing it
isn’t in a try block. Since this exception isn’t caught in the divide() method, the method terminates
immediately and the same exception is thrown in main() at the point where the divide() method was
called. This causes the code in the relevant catch block in main() to be executed in consequence.

An exception that isn’t caught in a method is always propagated upwards to the calling method. It will
continue to propagate up through each level of calling method until either it is caught or the main()
method is reached. If it isn’t caught in main(), the program will terminate and a suitable message will
be displayed. This situation is illustrated in Figure 7-5.

Figure 7-5

int method1(...) {
 try {

method2(...);
 {

 catch(Exception1 e){
 //Code to process exception

 catch(Exception2 e) {

 {//Code to process exception

 } finally {

 //Code to execute after the try block

 }

}

int method2(...) {

method3(...);

 }

uncaught
Exception2
propagated

uncaught
Exception2
propagated

Exception2
caught

finally block
executed

int method3(...) {

method4(...);

 }

uncaught
Exception2
propagated

int method4(...) {

 //Exception 2
 thrown

 }

Exception Execution Sequence

Execution starts
at the beginning
of the try block.

If there is no return statement
in the catch or finally blocks,

execution continues with code
following the finally block.

After the catch block
has executed, the finally

block is executed.

Execution breaks off at
the point where the exception
occurs, and control transfers

to the start of the catch
block for the exception.

try{

 //Code that does throw exceptions

}

catch(MyException1 e){

 //Code to process exception

}

catch(MyException2 e){

 //Code to process exception

}

finally{

 //Code to execute after the try block

}

357

Exceptions

Figure 7-5 shows method1() calling method2(),which calls method3(), which calls method4(), in
which an exception of type Exception2 is thrown. This exception isn’t caught in method4(), so execu-
tion of method4() ceases, and the exception is thrown in method3(). It isn’t caught and continues to be
rethrown until it reaches method1() where there’s a catch block to handle it.

In our TryBlockTest example, execution continues in main() with the output statements outside the
first try block. The read() method pauses the program until you press the Enter key. No exception is
thrown, and execution ends after the code in the finally block is executed. The finally block is tied
to the try block that immediately precedes it and is executed even though there’s a return statement in
the try block.

Nested try Blocks
I won’t be going into these in detail, but you should note that you can have nested try blocks, as Figure
7-6 illustrates.

The catch blocks for the outer try block can catch any exceptions that are thrown, but not caught, by
any code within the block, including code within inner try-catch blocks. In the example shown in
Figure 7-6, the catch block for the outer try block will catch any exception of type Exception2. Such
exceptions could originate anywhere within the outer try block. The illustration shows two levels of
nesting, but you can specify more if you know what you’re doing.

Figure 7-6

Exceptions of type Exception2 thrown
anywhere in here that are not caught
will be caught by the catch block for the
outer try block.

try {

 try {

 //1st inner try block code...

 } catch(Exception1) {

 //...

 }

 //Outer try block code...

 try {

 //2nd inner try block code...

 }catch(Exception1 e) {

 //try block code...

 }

}catch(Exception2 e){

 //Outer catch block code...

}

358

Chapter 7

Rethrowing Exceptions
Even though you may need to recognize that an exception has occurred in a method by implementing a
catch clause for it, this is not necessarily the end of the matter. In many situations, the calling program
may need to know about it — perhaps because it will affect the continued operation of the program or
because the calling program may be able to compensate for the problem.

If you need to pass an exception that you have caught on to the calling program, you can rethrow it from
within the catch block using a throw statement. For example:

try {

// Code that originates an arithmetic exception

} catch(ArithmeticException e) {

// Deal with the exception here

throw e; // Rethrow the exception to the calling program

}

The throw statement is the keyword throw followed by the exception object to be thrown. When you
look at how to define our own exceptions later in this chapter, you’ll be using exactly the same mecha-
nism to throw them.

Exception Objects
Well, you now understand how to put try blocks together with catch blocks and finally blocks in your
methods. You may be thinking at this point that it seems a lot of trouble to go to just to display a message
when an exception is thrown. You may be right, but whether you can do very much more depends on the
nature and context of the problem. In many situations a message may be the best you can do, although you
can produce messages that are a bit more informative than those you’ve used so far in our examples. For
one thing, I have totally ignored the exception object that is passed to the catch block.

The exception object that is passed to a catch block can provide additional information about the nature
of the problem that originated it. To understand more about this, let’s first look at the members of the
base class for exceptions Throwable because these will be inherited by all exception classes and are
therefore contained in every exception object that is thrown.

The Throwable Class
The Throwable class is the class from which all Java exception classes are derived — that is, every excep-
tion object will contain the methods defined in this class. The Throwable class has two constructors: a
default constructor and a constructor that accepts an argument of type String. The String object that
is passed to the constructor is used to provide a description of the nature of the problem causing the
exception. Both constructors are public.

Objects of type Throwable contain two items of information about an exception:

❑ A message, which I have just referred to as being initialized by a constructor

❑ A record of the execution stack at the time the object was created

359

Exceptions

The execution stack keeps track of all the methods that are in execution at any given instant. It provides
the means whereby executing a return gets back to the calling point for a method. The record of the exe-
cution stack that is stored in the exception object consists of the line number in the source code where
the exception originated followed by a trace of the method calls that immediately preceded the point at
which the exception occurred. This is made up of the fully qualified name for each of the methods
called, plus the line number in the source file where each method call occurred. The method calls are in
sequence with the most recent method call appearing first. This will help you to understand how this
point in the program was reached.

The Throwable class has the following public methods that enable you to access the message and the
stack trace:

Method Description

getMessage() This returns the contents of the message,
describing the current exception. This will typi-
cally be the fully qualified name of the exception
class (it will be a subclass of Throwable) and a
brief description of the exception.

printStackTrace() This will output the message and the stack trace
to the standard error output stream — which is
the screen in the case of a console program.

printStackTrace(PrintStream s) This is the same as the previous method except
that you specify the output stream as an argu-
ment. Calling the previous method for an excep-
tion object e is equivalent to:

e.printStackTrace(System.err);

Another method, fillInStackTrace(), will update the stack trace to the point at which this method is
called. For example, if you put a call to this method in the catch block:

e.fillInStackTrace();

the line number recorded in the stack record for the method in which the exception occurred will be the
line where fillInStackTrace() is called. The main use of this is when you want to rethrow an excep-
tion (so it will be caught by the calling method) and record the point at which it is rethrown. For example:

e.fillInStackTrace(); // Record the throw point

throw e; // Rethrow the exception

In practice, it’s often more useful to throw an exception of your own. You’ll see how to define your own
exceptions in the next section, but first, let’s exercise some of the methods defined in the Throwable
class and see the results.

360

Chapter 7

Try It Out Dishing the Dirt on Exceptions
The easiest way to try out some of the methods I’ve just discussed is to make some judicious additions to
the catch blocks in the divide() method you have in the TryBlockTest class example:

public static int divide(int[] array, int index) {

try {

System.out.println(“\nFirst try block in divide() entered”);

array[index + 2] = array[index]/array[index + 1];

System.out.println(“Code at end of first try block in divide()”);

return array[index + 2];

} catch(ArithmeticException e) {

System.err.println(“Arithmetic exception caught in divide()\n” +

“\nMessage in exception object:\n\t” +

e.getMessage());

System.err.println(“\nStack trace output:\n”);

e.printStackTrace();

System.err.println(“\nEnd of stack trace output\n”);

} catch(ArrayIndexOutOfBoundsException e) {

System.err.println(“Index-out-of-bounds exception caught in divide()\n” +

“\nMessage in exception object:\n\t” + e.getMessage());

System.err.println(“\nStack trace output:\n”);

e.printStackTrace();

System.out.println(“\nEnd of stack trace output\n”);

} finally {

System.err.println(“finally clause in divide()”);

}

System.out.println(“Executing code after try block in divide()”);

return array[index + 2];

}

If you recompile the program and run it again, it will produce all the output as before, but with extra
information when exceptions are thrown in the divide() method. The new output generated for the
ArithmeticException will be:

Message in exception object:

/ by zero

Stack trace output:

java.lang.ArithmeticException: / by zero

at TryBlockTest.divide(TryBlockTest.java:54)

at TryBlockTest.main(TryBlockTest.java:15)

End of stack trace output

The additional output generated for the ArrayIndexOutOfBoundsException will be:

Message in exception object:

3

Stack trace output:

361

Exceptions

java.lang.ArrayIndexOutOfBoundsException: 3

at TryBlockTest.divide(TryBlockTest.java:54)

at TryBlockTest.main(TryBlockTest.java:17)

End of stack trace output

How It Works
The extra lines of code in each of the catch blocks in the divide() method output the message associ-
ated with the exception object e by calling its getMessage() method. You could have just put e here,
which would invoke the toString() method for e, and, in this case, the class name for e would pre-
cede the message. There are a couple of extra println() calls around the call to printStackTrace()
to make it easier to find the stack trace in the output. These are called for the standard error stream
object, System.err, for consistency with the stack trace output.

The first stack trace, for the arithmetic exception, indicates that the error originated at line 54 in the
source file TryBlockText.java and the last method call was at line 15 in the same source file. The sec-
ond stack trace provides similar information about the index-out-of-bounds exception, including the
offending index value. As you can see, with the stack trace output, it’s very easy to see where the error
occurred and how this point in the program was reached.

Standard Exceptions
The majority of predefined exception classes in Java don’t add further information about the conditions
that created the exception. The type alone serves to differentiate one exception from another in most
cases. This general lack of additional information is because it can be gleaned in the majority of cases
only by prior knowledge of the computation that is being carried out when the exception occurs, and the
only person who is privy to that is you, since you’re writing the program.

This should spark the glimmer of an idea. If you need more information about the circumstances sur-
rounding an exception, you’re going to have to obtain it and, equally important, communicate it to the
appropriate point in your program. This leads to the notion of defining your own exceptions.

Defining Your Own Exceptions
There are two basic reasons for defining your own exception classes:

❑ You want to add information when a standard exception occurs, and you can do this by
rethrowing an object of your own exception class.

❑ You may have error conditions that arise in your code that warrant the distinction of a special
exception class.

However, you should bear in mind that there’s a lot of overhead in throwing exceptions, so it is not a
valid substitute for “normal” recovery code that you would expect to be executed frequently. If you have
recovery code that will be executed often, then it doesn’t belong in a catch block, but rather in some-
thing like an if-else statement.

Let’s see how you create your own exceptions.

362

Chapter 7

Defining an Exception Class
Your exception classes must always have Throwable as a superclass; otherwise, they will not define an
exception. Although you can derive them from any of the standard exception classes, your best policy
is to derive them from the Exception class. This will allow the compiler to keep track of where such
exceptions are thrown in your program and check that they are either caught or declared as thrown in a
method. If you use RuntimeException or one of its subclasses, the compiler checking for catch blocks
of your exception class will be suppressed.

Let’s go through an example of how you define an exception class:

public class DreadfulProblemException extends Exception {

// Constructors

public DreadfulProblemException(){ } // Default constructor

public DreadfulProblemException(String s) {

super(s); // Call the base class constructor

}

}

This is the minimum you should supply in your exception class definition. By convention, your excep-
tion class should include a default constructor and a constructor that accepts a String object as an argu-
ment. The message stored in the superclass Exception (in fact, in Throwable, which is the superclass
of Exception) will automatically be initialized with the name of your class, whichever constructor for
your class objects is used. The String passed to the second constructor will be appended to the name of
the class to form the message stored in the exception object.

Of course, you can add other constructors. In general, you’ll want to do so, particularly when you’re
rethrowing your own exception after a standard exception has been thrown. In addition, you’ll typically
want to add instance variables to the class that store additional information about the problem, plus
methods that will enable the code in a catch block to get at the data. Since your exception class is ulti-
mately derived from Throwable, the stack trace information will be automatically available for your
exceptions.

Throwing Your Own Exception
As you saw earlier, you throw an exception with a statement that consists of the throw keyword, followed
by an exception object. This means you can throw your own exception with the following statements:

DreadfulProblemException e = new DreadfulProblemException();

throw e;

The method will cease execution at this point — unless the code snippet above is in a try or a catch
block with an associated finally clause, the contents of which will be executed before the method
ends. The exception will be thrown in the calling program at the point where this method was called.
The message in the exception object will consist only of the qualified name of the exception class.

If you wanted to add a specific message to the exception, you could define it as:

DreadfulProblemException e = new DreadfulProblemException(“Uh-Oh, trouble.”);

363

Exceptions

You’re using a different constructor here. In this case the message stored in the superclass will be a string
that consists of the class name with the string passed to the constructor appended to it. The getMessage()
method inherited from Throwable will, therefore, return a String object containing the following string:

“DreadfulProblemException: Uh-Oh, trouble.”

You can also create an exception object and throw it in a single statement. For example:

throw new DreadfulProblemException(“Terrible difficulties”);

In all the examples, the stack trace record inherited from the superclass Throwable will be set up
automatically.

An Exception Handling Strategy
You should think through what you want to achieve with the exception handling code in your program.
There are no hard and fast rules. In some situations you may be able to correct a problem and enable
your program to continue as though nothing happened. In other situations, outputting the stack trace
and a fast exit will be the best approach — a fast exit being achieved by calling the exit() method in
the System class. Here you’ll take a look at some of the things you need to weigh when deciding how
to handle exceptions.

Consider the last example where you handled arithmetic and index-out-of-bounds exceptions in the
divide() method. While this was a reasonable demonstration of the way the various blocks worked, it
wasn’t a satisfactory way of dealing with the exceptions in the program for at least two reasons.

❑ First, it does not make sense to catch the arithmetic exceptions in the divide() method without
passing them on to the calling method. After all, it was the calling method that set the data up,
and only the calling program has the potential to recover the situation.

❑ Second, by handling the exceptions completely in the divide() method, you allow the calling
program to continue execution without any knowledge of the problem that arose. In a real sit-
uation this would undoubtedly create chaos, as further calculations would proceed with erro-
neous data.

You could have simply ignored the exceptions in the divide() method. This might not be a bad approach
in this particular situation, but the first problem the calling program would have is determining the
source of the exception. After all, such exceptions might also arise in the calling program itself. A second
consideration could arise if the divide() method were more complicated. There could be several places
where such exceptions might be thrown, and the calling method would have a hard time distinguishing
them.

An Example of an Exception Class
Another possibility is to catch the exceptions in the method where they originate and then pass them on
to the calling program. You can pass them on by throwing new exceptions that provide more granularity
in identifying the problem (by having more than one exception type or by providing additional data within
the new exception type). For example, you could define more than one exception class of your own that
represented an ArithmeticException, where each reflected the specifics of a particular situation. This
situation is illustrated in Figure 7-7.

364

Chapter 7

Figure 7-7

Figure 7-7 shows how two different circumstances causing an ArithmeticException in method2() are
differentiated in the calling method, method1(). The method2() method can throw an exception either
of type Exception1 or of type Exception2, depending on the analysis that is made in the catch block
for the ArithmeticException type. The calling method has a separate catch block for each of the
exceptions that may be thrown.

You could also define a new exception class that had instance variables to identify the problem more
precisely. Let’s suppose that in the last example you wanted to provide more information to the calling
program about the error that caused each exception in the divide() method. The primary exception
can be either an ArithmeticException or an ArrayIndexOutOfBoundsException, but since you’re
dealing with a specific context for these errors, you could give the calling program more information by
throwing your own exceptions.

Let’s take the ArithmeticException case as a model and define an exception class to use in the pro-
gram to help identify the reason for the error more precisely.

Try It Out Defining Your Own Exception Class
You can define the class that will correspond to an ArithmeticException in the divide() method as:

public class ZeroDivideException extends Exception {

private int index = -1; // Index of array element causing error

// Default Constructor

public ZeroDivideException(){ }

exception
thrown

new exception
thrown

two varieties
of the exception are

distinguished

method call int method2(...) throws
 Exception1,Exception2{

 try{

 // try block code that may
 // throw ArithmeticException

 } catch(ArithmeticException e) {

 //Analysis code...
 if(...) {

 throw Exception1;

 } else {

 throw Exception2;

 }
 }
}

void method1(...) {

 try {

 int x = method2(...);

 } catch(Exception1 e) {

 // Handle exception

 } catch(Exception2 e) {

 // Handle exception

 }

}

365

Exceptions

// Standard constructor

public ZeroDivideException(String s) {

super(s); // Call the base constructor

}

public ZeroDivideException(int index) {

super(“/ by zero”); // Call the base constructor

this.index = index; // Set the index value

}

// Get the array index value for the error

public int getIndex() {

return index; // Return the index value

}

}

How It Works
As you’ve derived the ZeroDivideException class from the Exception class, the compiler will check
that the exceptions thrown are either caught or identified as thrown in a method. Your class will inherit
all the members of the class Throwable via the Exception class, so you’ll get the stack trace record and
the message for the exception maintained for free. It will also inherit the toString() method, which is
satisfactory in this context, but this could be overridden if desired.

You’ve added a data member, index, to store the index value of the zero divisor in the array passed to
divide(). This will give the calling program a chance to fix this value if appropriate in the catch block
for the exception. In this case, the catch block would also need to include code that would enable the
divide() method to be called again with the corrected array.

Let’s now put it to work in another variation on the TryBlockTest example.

Try It Out Using the Exception Class
You need to use the exception class in two contexts — in the divide() method when you catch a stan-
dard ArithmeticException and in the calling method main() to catch the new exception. Let’s mod-
ify divide() first:

public static int divide(int[] array, int index) throws ZeroDivideException {

try {

System.out.println(“First try block in divide() entered”);

array[index + 2] = array[index]/array[index + 1];

System.out.println(“Code at end of first try block in divide()”);

return array[index + 2];

} catch(ArithmeticException e) {

System.out.println(“Arithmetic exception caught in divide()”);

throw new ZeroDivideException(index + 1); // Throw new exception

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println(

“Index-out-of-bounds index exception caught in divide()”);

}

System.out.println(“Executing code after try block in divide()”);

return array[index + 2];

}

366

Chapter 7

The first change is to add the throws clause to the method definition. Without this you’ll get an
error message from the compiler. The second change adds a statement to the catch block for
ArithmeticException exceptions that throws a new exception.

This new exception needs to be caught in the calling method main():

public static void main(String[] args) {

int[] x = {10, 5, 0}; // Array of three integers

// This block only throws an exception if method divide() does

try {

System.out.println(“First try block in main()entered”);

System.out.println(“result = “ + divide(x,0)); // No error

x[1] = 0; // Will cause a divide by zero

System.out.println(“result = “ + divide(x,0)); // Arithmetic error

x[1] = 1; // Reset to prevent divide by zero

System.out.println(“result = “ + divide(x,1)); // Index error

} catch(ZeroDivideException e) {

int index = e.getIndex(); // Get the index for the error

if(index > 0) { // Verify it is valid and now fix the array

x[index] = 1; // ...set the divisor to 1...

x[index + 1] = x[index - 1]; // ...and set the result

System.out.println(“Zero divisor corrected to “ + x[index]);

}

} catch(ArithmeticException e) {

System.out.println(“Arithmetic exception caught in main()”);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println(“Index-out-of-bounds exception caught in main()”);

}

System.out.println(“Outside first try block in main()”);

}

You should put the revised TryBlockTest class file and the file for the ZeroDivideException class
together in the same directory. In the download, they’ll be in the TryBlockTest3 directory for Chapter 7.

How It Works
All you need to add in main() is the catch block for the new exception. You need to make sure that
the index value for the divisor stored in the exception object is positive so that another exception is not
thrown when you fix up the array. As you arbitrarily set the array element that contained the zero divi-
sor to 1, it makes sense to set the array element holding the result to the same as the dividend. You can
then let the method main() stagger on.

A point to bear in mind is that the last two statements in the try block will not have
been executed. After the catch block has been executed, the method continues with
the code following the try-catch block set. In practice you would need to consider
whether to ignore this. One possibility is to put the whole of the try-catch block
code in main() in a loop that would normally only run one iteration, but where this
could be altered to run additional iterations by setting a flag in the catch block.

367

Exceptions

This is a rather artificial example — so what sort of circumstances could justify this kind of fixing up of
the data in a program? If the data originated through some kind of instrumentation measuring physical
parameters such as temperatures or pressures — in a chemical manufacturing plant or an oil refinery, for
example — the data may contain spurious zero values from time to time. Rather than abandon the whole
calculation you might well want to amend these as they occur and press on to process the rest of the data.

Summary
In this chapter you have learned what exceptions are and how to deal with them in your programs. You
should make sure that you consider exception handling as an integral part of developing your Java pro-
grams. The robustness of your program code depends on how effectively you deal with the exceptions
that can be thrown within it.

The important concepts you have explored in this chapter are:

❑ Exceptions identify errors that arise in your program.

❑ Exceptions are objects of subclasses of the Throwable class.

❑ Java includes a set of standard exceptions that may be thrown automatically, as a result of errors
in your code, or may be thrown by methods in the standard classes in Java.

❑ If a method throws exceptions that aren’t caught, and aren’t represented by subclasses of the
Error class or by subclasses of the RuntimeException class, then you must identify the excep-
tion classes in a throws clause in the method definition.

❑ If you want to handle an exception in a method, you must place the code that may generate the
exception in a try block. A method may have several try blocks.

❑ Exception handling code is placed in a catch block that immediately follows the try block that
contains the code that can throw the exception. A try block can have multiple catch blocks
that each deals with a different type of exception.

❑ A finally block is used to contain code that must be executed after the execution of a try
block, regardless of how the try block execution ends. A finally block will always be exe-
cuted before execution of the method ends.

❑ You can throw an exception by using a throw statement. You can throw an exception anywhere
in a method. You can also rethrow an existing exception in a catch block to pass it to the calling
method.

❑ You can define your own exception classes that, in general, should be derived from the class
Exception.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

368

Chapter 7

1. Write a program that will generate exceptions of type NullPointerException,
NegativeArraySizeException, and IndexOutOfBoundsException. Record the catching of
each exception by displaying the message stored in the exception object and the stack trace record.

2. Add an exception class to the last example that will differentiate between the index-out-of-
bounds error possibilities, rethrow an appropriate object of this exception class in divide(),
and handle the exception in main().

3. Write a program that calls a method that throws an exception of type ArithmeticException at
a random iteration in a for loop. Catch the exception in the method and pass the iteration count
when the exception occurred to the calling method by using an object of an exception class you
define.

4. Add a finally block to the method in the previous example to output the iteration count when
the method exits.

369

Exceptions

8
Understanding Streams

This is the first of four chapters devoted to streams and file input and output. This chapter intro-
duces streams, and deals with keyboard input, and output to the command line.

By the end of this chapter, you will have learned:

❑ What a stream is and what the main classes that Java provides to support stream opera-
tions are

❑ What stream readers and writers are and what they are used for

❑ How to read data from the keyboard

❑ How to format data that you write to the command line

Streams and the New I/O Capability
The package that supports stream input/output is java.io, and it is vast. It defines over seventy
classes and interfaces, many of which have a large number of methods. It is therefore quite impracti-
cal to go into them all in detail in a book of this kind. Refer to the Java documentation for more
information. My strategy in this and the following three chapters will be to take a practical approach.
The idea is to provide an overall grounding of the concepts involved and to equip you with enough
detailed knowledge to be able to do a number of specific, useful, and practical things in your pro-
grams. These are:

❑ To be able to read data of various kinds from the keyboard

❑ To be able to create formatted output to the command line

❑ To be able to read and write files containing basic data

❑ To be able to read and write files containing objects

To achieve this, I’ll give you an overview of what the important stream classes do and how they
interrelate, together with an outline of the classes that operate on streams. I’ll go into the detail

selectively, just exploring the classes and methods that you need to accomplish specific things. I’ll also be
sticking to the latest and greatest I/O capability that was first introduced in the JDK 1.4 and continues in
JDK 5.0, which makes it unnecessary to delve into a lot of the original stream classes.

Up to and including Java 1.3, the only way to read and write disk files was to use a stream. The new I/O
capability in the java.nio and java.nio.channels packages enables you to read and write files that
contain data of the primitive Java types, as well as strings, and completely supersedes the stream I/O
capability in this context. While all the old I/O facilities are still there, the new I/O capability is much
more efficient and in many ways easier to use, so I’ll limit the discussions of streams for handling files to
the extent necessary for you to understand the new I/O capability. I’ll go into the new I/O capability in
detail in the next two chapters.

Two areas where you must still use the facilities provided by the stream classes are reading from the
keyboard and writing to the command line. I cover both of these in this chapter along with some general
aspects of the stream classes and the relationships between them. The new file I/O capability does not
provide for objects to be written and read, so you still need to use streams for this. You will be looking
into how you read and write objects to a file in Chapter 12.

Understanding Streams
A stream is an abstract representation of an input or output device that is a source of, or destination for,
data. You can write data to a stream and read data from a stream. You can visualize a stream as a sequence
of bytes that flows into or out of your program. Figure 8-1 illustrates how physical devices map to streams.

Figure 8-1

Data Program

Data

Input
Stream

Output
Stream

372

Chapter 8

Input and Output Streams
When you write data to a stream, the stream is called an output stream. The output stream can go to any
device to which a sequence of bytes can be transferred, such as a file on a hard disk, or a phone line con-
necting your system to a remote system. An output stream can also go to your display screen, but only at
the expense of limiting it to a fraction of its true capability. Stream output to your display is output to the
command line. When you write to your display screen using a stream, it can display characters only, not
graphical output. Graphical output requires more specialized support that I’ll discuss from Chapter 17
onwards.

Note that while a printer can be considered notionally as a stream, printing in Java does not work this way.
A printer in Java is treated as a graphical device, so sending output to the printer is very similar to dis-
playing graphical output on your display screen. You’ll learn how printing works in Java in Chapter 21.

You read data from an input stream. In principle, this can be any source of serial data, but is typically a
disk file, the keyboard, or a remote computer.

Under normal circumstances, file input and output for the machine on which your program is executing
is available only to Java applications. It’s not available to Java applets except to a strictly limited extent.
If this were not so, a malicious Java applet embedded in a web page could trash your hard disk. An
IOException will normally be thrown by any attempted operation on disk files on the local machine in
a Java applet. The directory containing the .class file for the applet and its subdirectories are freely
accessible to the applet. Also, the security features in Java can be used to control what an applet (and an
application running under a Security Manager) can access so that an applet can access only files or other
resources for which it has explicit permission.

The main reason for using a stream as the basis for input and output operations is to make your pro-
gram code for these operations independent of the device involved. This has two advantages. First, you
don’t have to worry about the detailed mechanics of each device, which are taken care of behind the
scenes. Second, your program will work for a variety of input/output devices without any changes to
the code.

Stream input and output methods generally permit very small amounts of data, such as a single charac-
ter or byte, to be written or read in a single operation. Transferring data to or from a stream like this may
be extremely inefficient, so a stream is often equipped with a buffer in memory, in which case it is called
a buffered stream. A buffer is simply a block of memory that is used to batch up the data that is trans-
ferred to or from an external device. Reading or writing a stream in reasonably large chunks will reduce
the number of input/output operations necessary and thus make the process more efficient.

When you write to a buffered output stream, the data is sent to the buffer and not to the external device.
The amount of data in the buffer is tracked automatically, and the data is usually sent to the device when
the buffer is full. However, you will sometimes want the data in the buffer to be sent to the device before
the buffer is full, and methods are provided to do this. This operation is usually termed flushing the
buffer.

Buffered input streams work in a similar way. Any read operation on a buffered input stream will read
data from the buffer. A read operation for the device that is the source of data for the stream will be read
only when the buffer is empty and the program has requested data. When this occurs, a complete buffer-
full of data will be read automatically from the device, if sufficient data is available.

373

Understanding Streams

Binary and Character Streams
The java.io package supports two types of streams — binary streams, which contain binary data, and
character streams, which contain character data. Binary streams are sometimes referred to as byte streams.
These two kinds of streams behave in different ways when you read and write data.

When you write data to a binary stream, the data is written to the stream as a series of bytes, exactly as it
appears in memory. No transformation of the data takes place. Binary numerical values are just written
as a series of bytes, 4 bytes for each value of type int, 8 bytes for each value of type long, 8 bytes for
each value of type double, and so on. As you saw in Chapter 2, Java stores its characters internally as
Unicode characters, which are 16-bit characters, so each Unicode character is written to a binary stream
as 2 bytes, the high byte being written first. Supplementary Unicode characters that are surrogates con-
sist of two successive 16-bit characters, in which case the two sets of 2 bytes are written in sequence to
the binary stream with the high byte written first in each case.

Character streams are used for storing and retrieving text. You may also use character streams to read
text files not written by a Java program. All binary numeric data has to be converted to a textual repre-
sentation before being written to a character stream. This involves generating a character representation
of the original binary data value. Reading numeric data from a stream that contains text involves much
more work than reading binary data. When you read a value of type int from a binary stream, you
know that it consists of 4 bytes. When you read an integer from a character stream, you have to deter-
mine how many characters from the stream make up the value. For each numerical value you read from
a character stream, you have to be able to recognize where the value begins and ends and then convert
the token — the sequence of characters that represents the value — to its binary form. Figure 8-2 illus-
trates this.

Figure 8-2

write x

write y

0x31Stream Contents

0xA7Int x = 167;

0x1BInt y = 27;

0x36 0x37 0x32 0x37

'1' '6' '7'

total of 5 bytes written

'2' '7'
ASCII

representation
of characters

To read these back
successfully, you need to
know that the first three
bytes correspond to x,

and the next two
correspond to y.

write x

write y

374

Chapter 8

When you write strings to a stream as character data, by default the Unicode characters are automati-
cally converted to the local representation of the characters in the host machine, and these are then writ-
ten to the stream. When you read a string, the default mechanism converts the data from the stream back
to Unicode characters from the local machine representation. With character streams, your program reads
and writes Unicode characters, but the stream will contain characters in the equivalent character encod-
ing used by the local computer.

You don’t have to accept the default conversion process for character streams. Java allows named map-
pings between Unicode characters and sets of bytes to be defined, called charsets, and you can select an
available charset that should apply when data is transferred to, or from, a particular character stream. I
won’t be going into this in detail, but you can find more information on defining and using charsets in
the JDK documentation for the Charset class.

The Classes for Input and Output
There are quite a number of stream classes, but as you will see, they form a reasonably logical structure.
Once you see how they are related, you shouldn’t have much trouble using them. I will work through
the class hierarchy from the top down, so you will be able to see how the classes hang together and how
you can combine them in different ways to suit different situations.

The package java.io contains the classes that provide the foundation for Java’s support for stream I/O:

Class Description

InputStream The base class for byte stream input operations.

OutputStream The base class for byte stream output operations.

InputStream and OutputStream are both abstract classes. As you are well aware by now, you cannot
create instances of an abstract class — these classes serve only as a base from which to derive classes
with more concrete input or output capabilities. However, both of the classes declare methods that
define a basic set of operations for the streams they represent, so the fundamental characteristics of how
a stream is accessed are set by these classes. Both classes implement the Closeable interface. This inter-
face declares just one method, close(), which should close the stream and release any resources that
the stream object is holding. Generally, the InputStream and OutputStream classes, and their sub-
classes, represent byte streams and provide the means of reading and writing binary data as a series
of bytes.

Basic Input Stream Operations
As you saw in the previous section, the InputStream class is abstract, so you cannot create objects of
this class type. Nonetheless, input stream objects are often accessible via a reference of this type, so the
methods identified in this class are what you get. The InputStream class includes three methods for
reading data from a stream:

375

Understanding Streams

Method Description

read() This method is abstract in the InputStream class, so it
has to be defined in a subclass. The method returns the
next byte available from the stream as type int. If the end
of the stream is reached, the method will return the value
-1. An exception of type IOException will be thrown if
an I/O error occurs.

read(byte[] array) This method reads bytes from the stream into successive
elements of array. The maximum of array.length
bytes will be read. The method will not return until the
input data is read or the end of the stream is detected. The
method returns the number of bytes read or -1 if no bytes
were read because the end of the stream was reached. If
an I/O error occurs, an exception of type IOException
will be thrown. If the argument to the method is null
then a NullPointerException will be thrown. An
input/output method that does not return until the oper-
ation is completed is referred to as a blocking method,
and you say that the methods blocks until the operation
is complete.

read(byte[] array, This works in essentially the same way as the previous
int offset, method, except that up to length bytes are read into
int length) array starting with the element array[offset].

The data is read from the stream by these methods simply as bytes. No conversion is applied to the bytes
read. If any conversion is required — for a stream containing bytes in the local character encoding, for
example — you must provide a way to handle this. You will see how this might be done in a moment.

You can skip over bytes in an InputStream by calling its skip() method. You specify the number of
bytes to be skipped as an argument of type long, and the actual number of bytes skipped is returned,
also a value of type long. This method can throw an IOException if an error occurs.

You can close an InputStream by calling its close() method. Once you have closed an input stream,
subsequent attempts to access or read from the stream will cause an IOException to be thrown because
the close() operation will have released the resources held by the stream object, including the source
of the data, such as a file.

The InputStream class has the seven direct subclasses shown in Figure 8-3.

You will be using the FileInputStream class in Chapter 11 for reading disk files and the
ObjectInputStream class in Chapter 12 for reading objects from a file.

376

Chapter 8

Figure 8-3

The FilterInputStream class has a further nine direct subclasses that provide more specialized ways
of filtering or transforming data from an input stream. You’ll be using only the BufferedInputStream
class, but here’s the complete set, with an indication of what each of them does:

BufferedInputStream Buffers input from another stream in memory to make the
read operations more efficient.

DataInputStream Reads data of primitive types from a binary stream.

CheckedInputStream Reads an input stream and maintains a checksum for the
data that is read to verify its integrity.

CipherInputStream Reads data from an encrypted input stream.

DigestInputStream Reads data from an input stream and updates an associated
message digest. A message digest is a mechanism for com-
bining an arbitrary amount of data from a stream into a
fixed-length value that can be used to verify the integrity of
the data.

InflaterInputStream Reads data from a stream that has been compressed, such
as a ZIP file, for example.

Table continued on following page

ObjectInputStream

For reading objects from a stream

PipedInputStream

For reading from a piped stream

FilterInputStream

For filtering input from an
existing stream

InputStream

AudioInputStream

For reading audio data

SequenceInputStream

For reading from a
sequence of streams

FileInputStream

For reading from a file

ByteArrayInputStream

For reading from a byte array

377

Understanding Streams

378

Chapter 8

LineNumberInputStream Reads data from a stream and keeps track of the current
line number. The line number starts at 0 and is incremented
each time a newline character is read.

ProgressMonitorInputStream Reads data from an input stream and uses a progress-
monitor to monitor reading the stream. If reading the
stream takes a significant amount of time, a progress dialog
will be displayed offering the option to cancel the operation.
This is used in window-based applications for operations
that are expected to be time-consuming.

PushbackInputStream Adds the capability to return the last byte that was read
back to the input stream so you can read it again.

You can create a BufferedInputStream object from any other input stream, since the constructor
accepts a reference of type InputStream as an argument. The BufferedInputStream class overrides
the methods inherited from InputStream. For example, in the following code:

BufferedInputStream keyboard = new BufferedInputStream(System.in);

the argument System.in is the static member of the System class that encapsulates input from the key-
board and is of type InputStream. You’ll be looking into how you can best read input from the keyboard a
little later in this chapter.

The effect of wrapping a stream in a BufferedInputStream object is to buffer the underlying stream
in memory so that data can be read from the stream in large chunks — up to the size of the buffer that is
provided. The data is then made available to the read() methods directly from memory, and a real read
operation from the underlying stream is executed only when the buffer is empty. With a suitable choice
of buffer size, the number of input operations that are needed will be substantially reduced, and the pro-
cess will be a whole lot more efficient. This is because for most input streams, each read operation carries
quite a bit of overhead, beyond the time required to actually transfer the data. In the case of a disk file,
for example, the transfer of data from the disk to memory can start only once the read/write head has
been positioned over the track that contains the data and the disk has rotated to the point where the
read/write head is over the point in the track where the data starts. This delay before the transfer of data
begins will typically be several milliseconds and will often be much longer than the time required to
transfer the data. Thus, by minimizing the number of separate read operations that are necessary, you
can substantially reduce the total time needed to read a significant amount of data.

The buffer size that you get by default when you call the BufferedInputStream constructor as in the
previous code fragment is 8192 bytes. This will be adequate for most situations where modest amounts
of data are involved. The BufferedInputStream class also defines a constructor that accepts a second
argument of type int that enables you to specify the size in bytes of the buffer to be used.

Deciding on a suitable size for a buffer is a matter of judgment. You need to think about how the buffer
size will affect operations in your program. The total amount of data involved, as well as the amount
that you need to process at one time, also comes into it. For example, you will usually want to choose a
buffer size that is a multiple of the amount of data that your program will request in each read operation.
Suppose you expect your program to read and process 600 bytes at a time, for instance. In this case, you
should choose a buffer size that is a multiple of 600 bytes. The multiple, and therefore the total buffer
size, is a balance between the amount of memory required for the buffer and its effect on the efficiency

of your program. If you expect to be processing 100 sets of data, each of 600 bytes, you might settle on
a buffer size of 6000 bytes as a reasonable choice. Each buffer-full would then consist of 10 sets of data,
and there would need to be only 10 physical read operations to refill the buffer.

Basic Output Stream Operations
The OutputStream class contains three write() methods for writing binary data to the stream. As can
be expected, these mirror the read() methods of the InputStream class. This class is also abstract, so
only subclasses can be instantiated. The principal direct subclasses of OutputStream are shown in
Figure 8-4.

Figure 8-4

You’ll be using the FileOutputStream class that is derived from OutputStream when you write files
in the next chapter, and you’ll investigate the methods belonging to the ObjectOutputStream class in
Chapter 12, when you learn how to write objects to a file.

Note that this is not the complete set of output stream classes. The FilterOutputStream class has a
further seven subclasses, including the BufferedOutputStream class, which does for output streams
what the BufferedInputStream class does for input streams. There is also the PrintStream class,
which you will be looking at a little later in this chapter, since output to the command line is via a stream
object of this type.

Stream Readers and Writers
Stream readers and writers are objects that can read and write byte streams as character streams. So a
character stream is essentially a byte stream fronted by a reader or a writer. The base classes for stream
readers and writers are:

FilterOutputStream

For filtering output from
and existing stream

OutputStream

FileOutputStream

For writing to a file

ByteArrayOutputStream

For writing to a byte array

ObjectOutputStream

For writing objects to a stream

PipeOutputStream

For writing to a piped stream

379

Understanding Streams

Class Description

Reader The base class for reading a character stream

Writer The base class for writing a character stream

Reader and Writer are both abstract classes. Both classes implement the Closeable interface, which
declares the close() method. The Reader class also implements the Readable interface, which declares
the read() method for reading characters into a CharBuffer object that is passed as the argument to
the method. I’ll discuss CharBuffer objects in Chapters 10 and 11 in the context of reading and writing
files. The Reader class defines two further read() methods. One of these requires no arguments and
reads and returns a single character from the stream and returns it as type int. The other expects an
array of type char[] as the argument and reads characters into the array that is passed to the method.
The method returns the number of characters that were read or -1 if the end of the stream is reached.
Finally, the reader has an abstract read() method as a member, which is declared like this:

public abstract int read(char[] buf, int offset, int length) throws IOException;

This method is the reason the Reader class is abstract and has to be implemented in any concrete sub-
class. The method reads length characters into the buf array starting at position buf[offset]. The
method also returns the number of characters that were read or -1 if the end of the stream was reached.
All three read() methods can throw an exception of type IOException, and the read method declared
in Readable can also throw an exception of NullPointerException if the argument is null.

The Writer class implements the Appendable interface. This declares two versions of the append()
method; one takes an argument of type char and appends the character that is passed to it to whatever
stream the Writer encapsulates, and the other accepts an argument of type CharSequence and appends
that to the underlying stream. You’ll recall from Chapter 6 that a CharSequence reference can be a refer-
ence to an object of type String, an object of type StringBuilder, an object of type StringBuffer, or
an object of type CharBuffer, so the append() method will handle any of these. The Writer class has
five write() methods as members, all of which have a void return type and throw an IOException if
an I/O error occurs:

write(int ch) Writes the character corresponding to
the low-order 2 bytes of the integer
argument, ch

write(char[] buf) Writes the array of characters buf

write(char[] buf, int offset, int length) This is an abstract method that writes
length characters from buf starting at
buf[offset]

write(String str) Writes the string str

write(String str, int offset, int length) Writes length characters from str
starting with the character at index
position offset in the string

380

Chapter 8

The Reader and Writer classes and their subclasses are not really streams themselves, but provide the
methods you can use for reading and writing an underlying stream as a character stream. Thus, a Reader
or Writer object is typically created using an underlying InputStream or OutputStream object that
encapsulates the connection to the external device, which is the ultimate source or destination of the data.

Using Readers
The Reader class has the direct subclasses shown in Figure 8-5.

Figure 8-5

The concrete class that you would use to read an input stream as a character stream is InputStreamReader.
You could create an InputStreamReader object like this, for example:

InputStreamReader keyboard = new InputStreamReader(System.in);

The parameter to the InputStreamReader constructor is of type InputStream, so you can pass an
object of any class derived from InputStream to it. The sample above creates an InputStreamReader
object, keyboard, from the object System.in, the keyboard input stream.

The InputStreamReader class defines the abstract read() method that it inherits from Reader and rede-
fines the read() method without parameters. These methods read bytes from the underlying stream and
return them as Unicode characters using the default conversion from the local character encoding. In addi-
tion to the preceding example, there are also three further constructors for InputStreamReader objects:

InputStreamReader(InputStream in, Constructs an object with in as the underlying
Charset s) stream. The object will use s to convert bytes to

Unicode characters.

Table continued on following page

FilterReader

For reading filtered streams

StringReader

For reading from a string

Reader

InputStreamReader

For reading a character stream

PipedReader

For reading from a PipedWriter

BufferedReader

For buffering other readers

CharArrayReader

For reading from a char array

381

Understanding Streams

InputStreamReader(InputStream in, Constructs an object that will use the charset
CharsetDecoder dec) decoder dec to transform bytes that are read from

the stream in to a sequence of Unicode characters

InputStreamReader(InputStream in, Constructs an object that will use the charset
String charsetName) identified in the name charsetName to convert

bytes that are read from the stream in to a
sequence of Unicode characters

A java.nio.charset.Charset object defines a mapping between Unicode characters and bytes. A
Charset can be identified by a name that is a string that conforms to the IANA conventions for Charset
registration. A java.nio.charset.CharsetDecoder object converts a sequence of bytes in a given
charset to bytes. Consult the class documentation in the JDK for the Charset and CharsetDecoder

classes for more information.

Of course, the operations with a reader would be much more efficient if you buffered it using a
BufferedReader object like this:

BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in));

Here, you wrap an InputStreamReader object around System.in and then buffer it using a
BufferedReader object. This will make the input operations much more efficient. Your read operations
will be from the buffer belonging to the BufferedReader object, and this object will take care of filling
the buffer from System.in when necessary via the underlying InputStreamReader object.

A CharArrayReader object is created from an array and enables you to read data from the array as
though it were from a character input stream. A StringReader object class does essentially the same
thing, but obtains the data from a String object.

Using Writers
The main subclasses of the Writer class are as shown in Figure 8-6.

I’ll just discuss a few details of the most commonly used of these classes.

The OutputStreamWriter class writes characters to an underlying binary stream. It also has a subclass,
FileWriter, that writes characters to a stream encapsulating a file. Both of these are largely superseded
by the I/O facilities introduced in Java 1.4 that you’ll explore starting in the next chapter.

Note that the PrintWriter class has no particular relevance to printing, in spite of its name. The
PrintWriter class defines methods for formatting binary data as characters and writing it to a charac-
ter stream. It defines overloaded print() and println() methods that accept an argument of each
of the basic data types, of type char[], of type String, and of type Object. The data that is written
is a character representation of the argument. Numerical values and objects are converted to a string
representation using the static valueOf() method in the String class. Overloaded versions of this
method exist for all of the primitive types plus type Object. In the case of an argument that is an
Object reference, the valueOf() method just calls the toString() method for the object to produce
the string to be written to the stream. The print() methods just write the string representation of the
argument, whereas the println() method appends \n to the output. You can create a PrintWriter
object from a stream or from another Writer object.

382

Chapter 8

Figure 8-6

An important point to note when using a PrintWriter object is that its methods do not throw I/O excep-
tions. To determine whether any I/O errors have occurred, you have to call the checkError() method for
the PrintWriter object. This method will return true if an error occurred and false otherwise.

The StringWriter and CharArrayWriter classes are for writing character data to a StringBuffer
object, or an array of type char[]. You would typically use these to perform data conversions so that
the results are available to you from the underlying array, or string. For example, you could combine the
capabilities of a PrintWriter with a StringWriter to obtain a String object containing binary data
converted to characters:

StringWriter strWriter = new StringWriter();

PrintWriter writer = new PrintWriter(strWriter);

Now you can use the methods for the writer object to write to the StringBuffer object underlying the
StringWriter object:

double value = 2.71828;

writer.println(value);

You can get the result back as a StringBuffer object from the original StringWriter object:

StringBuffer str = strWriter.getBuffer();

PrintWriter

For writing formated data

StringWriter

For writing to a string

FilterWriter

For writing filtered streams

Writer

OutputStreamWriter

For writing a character stream

PipedWriter

For writing to a PipedReader

BufferedWriter

For buffering other writers

CharArrayWriter

For writing to a char array

383

Understanding Streams

Of course, the formatting done by a PrintWriter object does not help make the output line up in neat
columns. If you want that to happen, you have to do it yourself. You’ll see how you might do this for
command-line output a little later in this chapter.

Let’s now turn to keyboard input and command-line output.

The Standard Streams
Your operating system will typically define three standard streams that are accessible through members
of the System class in Java:

❑ A standard input stream that usually corresponds to the keyboard by default. This is encapsu-
lated by the in member of the System class and is of type InputStream.

❑ A standard output stream that corresponds to output on the command line. This is encapsulated
by the out member of the System class and is of type PrintStream.

❑ A standard error output stream for error messages that usually maps to the command-line out-
put by default. This is encapsulated by the err member of the System class and is also of type
PrintStream.

You can reassign any of these to another stream within a Java application. The System class provides the
static methods setIn(), setOut(), and setErr() for this purpose. The setIn() method requires an
argument of type InputStream that specifies the new source of standard input. The other two methods
expect an argument of type PrintStream.

Since the standard input stream is of type InputStream, you are not exactly overwhelmed by the capa-
bilities for reading data from the keyboard in Java. Basically, you can read a byte or an array of bytes
using a read() method as standard, and that’s it. If you want more than that, reading integers, or deci-
mal values, or strings as keyboard input, you’re on your own. Let’s see what you can do to remedy that.

Getting Data from the Keyboard
To get sensible input from the keyboard, you have to be able to scan the stream of characters and recog-
nize what they are. When you read a numerical value from the stream, you have to look for the digits
and possibly the sign and decimal point, figure out where the number starts and ends in the stream, and
finally convert it to the appropriate value. To write the code to do this from scratch would take quite a
lot of work. Fortunately, you can get a lot of help from the class libraries. One possibility is to use the
java.util.Scanner class, but I’ll defer discussion of that until Chapter 15 because you need to under-
stand another topic before you can use Scanner objects effectively. The StreamTokenizer class in the
java.io package is another possibility, so let’s look further into that.

The term token refers to a data item such as a number or a string that will, in general, consist of several
consecutive characters of a particular kind from the stream. For example, a number is usually a sequence
of characters that consists of digits, maybe a decimal point, and sometimes a sign in front. The class has
the name StreamTokenizer because it can read characters from a stream and parse it into a series of
tokens that it recognizes.

384

Chapter 8

You create a StreamTokenizer object from a stream reader object that reads data from the underlying
input stream. To read the standard input stream System.in you can use an InputStreamReader object
that converts the raw bytes that are read from the stream from the local character encoding to Unicode
characters before the StreamTokenizer object sees them. In the interests of efficiency it would be a
good idea to buffer the data from the InputStreamReader through a BufferedReader object that will
buffer the data in memory. With this in mind, you could create a StreamTokenizer object like this:

StreamTokenizer tokenizer = new StreamTokenizer(

new BufferedReader(

new InputStreamReader(System.in)));

The argument to the StreamTokenizer object is the original standard input stream System.in inside
an InputStreamReader object that converts the bytes to Unicode inside a BufferedReader object that
supplies the stream of Unicode characters via a buffer in memory.

Before you can make use of the StreamTokenizer object for keyboard input, you need to understand a
bit more about how it works.

Tokenizing a Stream
The StreamTokenizer class defines objects that can read an input stream and parse it into tokens. The
input stream is read and treated as a series of separate bytes, and each byte is regarded as a Unicode
character in the range ‘u\0000’ to ‘u\00FF’. A StreamTokenizer object in its default state can recog-
nize the following kinds of tokens:

Token Description

Numbers A sequence consisting of the digits 0 to 9, plus possibly a decimal point, and a +
or – sign.

Strings Any sequence of characters between a pair of single quotes or a pair of double
quotes.

Words Any sequence of letters or digits 0 to 9 beginning with a letter. A letter is defined
as any of A to Z and a to z or \u00A0 to \u00FF. A word follows a whitespace
character and is terminated by another whitespace character, or any character
other than a letter or a digit.

Comments Any sequence of characters beginning with a forward slash, /, and ending with the
end-of-line character. Comments are ignored and not returned by the tokenizer.

Whitespace All byte values from \u0000 to \u0020, which includes space, backspace, hori-
zontal tab, vertical tab, line feed, form feed, and carriage return. Whitespace acts
as a delimiter between tokens and is ignored (except within a quoted string).

To retrieve a token from the stream, you call the nextToken() method for the StreamTokenizer object:

int tokenType = 0;

try {

while((tokenType = tokenizer.nextToken()) != tokenizer.TT_EOF) {

// Do something with the token...

}

385

Understanding Streams

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

The nextToken() method can throw an exception of type IOException, so the call is in a try block.
The value returned depends on the token recognized, and indicates its type, and from this value you can
determine where to find the token itself. In the preceding fragment, you store the value returned in
tokenType and compare its value with the constant TT_EOF. This constant is a static field of type int in
the StreamTokenizer class that is returned by the nextToken() method when the end of the stream
has been read. Thus the while loop continues until the end of the stream is reached. The token that was
read from the stream is itself stored in one of two instance variables of the StreamTokenizer object. If
the data item is a number, it is stored in a public data member nval, which is of type double. If the data
item is a quoted string or a word, a reference to a String object that encapsulates the data item is stored
in the public data member sval, which is of type String, of course. The analysis that segments the
stream into tokens is fairly simple, and the way in which an arbitrary stream is broken into tokens is
illustrated in Figure 8-7.

Figure 8-7

As I’ve said, the int value returned by the nextToken() method indicates what kind of data item was
read. It can be any of the following constant values defined in the StreamTokenizer class:

Token Value Description

TT_NUMBER The token is a number that has been stored in the public field nval of type
double in the tokenizer object.

TT_WORD The token is a word that has been stored in the public field sval of type String
in the tokenizer object.

number
12 null

ignored comment
ignored

String
5

String
e3

String
9

number
12.3

number
-50

ignored ignored

/na thw/ /1 2 e 3 + " 9 +5′ ′ ? " 5

/n* /te n1 2 . 3 * c m5− 0 / o m

ignored

null null

number
5

ignored

386

Chapter 8

Token Value Description

TT_EOF The end of the stream has been reached.

TT_EOL An end-of-line character has been read. This is set only if the
eolIsSignificant() method has been called with the argument, true.
Otherwise, end-of-line characters are treated as whitespace and ignored.

If a quoted string is read from the stream, the value that is returned by nextToken() will be the quote
character used for the string as type int— either a single quote or a double quote. In this case, you
retrieve the reference to the string that was read from the sval member of the tokenizer object. The
value indicating what kind of token was read last is also available from a public data member ttype, of
the StreamTokenizer object, which is of type int.

Customizing a Stream Tokenizer
The default tokenizing mode can be modified by calling one or other of the following methods:

Method Description

resetSyntax() Resets the state of the tokenizer object so no characters have
any special significance. This has the effect that all characters
are regarded as ordinary and are read from the stream as sin-
gle characters. The value of each character will be stored in
the ttype field.

ordinaryChar(int ch) Sets the character ch as an ordinary character. An ordinary
character is a character that has no special significance. It will
be read as a single character whose value will be stored in the
ttype field. Calling this method will not alter the state of
characters other than the argument value.

ordinaryChars(int low, Causes all characters from low to hi inclusive to be treated as
int hi) ordinary characters. Calling this method will not alter the state

of characters other than those specified by the argument values.

whitespaceChars(int low, Causes all characters from low to hi inclusive to be treated as
int hi) whitespace characters. Unless they appear in a string,

whitespace characters are treated as delimiters between
tokens. Calling this method will not alter the state of charac-
ters other than those specified by the argument values.

wordChars(int low, Specifies that the characters from low to hi inclusive are word
int hi) characters. A word is at least one of these characters. Calling

this method will not alter the state of characters other than
those specified by the argument values.

commentChar(int ch) Specifies that ch is a character that indicates the start of a
comment. All characters to the end of the line following the
character ch will be ignored. Calling this method will not
alter the state of characters other than the argument value.

Table continued on following page

387

Understanding Streams

Method Description

quoteChar(int ch) Specifies that matching pairs of the character ch enclose a
string. Calling this method will not alter the state of characters
other than the argument value.

slashStarComments(If the argument is false, this switches off recognizing
boolean flag) comments between /* and */. A true argument switches it on

again.

slashSlashComments(If the argument is false, this switches off recognizing
boolean flag) comments starting will a double slash. A true argument

switches it on again.

lowerCaseMode(An argument of true causes strings to be converted to
boolean flag) lowercase before being stored in sval. An argument of false

switches off lowercase mode.

pushback() Calling this method causes the next call of the nextToken()
method to return the ttype value that was set by the previous
nextToken() call and to leave sval and nval unchanged.

If you want to alter a tokenizer, it is usually better to reset it by calling the resetSyntax() method and
then calling the other methods to set the tokenizer up the way that you want. If you adopt this approach,
any special significance attached to particular characters will be apparent from your code. The
resetSyntax() method makes all characters, including whitespace and ordinary characters, so that no
character has any special significance. In some situations you may need to set a tokenizer up dynami-
cally to suit retrieving each specific kind of data that you want to extract from the stream. When you
want to read the next character as a character, whatever it is, you just need to call resetSyntax()
before calling nextToken(). The character will be returned by nextToken() and stored in the ttype
field. To read anything else subsequently, you have to set the tokenizer up appropriately.

Let’s see how you can use this class to read data items from the keyboard.

Try It Out Creating a Formatted Input Class
One way of reading formatted input is to define your own class that uses a StreamTokenizer object to
read from standard input. You can define a class, FormattedInput, that will define methods to return
various types of data items entered via the keyboard:

import java.io.StreamTokenizer;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

public class FormattedInput {

// Method to read an int value...

// Method to read a double value...

388

Chapter 8

// Plus methods to read various other data types...

// Helper method to read the next token

private int readToken() {

try {

ttype = tokenizer.nextToken();

return ttype;

} catch (IOException e) { // Error reading in nextToken()

e.printStackTrace(System.err);

System.exit(1); // End the program

}

return 0;

}

// Object to tokenize input from the standard input stream

private StreamTokenizer tokenizer = new StreamTokenizer(

new BufferedReader(

new InputStreamReader(System.in)));

private int ttype; // Stores the token type code

}

The default constructor will be quite satisfactory for this class, because the instance variable tokenizer
is already initialized. The readToken() method is there for use in the methods that will read values of
various types. It makes the ttype value returned by nextToken() available directly, and saves having
to repeat the try and catch blocks in all the other methods.

All you need to add are the methods to read the data values that you want. Here is one way to read a
value of type int:

// Method to read an int value

public int readInt() {

for (int i = 0; i < 5; i++) {

if (readToken() == tokenizer.TT_NUMBER) {

return (int) tokenizer.nval; // Value is numeric, so return as int

} else {

System.out.println(“Incorrect input: “ + tokenizer.sval

+ “ Re-enter an integer”);

continue; // Retry the read operation

}

}

System.out.println(“Five failures reading an int value”

+ “ - program terminated”);

System.exit(1); // End the program

return 0;

}

This method gives the user five chances to enter a valid input value before terminating the program.
Terminating the program is likely to be inconvenient to say the least in many circumstances. If you
instead make the method throw an exception in the case of failure here, and let the calling method
decide what to do, this would be a much better way of signaling that the right kind of data could not be
found.

389

Understanding Streams

You can define your own exception class for this. Let’s define it as the type InvalidUserInputException:

public class InvalidUserInputException extends Exception {

public InvalidUserInputException() {}

public InvalidUserInputException(String message) {

super(message);

}

}

You haven’t had to add anything to the base class capability. You just need the ability to pass your own
message to the class. The significant thing you have added is your own exception type name.

Now you can change the code for the readInt() method so it works like this:

public int readInt() throws InvalidUserInputException {

if (readToken() != tokenizer.TT_NUMBER) {

throw new InvalidUserInputException(“ readInt() failed. “

+ “Input data not numeric”);

}

return (int) tokenizer.nval;

}

If you need a method to read an integer value and return it as one of the other integer types, byte, short,
or long, you could implement it in the same way, but just cast the value in nval to the appropriate type.
You might want to add checks that the original value was an integer, and maybe that it was not out of
range for the shorter integer types. For example, to do this for type int, you could code it as:

public int readInt() throws InvalidUserInputException {

if (readToken() != tokenizer.TT_NUMBER) {

throw new InvalidUserInputException(“ readInt() failed. “

+ “Input data not numeric”);

}

if (tokenizer.nval > (double) Integer.MAX_VALUE

|| tokenizer.nval < (double) Integer.MIN_VALUE) {

throw new InvalidUserInputException(“ readInt() failed. “

+ “Input outside range of type int “);

}

if (tokenizer.nval != (double) (int) tokenizer.nval) {

throw new InvalidUserInputException(“ readInt() failed. “

+ “Input not an integer”);

}

return (int) tokenizer.nval;

}

The Integer class makes the maximum and minimum values of type int available in the public mem-
bers MAX_VALUE and MIN_VALUE. Other classes corresponding to the basic numeric types provide similar
fields. To determine whether the value in nval is really a whole number, you cast it to an integer, then
cast it back to double and see whether it is the same value.

390

Chapter 8

To implement readDouble(), the code is very simple. You don’t need the cast for the value in nval
since it is type double anyway:

public double readDouble() throws InvalidUserInputException {

if (readToken() != tokenizer.TT_NUMBER) {

throw new InvalidUserInputException(“ readDouble() failed. “

+ “Input data not numeric”);

}

return tokenizer.nval;

}

A readFloat() method would just need to cast nval to type float.

Reading a string is slightly more involved. You could allow input strings to be quoted or unquoted as
long as they were alphanumeric and did not contain whitespace characters. Here’s how the method
might be coded to allow that:

public String readString() throws InvalidUserInputException {

if (readToken() == tokenizer.TT_WORD || ttype == ‘\”’

|| ttype == ‘\’’) {

return tokenizer.sval;

} else {

throw new InvalidUserInputException(“ readString() failed. “

+ “Input data is not a string”);

}

}

If either a word or a string is recognized, the token is stored as type String in the sval field of the
StreamTokenizer object.

Let’s see if it works.

Try It Out Formatted Keyboard Input
You can try out the FormattedInput class in a simple program that iterates round a loop a few times to
give you the opportunity to try out correct and incorrect input:

public class TestFormattedInput {

public static void main(String[] args) {

FormattedInput kb = new FormattedInput();

for (int i = 0; i < 5; i++) {

try {

System.out.print(“Enter an integer: “);

System.out.println(“Integer read: “ + kb.readInt());

System.out.print(“Enter a double value: “);

System.out.println(“Double value read: “ + kb.readDouble());

System.out.print(“Enter a string: “);

System.out.println(“String read: “ + kb.readString());

} catch (InvalidUserInputException e) {

System.out.println(“InvalidUserInputException thrown.\n”

391

Understanding Streams

+ e.getMessage());

}

}

}

}

It is best to run this example from the command line. Some Java development environments are not ter-
rific when it comes to keyboard input. If you try a few wrong values, you should see your exception
being thrown.

How It Works
This just repeats requests for input of each of the three types of value you have provided methods for,
over five iterations. Of course, after an exception of type InvalidUserInputException is thrown, the
loop will go straight to the start of the next iteration — if there is one.

This code isn’t foolproof. Bits of an incorrect entry can be left in the stream to confuse subsequent input
and you can’t enter floating-point values with exponents. However, it does work after a fashion and it’s
best not to look a gift horse in the mouth.

Writing to the Command Line
Up to now, you have made extensive use of the println() method from the PrintStream class
in your examples to output formatted information to the screen. The out object in the expression
System.out.println() is of type PrintStream. This class outputs data of any of the basic types as a
string. For example, an int value of 12345 becomes the string “12345” as generated by the valueOf()
method from the String class. However, you also have the PrintWriter class that I discussed earlier
in the chapter to do the same thing since this class has all the methods that PrintStream provides.

The principle difference between the two classes is that with the PrintWriter class you can control
whether or not the stream buffer is flushed when the println() method is called, whereas with the
PrintStream class you cannot. The PrintWriter class will flush the stream buffer only when one of
the println() methods is called, if automatic flushing is enabled. A PrintStream object will flush the
stream buffer whenever a newline character is written to the stream, regardless of whether it was written
by a print() or a println() method.

Both the PrintWriter and PrintStream classes format basic data as characters. In addition to the
print() and println() methods that do this, they also define the printf() method mentioned in
Chapter 6. This method gives you a great deal more control over the format of the output and will also
accept an arbitrary number of arguments to be formatted and displayed.

The printf() Method
The printf() method that is defined in the PrintStream and PrintWriter classes will produce for-
matted output for an arbitrary sequence of values of various types, where the formatting is specified by
the first argument to the method. System.out happens to be of type PrintStream, so you can use
printf() to produce formatted output to the command line. The PrintStream and PrintWriter

classes define two versions of the printf() method:

392

Chapter 8

393

Understanding Streams

printf(String format, Object ... args) Outputs the values of the
elements in args according
to format specifications in
format. An exception of type
NullPointerException will
be thrown if format is null.

printf(Locale loc, String format, Object ... args) This version works as the
preceding version does except
that the output is tailored to the
locale specified by the first
argument. I’ll explain how you
define objects of the java.util
.Locale class type a little later
in this chapter.

The format parameter is a string that should contain at least one format specification for each of the
argument values that follow the format argument. The format specification for an argument value just
defines how the data is to be presented and is of the following general form:

%[argument_index$][flags][width][.precision]conversion

The square brackets around components of the format specification indicate that they are optional, so
the minimum format specification if you omit all of the optional parts is %conversion.

The options that you have for the various components of the format specification for a value are:

conversion This is a single character specifying how the argument is to be presented.
The commonly used values are:

‘d’, ‘o’, and ‘x’ apply to integer values and specify that the output
representation of the value should be decimal, octal, or hexadecimal,
respectively.

‘f’, ‘g’, and ‘a’ apply to floating-point values and specify that the out-
put representation should be decimal notation, scientific notation (with an
exponent), or hexadecimal with an exponent, respectively.

‘c’ specifies that the argument value is a character and should be
displayed as such.

‘s’ specifies that the argument is a string.

‘b’ specifies that the argument is a boolean value, so it will be output as
“true” or “false”.

‘h’ specifies that the hashcode of the argument is to be output in
hexadecimal form.

‘n’ specifies the platform line separator so “%n” will have the same effect
as “\n”.

Table continued on following page

argument_index This is a decimal integer that identifies one of the arguments that follow
the format string by its sequence number, where “1$” refers to the first
argument, “2$” refers to the second argument, and so on. You can also
use ‘<’ in place of a sequence number followed by $ to indicate that the
argument should be the same as that of the previous format specification
in the format string. Thus “<” specifies that the format specification
applies to the argument specified by the preceding format specification in
the format string.

flags This is a set of flag characters that modify the output format. The flag
characters that are valid depend on the conversion that is specified. The
most-used ones are:

‘-’ and ‘^’ apply to anything and specify that the output should be left-
justified and uppercase, respectively.

‘+’ forces a sign to be output for numerical values.

‘0’ forces numerical values to be zero-padded.

width Specifies the field width for outputting the argument and represents the
minimum number of characters to be written to the output.

precision This is used to restrict the output in some way depending on the
conversion. Its primary use is to specify the number of digits of precision
when outputting floating-point values.

The best way to explain how you use this is through examples. I’ll start with the simplest and work up
from there.

Formatting Numerical Data
I suggest that you set up a program source file with an empty version of main() into which you can
plug a succession of code fragments to try them out.

The minimal format specification is a percent sign followed by a conversion specifier for the type of
value you want displayed. For example:

int a = 5, b = 15, c = 255;

double x = 27.5, y = 33.75;

System.out.printf(“x = %f y = %g”, x, y);

System.out.printf(“ a = %d b = %x c = %o”, a, b, c);

Executing this fragment produces the following output:

x = 27.500000 y = 33.750000 a = 5 b = f c = 377

There is no specification of the argument to which each format specifier applies, so the default action is
to match the format specifiers to the arguments in the sequence in which they appear. You can see from
the output that you get six decimal places after the decimal point for floating-point values, and the field
width is set to be sufficient to accommodate the number of characters in each output value. Although
there are two output statements, all the output appears on a single line, so you can deduce that printf()

394

Chapter 8

works like the print() method in that it just transfers output to the command line starting at the cur-
rent cursor position.

The integer values also have a default output field width that is sufficient for the number of characters
in the output. Here you have output values in normal decimal form, in hexadecimal form, and in octal
representation. Note that there must be at least as many arguments as there are format specifiers. If
you remove c from the argument list in the last printf() call, you will get an exception of type
MissingFormatArgumentException thrown. If you have more arguments than there are format
specifiers in the format string, on the other hand, the excess arguments are simply ignored.

By introducing the argument index into the specification in the previous code fragment, you can demon-
strate how that works:

int a = 5, b = 15, c = 255;

double x = 27.5, y = 33.75;

System.out.printf(“x = %2$f y = %1$g”, x, y);

System.out.printf(“ a = %3$d b = %1$x c = %2$o”, a, b, c);

This produces the following output:

x = 33.750000 y = 27.500000 a = 255 b = 5 c = 17

Here you have reversed the sequence of the floating-point arguments in the output by using the argument
index specification to select the argument for the format specifier explicitly. The integer values are also
output in a different sequence from the sequence in which the arguments appear.

To try out the use of “<” as the argument index specification, you could add the following statement to
the preceding fragment:

System.out.printf(“%n a = %3$d b = %<x c = %<o”, a, b, c);

This will produce the following output on a new line:

a = 255 b = ff c = 377

You could equally well use “\n” in place of “%n” in the format string. The second and third format spec-
ifiers use “<” as the argument index, so all three apply only to the value of the first argument. The argu-
ments b and c are ignored.

Note that if the format conversion is not consistent with the type of the argument to which you apply it,
an exception of type IllegalFormatConversion will be thrown. This would occur if you attempted to
output any of the variables a, b, and c, which are of type int, with a specifier such as “%f”, which
applies only to floating-point values.

Specifying the Width and Precision
You can specify the field width for any output value. Here’s an example of that:

int a = 5, b = 15, c = 255;

double x = 27.5, y = 33.75;

System.out.printf(“x = %15f y = %8g”, x, y);

System.out.printf(“ a = %1$5d b = %2$5x c = %3$2o”, a, b, c);

395

Understanding Streams

Executing this will result in the following output:

x = 27.500000 y = 33.750000 a = 5 b = f c = 377

You can see from the output that you get the width that you specify only if it is sufficient to accommodate
all the characters in the output value. The second floating-point value, y, occupies a field width of 9, not
the 8 that is specified. When you want your output to line up in columns, you must be sure to specify a
field width that is sufficient to accommodate every output value.

Where the specified width exceeds the number of characters for the value, the field is padded on the left
with spaces so the value appears right-justified in the field. If you want the output left-justified in the
field, you just use the ‘-’ flag character. For example:

System.out.printf(“%na = %1$-5d b = %2$-5x c = %3$-5o”, a, b, c);

This statement produces output left-justified in the fields, thus:

a = 5 b = f c = 377

You can add a precision specification for floating-point output:

double x = 27.5, y = 33.75;

System.out.printf(“x = %15.2f y = %14.3g”, x, y);

Here the precision for the first value is two decimal places, and the precision for the second value is 3
decimal places. Therefore, you will get the following output:

x = 27.50 y = 33.750

Formatting Characters and Strings
The following code fragment outputs characters and their code values:

int count = 0;

for(int ch = ‘a’ ; ch<= ‘z’ ; ch++) {

System.out.printf(“ %1$4c%1$4x”, ch);

if(++count%6 == 0) {

System.out.printf(“%n”);

}

}

Executing this produces the following output:

a 61 b 62 c 63 d 64 e 65 f 66

g 67 h 68 i 69 j 6a k 6b l 6c

m 6d n 6e o 6f p 70 q 71 r 72

s 73 t 74 u 75 v 76 w 77 x 78

y 79 z 7a

First the format specification %1$4c is applied to the first and only argument following the format string.
This outputs the value of ch as a character because of the ‘c’ conversion specification, and in a field
width of 4. The second specification is %1$4x, which outputs the same argument — because of the 1$—
as hexadecimal because the conversion is ‘x’ and in a field width of 4.

396

Chapter 8

You could write the output statement in the loop as:

System.out.printf(“ %1$4c%<4x”, ch);

The second format specifier is %<4x, which will output the same argument as the preceding format spec-
ifier because of the ‘<’ following the % sign.

Because a % sign always indicates the start of a format specifier, you must use “%%” in the format string
when you want to output a % character. For example:

int percentage = 75;

System.out.printf(“\n%1$d%%”, percentage);

The format specifier %1$d outputs the value of percentage as a decimal value. The %% that follows in the
format string will display a percent sign, so the output will be:

75%

You use the %s specifier to output a string. Here’s an example that will output the same string twice:

String str = “The quick brown fox.”;

System.out.printf(“%nThe string is:%n%s%n%1$25s”, str);

This produces the following output:

The string is:

The quick brown fox.

The quick brown fox.

The first instance of str in the output is produced by the “%s” specification that follows the first “%n”,
and the second instance is produced by the “%1$25s” specification. The “%1$25s” specification has a
field width that is greater than the length of the string so the string appears right-justified in the output
field. You could apply the ‘-’ flag to obtain the string left-justified in the field.

You have many more options and possibilities for formatted output. Try experimenting with them your-
self, and if you want details of more specifier options, read the JDK documentation for the printf()
method in the PrintStream class.

The Locale Class
You can pass an object of type java.util.Locale as the first argument to the printf() method, pre-
ceding the format string and the variable number of arguments that you want displayed. The Locale
object specifies a language or a country + language context that affects the way various kinds of data,
such as dates or monetary amounts, is presented.

You have three constructors available for creating Locale objects that accept one, two, or three argu-
ments of type String. The first argument specifies a language as a string of two lowercase letters repre-
senting a Language Code defined by the standard ISO-639. Examples of language codes are “fr” for
French, “en” for English, and “be” for Belarusian. The second argument specifies a country as a string
of two uppercase letters representing a Country Code defined by the ISO-3166 standard. Examples of
country codes are “US” for the USA, “GB” for the United Kingdom, and “CA” for Canada. The third
argument is a vendor or browser-specific code such as “WIN” for Windows or “MAC” for Macintosh.

397

Understanding Streams

However, rather than using a class constructor, more often than not you’ll use one of the Locale class
static constants that provide predefined Locale objects for common national contexts. For example, you
have constants JAPAN, ITALY, and GERMANY for countries and JAPANESE, ITALIAN, and GERMAN for the
corresponding languages. Consult the JDK documentation for the Locale class for a complete list of
these.

Formatting Data into a String
The printf() method produces the string that is output by using an object of type java.util
.Formatter, and it is the Formatter object that is producing the output string from the format string
and the argument values. A Formatter object is also used by a static method format() that is defined
in the String class, and you can use this method to format data into a string that you can use wherever
you like — for displaying data in a component in a windowed application, for example. The static
format() method in the String class comes in two versions, and the parameter lists for these are the
same as for the two versions of the printf() method in the PrintStream class just discussed, one with
the first parameter as a Locale object followed by the format string parameter and the variable parame-
ter list and the other without the Locale parameter. Thus, all the discussion of the format specification
and the way it interacts with the arguments you supply applies equally well to the String.format()
method, and the result is returned as type String.

For example, you could write the following to output floating-point values:

double x = 27.5, y = 33.75;

String outString = String.format(“x = %15.2f y = %14.3g”, x, y);

outString will contain the data formatted according to the first argument to the format() method.
You could pass outString to the print() method to output it to the command line:

System.out.print(outString);

You will get the following output:

x = 27.50 y = 33.750

This is exactly the same output as you got earlier using the printf() method, but obviously outString
is available for use anywhere.

You can use a java.util.Formatter object directly to format data. You first create the Formatter
object like this:

StringBuffer buf = new StringBuffer();

java.util.Formatter formatter = new java.util.Formatter(buf);

The Formatter object will generate the formatted string in the StringBuffer object buf— you could
also use a StringBuilder object for this purpose, of course. You now use the format() method for the
formatter object to format your data into buf like this:

double x = 27.5, y = 33.75;

formatter.format(“x = %15.2f y = %14.3g”, x, y);

398

Chapter 8

If you want to write the result to the command line, the following statement will do it:

System.out.print(buf);

The result of executing this sequence of statements will be exactly the same as from the previous fragment.

A Formatter object can format data and transfer it to destinations other than StringBuilder and
StringBuffer objects, but I’ll defer discussion of this until I introduce file output in Chapter 10.

Summary
In this chapter, I have introduced the facilities for inputting and outputting basic types of data to a
stream. The important points I have discussed include the following:

❑ A stream is an abstract representation of a source of serial input or a destination for serial output.

❑ The classes supporting stream operations are contained in the package java.io.

❑ Two kinds of stream operations are supported: binary stream operations will result in streams
that contain bytes, and character stream operations are for streams that contain characters in the
local machine character encoding.

❑ No conversion occurs when characters are written to, or read from, a byte stream. Characters
are converted from Unicode to the local machine representation of characters when a character
stream is written.

❑ Byte streams are represented by subclasses of the classes InputStream and OutputStream.

❑ Character stream operations are provided by subclasses of the Reader and Writer classes.

❑ The printf() method that is defined in the PrintStream and PrintWriter classes formats
an arbitrary number of argument values according to a format string that you supply. You can
use this method for the System.out object to produce formatted output to the command line.

❑ The static format() method that is defined in the String class will format an arbitrary number
of argument values according to a format string that you supply and return the result as a
String object. This method works in essentially the same way as the printf() method in the
PrintStream class.

❑ An object of the Formatter class that is defined in the java.util package can format data into
a StringBuilder or StringBuffer object, as well as other destinations.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Use a StreamTokenizer object to parse a string entered from the keyboard containing a series
of data items separated by commas and output each of the items on a separate line.

399

Understanding Streams

2. Create a class defining an object that will parse each line of input from the keyboard that con-
tains items separated by an arbitrary delimiter (for example, a colon, or a comma, or a forward
slash, and so on) and return the items as an array of type String[]. For example, the input
might be:

1/one/2/two

The output would be returned as an array of type String[] containing “1”, “one”, “2”, “two”.

3. Write a program to generate 20 random values of type double between -50 and +50 and use
the printf() method for System.out to display them with two decimal places in the follow-
ing form:

1) +35.93 2) -46.94 3) +42.27 4) +32.09 5) +29.21

6) +13.87 7) -47.87 8) +30.67 9) -25.20 10) +29.67

11) +48.62 12) +6.70 13) +28.97 14) -41.64 15) +16.67

16) +17.01 17) +9.62 18) -15.21 19) +7.46 20) +4.09

4. Use a Formatter object to format 20 random values of type double between -50 and +50 and
output the entire set of 20 in a single call of System.out.print() or System.out.println().

400

Chapter 8

9
Accessing Files and

Directories

In this chapter, you’ll explore how you identify, access, and manipulate files and directories on
your hard drive. This will include the ability to create new files and directories, but not to read
or write files. You’ll get to that starting in the next chapter.

In this chapter you will learn:

❑ How you create File objects and use them to examine files and directories

❑ How you can use File class methods to examine the contents of the hard drives on
your system

❑ How to create new files and directories on your hard drive

❑ How to create temporary files

❑ How you create FileOutputStream objects

Working with File Objects
It is easy to forget that a File object doesn’t actually represent a file. You need to keep reminding
yourself that a File object encapsulates a pathname or reference to what may or may not be a
physical file or directory on your hard disk, not the physical file or directory itself. The fact that
you create a File object does not determine that a file or directory actually exists. This is not as
strange as it might seem at first sight. After all, you will often be defining a File object that encap-
sulates a path to a new file or directory that you intend to create later in your program.

As you’ll see, a File object serves two purposes:

❑ It enables you to check the pathname that it encapsulates against the physical file system
and see whether it corresponds to a real file or directory.

❑ You can use it to create file stream objects.

The File class provides several methods for you to test the path that a File object encapsulates in vari-
ous ways, as well as the physical file or directory it may represent. You can determine whether or not an
object does represent a path to an existing file or directory, for example. If a File object does correspond
to a real file, you have methods available that you can use to modify the file in a number of ways.

Creating File Objects
You have a choice of four constructors for creating File objects. The simplest accepts a String object as
an argument that specifies a path for a file or a directory. For example, you could write the statement:

File myDir = new File(“C:/jdk1.5.0/src/java/io”);

This creates a File object encapsulating the path C:/j2sdk1.4.0/src/java/io. On my system, this
happens to be the path to the directory io, which contains the classes in the java.io package. On the
various flavors of the Microsoft Windows operating system, you can also use an escaped backslash sepa-
rator, \\, when you define a path, instead of /, if you wish, but paths do tend to look rather busy if you
do. For example:

File myDir = new File(“C:\\jdk1.5.0\\src\\java\\io”);

It also requires more typing.

Note that the File class constructor here does not check the string that you pass as the argument in any
way, so there is no guarantee that a File object encapsulates a valid representation of a path on your
system at all. For example, this will compile and execute perfectly well:

File junk = new File(“dwe\n:;?cc/.*\naa£%)(“); // Not a valid path!

The argument to the constructor here does not define a valid file or directory path — at least not under
any operating system that I am familiar with — but that statement compiles and executes. You can there-
fore deduce that you can pass any string as an argument to the File class constructor. It is up to you to
ensure that it is valid for your system.

To specify a pathname to a file, you just need to make sure that the string that you pass as an argument
to the constructor does refer to a file and not a directory. For example:

File myFile = new File(“C:/jdk1.5.0/src/java/io/File.java”);

This statement sets the object myFile to correspond to the source file for the definition of the class, File.

An important and easily overlooked characteristic of File objects is that they are immutable. Once you
have created a File object you cannot change the path it encapsulates. You will see later that you can
change the name of the physical file that a File object references by using the rename() method
belonging to the File object, but this will not change the File object itself. The File object will still
encapsulate the original path so that once the file name has been changed, the path encapsulated by the
File object will no longer refer to an existing file. This can be confusing if you don’t realize this is the
case. Using this File object to test subsequently whether the file exists, for example, will return false.

402

Chapter 9

You can also create a File object that represents a pathname for a file by using a constructor that allows
you to specify the directory that contains the file and the file name separately. The directory that contains
the file is usually referred to as the parent directory. Two constructors allow you to do this, and they offer
you a choice as to how you specify the parent directory. In one, the first argument is a reference to a File
object that encapsulates the path for the directory containing the file. In the other, the first argument speci-
fies the parent directory path as a String object. The second argument in both cases is a String object
identifying the file name.

For example, on my system, I can identify the Java source file for the File class with the statements:

File myDir = new File(“C:/jdk1.5.0/src/java/io”); // Parent directory

File myFile = new File(myDir, “File.java”); // The path to the file

The first statement creates a File object that refers to the directory for the package io, and the second
statement creates a File object that corresponds to the file File.java in that directory.

You could use the second of the two constructors to achieve the same result as the previous two
statements:

File myFile = new File(“C:/jdk1.5.0/src/java/io”, “File.java”);

Using a File object to specify the directory is much more useful than using a string directly. For one
thing, using a File object enables you to verify that the directory does really exist before attempting
to access the file or files that you are interested in. You can also create the directory if necessary, as you
will see.

The fourth constructor allows you to define a File object from an object of type URI that encapsulates a
uniform resource identifier, commonly known as a URI. As you are undoubtedly aware, a URI is used to
reference a resource on the World Wide Web and the most common form of URI is a URL — a uniform
resource locator. A URL usually consists of a protocol specification such as HTTP, a host machine identi-
fication such as www.wrox.com, plus a name that refers to a particular resource on that machine, such
as misc-pages/booklist.shtml; so, for example, http://www.wrox.com/misc-pages/booklist
.shtml is a URL that references a page on a Wrox Press server that contains a list of Java books pub-
lished by Wrox Press and the file downloads that are available for each of them.

The URI class provides several constructors for creating URI objects, but getting into the detail of these is
too much of a diversion from our present topic — dealing with local files. However, the simplest construc-
tor just accepts a reference to a String object and you could use this to create a File object like this:

File remoteFile = new File(

new URI(http://www.wrox.com/misc-pages/booklist.shtml));

References to physical files inevitably tend to be system-dependent since each operating system will
have its own conventions for specifying a path to a file. If you refer to a particular file in the directory
C:\My Java Stuff under Windows, this path will not be recognized under Unix. However, Java pro-
vides capabilities that enable you to avoid system dependencies when you specify file paths, at least to
some extent, so let’s look at those in more detail.

403

Accessing Files and Directories

Portable Path Considerations
The File class contains a static member, separator, of type String, that defines the separator used
between names in a path by your operating system. Under Unix, this will be defined as “/”, and under
MS Windows it will be “\\”. As you have seen, when you are specifying a path by a string under
Windows, you can use either of these characters as a pathname separator. Another static field,
separatorChar, defines the same separator character as type char for convenience, so you can use
whichever suits you. The File class also defines the system default character for separating one path
from another as the static member pathSeparator, which is of type String, or as the static member
pathSeparatorChar, which is of type char. The path separator is a semicolon under MS Windows
and a colon under Unix.

Of course, the specific makeup of a path is system-dependent, but you could have used the separator
field in the File class to specify the path for myFile in a slightly more system-independent way, like this:

File myFile = new File(“C:” + File.separator + “jdk1.5.0” + File.separator +

“src” + File.separator + “java” + File.separator +

“io”, “File.java”);

This defines the same path as the earlier statement but without using an explicit separator character
between the names in the path. While you have specified the pathname separator character in a portable
fashion, the argument to the File class constructor is still specific to Windows because you have speci-
fied the drive letter as part of the path. To remove the Windows-specific element in the file path you
would have to omit the drive letter from the path specification. In this case you would have a relative
path specification.

Absolute and Relative Paths
In general, the pathname that you use to create a File object has two parts: an optional prefix followed
by a series of names separated by the system default separator character for pathnames. Under MS
Windows the prefix for a path on a local drive will be a string defining the drive, such as “C:\\” or
“C:/”. Under Unix the prefix will be a forward slash, “/”. A path that includes a prefix is an absolute
path, and since it includes a prefix, it is not system-independent. A path without a prefix is a relative path,
and as long as it consists of one or more names separated by characters specified as File.separator or
File.separatorChar, it should be portable across different systems. The last name in a path can be a
directory name or a file name. All other names must be directory names. If you use anything other than
this — if you use any system-specific conventions to specify the path, for example — naturally you no
longer have a system-independent path specification.

The pathnames you have used in the preceding code fragments have all been absolute paths, since you
included the drive letter in the path for Windows or a forward slash to identify the Unix root directory.
If you omit this, you have a relative path, and the pathname string will be interpreted as a path relative
to the current directory. This implies that you can reference a file that is in the same directory as your
program by just the file name.

For example:

File myFile = new File(“output.txt”);

404

Chapter 9

This statement creates a File object encapsulating a pathname string that is just the name
“output.txt”. This will be interpreted as being the name of a file in the current directory when the
File object is used. Unless it has been changed programmatically, the current directory will be the direc-
tory that was current when program execution was initiated. You will see in a moment how you can
obtain the absolute path from a File object, regardless of how the File object was created.

You could also refer to a file in a subdirectory of the current directory using a relative path:

File myFile = new File(“dir” + File.separator + “output.txt”);

Thus, you can use a relative path specification to reference files in the current directory, or in any sub-
directory of the current directory, and since a relative path does not involve the system-dependent
prefix, this will work across different operating systems.

As you have seen, an absolute path in a Windows environment can have a prefix that is an explicit drive
specification, but you can also use the UNC (Universal Naming Convention) representation of a path,
which provides a machine-independent way of identifying paths to shared resources on a network. The
name is slightly misleading in that UNC paths are found predominantly in the MS Windows family of
operating systems. The UNC representation of a path always begins with two backslashes, followed by
the machine name, followed by the share name. In the MS Windows environment, a UNC path will be
of the form:

\\servername\directory_path\filename

In environments other than MS Windows that support the UNC path specification, it may be written in
the form:

//servername/directory_path/filename

On a computer with the name myPC, with a shared directory shared, you could create a File object as
follows:

File myFile = new File(“//myPC/shared/jdk1.5.0/src/java/io”, “File.java”);

If you are keen to practice your typing skills, you could also write this as:

File myFile = new File(File.separator + File.separator + “myPC” +

File.separator + “shared” + File.separator +

“jdk1.4” + File.separator + “src” + File.separator +

“java” + File.separator + “io”, “File.java”);

If you want to create a File object that refers to the root directory under Unix, you just use “/” as the path.

Accessing System Properties
While you can specify a relative path to a file that is not system-dependent, in some circumstances you
might want to specify a path that is independent of the current environment, but where the current
directory, or even a subdirectory of the current directory, is not a convenient place to store a data file.
In this case, accessing one of the system properties can help. A system property specifies values for
parameters related to the system environment in which your program is executing. Each system property

405

Accessing Files and Directories

is identified by a unique name and has a value associated with the name that is defined as a string. A set
of standard system properties is always available, and you can access the values of any of these by pass-
ing the name of the property that you are interested in to the static getProperty() method that is
defined in the System class.

For example, the directory that is the default base for relative paths is defined by the property that has
the name “user.dir”, so you can access the path to this directory with the statement:

String currentDir = System.getProperty(“user.dir”);

You could then use this to specify explicitly where the file with the name “output.txt” is located:

File dataFile = new File(currentDir, “output.txt”);

Of course, this is equivalent to just specifying the file name as the relative path, so you have not
achieved anything new. However, another system property with the name “user.home” has a value that
defines a path to the user’s home directory. You could therefore specify that the “output.txt” file is to
be in this directory as follows:

File dataFile = new File(System.getProperty(“user.home”), “output.txt”);

The location of the user’s home directory is system-dependent, but wherever it is you can access it in
this way without building system dependencies into your code.

Naturally, you could specify the second argument to the constructor here to include directories that are
to be subdirectories of the home directory. For instance:

File dataFile = new File(System.getProperty(“user.home”),

“dir” + File.separator + “output.txt”);

On my system this defines the path:

C:\Documents and Settings\Ivor Horton\dir\output.txt

If you want to plug this code fragment into a main() method and see what path the resultant File
object encapsulates, the following statement will output the absolute path for you:

System.out.println(dataFile.getAbsolutePath());

This uses the getAbsolutePath() method for the File object to obtain the absolute path as a reference
to a String object. I will come back to this method in a moment.

If you would like to see what the full set of standard system properties are, you will find the complete
list in the JDK documentation for the static getProperties() method in the System class. You can also
retrieve the current set of properties on your system and their values by calling the getProperties()
method, so let’s put a little program together to do that.

406

Chapter 9

Try It Out Getting the Default System Properties
Here’s the program to list the keys and values for the current set of system properties on your computer:

public class TryProperties {

public static void main(String[] args) {

java.util.Properties properties = System.getProperties();

properties.list(System.out);

}

}

This will output all the system properties.

How It Works
The getProperties() method returns the set of system properties encapsulated in an object of type
Properties. The Properties class is defined in the java.util package, and the program uses the
fully qualified class name rather than an import statement for it. You call the list() method for the
Properties object to output the properties to the stream that is passed as the argument, in this case
System.out, which corresponds to your display screen.

Setting System Properties
As I discussed in the previous section, once you know the key for a system property you can obtain its
value, which is a String object, by calling the static getProperty() method in the System class and
passing the key for the property you are interested in as the argument. You can also change the value for
a system property by calling the static setProperty() method in the System class. The setProperty()
method expects two arguments; the first is a String object identifying the property to be changed, and
the second is a String object that is the new property value.

You also have the possibility to remove the current value that is set for a property by using the static
clearProperty() method in the System class. You just pass a string specifying the property key as
the argument. For example:

String oldValue = System.clearProperty(“java.class.path”);

This statement will remove the Java classpath specification, so you won’t want to do this unless you have
good reason to do so. The clearProperty() method returns the value that was set for the property
before it was cleared as a reference of type String. It is possible that the Java security manager may not
permit this operation to be carried out, in which case an exception of type SecurityException will be
thrown. The method will throw an exception of type NullPointerException if the argument is null,
or an exception of type IllegalArgumentException if you pass an empty string as the argument.

For a specific example of where you might want to set a system property, suppose that you wanted to
change the specification for the system property that specifies the current working directory. That prop-
erty has the key “user.dir”, so you could use the following statement:

System.setProperty(“user.dir”, “C:/MyProg”);

407

Accessing Files and Directories

Executing this statement changes the current working directory to “C:/MyProg”. Now when you are
using a relative path, it will be relative to this directory. You can change the system property that defines
the current directory as often as you like in your program, so you can always adjust the current directory
to be the one containing the file you are working with if that is convenient. Of course, when you do this,
you need to be sure that the directory does exist, so it would be wise to verify that the directory is there
before executing the call to the setProperty() method. That sort of verification is the next topic of this
chapter.

Testing and Checking File Objects
The File class provides more than 30 methods that you can apply to File objects, so I will just intro-
duce the ones that will be most useful to you, grouped by the sorts of things that they do.

First of all, you can get information about a File object itself by using the following methods:

Method Description

getName() Returns a String object containing the name of the file without the path —
in other words, the last name in the path stored in the object. For a File
object representing a directory, just the directory name is returned.

getPath() Returns a String object containing the path for the File object — includ-
ing the file or directory name.

isAbsolute() Returns true if the File object refers to an absolute pathname, and false
otherwise. Under MS Windows, an absolute pathname begins with either a
drive letter followed by a colon and then a backslash or a double backslash.
Under Unix, an absolute path is specified from the root directory down.

getParent() Returns a String object containing the name of the parent directory of the
file or directory represented by the current File object. This will be the
original path without the last name. The method returns null if there is no
parent specified. This will be the case if the File object was created for a
file in the current directory by just using a file name.

getParentFile() Returns the parent directory as a File object, or null if this File object
does not have a parent.

toString() Returns a String representation of the current File object and is called
automatically when a File object is concatenated with a String object.
You have used this method implicitly in output statements. The string that
is returned is the same as that returned by the getPath() method.

hashCode() Returns a hashcode value for the current File object. You will see more
about what hashcodes are used for in Chapter 14.

equals() You use this method for comparing two File objects for equality. If the
File object passed as an argument to the method has the same path as the
current object, the method returns true. Otherwise, it returns false.

408

Chapter 9

All of the preceding operations involve just the information encapsulated by the File object. The file or
directory itself is not queried and may or may not exist. The methods in the File class that enable you
to check out a file or directory are much more interesting and useful, so let’s go directly to those next.

Querying Files and Directories
The following set of methods enables you to examine the file or directory that is identified by a File object:

Method Description

exists() Returns true if the file or directory referred to by the File object exists
and false otherwise.

isDirectory() Returns true if the File object refers to an existing directory and
false otherwise.

isFile() Returns true if the File object refers to an existing file and false
otherwise.

isHidden() Returns true if the File object refers to a file that is hidden and false
otherwise. How a file is hidden is system-dependent. Under Unix a hid-
den file has a name that begins with a dot. Under Windows a file is hid-
den if it is marked as such within the file system.

canRead() Returns true if you are permitted to read the file referred to by
the File object and false otherwise. This method can throw a
SecurityException if read access to the file is not permitted.

canWrite() Returns true if you are permitted to write to the file referred to by
the File object and false otherwise. This method may also throw a
SecurityException if you are not allowed to write to the file.

getAbsolutePath() Returns the absolute path for the directory or file referenced by the cur-
rent File object. If the object contains an absolute path, then the string
returned by getPath() is returned. Otherwise, under MS Windows the
path is resolved against the current directory for the drive identified by the
pathname, or against the current user directory if no drive letter appears in
the pathname, and against the current user directory under Unix.

getAbsoluteFile() Returns a File object containing the absolute path for the directory or
file referenced by the current File object.

When you are working with a File object, you may not know whether it contains an absolute or a rela-
tive path. However, you may well want to get hold of its parent directory — to create another file, for
example. For a File object that was created from a relative path consisting of just the file name, the
getParent() method will return null. In this case you can use the getAbsolutePath() method to
obtain the absolute path, or the getAbsoluteFile() method to ensure that you have a File object for
which the getParent() method will return a string representing the complete path for the parent direc-
tory. For example:

File dataFile = new File(“output.txt”);

409

Accessing Files and Directories

Calling getParent() for dataFile here will return null. However, you can create a new File object
encapsulating the absolute path:

dataFile = dataFile.getAbsoluteFile();

Now dataFile refers to a new object that encapsulates the absolute path to “output.txt”, so calling
getParent() will return the path to the parent directory — which will correspond to the value of the
user.dir system property in this case.

To see how some of these methods go together, you can try a simple example.

Try It Out Testing for a File
Try the following source code. Don’t forget the import statement for the File class name from the
java.io package, since the example won’t compile without it. The source code is in a ZIP file called
src.zip and can be found in the home directory for the JDK. If you haven’t extracted the Java source
code from the archive on your system, you could try the example with the file that contains the source
code for the example itself —TryFile.java:

import java.io.File;

public class TryFile {

public static void main(String[] args) {

// Create an object that is a directory

File myDir = new File(“C:/jdk1.5.0/src/java/io”);

System.out.println(myDir + (myDir.isDirectory() ? “ is” : “ is not”)

+ “ a directory.”);

// Create an object that is a file

File myFile = new File(myDir, “File.java”);

System.out.println(myFile + (myFile.exists() ? “ does” : “ does not”)

+ “ exist”);

System.out.println(myFile + (myFile.isFile() ? “ is” : “ is not”)

+ “ a file.”);

In all the examples in this chapter, you may need to specify substitute paths to suit
your environment.

Note that all operations involving the access of files on the local machine can throw
an exception of type SecurityException if access is not authorized — in an applet,
for example. This is the case with all of the methods here. However, for an exception
of type SecurityException to be thrown, a security manager must exist on the
local machine, but by default a Java application has no security manager. An applet,
on the other hand, always has a security manager by default. A detailed discussion
of Java security is beyond the scope of this book.

410

Chapter 9

System.out.println(myFile + (myFile.isHidden() ? “ is” : “ is not”)

+ “ hidden”);

System.out.println(“You can” + (myFile.canRead() ? “ “ : “not “)

+ “read “ + myFile);

System.out.println(“You can” + (myFile.canWrite() ? “ “ : “not “)

+ “write “ + myFile);

return;

}

}

On my machine, the above example produces the following output:

C:\jdk1.5.0\src\java\io is a directory.

C:\jdk1.5.0\src\java\io\File.java does exist

C:\jdk1.5.0\src\java\io\File.java is a file.

C:\jdk1.5.0\src\java\io\File.java is not hidden

You can read C:\jdk1.5.0\src\java\io\File.java

You can write C:\jdk1.5.0\src\java\io\File.java

How It Works
This program first creates an object corresponding to the directory containing the java.io package. You
will need to check the path to this directory on your own system and insert that as the argument to the
constructor of the File object. The output statement then uses the conditional operator ?: in conjunc-
tion with the isDirectory() method to display a message. If isDirectory() returns true, then “ is”
is selected. Otherwise, “ is not” is selected. The program then creates another File object correspond-
ing to the file File.java and displays further information about the file using the same sort of mecha-
nism. Finally, the program uses the canRead() and canWrite() methods to determine whether read
and write access to the file is permitted.

If you are using MS Windows, you might like to try out the separator \\ with this example and see if it
makes a difference.

You can use the following methods for a File object to obtain further information about the file or direc-
tory, if it exists:

Method Description

list() If the current File object represents a directory, a String array is returned
containing the names of the members of the directory. If the directory is
empty, the array will be empty. If the current File object is a file, null is
returned. The method will throw an exception of type SecurityException if
access to the directory is not authorized.

listFiles() If the object for which this method is called is a directory, it returns an array of
File objects corresponding to the files and directories in that directory. If the
directory is empty, then the array that is returned will be empty. The method
will return null if the object is not a directory, or if an I/O error occurs. The
method will throw an exception of type SecurityException if access to the
directory is not authorized.

Table continued on following page

411

Accessing Files and Directories

Method Description

length() Returns a value of type long that is the length, in bytes, of the file represented
by the current File object. If the pathname for the current object references a
file that does not exist, then the method will return zero. If the pathname
refers to a directory, then the value returned is undefined.

lastModified() Returns a value of type long that represents the time that the directory or file
represented by the current File object was last modified. This time is the
number of milliseconds since midnight on 1st January 1970 GMT. It returns
zero if the file does not exist.

A static method defined in the File class, listRoots(), returns an array of File objects. Each element
in the array that is returned corresponds to a root directory in the current file system. The path to every
file in the system will begin with one or another of these roots. In the case of a Unix system, for example,
the array returned will contain just one element corresponding to the single root on a Unix system, /.
Under MS Windows, the array will contain an element for each logical drive that you have, including
floppy drives, CD drives, and DVD drives. The following statements will list all the root directories on
your system:

File[] roots = File.listRoots();

for(File root : roots) {

System.out.println(root);

}

The for loop lists the elements of the array returned by the listRoots() method.

With a variation on the last example, you can try out some of these methods.

Try It Out Getting More Information
You can arrange to list all the files in a directory and record when they were last modified with the fol-
lowing program:

import java.io.File;

import java.util.Date; // For the Date class

public class TryFile2 {

public static void main(String[] args) {

// Create an object that is a directory

File myDir = new File(“C:/jdk1.5.0/src/java/io”);

System.out.println(myDir.getAbsolutePath()

+ (myDir.isDirectory() ? “ is “ : “ is not “)

+ “a directory”);

System.out.println(“The parent of “ + myDir.getName() + “ is “

+ myDir.getParent());

// Get the contents of the directory

File[] contents = myDir.listFiles();

412

Chapter 9

// List the contents of the directory

if (contents != null) {

System.out.println(“\nThe “ + contents.length

+ “ items in the directory “ + myDir.getName()

+ “ are:”);

for (File file : contents) {

System.out.println(file + “ is a “

+ (file.isDirectory() ? “directory” : “file”)

+ “ last modified on:\n”

+ new Date(file.lastModified()));

}

} else {

System.out.println(myDir.getName() + “ is not a directory”);

}

System.exit(0);

}

}

Again, you need to use a path that is appropriate for your system. You should not have any difficulty
seeing how this works. The first part of the program creates a File object representing the same direc-
tory as in the previous example. The second part itemizes all the files and subdirectories in the directory.
The output will look something like this:

C:\jdk1.5.0\src\java\io is a directory

The parent of io is C:\jdk1.5.0\src\java

The 80 items in the directory io are:

C:\jdk1.5.0\src\java\io\Bits.java is a file last modified on

Thu Dec 11 00:20:12 GMT 2003

C:\jdk1.5.0\src\java\io\BufferedInputStream.java is a file last modified on

Thu Dec 11 00:20:12 GMT 2003

C:\jdk1.5.0\src\java\io\BufferedOutputStream.java is a file last modified on

Thu Dec 11 00:20:12 GMT 2003

C:\jdk1.5.0\src\java\io\BufferedReader.java is a file last modified on

Thu Dec 11 00:20:12 GMT 2003

C:\jdk1.5.0\src\java\io\BufferedWriter.java is a file last modified on

Thu Dec 11 00:20:12 GMT 2003

.

.

.

and so on.

How It Works
You can see from the output that the getName() method just returns the file name or the directory
name, depending on what the File object represents.

The listFiles() method returns a File array, with each element of the array representing a member of
the directory, which could be a subdirectory or a file. You store the reference to the array returned by the
method in the array variable contents. After outputting a heading, you check that the array is not null.
You then list the contents of the directory in the collection-based for loop. You use the isDirectory()

413

Accessing Files and Directories

method to determine whether each item is a file or a directory and create the output accordingly. You
could just as easily have used the isFile() method here. The lastModified() method returns a long
value that represents the time, in milliseconds, when the file was last modified since midnight on 1st
January 1970. To get this to a more readable form, you use the value to create a Date object, and the
toString() method for the class returns what you see in the output. The Date class is defined in the
java.util package (see Chapter 15). You have imported this into the program file, but you could just as
well use the fully qualified class name java.util.Date instead. If the contents array is null, you just
output a message. You could easily add code to output the length of each file here, if you want.

There is a standard system property with the key “java.home” that identifies the directory that is the
root directory of the Java run-time environment. If you have installed the JDK (rather than just a JRE),
this will be the jre subdirectory to the JDK subdirectory, which on my system is C:/jdk1.5.0. In this
case, the value of java.home will be “C:/jdk1.5.0/jre”. You could therefore use this to refer to the
file in the previous example in a system-independent way. If you create a File object from the value of
the java.home property, calling its getParent() method will return the parent directory as a String
object. This will be the JDK home directory, so you could use this as the base directory to access the
source files for the class libraries, like this:

File myDir = new File(new File(System.getProperty(“java.home”)).getParent(),

“src” + File.separator+”java” + File.separator+”io”);

As long as the JRE that is in effect is the one installed as part of the JDK, you have a system-independent
way of accessing the source files for the library classes.

Filtering a File List
The list() and listFiles() methods in the File class are overloaded with versions that accept an
argument used to filter a file list. This enables you to get a list of those files with a given extension, or
with names that start with a particular sequence of characters. For example, you could ask for all files
starting with the letter T, which might return the two files you created above: “TryFile.java” and
“TryFile2.java”. The argument that you pass to the list() method must be a variable of type
FilenameFilter, whereas the listFiles() method is overloaded with versions to accept arguments
of type FilenameFilter or FileFilter. Both FilenameFilter and FileFilter are interfaces
that contain the abstract method accept(). The FilenameFilter interface is defined in the java.io
package as:

public interface FilenameFilter {

public abstract boolean accept(File directory, String filename);

}

The FileFilter interface, which is also defined in java.io, is very similar:

public interface FileFilter {

public abstract boolean accept(File pathname);

}

The only distinction between these two interfaces is the parameter list for the method that they both
declare. The accept() method in the FilenameFilter class has two parameters for you to specify: the
directory plus the file name to identify a particular file, so this is clearly aimed at testing whether a given

414

Chapter 9

file should be included in a list of files. The accept() method for the FileFilter interface has just a
single parameter of type File, and this is used to filter files and directories.

The object that you pass as an argument to the list() or listFiles() method must implement either
the FilenameFilter or the FileFilter interface, respectively. The filtering of the list is achieved by
the list() or listFiles() method by calling the method accept() that is defined for your object for
every item in the raw list. If the method returns true, the item stays in the list, and if it returns false,
the item is not included. Obviously, these interfaces act as a vehicle to allow the mechanism to work, so
you need to define your own class that implements the appropriate interface. If you are using the
list() method, your class must implement the FilenameFilter interface. If you are using the
listFiles() method, you can implement either interface. How you actually filter the filenames is
entirely up to you. You can arrange to do whatever you like within the class that you define. You can
see how this works by extending the previous example a little further.

Try It Out Using the FilenameFilter Interface
You can define a class to specify a file filter as:

import java.io.File;

import java.io.FilenameFilter;

public class FileListFilter implements FilenameFilter {

private String name; // File name filter

private String extension; // File extension filter

// Constructor

public FileListFilter(String name, String extension) {

this.name = name;

this.extension = extension;

}

public boolean accept(File directory, String filename) {

boolean fileOK = true;

// If there is a name filter specified, check the file name

if (name != null) {

fileOK &= filename.startsWith(name);

}

// If there is an extension filter, check the file extension

if (extension != null) {

fileOK &= filename.endsWith(‘.’ + extension);

}

return fileOK;

}

}

This uses the methods startsWith() and endsWith(), which are defined in the String class
that I discussed in Chapter 4. Save this source in the same directory as the previous example, as
FileListFilter.java.

415

Accessing Files and Directories

Now you need a modified version of your TryFile2.java code as follows:

import java.io.File;

import java.io.FilenameFilter;

import java.util.Date; // For the Date class

public class TryFile3 {

public static void main(String[] args) {

// Create an object that is a directory

File myDir = new File(“C:/jdk1.5.0/src/java/io”);

System.out.println(myDir.getAbsolutePath()

+ (myDir.isDirectory() ? “ is “ : “ is not “)

+ “a directory”);

System.out.println(“The parent of “ + myDir.getName() + “ is “

+ myDir.getParent());

// Define a filter for java source files beginning with F

FilenameFilter select = new FileListFilter(“F”, “java”);

// Get the contents of the directory

File[] contents = myDir.listFiles(select);

// List the contents

if (contents != null) {

System.out.println(“\nThe “ + contents.length

+ “ matching items in the directory, “

+ myDir.getName() + “, are:”);

for (File file : contents) {

System.out.println(file + “ is a “

+ (file.isDirectory() ? “directory” : “file”)

+ “ last modified on\n”

+ new Date(file.lastModified()));

}

} else {

System.out.println(myDir.getName() + “ is not a directory”);

}

return;

}

}

It is best to continue with our numbering convention and call the above script TryFile3.java. I put
both source files for this example in a new directory, TryFile3. When you run this code, you should get
something like the following:

C:\jdk1.5.0\src\java\io is a directory

The parent of io is C:\jdk1.5.0\src\java

The 15 matching items in the directory, io, are:

D:\jdk1.5.0\src\java\io\File.java is a file last modified on

Fri Jan 23 00:23:26 GMT 2004

D:\jdk1.5.0\src\java\io\FileDescriptor.java is a file last modified on

Fri Jan 23 00:31:14 GMT 2004

416

Chapter 9

D:\jdk1.5.0\src\java\io\FileFilter.java is a file last modified Fri Jan 23 00:23:26

GMT 2004

D:\jdk1.5.0\src\java\io\FileInputStream.java is a file last modified on

Fri Jan 23 00:23:26 GMT 2004

.

.

.

and so on.

How It Works
Our FileListFilter class has two instance variables —name and extension. The name variable
stores the file name prefix, and extension selects file types to be included in a list. The constructor sets
these variables, and the value of either can be omitted when the constructor is called by specifying the
appropriate argument as null. If you want a really fancy filter, you can have just one argument to the
constructor and specify the filter as *.java, or A*.java, or even A*.j*. You would just need a bit more
code in the constructor or possibly the accept() method to analyze the argument. Our implementation
of the accept() method here returns true only if the file name that is passed to it by the list()
method has initial characters that are identical to name, and the file extension is the same as that stored
in extension.

In the modified example, you construct an object of our filter class using the string “F” as the file name
prefix and the string “.java” as the extension. This version of the example will now list only files with
names beginning with F and with the extension .java.

Creating and Modifying Files and Directories
There are methods defined in the File class that you can use to change the physical file by making it
read-only or renaming it. There are also methods that enable you to create files and directories, and to
delete them. The methods that provide you with these capabilities are the following:

Method Description

renameTo(File path) The file represented by the current object will be renamed to the path
represented by the File object passed as an argument to the method.
Note that this does not change the current File object in your
program — it alters the physical file. Thus, the file that the File
object represents will no longer exist after executing this method,
because the file will have a new name and possibly will be located in
a different directory. If the file’s directory in the new path is different
from the original, the file will be moved. The method will fail if the
directory in the new path for the file does not exist, or if you don’t
have write access to it. If the operation is successful, the method will
return true. Otherwise, it will return false.

setReadOnly() Sets the file represented by the current object as read-only and
returns true if the operation is successful.

Table continued on following page

417

Accessing Files and Directories

Method Description

mkdir() Creates a directory with the path specified by the current File object.
The method will fail if the parent directory of the directory to be cre-
ated does not already exist. The method returns true if it is success-
ful and false otherwise.

mkdirs() Creates the directory represented by the current File object, includ-
ing any parent directories that are required. It returns true if the new
directory is created successfully and false otherwise. Note that even
if the method fails, some of the directories in the path may have been
created.

createNewFile() Creates a new empty file with the pathname defined by the current
File object as long as the file does not already exist. The method
returns true if the file was created successfully. Note that this
method will create a file only in an existing directory — it will not
create any directories specified by the path.

createTempFile(This is a static method that creates a temporary file in the directory
String prefix, directory, with a name created using the first two arguments, and
String suffix, returns a File object corresponding to the file created. The string
File directory) prefix represents the start of the file name and must be at least three

characters long. The string suffix specifies the file extension. The
file name will be formed from prefix followed by five or more gen-
erated characters, followed by suffix. If suffix is null, .tmp will
be used. If prefix or suffix are too long for file names on the cur-
rent system, they will be truncated, but neither will be truncated to
less than three characters. If the directory argument is null, the
system temporary directory will be used. If the file cannot be created,
an IOException will be thrown. If prefix has less than three char-
acters, an IllegalArgumentException will be thrown.

createTempFile(Calling this method is equivalent to calling the preceding version
String prefix, with the last argument as null:
String suffix) createTempFile(String prefix,String suffix, null)

delete() This will delete the file or directory represented by the current File
object and return true if the delete was successful. It won’t delete
directories that are not empty. To delete a directory, you must first
delete the files it contains.

deleteOnExit() Causes the file or directory represented by the current File object to
be deleted when the program ends. This method does not return a
value. The deletion will be attempted only if the JVM terminates nor-
mally. Once you call the method for a File object, the delete opera-
tion is irrevocable, so you will need to be cautious with this method.

Note that, in spite of the name, the files that you create by using the createTempFile() method
are not necessarily temporary, as they will not be deleted automatically. You must use delete() or
deleteOnExit() to ensure that files you no longer require are removed.

418

Chapter 9

You can arrange for a temporary file to be deleted automatically at the end of the program by calling the
deleteOnExit() method for the File object. For example, you might write:

File tempFile = File.createTempFile(“list”, null);

tempFile.deleteOnExit();

The first statement will create a temporary file with a name of the form listxxxxx.tmp in the default
temporary directory. The xxxxx part of the name is generated automatically. Since you did not supply
a suffix, the file extension will be .tmp by default. The second statement calls the deleteOnExit()
method for tempFile, so you are assured that this file won’t be left lying around after the program fin-
ishes. You can apply the deleteOnExit() method to any File object, not just those corresponding to
temporary files, but do so with caution. As has been noted, the delete is irrevocable once you have called
the method!

You will be trying out some of these methods in examples later in this chapter. Now that you understand
how to define objects encapsulating a path in a Java program, you can move on to creating file stream
objects. I’ll introduce file output streams first.

Creating File Output Streams
You use a FileOutputStream object when you want to write to a physical file on a disk. The
FileOutputStream class is derived from the OutputStream class and therefore inherits the methods
of that class for writing to a file. However, I won’t bother going into detail on these or the versions in
the FileOutputStream class that override them, as you will be using the new file channel capability
to write to a file.

There are five constructors for FileOutputStream objects:

Constructor Description

FileOutputStream(Creates an output stream for the file filename. The existing
String filename) contents of the file will be overwritten. If the file cannot be

opened for any reason, an exception of type
FileNotFoundException will be thrown.

FileOutputStream(Creates an output stream for the file filename. Data written
String filename, to the file will be appended following the existing contents if
boolean append) append is true. If append is false, any existing file contents

will be overwritten. If the file cannot be opened for any reason,
an exception of type FileNotFoundException will be thrown.

FileOutputStream(Creates a file output stream for the file represented by the
File file) object file. Any existing file contents will be overwritten.

If the file cannot be opened, an exception of type
FileNotFoundException will be thrown.

Table continued on following page

419

Accessing Files and Directories

Constructor Description

FileOutputStream(Creates a file output stream for the file represented by the
File file, object file. Data written to the file will be appended follow-
boolean append) ing the existing contents if append is true. If append is false,

any existing file contents will be overwritten. If the file cannot
be opened for writing for any reason, an exception of type
FileNotFoundException will the thrown.

FileOutputStream(Creates an output stream corresponding to the argument
FileDescriptor desc) desc. A FileDescriptor object represents an existing connec-

tion to a file, so since the file must exist, this constructor does not
throw an exception of type FileNotFoundException.

The first four constructors will create the file if it does not already exist, but only if the parent directory
exists, so it’s a good idea to check this before calling the constructor. All of these constructors can throw
a SecurityException if writing to the file is not authorized on your system, although by default there
is no security manager for an application, in which case there are no restrictions on writing files. Once
you have created a FileOutputStream object, the physical file is automatically opened, ready to be
written. Once you have written the file, using a channel (as you’ll see in Chapter 10), you can close the
file by calling the close() method for the FileOutputStream object. This also closes the file channel
and releases all system resources associated with the stream.

To create a stream object of type FileOutputStream, you will typically create a File object first and
then pass that to a FileOutputStream constructor. This approach enables you to check the properties
of the file using the File object before you try to create the stream and in this way avoid potential prob-
lems. Of course, you can create a FileOutputStream object directly from a String object that defines
the path and file name, but it is generally much less convenient to do this. I will come back to the third
possibility — creating a file stream object from a FileDescriptor object — in a moment.

In passing, here’s how you would create a file output stream directly from the file name:

FileOutputStream outputFile = null; // Place to store the stream reference

try {

outputFile = new FileOutputStream(“myFile.txt”);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

}

If the file cannot be opened, the constructor will throw a FileNotFoundException, which won’t be
very convenient in most circumstances. You must put the call to the constructor in a try block and
catch the exception if you want the code to compile, unless of course you arrange for the method con-
taining the constructor call to pass on the exception with a throws clause. The exception will be thrown
if the path refers to a directory rather than a file, or if the parent directory in the path does not exist.
If the file does not exist, but the directory that is supposed to contain it does exist, the constructor will
create a new file for you. Of course, you must declare the outputFile variable prior to the try block.
If you declare it within the try block, the variable will not exist outside it. Creating a File object first
enables you to check the file out and deal with any potential problems. Let’s look at ways in which
you can apply this.

420

Chapter 9

Ensuring a File Exists
Let’s suppose that you want to append data to a file if it exists and create a new file if it doesn’t. Either
way, you want to end up with a file output stream to work with. You will need to go through several
checks to achieve this:

❑ Use the File object to verify that it actually represents a file rather than a directory. If it doesn’t,
you can’t go any further, so output an error message.

❑ Use the File object to decide whether the file exists. If it doesn’t, ensure that you have a File
object with an absolute path. You need this to obtain and check out the parent directory.

❑ Get the path for the parent directory and create another File object using this path. Use the
new File object to check whether the parent directory exists. If it doesn’t, create it using the
mkDirs() method for the new File object.

Let’s look at how that might be done in practice.

Try It Out Ensuring That a File Exists
You could guarantee a file is available with the following code:

import java.io.File;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

public class GuaranteeAFile {

public static void main(String[] args) {

String filename = “C:/Beg Java Stuff/Bonzo/Beanbag/myFile.txt”;

File aFile = new File(filename); // Create the File object

// Verify the path is a file

if (aFile.isDirectory()) {

// Abort after a message

// You could get input from the keyboard here and try again...

System.out.println(“The path “ + aFile.getPath()

+ “ does not specify a file. Program aborted.”);

System.exit(1);

}

// If the file doesn’t exist

if (!aFile.isFile()) {

// Check the parent directory...

aFile = aFile.getAbsoluteFile();

File parentDir = new File(aFile.getParent());

if (!parentDir.exists()) { // ... and create it if necessary

parentDir.mkdirs();

}

}

FileOutputStream outputFile = null;// Place to store the stream reference

try {

421

Accessing Files and Directories

// Create the stream opened to append data

outputFile = new FileOutputStream(aFile, true);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

}

System.exit(0);

}

}

Don’t forget to change the file name and path if the filename string isn’t convenient in your environ-
ment. After executing this code, you should find that all the necessary directories and the file have been
created if they don’t already exist. You can try this out with paths with a variety of directory levels.
Delete them all when you are done, though.

How It Works
You call isDirectory() in the if statement to see whether the path is just a directory. Instead of aborting
at this point, you could invite input of a new path from the keyboard, but I’ll leave that for you to try. Next,
you check whether the file exists. If it doesn’t, you call getAbsoluteFile() to ensure that our File object
has a parent path. If you don’t do this and you have a file specified with a parent, in the current directory,
for example, then getParent() will return null. Having established the File object with an absolute
path, you create a File object for the directory containing the file. If this directory does not exist, calling
mkdirs() will create all the directories required for the path so that you can then safely create the file
stream. The FileOutputStream constructor can in theory throw a FileNotFoundException, although
not in our situation here. In any event, you must put the try and catch block in for the exception.

A further possibility is that you might start with two strings defining the directory path and the file
name separately. You might then want to be sure that you had a valid directory before you created the
file. You could do that like this:

String dirname = “C:/Beg Java Stuff”; // Directory name

String filename = “charData.txt”; // File name

File dir = new File(dirname); // File object for directory

if (!dir.exists()) { // If directory does not exist...

if (!dir.mkdirs()) { // ...create it

System.out.println(“Cannot create directory: “ + dirname);

System.exit(1);

}

} else if (!dir.isDirectory()) {

System.err.println(dirname + “ is not a directory”);

System.exit(1);

}

// Now create the file...

If the directory doesn’t exist, you call mkdirs() inside the nested if to create it. Since the method returns
false if the directory was not created, this will determine whether or not you have indeed managed to
create the directory.

422

Chapter 9

Avoiding Overwriting a File
In some situations when the file does exist, you may not want it to be overwritten. Here is one way you
could avoid overwriting a file if it already exists:

String filename = “C:/Beg Java Stuff/myFile.txt”;

File aFile = new File(filename);

FileOutputStream outputFile = null; // Place to store the stream reference

if (aFile.isFile()) {

System.out.println(“myFile.txt already exists.”);

} else {

// Create the file stream

try {

// Create the stream opened to append data

outputFile = new FileOutputStream(aFile);

System.out.println(“myFile.txt output stream created”);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

}

}

Of course, if you want to be sure that the path will in fact result in a new file being created when it doesn’t
already exist, you would need to put in the code from the previous example that checks out the parent
directory. The preceding fragment avoids overwriting the file, but it is not terribly helpful. If the file exists,
you create the same FileOutputStream object as before, but if it doesn’t, you just toss out an error mes-
sage. In practice, you are more likely to want the program to take some action so that the existing file is
protected but the new file still gets written. One solution would be to rename the original file in some way
if it exists, and then create the new one with the same name as the original. This takes a little work though.

Try It Out Avoiding Overwriting a File
Without worrying about plugging in the code that ensures that the file directory exists, here is how you
could prevent an existing file from being overwritten. As always, you should change the file name and
path to suit your environment if necessary.

import java.io.File;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

public class AvoidOverwritingFile {

public static void main(String[] args) {

String filepath = “C:/Beg Java Stuff/myFile.txt”;

File aFile = new File(filepath);

FileOutputStream outputFile = null; // Stores the stream reference

if (aFile.isFile()) {

File newFile = aFile; // Start with the original file

423

Accessing Files and Directories

// Append “_old” to the file name repeatedly until it is unique

do {

String name = newFile.getName(); // Get the name of the file

int period =

name.indexOf(‘.’); // Find the separator for the extension

newFile = new File(newFile.getParent(),

name.substring(0, period) + “_old”

+ name.substring(period));

} while(newFile.exists()); // Stop when no such file exists

aFile.renameTo(newFile); // Rename the file

}

// Now we can create the new file

try {

// Create the stream opened to append data

outputFile = new FileOutputStream(aFile);

System.out.println(“myFile.txt output stream created”);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

}

System.exit(0);

}

}

If you run this a few times, you should see some _old_old... files created.

How It Works
If the file exists, the code in the if block executes. This stores the reference to the original File object in
newFile as a starting point for the do-while loop that follows. Each iteration of the loop appends the
string “_old” to the name of the file and creates a new File object using this name in the original direc-
tory. The expression in the loop condition tests whether the new File object referenced by newFile
corresponds to an existing file. If it does, the original file cannot be renamed to this name so the loop
continues and adds a further occurrence of _old to the file name. Eventually, this process should arrive
at a name that does not correspond to an existing file as long as the permitted file name length of the
system in not exceeded. At this point the loop ends and the original file is renamed to the name corre-
sponding to newFile.

I use the getParent() method in the loop to obtain the parent directory for the file, and the getName()
method returns the file name. I have to split the file name into the name part and the extension to
append the “_old” string, and the charAt() method for the String object gives the index position of
the period separating the name from the file extension. Of course, this code presumes the existence of a
file extension since I define my original file name with one. It is quite possible to deal with files that
don’t have an extension, but I’ll leave that as a little digression for you.

FileDescriptor Objects
A FileOutputStream object has a method getFD() that returns an object of type FileDescriptor
that represents the current connection to the physical file. You cannot create a FileDescriptor object
yourself. You can only obtain a FileDescriptor object by calling the getFD() method for an object

424

Chapter 9

that represents a file stream. Once you have closed the stream, you can no longer obtain the
FileDescriptor object for it since the connection to the file will have been terminated.

You can use a FileDescriptor object to create other stream objects when you want to have several con-
nected to the same file concurrently. Since a FileDescriptor object represents an existing connection,
you can only use it to create streams with read and/or write permissions that are consistent with the
original stream. You can’t use the FileDescriptor object from a FileOutputStream to create a
FileInputStream, for example.

If you look at the documentation for the FileDescriptor class, you’ll see that it also defines three pub-
lic static data members: in, out, and err, which are themselves of type FileDescriptor. These corre-
spond to the standard system input, the standard system output, and the standard error stream,
respectively, and they are there as a convenience for when you want to create byte or character stream
objects corresponding to the standard streams.

Summary
In this chapter, I’ve discussed the facilities for inspecting physical files and directories and for writing
basic types of data to a file. The important points I have discussed include the following:

❑ An object of the class File can encapsulate a file or directory path. The path encapsulated by a
File object does not necessarily correspond to a physical file or directory.

❑ You can use a File object to test whether the path it encapsulates refers to a physical file or
directory. If it does not, there are methods available to create it together with any directories that
are part of the path that may also be required.

❑ The File class defines static methods for creating temporary files.

❑ An object of type FileDescriptor can also identify a physical file.

❑ A FileOutputStream object can be created from a File object, and the file will be opened for
writing. If the file does not exist, it will be created where possible.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

Don’t confuse the data members of the FileDescriptor class with the data mem-
bers of the same name defined by the System class in the java.lang package. The
in, out, and err data members of the System class are of type PrintStream, so they
have the print(), println(), and printf() methods. The FileDescriptor data
members do not. A PrintStream object is a stream, whereas a FileDescriptor
object is not.

425

Accessing Files and Directories

1. Modify the example that avoids overwriting a file to permit the file path to be entered as a
command-line argument and to allow for file names that do not have extensions.

2. File names on many systems are not of unlimited length, so appending _old to file names may
break down at some point. Modify the example that avoids overwriting a file to append a three-
digit numerical value to the file name to differentiate it from the existing file instead of just
adding _old. The program should check for the presence of three digits at the end of the name
for the existing file and replace this with a value incremented by an amount to make it unique.
(That is, increment the last three digits by 1 until a unique file name is created.)

3. Write a program that will list all the directories in a directory defined by a path supplied as a
command-line argument, or all the directories on a system if no command-line argument is pre-
sent. (Hint: The listRoots() method will give you the roots on a system and the listFiles()
method will give you an array of File objects for the files and directories in any given directory —
including a root.)

426

Chapter 9

10
Writing Files

In this chapter, you’ll be looking at ways in which basic data can be written to a file using the new
file input/output capability that was introduced in the 1.4 release of the JDK and that continues in
JDK 5.0. This mechanism for file I/O largely superseded the read/write capability provided by
readers and writers from the java.io package when applied to file streams. Since the new file
I/O does everything that the old capability does, and does it better, I’ll focus just on that.

In this chapter you’ll learn:

❑ The principles of reading and writing files using the new I/O capability

❑ How you obtain a file channel for a file

❑ How you create a buffer and load it with data

❑ What view buffers are and how you use them

❑ How you use a channel object to write the contents of a buffer to a file

File I/O Basics
If you are new to programming file operations, there are a couple of things about how they work
that may not be apparent to you and can be a source of confusion so I’ll clarify these before I go any
further. If you already know how input and output for disk files work, you can skip this section.

First, let’s consider the nature of a file. Once you have written data to a file, what you have is just a
linear sequence of bytes. The bytes in a file are referenced by their offset from the beginning, so the
first byte is byte 0, the next byte is byte 1, the third byte is byte 2, and so on through to the end of
the file. If there are n bytes in a file, the last byte will be at offset n-1. There is no specific informa-
tion in the file about how the data originated or what it represents unless you explicitly put it
there. Even if there is, you need to know that it’s there and read and interpret the data accordingly.

For example, if you write a series of 25 binary values of type int to a file, it will contain 100 bytes.
Nothing in the file will indicate that the data consists of 4-byte integers so there is nothing to prevent
you from reading the data back as 50 Unicode characters or 10 long values followed by a string, or any
other arbitrary collection of data items that corresponds to 100 bytes. Of course, the result is unlikely to
be very meaningful unless you interpret the data in the form in which it was originally written. This
implies that to read data from a file correctly, you need to have prior knowledge of the structure and for-
mat of the data that is in the file.

The form of the data in the file may be recorded or implied in many ways. For example, one way that the
format of the data in a file can be communicated is to use an agreed file name extension for data of a par-
ticular kind, such as .java for a Java source file or .jpg for a graphical image file or .wav for a sound
file. Each type of file has a predefined structure, so from the file extension you know how to interpret the
data in the file. Of course, another way of transferring data so that it can be interpreted correctly is to use
a generalized mechanism for communicating data and its structure, such as XML. You will be looking
into how you can work with XML in your Java applications in Chapters 22 and 23.

You can access an existing file to read it or write it in two different ways, described as sequential access
or random access. The latter is sometimes referred to as direct access. Sequential access to a file is quite
straightforward and works pretty much as you would expect. Sequential read access involves reading
bytes from the file starting from the beginning with byte 0. Of course, if you are interested only in the file
contents starting at byte 100, you can just read and ignore the first 100 bytes. Sequential write access
involves writing bytes to the file starting at the beginning if you are replacing the existing data or writ-
ing a new file, and writing bytes starting at the end if you are appending new data to an existing file.

The term random access is sometimes misunderstood initially. Just like sequential access, random access
is just a way of accessing data in a file and has nothing to do with how the data in the file is structured
or how the physical file was originally written. You can access any file randomly for reading and/or
writing. When you access a file randomly, you can read one or more bytes from the file starting at any
point. For example, you could read 20 bytes starting at the 13th byte in the file (which will be the byte at
offset 12, of course) and then read 50 bytes starting at the 101st byte or any other point that you choose.
Similarly, you can update an existing file in random access mode by writing data starting at any point in
the file. In random access mode, the choice of where to start reading or writing and how many bytes you
read or write is entirely up to you. You just need to know the offset for the byte where a read or write
operation should start. Of course, for these to be sensible and successful operations, you have to have a
clear idea of how the data in the file is structured.

First a note of caution: Before running any of the examples in this chapter, be sure to
set up a separate directory for storing the files that you are using when you are test-
ing programs. It’s also not a bad idea to back up any files and directories on your
system that you don’t want to risk losing. But of course, you do back up your files
regularly anyway — right?

The old adage “If anything can go wrong, it will,” applies particularly in this con-
text, as does the complementary principle “If anything can’t go wrong, it will.”
Remember also that the probability of something going wrong increases in propor-
tion to the inconvenience it is likely to cause.

428

Chapter 10

File Input and Output
The new file I/O capabilities that were introduced in Java 1.4 provided the potential for substantially
improved performance over the I/O facilities of previous releases, the only cost being some slight
increase in complexity. Three kinds of objects are involved in reading and writing files using the new
I/O capability:

❑ A file stream object that encapsulates the physical file that you are working with. You saw how
to create FileOutputStream objects at the end of the previous chapter, and you use these for
files to which you want to write. In the next chapter, you will be using FileInputStream
objects for files that you want to read.

❑ One or more buffer objects in which you put the data to be written to a file, or from which you
get the data that has been read. You’ll learn about buffer objects in the next section.

❑ A channel object that provides the connection to the file and does the reading or writing of the
data using one or more buffer objects. You’ll see how to obtain a channel from a file stream
object later in this chapter.

The way in which these types of objects work together is illustrated in Figure 10-1.

Figure 10-1

The process for writing and reading files is basically quite simple. To write to a file, you load data into
one or more buffers that you have created and then call a method for the channel object to write the data
to the file that is encapsulated by the file stream. To read from a file, you call a method for the channel
object to read data from the file into one or more buffers, and then retrieve the data from the buffers.

You will be using four classes defined in the java.io package when you are working with files. As I’ve
said, the FileInputStream and FileOutputStream classes define objects that provide access to a file
for reading or writing, respectively. You use an object of type RandomAccessFile when you want to
access a file randomly, or when you want to use a single channel to both read from and write to a file.
You’ll be exploring this, along with the FileInputStream class, in the next chapter. You will see from

The channel transfers
data between the
buffers and the file
stream

File Stream
Object

Buffer
Objects

Channel
Object

429

Writing Files

the JDK documentation for the FileInputStream, FileOutputStream, and RandomAccessFile
classes that they each provide methods for I/O operations. However, I’ll ignore these, as you’ll be using
the services of a file channel to perform operations with objects of these stream classes. The only method
from these classes that you will be using is the close() method, which closes the file and any associated
channel.

Channels
Channels were introduced in the 1.4 release of Java to provide a faster capability for input and output
operations with files, network sockets, and piped I/O operations between programs than the methods
provided by the stream classes. I will be discussing channels only in the context of files, not because the
other uses for channels are difficult, but just to keep the book focused on the essentials so that the poten-
tial for a hernia is minimized. The channel mechanism can take advantage of buffering and other capa-
bilities of the underlying operating system and therefore is considerably more efficient than using the
operations provided directly within the file stream classes. As I said earlier, a channel transfers data
between a file and one or more buffers. I’ll first introduce the overall relationships between the various
classes that define channels and buffers, and then look into the details of how you use channels with file
streams.

A considerable number of classes and interfaces define both channels and buffers. They also have similar
names such as ByteBuffer and ByteChannel. Of course, File and file stream objects are also involved
in file I/O operations, so you will be using at least four different types of objects working together when
you read from or write to files. Just to clarify what they all do, here’s a summary of the essential role of
each of them in file operations:

❑ A File object encapsulates a path to a file or a directory, and such an object encapsulating a file
path can be used to construct a file stream object.

❑ A FileInputStream object encapsulates a file that can be read by a channel. A
FileOutputstream object encapsulates a file that can be written by a channel. As you will see
in the next chapter, a RandomAccessFile object can encapsulate a file that can be both read
from and written to by a channel.

❑ A buffer just holds data in memory. You load the data that you want to write to a file into a
buffer using the buffer’s put() methods. You use a buffer’s get() methods to retrieve data that
has been read from a file.

❑ You obtain a FileChannel object from a file stream object or a RandomAccessFile object. You
use a FileChannel object to read and/or write a file using the read() and write() methods
for the FileChannel object, with a buffer or buffers as the source or destination of the data.

The channel interfaces and classes that you will be using are in the java.nio.channels package. The
classes that define buffers are defined in the java.nio package. In a program that reads or writes files,
you will therefore need import statements for class names from at least three packages, the two packages
I have just introduced plus the java.io package.

430

Chapter 10

Channel Operations
A series of channel interfaces exists, each of which declares a set of one or more related operations that a
channel may perform. They all extend a common interface, Channel, which declares two methods:

❑ The close() method, which closes a channel

❑ The isOpen() method, which tests the state of the channel, returning true if it is open and
false otherwise

Note that closing a channel does not necessarily close the file to which the channel is attached, but clos-
ing a file also closes its channel. The channel interfaces are related as illustrated in the hierarchy shown
in Figure 10-2.

Figure 10-2

A source or destination for
data that can be closed.

Closeable

A channel that can write data
from a buffer to a device.

WriteableByteChannel

A channel that can read data
from a device into a buffer.

ReadableByteChannel

A connection to a device such
as a file or a socket to provide
reading and/or writing of data.

Channel

A channel that can be
asynchronously interrupted or

closed.

InterruptibleChannel

A channel that can read or
write data from a single

buffer to a device.

ByteChannel

A channel that can write data
from multiple buffers to a

device.

GatheringByteChannel

A channel that can read data
from a device into multiple

buffers.

ScatteringByteChannel

431

Writing Files

Each arrow points from a given interface to an interface that it extends. The ByteChannel interface sim-
ply combines the operations specified by the ReadableByteChannel and WritableByteChannel inter-
faces without declaring any additional methods. The ScatteringByteChannel interface extends the
ReadableByteChannel interface by adding methods that allow data to be read and distributed
amongst several separate buffers in a single operation. The GatheringByteChannel interface adds
methods to those of the WritableByteChannel interface to permit writing from a number of separate
buffers in a single operation. The InterruptibleChannel interface is implemented by classes encapsu-
lating channels for network sockets and other interruptible devices; I will be concentrating on file opera-
tions so I won’t discuss this interface further.

The methods that each interface in the hierarchy declares are as follows:

Interface Method and Description

Closeable void close()

Closes the source or destination and releases any resources associ-
ated with it.

Channel void close()

Closes the channel

boolean isOpen()

Returns true if the channel is open and false otherwise.

ReadableByteChannel int read(ByteBuffer input)

Reads bytes from a channel into the buffer specified by the argu-
ment and returns the number of bytes read, or -1 if the end of the
stream is reached.

WritableByteChannel int write(ByteBuffer output)

Writes bytes from the buffer specified by the argument to the chan-
nel and returns the number of bytes written.

ByteChannel This interface just inherits methods from the ReadableByteChannel
and WritableByteChannel interfaces. No additional methods are
declared.

ScatteringByteChannel int read(ByteBuffer[] inputs)

Reads bytes from the channel into the array of buffers specified by
the argument and returns the number of bytes read or -1 if the end
of the stream is reached.

int read(ByteBuffer[] inputs, int offset, int length)

Reads bytes from the channel into length buffers from the array
specified by the first argument starting with the buffer
inputs[offset].

432

Chapter 10

Interface Method and Description

GatheringByteChannel int write(ByteBuffer[] outputs)

Writes bytes from the array of buffers specified by the argument to
the channel, and returns the number of bytes written.

int write(ByteBuffer[] outputs, int offset,

int length)

Writes bytes to the channel from length buffers from the array
specified by the first argument, starting with the buffer
outputs[offset].

All of these methods can throw exceptions of one kind or another, and I’ll go into details on these when
you come to apply them. Note that a channel works only with buffers of type ByteBuffer. Other kinds
of buffers do exist as you’ll see, but you can’t use them directly with the read() and write() methods
for a channel. You’ll see what determines the number of bytes read or written in an operation when I dis-
cuss buffers in detail shortly.

File Channels
A FileChannel object defines a channel for a physical file and provides an efficient mechanism for
reading, writing, and manipulating the file. You can’t create a FileChannel directly. You first have to
create a file stream object for the file, then obtain a reference to the FileChannel object for the file by
calling the getChannel() method for the file stream object. Here’s how you would obtain the channel
for a FileOutputStream object:

File aFile = new File(“C:/Beg Java Stuff/myFile.text”);

FileOutputStream outputFile = null; // Place to store an output stream reference

try {

// Create the stream opened to write

outputFile = new FileOutputStream(aFile);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

// Get the channel for the file

FileChannel outputChannel = outputFile.getChannel();

The FileChannel class implements all of the channel interfaces that I discussed in the previous section,
so any FileChannel object incorporates the methods you have seen for both reading and writing a file.
However, a FileChannel object obtained from a FileOutputStream object will not be able to read
from the file since the stream permits only output. Similarly, a FileChannel obtained from a
FileInputStream object can only read from the file. If you try to perform a read operation on a file
opened just for output, a NonReadableChannelException will be thrown. Attempting to write to a file
opened for input will result in a NonWritableChannelException being thrown.

Once you have obtained a reference to a file channel, you are ready to read from or write to the file, but
you need to learn a bit more about buffers before you can try that out.

433

Writing Files

Buffers
All the classes that define buffers have the abstract Buffer class as a base. The Buffer class therefore
defines the fundamental characteristics common to all buffers. A particular buffer can store a sequence of
elements of a given type, and an element can be of any primitive data type other than boolean. Thus,
you can create buffers to store byte values, char values, short values, int values, long values, float
values, or double values. The following classes in the java.nio package define these buffers:

Class Description

ByteBuffer A buffer that stores values of type byte. You can also store the binary val-
ues of any of the other primitive types in this buffer, except for type
boolean. Each binary value that you store will occupy a number of bytes
in the buffer determined by the type — values of type char or short will
occupy 2 bytes, int values will occupy 4 bytes, and so on. Only buffers of
this type can be used in a file I/O operation.

CharBuffer A buffer that stores only values of type char

ShortBuffer A buffer that stores only values of type short

IntBuffer A buffer that stores only values of type int

LongBuffer A buffer that stores only values of type long

FloatBuffer A buffer that stores only values of type float

DoubleBuffer A buffer that stores only values of type double

I keep repeating “except for type boolean” every so often, so I had better address that. The various
types of buffers provide only for the numerical data types, and type boolean does not fit into this cate-
gory. Of course, you may actually want to record some boolean values in a file. In this case, you have to
devise a suitable alternative representation. You could use integer values 0 and 1, or perhaps strings
“true” and “false”, or even characters ‘t’ and ‘f’. You could even represent a boolean value as a
single bit and pack eight of them at a time into a single byte, but this is likely to be worthwhile only if
you have a lot of them. Which approach you choose will depend on what is most convenient in the con-
text in which you are using the boolean values.

While you have seven different classes defining buffers, a channel uses only buffers of type ByteBuffer
to read or write data. The other types of buffers in the table above are called view buffers, because they
are usually created as views of an existing buffer of type ByteBuffer. You’ll see how and why a little
later in this chapter.

Buffer Capacity
Each type of buffer stores elements of a specific kind — a ByteBuffer object holds bytes, a LongBuffer
object holds integers of type long, and so on for the other buffer types. The capacity of a buffer is the
maximum number of values it can contain, not the number of bytes — unless, of course, it stores ele-
ments of type byte. The capacity of a buffer is fixed when you create it and cannot be changed subse-
quently. You can obtain the capacity for a buffer object as a value of type int by calling the capacity()

434

Chapter 10

method that it inherits from the Buffer class. Figure 10-3 shows the capacities of different buffers when
each occupies the same amount of memory.

Figure 10-3

Of course, for a buffer that stores bytes, the capacity is the maximum number of bytes it can hold, but for
a buffer of type DoubleBuffer, for example, which stores double values, the capacity is the maximum
number of values of type double you can put in it. Values in a buffer are indexed from zero, so the index
position for referencing values in a buffer runs from 0 to capacity-1.

Buffer Position and Limit
A buffer also has a limit and a position, both of which affect data transfer operations to or from the
buffer. In the case of a ByteBuffer, the position and limit control read and write operations executed by
a channel using the buffer.

The position is the index position of the next buffer element to be read or written. This may sound a little
strange, but keep in mind that a ByteBuffer can be for file input or output and you can transfer values
into and out of other types of buffer. Consider a couple of examples. With a ByteBuffer that you are
using for file output, the position identifies the location in the buffer of the next byte to be written to the

capacity = 32

ByteBuffer

capacity = 8

value value value value value value value value

IntBuffer

value value value value

capacity = 4

DoubleBuffer

capacity = 16

CharBuffer

value value value value value value value value value value value value value value value value

435

Writing Files

file. For a ByteBuffer used for file input, the position identifies where the next byte that is read from
the file will be stored in the buffer. When you transfer one or more values into a DoubleBuffer or an
IntBuffer for example, the position indicates where the first value will be stored in the buffer. When
you are extracting values, the position indicates the location of the first value to be extracted.

The limit is the index position in a buffer of the first value that should not be read or written. Thus, ele-
ments can be read or written starting with the element at position and up to and including the element
at limit-1. Thus if you want to fill a buffer, the position must be at zero since this is where the first data
item will go, and the limit must be equal to the capacity since the last data item has to be stored at the
last element in the buffer, which is capacity-1.

You use the position and limit for a ByteBuffer to determine what bytes in the buffer are involved in a
read or write operation executed by a channel. How the position and limit affect I/O operations is easier
to understand if you take a specific example. First consider an operation that writes data from the buffer
to a file. This is illustrated in Figure 10-4.

Figure 10-4

When a file write operation is executed by a channel using a given ByteBuffer, elements from the
buffer will be written to the file starting at the index specified by the position. Successive bytes will be
written to the file up to, and including, the byte at index position limit-1. Thus with the buffer shown
in Figure 10-4, 60 bytes will be written to the file. When you want to write all the data from a buffer, you
should set the buffer position to 0 and the limit to the buffer capacity. In this case the limit will be an
index value that is one beyond the index value for the last byte in the buffer, so limit-1 will refer to the
last byte.

For a read operation, data that is read from the file is stored in a ByteBuffer starting at the byte at the
index given by the buffer’s position. Assuming that the end of the file is not reached before all the bytes
are read, bytes will continue to be read up to and including the byte at the index limit-1. Thus, the
number of bytes read will be limit-position, and the bytes will be stored in the buffer from the byte
at position up to and including the byte at limit-1.

As I said at the beginning of this section, the position and limit are involved when you load data into a
buffer or retrieve data from it. This applies for any type of buffer. The position specifies where the next
value will be inserted in a buffer or retrieved from it. As you’ll see, the position will usually be automati-
cally incremented to point to the next available position when you insert or extract values in a buffer.

capacity = 100

A channel write operation with the position and limit for a ByteBuffer as shown will write 60 bytes to a file.
Bytes 0 to 59 will be written to the file by the write operation.

limit = 60position = 0

byte byte byte byte byte byte byte byte byte byte byte byte byte

436

Chapter 10

The limit acts as a constraint to indicate where the data in a buffer ends, a bit like an end-of-file marker.
You cannot insert or extract elements beyond the position specified by the limit.

Since a buffer’s position is an index, it must be greater than or equal to zero. You can also deduce that it
must also be less than or equal to the limit. Clearly, the limit cannot be greater than the capacity of a
buffer. Otherwise, you could be trying to write elements to positions beyond the end of the buffer.
However, as you have seen, it can be equal to it. These relationships can be expressed as:

0 ≤ position ≤ limit ≤ capacity

As a general rule, if your code attempts to do things directly or indirectly that result in these relation-
ships being violated, an exception will be thrown.

When you create a new independent buffer, its capacity will be fixed at a value that you specify. It will
also have a position of zero and its limit will be set to its capacity. When you create a view buffer from an
existing ByteBuffer, the contents of the view buffer start at the current position for the ByteBuffer.
The capacity and limit for the view buffer will be set to the limit for the original buffer, divided by the
number of bytes in an element in the view buffer. The limit and position for the view buffer will subse-
quently be independent of the limit and position for the original buffer.

Setting the Position and Limit
You can set the position and limit for a buffer explicitly by using the following methods that are defined
in the Buffer class:

Method Description

position(int newPosition) Sets the position to the index value specified by the argu-
ment. The new position value must be greater than or equal
to zero, and not greater than the current limit; otherwise, an
exception of type IllegalArgumentException will be
thrown. If the buffer’s mark is defined (I will explain the
mark in the next section) and greater than the new position,
it will be discarded.

limit(int newLimit) Sets the limit to the index value specified by the argument. If
the buffer’s position is greater than the new limit it will be set
to the new limit. If the buffer’s mark is defined and exceeds
the new limit, it will be discarded. If the new limit value is
negative or greater than the buffer’s capacity, an exception of
type IllegalArgumentException will be thrown.

Both of these methods return a reference of type Buffer for the object for which they were called. This
enables you to chain calls to these methods together in a single statement. For example, given a buffer
reference buf, you could set both the position and the limit with the statement:

buf.limit(512).position(256);

437

Writing Files

This assumes the capacity of the buffer is at least 512 elements. If you are explicitly setting both the limit
and the position, you should always choose the sequence in which you set them to avoid setting a posi-
tion that is greater than the limit. If the buffer’s limit starts out less than the new position you want to set,
attempting to set the position first results in an IllegalArgumentException being thrown. Setting the
limit first to a value less than the current position will have a similar effect. If you want to avoid checking
the current limit and position when you want to reset both, you can always do it safely like this:

buf.position(0).limit(newLimit).position(newPosition);

Of course, the new position and limit values must be legal; otherwise, an exception will still be thrown.
In other words, newPosition must be non-negative and less than newLimit. To be 100 percent certain
that setting a new position and limit is going to work, you could code it something like this:

if(newPosition >= 0 && newLimit > newPosition) {

buf.position(0).limit(newLimit).position(newPosition);

} else {

System.out.printn(“Illegal position:limit settings.”

+ “Position: “ + newPosition + “ Limit: “+ newLimit);

}

You can determine whether there are any elements between the position and the limit in a buffer by call-
ing the hasRemaining() method for the buffer:

if (buf.hasRemaining()) { // If limit-position is >0

System.out.println(“We have space in the buffer!”);

}

You can also find out how many values can currently be accommodated by using the remaining()
method. For example:

System.out.println(“The buffer can accommodate “ + buf.remaining() +

“ more elements.”);

Of course, the value returned by the remaining() method will be the same as the expression
buf.limit()-buf.position().

Creating Buffers
None of the classes that define buffers have public constructors available. Instead, you use a static fac-
tory method to create a buffer. You will typically create a buffer object of type ByteBuffer by calling the
static allocate() method for the class. You pass a value of type int as an argument to the method that
defines the capacity of the buffer — the maximum number of bytes that the buffer must accommodate.
For example:

ByteBuffer buf = ByteBuffer.allocate(1024); // Buffer of 1024 bytes capacity

438

Chapter 10

When you create a new buffer using the allocate() method for the buffer class, it will have a position
of zero, and its limit will be set to its capacity. The buffer that the preceding statement creates will there-
fore have a position of 0, and a limit and capacity of 1024.

You can also create other types of buffers in the same way. For example:

// Buffer stores 100 float values

FloatBuffer floatBuf = FloatBuffer.allocate(100);

This creates a buffer with a capacity to store 100 values of type float. Since each element occupies 4
bytes, the data in this buffer will occupy 400 bytes. The buffer’s initial position will be 0, and its limit
and capacity will be 100.

In practice, you are unlikely to want to create buffers other than ByteBuffer objects in this way, since
you cannot use them directly for channel I/O operations. You will usually create a ByteBuffer object
first and then create any view buffers that you need from this buffer.

View Buffers
You can use a ByteBuffer object to create a buffer of any of the other types I have introduced that
shares all or part of the memory that the original ByteBuffer uses to store data. Such a buffer is
referred to as a view buffer because it provides a view of the contents of the byte buffer as elements of
another data type. Data is always transferred to or from a file as a series of bytes, but it will typically
consist of data values of a mix of types other than type byte. A view buffer therefore has two primary
uses: for loading data items that are not of type byte into a ByteBuffer prior to writing it to a file, and
accessing data that has been read from a file as values that are other than type byte.

You could create a view buffer of type IntBuffer from a ByteBuffer object like this:

ByteBuffer buf = ByteBuffer.allocate(1024); // Buffer of 1024 bytes capacity

IntBuffer intBuf = buf.asIntBuffer(); // Now create a view buffer

The content of the view buffer, intBuf, that you create here will start at the byte buffer’s current posi-
tion, which in this case is zero since it is newly created. The remaining bytes in buf will effectively be
shared with the view buffer. At least, the maximum number of them that is a multiple of 4 will be, since
intBuf stores elements of type int that require 4 bytes each. The view buffer will have an initial posi-
tion of 0, and a capacity and limit of 256. This is because 256 elements of type int completely fill the
1024 bytes remaining in buf. If you had allocated buf with 1023 bytes, then intBuf would have
mapped to 1020 bytes of buf and would have a capacity and limit of 255.

You could now use this view buffer to load the original buffer with values of type int. You could then
use the original byte buffer to write the int values to a file. As I said at the outset, view buffers have a
similar role when you are reading a file. You would have a primary buffer of type ByteBuffer into
which you read bytes from a file, and then you might access the contents of the ByteBuffer through a
view buffer of type DoubleBuffer to enable you to retrieve the data that is read from the file as values
of type double.

The ByteBuffer class defines the following methods for creating view buffers for a byte buffer object:

439

Writing Files

Method Description

asCharBuffer() Returns a reference to a view buffer of type CharBuffer

asShortBuffer() Returns a reference to a view buffer of type ShortBuffer

asIntBuffer() Returns a reference to a view buffer of type IntBuffer

asLongBuffer() Returns a reference to a view buffer of type LongBuffer

asFloatBuffer() Returns a reference to a view buffer of type FloatBuffer

asDoubleBuffer() Returns a reference to a view buffer of type DoubleBuffer

asReadOnlyBuffer() Returns a reference to a read-only view buffer of type ByteBuffer

In each case, the view buffer’s contents start at the current position of the original byte buffer. The posi-
tion of the view buffer itself is initially set to zero, and its capacity and limit are set to the number of
bytes remaining in the original byte buffer divided by the number of bytes in the type of element that
the view buffer holds. Figure 10-5 illustrates a view buffer of type IntBuffer that is created after the
initial position of the byte buffer has been incremented by 2, possibly after inserting a value of type char
into the byte buffer:

Figure 10-5

position = 2

position = 0 limit = 2

capacity = 20

ByteBuffer buf

IntBuffer

capacity = 2

limit = 12

buf .asIntBufferbuf.asIntBuffer()

440

Chapter 10

You can create as many view buffers from a buffer of type ByteBuffer as you want, and they can over-
lap or not as you require. A view buffer always maps to bytes in the byte buffer starting at the current
position. You will frequently want to map several different view buffers to a single byte buffer so that
each provides a view of a different segment of the byte buffer in terms of a particular type of value.
Figure 10-6 illustrates this situation.

Figure 10-6

The diagram illustrates a byte buffer with a view buffer of type IntBuffer mapped to the first 8 bytes,
and a view buffer of type CharBuffer mapped to the last 12 bytes. All you need to do to achieve this is
to ensure that the position of the byte buffer is set appropriately before you create each view buffer.

Duplicating and Slicing Buffers
You can duplicate any of the buffers I have discussed by calling the duplicate() method for a buffer.
The method returns a reference to a buffer with the same type as the original, and which shares the con-
tents and memory of the original buffer. The duplicate buffer initially has the same capacity, position,
and limit as the original. However, although changes to the contents of the duplicate will be reflected in

ByteBuffer buf capacity = 20

CharBuffer capacity = 6CharBuffer capacity = 6IntBuffer capacity = 2

buf .asCharBuffer()buf .asIntBuffer() buf.asCharBuffer()buf.asIntBuffer()

441

Writing Files

the original, and vice versa, the position and limit for the original buffer and the duplicate are indepen-
dent of one other. One use for a duplicate buffer is when you want to access different parts of a buffer’s
contents concurrently. You can retrieve data from a duplicate buffer without affecting the original buffer
in any way. A buffer and its duplicate are illustrated in Figure 10-7.

Figure 10-7

Thus a duplicate buffer is not really a new buffer in memory. It is just a new object that provides an
alternative route to accessing the same block of memory that is being used to buffer the data. The
duplicate() method returns a reference of a new object of the same type as the original, but has no
independent data storage. It merely shares the memory that belongs to the original buffer object but
with independent position and limit values.

You can also slice any of the buffers you have seen. Calling the slice() method for a buffer will return
a reference to a new buffer object of the same type as the original that shares the elements that remain in
the original buffer. Slicing a buffer is illustrated in Figure 10-8.

position = 2 limit = 12

position = 2 limit = 12

capacity = 20capacity = 20

capacity = 20capacity = 20

Buffer that is duplicated from bufBuffer that is duplicated from buf

Original Buffer bufOriginal Buffer buf

buf .duplicate()buf.duplicate()

442

Chapter 10

Figure 10-8

A buffer produced by the slice() method maps to a part of the original buffer starting at the element at
its current position, up to and including the element at limit-1. Of course, if the position of the original
buffer object is zero and the limit is equal to the capacity, the slice() method effectively produces the
same result as the duplicate() method — that is, the entire buffer will be shared. Slicing a buffer gives
you access to the data in a given part of a buffer through two or more separate routes, each with its own
independent position and limit.

Creating Buffers by Wrapping Arrays
You can also create a buffer by wrapping an existing array of the same type as the buffer elements by
calling one of the static wrap() methods that are inherited from the Buffer class. This method creates a
buffer that already contains the data in the array. For example, you could create a ByteBuffer object by
wrapping an array of type byte[], like this:

String saying = “Handsome is as handsome does.”;

byte[] array = saying.getBytes(); // Get string as byte array

ByteBuffer buf = ByteBuffer.wrap(array);

These statements convert the saying string to a byte array using the default platform charset and create
a byte buffer containing the array. Of course, you could convert the string to a byte array and create the
buffer in a single statement:

ByteBuffer buf = ByteBuffer.wrap(saying.getBytes());

position = 2

limit = 10

limit = 12

position = 0

capacity = 20

Original Buffer buf

Buffer that is sliced from buf

buf .slice()

capacity = 10

capacity = 20

Original Buffer buf

Buffer that is sliced from buf

buf.slice()

capacity = 10

443

Writing Files

In any event, the buffer object will not have memory of its own to store the data. The buffer will be
backed by the byte array that you have used to define it so modifications to the values in the buffer will
alter the array, and vice versa. The capacity and limit for the buffer will be set to the length of the array,
and its position will be zero.

You can also wrap an array to create a buffer so that the position and limit correspond to a particular
sequence of elements in the array. For example:

String saying = “Handsome is as handsome does.”;

byte[] array = saying.getBytes(); // Get string as byte array

ByteBuffer buf = ByteBuffer.wrap(array, 9, 14);

This creates a buffer by wrapping the whole array as before, but the position and limit are set using the
second and third argument. Thus in effect, the second and third arguments to the wrap() method spec-
ify the subsection of the array that is to be read or written next. This is illustrated in Figure 10-9.

Figure 10-9

The buffer’s capacity will be array.length and the position is set to the value of the second argument, 9.
The third argument specifies the number of buffer elements that can be read or written so this value will
be added to the position to define the limit. If either the second argument value or the sums of the second
and third argument values do not represent legal index values for the array, then an exception of type
IndexOutOfBoundsException will be thrown.

You can also wrap arrays of other primitive types to create a buffer of the corresponding type.
For example:

long[] numbers = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89};

LongBuffer numBuf = LongBuffer.wrap(numbers);

The buffer of type LongBuffer that you create here will have a capacity of array.length, which will
be 11. The buffer position will be set to 0 and the limit will be set to the capacity. In a similar manner you
can create buffers from arrays of any of the other basic types with the exception of type boolean.

H a n d s o m e i s a s h a n d s o m e d o e s .

array

capacity = array.length = 29capacity = array.length = 29

buf
position = 9 limit = position + 14 = 23

444

Chapter 10

If a buffer object has been created from an array, you can obtain a reference to the backing array that is
storing the data in the buffer by calling the array() method for the buffer. For example, for the buffer
created by the previous code fragment, you could obtain a reference to the original array like this:

long[] data = numBuf.array();

The variable data will now contain a reference to the original array, numbers, which you used to create
numBuf. If the buffer had not been created from an array, the array() method will throw an exception
of type UnsupportedOperationException.

If a buffer object is passed to a method as an argument, you might need to determine whether or not it
has a backing array — before you can call its array() method for example, if you plan to alter the
buffer’s contents by changing the elements in the array. The hasArray() method for a buffer object will
return true if the buffer was created from an array, and false otherwise. Typical usage of this method
is something like this:

if(numBuf.hasArray()) {

long[] data = numBuf.array();

// Modify the data array directly to alter the buffer...

} else {

// Modify the buffer using put() methods for the buffer object...

}

Obviously, you would take the trouble to do this only if modifying the backing array was a whole lot
more convenient or faster than using put() methods for the buffer. You will see how you use put()
methods to modify the contents of a buffer very soon in this chapter.

Wrapping Strings
You can create buffers of type CharBuffer by wrapping an object of any type that implements the
CharSequence interface, so this enables you to wrap objects of type String, type StringBuilder, and
type StringBuffer. You can also wrap an array of type char[] to create a CharBuffer object contain-
ing the contents of the array. For example:

String wisdom = “Many a mickle makes a muckle.”;

CharBuffer charBuf = CharBuffer.wrap(wisdom);

The CharBuffer object and the String object share the same memory. Since a String object is
immutable, the buffer that results from this is read-only. Attempting to transfer data into the buffer will
result in an exception of type ReadOnlyBufferException being thrown. If you expect to be modifying
the buffer, one approach is to obtain the contents of the String as an array of type char[] and wrap
that to create the buffer. Here’s how you can do that:

String wisdom = “Many a mickle makes a muckle.”;

CharBuffer charBuf = CharBuffer.wrap(wisdom.toCharArray());

The buffer now wraps an array of type char[] that contains the same sequence of characters as the orig-
inal string. You can now modify the buffer, but of course this won’t affect the original String object,
only the underlying array that you created.

445

Writing Files

You could also create a StringBuilder or StringBuffer object from the String object and wrap that.
For example:

String wisdom = “Many a mickle makes a muckle.”;

CharBuffer charBuf = CharBuffer.wrap(new StringBuffer(wisdom));

Now you have a CharBuffer object wrapping a backing StringBuffer object.

Of course, wrapping a string as I’ve illustrated here is quite different from wrapping a byte array that is
produced from a string, as described earlier. Here you are creating a buffer containing Unicode charac-
ters, whereas before you were creating a buffer containing characters represented by an 8-bit encoding.

Marking a Buffer
You use the mark property for a buffer to record a particular index position in the buffer that you want
to be able to return to later. You can set the mark to the current position by calling the mark() method
for a buffer object that is inherited from the Buffer class. For example:

buf.mark(); // Mark the current position

This method also returns a reference of type Buffer so you could chain it with the methods for setting
the limit and position:

buf.limit(512).position(256).mark();

This will set the mark to 256, the same as the position, which is set after the limit has been set to 512.

After a series of operations that alter the position, you can reset the buffer’s position to the mark that
you have set previously by calling the reset() method that is inherited from the Buffer class:

buf.reset(); // Reset position to last marked

If you have not set the mark, or if it has been discarded by an operation to set the limit or the position,
the reset() method will throw an exception of type InvalidMarkException. The mark for a view
buffer operates independently of the mark for the buffer from which it was created.

You probably won’t need to mark a buffer most of the time. The sort of situation where you could use it
is where you are scanning some part of a buffer to determine what kind of data it contains — after read-
ing a file, for example. You could mark the point where you started the analysis, and then return to that
point by calling reset() for the buffer when you have figured out how to handle the data.

Buffer Data Transfers
Of course, before you can use a channel to write the contents of a buffer to a file, you must load the
buffer with the data. Methods for loading data into a buffer are referred to as put methods. Similarly,
when a channel has read data from a file into a buffer, you are likely to want to retrieve the data from the
buffer. In this case you use the buffer’s get methods.

446

Chapter 10

Two kinds of operations transfer data values to or from a buffer.

❑ A relative put or get operation transfers one or more values starting at the buffer’s current posi-
tion. In this case the position is automatically incremented by the number of values transferred.

❑ In an absolute put or get operation, you explicitly specify an index for the position in the buffer
where the data transfer is to begin. In this case the buffer’s position will not be updated, so it
will remain at the index value it was before the operation was executed.

Transferring Data into a Buffer
The ByteBuffer class and all the view buffer classes have two put() methods for transferring a single
value of the buffer’s type to the buffer. One is a relative put method that transfers an element to a given
index position in the buffer, and the other is an absolute put method that places the element at an index
position that you specify as an argument. All the buffer classes also have three relative put methods for
bulk transfer of elements of the given type. Let’s consider the put() methods for a ByteBuffer object
as an example.

Method Description

put(byte b) Transfers the byte specified by the argument to the buffer at the
current position and increments the position by 1. An excep-
tion of type BufferOverflowException will be thrown if the
buffer’s position is not less than its limit.

put(int index, byte b) Transfers the byte specified by the second argument to the
buffer at the index position specified by the first argument. The
buffer position is unchanged. An exception of type IndexOut
OfBoundsException will be thrown if the index value is nega-
tive or greater than or equal to the buffer’s limit.

put(byte[] array) Transfers all the elements of array to this buffer starting at the
current position. The position will be incremented by the
length of the array. An exception of type BufferOverflow
Exception will be thrown if there is insufficient space in the
buffer to accommodate the contents of the array.

put(byte[] array, Transfers bytes from array[offset] to
int offset, array[offset+length-1] inclusive to the buffer. If there is
int length) insufficient space for them in the buffer, an exception of type

BufferOverflowException will be thrown.

put(ByteBuffer src) Transfers the bytes remaining in src to the buffer. This will be
src.remaining() elements from the buffer src from its
position index to limit-1. If there is insufficient space to
accommodate these, then an exception of type Buffer
OverflowException will be thrown. If src is identical to the
current buffer — you are trying to transfer a buffer to itself, in
other words — an exception of type IllegalArgument
Exception will be thrown.

447

Writing Files

Each of these methods returns a reference to the buffer for which it was called. If the buffer is read-only,
any of these methods will throw an exception of type ReadOnlyBufferException. You’ll see how a
buffer can be read-only when I discuss using view buffers in more detail. Each buffer object that stores
elements of a given primitive type —CharBuffer, DoubleBuffer, or whatever — will have put()
methods analogous to those for ByteBuffer, but with arguments of a type appropriate to the type of
element in the buffer.

The ByteBuffer class has some extra methods that enable you to transfer binary data of other primitive
types to the buffer. For example, you can transfer a value of type double to a buffer of type ByteBuffer
with either of the following methods:

Method Description

putDouble(double value) Transfers the double value specified by the
argument to the buffer at the current position
and increments the position by 8. If there are
less than 8 bytes remaining in the buffer, an
exception of type BufferOverflowException
will be thrown.

putDouble(int index, double value) Transfers the double value specified by the sec-
ond argument to the buffer starting at the index
position specified by the first argument. The
buffer’s position will be unchanged. If there are
less than 8 bytes remaining in the buffer, an
exception of type BufferOverflowException
will be thrown. If index is negative or the
buffer’s limit is less than or equal to index+7,
the method will throw an exception of type
IndexOutOfBoundsException.

Note that these provide for transferring only single values. If you want to transfer an array of values you
must use a loop. Similar pairs of methods to the preceding are defined in the ByteBuffer class to trans-
fer values of other primitive types. These are the methods putChar(), putShort(), putInt(),
putLong(), and putFloat(), each of which transfers a value of the corresponding type. Like the other
put() methods you have seen, these all return a reference to the buffer for which they are called. This is
to allow you to chain the calls for these methods together in a single statement if you wish. For example:

String text = “Value of e”;

ByteBuffer buf = ByteBuffer.allocate(text.length()+ sizeof(Math.E));

buf.put(text.getBytes()).putDouble(Math.E);

Here, you write the string to the buffer by converting it to bytes by calling its getBytes() method, and
passing the result to the put() method for the buffer. The put() method returns a reference to the
buffer, buf, so you use that to call the putDouble() method to write the 8 bytes for the double value,
Math.E, to the buffer. Of course, putDouble() also returns a reference to buf, so you could chain fur-
ther calls together in the same statement if you so wished. Here the buffer capacity has been allocated so
that it exactly accommodates the data to be loaded, so the capacity will be 18 bytes.

448

Chapter 10

Note that you are transferring the string characters to the buffer as bytes in the local character encoding
in the previous code fragment, not as Unicode characters. To transfer them as the original Unicode char-
acters, you could code the operations like this:

char[] array = text.toCharArray(); // Create char[] array from the string

ByteBuffer buf = ByteBuffer.allocate(50); // Buffer of 50 bytes capacity

// Now use a loop to transfer array elements one at a time

for (char ch; array) {

buf.putChar(ch);

}

buf.putDouble(Math.E); // Transfer the binary double value

Here you use a collection-based for loop to write the elements of the array that you create from text to
the buffer.

Using View Buffers
View buffers are intended to make it easier to transfer data elements of various basic types to or from a
ByteBuffer. The only slightly tricky part is that you have to keep track of the position for the original
ByteBuffer object yourself when you use a view buffer, since operations with the view buffer will not
update the position for the backing byte buffer. You could do what the previous code fragment does
using view buffers:

String text = “Value of e”;

ByteBuffer buf = ByteBuffer.allocate(50); // The original byte buffer

CharBuffer charBuf = buf.asCharBuffer(); // Create view buffer

charBuf.put(text); // Transfer string via view buffer

// Update byte buffer position by the number of bytes we have transferred

buf.position(buf.position() + 2*charBuf.position());

buf.putDouble(Math.E); // Transfer binary double value

Putting data into a view buffer with a relative put operation updates only the position of the view buffer.
The position for the backing ByteBuffer is unchanged, so you must increment it to account for the
number of bytes occupied by the Unicode characters that you have written. Since you transfer the eight
bytes for the constant Math.E directly using buf, the position in buf will be incremented by 8 automati-
cally. Of course, it’s essential that you update the buffer’s position to account for the characters you have
transferred before you transfer the floating-point value. If you don’t, you’ll overwrite the first 8 bytes of
the character data.

Preparing a Buffer for Output to a File
You have seen that a buffer starts out with its position set to 0 — the first element position — and with its
limit set to the capacity. The state of a view buffer reflects the state of the byte buffer from which it is cre-
ated. Suppose you create a byte buffer with the following statement:

ByteBuffer buf = ByteBuffer.allocate(80);

449

Writing Files

You can now create a view buffer from this byte buffer that you can use to store values of type double
with the statement:

DoubleBuffer doubleBuf = buf.asDoubleBuffer();

The view buffer’s initial state will be as shown in Figure 10-10.

Figure 10-10

The limit is automatically set to the capacity, 10, so it points to the position that is one beyond the last
value. You could load six values of type double into this buffer with the following statements:

double[] data = { 1.0, 1.414, 1.732, 2.0, 2.236, 2.449 };

doubleBuf.put(data); // Transfer the array elements to the buffer

The put() operation automatically increments the position for the view buffer. Now the buffer will be
as shown in Figure 10-11.

Figure 10-11

The position and limit values are now set to values ready for more data to be added to the buffer. The
value of position points to the first empty element, and limit points to one beyond the last empty ele-
ment. Of course, the position for the backing ByteBuffer is still in its original state, but you can update
that to correspond with the data you have loaded into the view buffer with the statement:

buf.Position(8*doubleBuf.Position());

If you now want to write the data you have in the byte buffer to a file, you must change the values for
position and limit in the byte buffer to identify the elements that are to be written. A file write opera-
tion will write data elements starting from the element in the buffer at the index specified by position,

1.0 1.414 1.732 2.0 2.236 2.449 empty empty empty empty

limit = 10position = 6

capacity = 10capacity = 10

empty empty empty empty empty empty empty empty empty empty

limit = 10position = 0

capacity = 10capacity = 10

450

Chapter 10

and up to and including the element at the index limit-1. To write the data to the file, the limit for the
byte buffer needs to be set to the current position, and the position needs to be set back to zero. You
could do this explicitly using the methods you have seen. For example:

// Limit to current position and position to 0

buf.limit(buf.position()).position(0);

This will first set the limit to the byte referenced by the current position, and then reset the position back
to the first byte, byte 0. However, you don’t need to specify the operation in such detail. The Buffer
class conveniently defines the flip() method that does exactly this, so you would normally set up the
buffer to be written to a file like this:

// Limit to current position and position to 0

buf.flip();

The flip() method returns the buffer reference as type Buffer, so you can chain this operation on the
buffer with others in a single statement. So, after you have loaded your byte buffer with data, don’t for-
get to flip it before you write it to a file. If you don’t, your data will not be written to the file, but garbage
may well be. If you loaded the data using a view buffer, you also have to remember to update the byte
buffer’s position before performing the flip.

Let’s cover two other methods that modify the limit and/or the position for a buffer. The clear()
method sets the limit to the capacity and the position to zero, so it restores these values to the state they
had when the buffer was created. This doesn’t reset the data in the buffer though. The contents are left
unchanged. You’ll typically call the clear() method when you want to reuse a buffer, either to load new
data into it ready to be written, or to read data into it from a channel. The rewind() method simply resets
the position to zero, leaving the limit unchanged. This enables you to reread the data that is in the buffer.
Both of these methods are defined in the base class Buffer and both return a reference to the buffer of
type Buffer, so you can chain these operations with others that are defined in the Buffer class.

Writing to a File
To start with, you will be using the simplest write() method for a file channel that writes the data con-
tained in a single ByteBuffer object to a file. The number of bytes written to the file is determined by
the buffer’s position and limit when the write() method executes. Bytes will be written starting with
the byte at the buffer’s current position. The number of bytes written is limit-position, which is the
number returned by the remaining() method for the buffer object. The write() method returns the
number of bytes that were actually written as a value of type int.

A channel write() operation can throw any of five different exceptions:

Exception Description

NonWritableChannelException Thrown if the channel was not opened for writing.

ClosedChannelException Thrown if the channel is closed. Calling the close()
method for the file channel will close the channel, as will
calling the close() method for the file stream.

Table continued on following page

451

Writing Files

Exception Description

AsynchronousCloseException Thrown if another thread closes the channel while the
write operation is in progress.

ClosedByInterruptException Thrown if another thread interrupts the current thread
while the write operation is in progress.

IOException Thrown if some other I/O error occurs.

The first of these is a subclass of RuntimeException, so you do not have to catch this exception. The
other four are subclasses of IOException, which must be caught, so you will normally put the write()
method call in a try block. If you want to react specifically to one or other of these last four exceptions,
you will need to add a catch block for that specific type. Otherwise, you can just include a single catch
block for type IOException to catch all four types of exception. For example, if you have set up a
ByteBuffer buf, ready to be written, you might code the write operation like this:

File aFile = new File(“C:/Beg Java Stuff/myFile.text”);

FileOutputStream outputFile = null; // Place to store an output stream reference

try {

// Create the stream opened to write

outputFile = new FileOutputStream(aFile);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

}

// Get the channel for the file

FileChannel outputChannel = outputFile.getChannel();

try {

outputChannel.write(buf); // Write the buffer contents to the file

} catch (IOException e) {

e.printStackTrace(System.err);

}

A write() method for a channel will return only when the write operation is complete, but this does
not guarantee that the data has actually been written to the file. Some of the data may still reside in the
native I/O buffers. If the data you are writing is critical and you want to minimize the risk of losing it in
the event of a system crash, you can force all outstanding output operations to a file that were previ-
ously executed by the channel to be completed by calling the force() method for the FileChannel
object like this:

try {

outputChannel.force(); // Force data transfer to the file

} catch (IOException e) {

e.printStackTrace(System.err);

}

The force() method will throw a ClosedChannelException if the channel is closed, or an
IOException if some other I/O error occurs. Note that the force() method guarantees only that all

452

Chapter 10

data will be written for a local storage device. If the ultimate destination for the data is a storage device
elsewhere on a network, you have no direct way to guarantee that the data gets written to the device.

Only one write operation can be in progress for a given file channel at any time. If you call write()
while a write() operation that was initiated by another thread is in progress, your call to the write()
method will block until the write that’s in progress has been completed.

File Position
The position of a file is the index position of where the next byte is to be read or written. The first byte in
a file is at position zero so the value for a file’s position is the offset of the next byte from the beginning.
Don’t confuse the file position with the position in a buffer that I discussed earlier — the two are quite
independent, but of course they are connected. When you write a buffer to a file using the write()
method discussed in the previous section, the byte in the buffer at the buffer’s current position will be
written to the file at its current position. This is illustrated in Figure 10-12.

Figure 10-12

The file channel object keeps track of the current position in the file. If you created the file stream to
append to the file by using a FileOutputStream constructor with the append mode argument as true,
then the file position recorded by the channel for the file will start out at the byte following the last byte.
Otherwise, the initial file position will be the first byte of the file. The file position will generally be
incremented by the number of bytes written each time you write to the file. There is one exception to
this. The FileChannel class defines a special write() method that does the following:

Current Buffer Position

Data is written starting with the byte at the buffer's position
which is written at the point specified by the file's position

In a channel write operation
limit-position bytes from the
buffer are written to the file.

Current File Position

ByteBuffer

Current Buffer Limit

File

453

Writing Files

Method Description

write(ByteBuffer buf, long position) This writes the contents of the buffer, buf, to
the file at the position specified by the second
argument, and not the file position recorded by
the channel. Bytes from the buffer are written
starting at the buffer’s current position, and
buf.remaining() bytes will be written. This
does not update the channel’s file position.

This method can throw any of the following exceptions:

Exception Description

IllegalArgumentException Thrown if you specify a negative value for the
file position

NonWritableChannelException Thrown if the file was not opened for writing

ClosedChannelException Thrown if the channel is closed

AsynchronousCloseException Thrown if another thread closes the channel
while the write operation is in progress

ClosedByInterruptException Thrown if another thread interrupts the cur-
rent thread while the write operation is in
progress

IOException Thrown if any other I/O error occurs

You might use this version of the write() method in a sequence of writes to update a particular part of
the file without disrupting the primary sequence of write operations. For example, you might record a
count of the number of records in a file at the beginning. As you add new records to the file, you could
update the count at the beginning of the file without changing the file position recorded by the channel,
which would be pointing to the end of the file where new data is to be written.

You can find out what the current file position is by calling the position() method for the
FileChannel object. This returns the position as type long rather than type int since it could conceiv-
ably be a large file with a lot more than two billion bytes in it. You can also set the file position by calling
a position method for the FileChannel object, with an argument of type long that specifies a new posi-
tion. For example, if you have a reference to a file channel stored in a variable outputChannel, you
could alter the file position with the following statements:

try {

outputChannel.position(fileChannel.position() – 100);

} catch (IOException e) {

e.printStackTrace(System.err);

}

454

Chapter 10

This moves the current file position back by 100 bytes. This could be because you have written 100 bytes
to the file and want to reset the position so you can rewrite it. The call to the position() method
should normally be in a try block because it can throw an exception of type IOException if an I/O
error occurs.

You can set the file position beyond the end of the file. If you then write to the file, the bytes between the
previous end of the file and the new position will contain junk values. If you try to read from a position
beyond the end of the file, an end-of-file condition will be returned immediately.

When you are finished with writing a file you should close it by calling the close() method for the file
stream object. This will close the file and the file channel. A FileChannel object defines its own
close() method that will close the channel but not the file.

Now, after that marathon drive through the basic tools you need to write a file, it’s time to start exercis-
ing your disk drive. Let’s try an example.

Try It Out Using a Channel to Write a String to a File
You will write the string “Garbage in, garbage out\n” to a file with the name charData.txt that
you will create in the directory Beg Java Stuff on your C: drive. If you want to write to a different
drive and/or directory, just change the program accordingly. Here is the code:

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class WriteAString {

public static void main(String[] args) {

String phrase = new String(“Garbage in, garbage out\n”);

String dirname = “C:/Beg Java Stuff”; // Directory name

String filename = “charData.txt”; // File name

File dir = new File(dirname); // File object for directory

// Now check out the directory

if (!dir.exists()){ // If directory does not exist

if (!dir.mkdir()){ // ...create it

System.out.println(“Cannot create directory: “ + dirname);

System.exit(1);

}

} else if (!dir.isDirectory()) {

System.err.println(dirname + “ is not a directory”);

System.exit(1);

}

// Create the filestream

File aFile = new File(dir, filename); // File object for the file path

FileOutputStream outputFile = null; // Place to store the stream reference

try {

455

Writing Files

outputFile = new FileOutputStream(aFile, true);

System.out.println(“File stream created successfully.”);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

}

// Create the file output stream channel and the buffer

FileChannel outChannel = outputFile.getChannel();

ByteBuffer buf = ByteBuffer.allocate(1024);

System.out.println(“New buffer: position = “ + buf.position()

+ “\tLimit = “ + buf.limit() + “\tcapacity = “

+ buf.capacity());

// Load the data into the buffer

for (char ch : phrase.toCharArray()) {

buf.putChar(ch);

}

System.out.println(“Buffer after loading: position = “ + buf.position()

+ “\tLimit = “ + buf.limit() + “\tcapacity = “

+ buf.capacity());

buf.flip(); // Flip the buffer ready for file write

System.out.println(“Buffer after flip: position = “ + buf.position()

+ “\tLimit = “ + buf.limit() + “\tcapacity = “

+ buf.capacity());

// Write the file

try {

outChannel.write(buf); // Write the buffer to the file channel

outputFile.close(); // Close the O/P stream & the channel

System.out.println(“Buffer contents written to file.”);

} catch (IOException e) {

e.printStackTrace(System.err);

}

System.exit(0);

}

}

The program produces some command-line output to trace what is going on. After you have compiled
and run this program, you should see the following output:

File stream created successfully.

New buffer: position = 0 Limit = 1024 capacity = 1024

Buffer after loading: position = 48 Limit = 1024 capacity = 1024

Buffer after flip: position = 0 Limit = 48 capacity = 1024

Buffer contents written to file.

You can inspect the contents of the file charData.txt using a plaintext editor. They will look something
like the following.

G a r b a g e i n , g a r b a g e o u t (

456

Chapter 10

There are spaces between the characters as displayed because the output is 8-bit characters and you are
writing Unicode characters to the file where 2 bytes are written for each character in the original string.
Your text editor may represent the first of each byte pair as something other than spaces, or possibly not
at all, as they are bytes that contain zero. You might even find that your plaintext editor will display only
the first ‘G’. If so, try to find another editor. If you run the example several times, the phrase will be
appended to the file for each execution of the program.

How It Works
You first define three String objects:

❑ phrase— The string that you will write to the file

❑ dirname— The name of the directory you will create

❑ filename— The name of the file

In the try block, you create a File object to encapsulate the directory path. If this directory does not
exist, the exists() method will return false, and the mkdir() method for dir will be called to create
it. If the exists() method returns true, you make sure that the File object represents a directory and
not a file by calling the isDirectory() method for the File object.

Having established the directory one way or another, you create a File object, aFile, to encapsulate the
path to the file. You use this object to create a FileOutputStream object that will append data to the
file. Omitting the second argument to the FileOutputStream constructor or specifying it as false
would make the file stream overwrite any existing file contents. The file stream has to be created in a
try block because the constructor can throw a FileNotFoundException. Once you have a
FileOutputStream object, you call its getChannel() method to obtain a reference to the channel that
you’ll use to write the file.

The next step is to create a ByteBuffer object and load it up with the characters from the string. You
create a buffer with a capacity of 1024 bytes. This is so you can see clearly the difference between the
capacity and the limit after flipping. You could have created a buffer exactly the size required with the
following statement:

ByteBuffer buf = ByteBuffer.allocate(2*phrase.length());

You can see how the position, limit, and capacity values change from the output. You use the putChar()
method for the buffer object to transfer the characters one at a time in a collection-based for loop that
iterates over the elements in an array of type char[] that you create from the original string. You then
output the information about the buffer status again. The limit is still as it was, but the position has
increased by the number of bytes written.

Finally, you write the contents of the buffer to the file. You can see here how flipping the buffer before
the operation sets up the limit and position ready for writing the data to the file.

Don’t be too hasty deleting this or other files that you’ll write later in this chapter, as
you’ll reuse some of them in the next chapter when you start exploring how to read
files.

457

Writing Files

The FileChannel object has a size() method that will return the length of the file, in bytes, as a value
of type long. You could try this out by adding the following statement immediately after the statement
that writes the buffer to the channel:

System.out.println(“The file contains “ + outChannel.size() + “ bytes.”);

You should see that 48 bytes are written to the file each time, since phrase contains 24 characters. The
size() method returns the total number of bytes in the file, so the number will grow by 48 each time
you run the program.

Using a View Buffer to Load Data into a Byte Buffer
The code in the previous example is not the only way of writing the string to the buffer. You could have
used a view buffer, like this:

ByteBuffer buf = ByteBuffer.allocate(1024);

CharBuffer charBuf = buf.asCharBuffer();

charBuf.put(phrase); // Transfer string to buffer

buf.limit(2*charBuf.position()); // Update byte buffer limit

// Create the file output stream channel

FileChannel outChannel = outputFile.getChannel();

// Write the file

try {

outChannel.write(buf); // Write the buffer to the file channel

outputFile.close(); // Close the output stream & the channel

} catch(IOException e) {

e.printStackTrace(System.err);

}

Transferring the string via a view buffer of type CharBuffer is much simpler. The only fly in the oint-
ment is that the backing ByteBuffer has no knowledge of this. The position for buf is still sitting firmly
at zero with the limit set as the capacity, so flipping it won’t set it up ready to write to the channel.
However, all you have to do is set the limit corresponding to the number of bytes you transferred to the
view buffer.

Of course, if you were writing the file for use by some other program, writing Unicode characters could
be very inconvenient if the other program environment did not understand it. Let’s see how you would
write the data as bytes in the local character encoding.

Try It Out Writing a String as Bytes
I will leave out the directory validation to keep the code shorter but remember that you should normally
put this check in your programs. Here’s the code:

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

458

Chapter 10

public class WriteAStringAsBytes {

public static void main(String[] args) {

String phrase = new String(“Garbage in, garbage out\n”);

String dirname = “C:/Beg Java Stuff”; // Directory name

String filename = “byteData.txt”;

File aFile = new File(dirname, filename);

// Create the file output stream

FileOutputStream file = null;

try {

file = new FileOutputStream(aFile, true);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

}

FileChannel outChannel = file.getChannel();

ByteBuffer buf = ByteBuffer.allocate(phrase.length());

byte[] bytes = phrase.getBytes();

buf.put(bytes);

buf.flip();

try {

outChannel.write(buf);

file.close(); // Close the output stream & the channel

} catch (IOException e) {

e.printStackTrace(System.err);

}

}

}

If you run this a couple of times and look into the byteData.txt file with your plaintext editor, you
should find:

Garbage in, garbage out

Garbage in, garbage out

You have no gaps between the letters this time because the Unicode characters were converted to bytes
in the default character encoding on your system by the getBytes() method for the string.

How It Works
You create the file stream and the channel essentially as in the previous example. This time the buffer is
created with the precise amount of space you need. Since you’ll be writing each character as a single
byte, the buffer capacity needs to be only the length of the string phrase.

You convert the string to a byte array in the local character encoding using the getBytes() method
defined in the String class. You transfer the contents of the array to the buffer using the relative put()
method for the channel. After a quick flip of the buffer, you use the channel’s write() method to write
the buffer’s contents to the file.

459

Writing Files

You could have written the conversion of the string to an array plus the sequence of operations with the
buffer and the channel write operation much more economically, if less clearly, like this:

outChannel.write((ByteBuffer)(buf.put(phrase.getBytes()).flip()));

This makes use of the fact that the buffer methods you are using here return a reference to the buffer so
you can chain them together. You would put this statement in the try block in place of the existing state-
ment that writes to the channel. Of course, you would also need to delete the three statements that pre-
cede the try block.

Writing Varying Length Strings to a File
So far, the strings you have written to the file have all been of the same length. It is very often the case
that you will want to write a series of strings of different lengths to a file. In this case, if you want to
recover the strings from the file, you need to provide some information in the file that allows the begin-
ning and/or end of each string to be determined. One possibility is to write the length of each string to
the file immediately preceding the string itself.

To do this, you can use a view buffer. Let’s see how that might work in an example that writes strings of
various lengths to a file.

Try It Out Writing Multiple Strings to a File
This example just writes a series of useful proverbs to a file:

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class WriteProverbs {

public static void main(String[] args) {

String dirName = “c:/Beg Java Stuff”; // Directory for the output file

String fileName = “Proverbs.txt”; // Name of the output file

String[] sayings = {

“Indecision maximizes flexibility.”,

“Only the mediocre are always at their best.”,

“A little knowledge is a dangerous thing.”,

“Many a mickle makes a muckle.”,

“Who begins too much achieves little.”,

“Who knows most says least.”,

“A wise man sits on the hole in his carpet.”

};

File aFile = new File(dirName, fileName);

FileOutputStream outputFile = null;

try {

outputFile = new FileOutputStream(aFile, true);

} catch (FileNotFoundException e) {

460

Chapter 10

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel outChannel = outputFile.getChannel();

// Create a buffer to accommodate the longest string + its length value

int maxLength = 0;

for (String saying : sayings) {

if(maxLength < saying.length())

maxLength = saying.length();

}

ByteBuffer buf = ByteBuffer.allocate(2*maxLength + 4);

// Write the file

try {

for (String saying : sayings) {

buf.putInt(saying.length()).asCharBuffer().put(saying);

buf.position(buf.position() + 2*saying.length()).flip();

outChannel.write(buf); // Write the buffer to the file channel

buf.clear();

}

outputFile.close(); // Close the output stream & the channel

System.out.println(“Proverbs written to file.”);

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

When you execute this, it should produce the following rather terse output:

Proverbs written to file.

You can check the veracity of this assertion by inspecting the contents of the file with a plaintext editor.

How It Works
The program writes the strings from the array sayings to the file.

You create a String array, sayings[], that contains seven proverbs that are written to the stream in the
for loop. You put the length of each proverb in the buffer using the putInt() method for the
ByteBuffer object. You then use a view buffer of type CharBuffer to transfer the string to the buffer.
The contents of the view buffer will start at the current position for the byte buffer. This corresponds to
the byte immediately following the string length value.

Transferring the string into the view buffer causes only the view buffer’s position to be updated. The
byte buffer’s position is still pointing back at the byte following the string length where the first charac-
ter of the string was written. You therefore have to increment the position for the byte buffer by twice the
number of characters in the string before flipping it to make it ready to be written to the file.

461

Writing Files

The first time you run the program, the file doesn’t exist, so it will be created. You can then look at the
contents. If you run the program again, the same proverbs will be appended to the file, so there will be a
second set. Alternatively, you could modify the sayings[] array to contain different proverbs the sec-
ond time around. Each time the program runs, the data will be added at the end of the existing file.

After writing the contents of the byte buffer to the file, you call its clear() method to reset the position
to zero and the limit back to the capacity. This makes it ready for transferring the data for the next
proverb on the next iteration. Remember that it doesn’t change the contents of the buffer though.

Using a Formatter Object to Load a Buffer
You saw the java.util.Formatter class when I introduced the printf() method that you can use
with the System.out stream object back in Chapter 8. The Formatter class defines a constructor that
accepts a reference of type java.lang.Appendable as an argument, and because the Printstream and
PrintWriter classes implement the Appendable interface, you can construct a Formatter object that
will format data into these objects. The CharBuffer class also implements the Appendable interface so
you can create a Formatter object that will format data into a view buffer of type CharBuffer. Here’s
how you might create a Formatter object ready for use with a view buffer:

ByteBuffer buf = ByteBuffer.allocate(1024); // Byte buffer

CharBuffer charBuf = buf.asCharBuffer(); // View buffer

Formatter formatter = new Formatter(charBuf); // Formatter to write view buffer

You can now use the format() method for the Formatter object to format data values into the view
buffer charBuf. You’ll recall that the format() method works just like printf()— with the first argu-
ment being a format string and the arguments that follow specifying the data values to be formatted. Of
course, writing data into the view buffer leaves the backing byte buffer’s limit unchanged, so you must
update this to reflect the data that is now in the buffer before attempting to write the buffer’s contents to
the channel. You can see how this works with a simple example:

Try It Out Using a Formatter Object to Load a Buffer
Here’s the code to use a Formatter object to prepare the data to be written to a file:

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.CharBuffer;

import java.nio.channels.FileChannel;

import java.util.Formatter;

public class UsingAFormatter {

public static void main(String[] args) {

String[] phrases = {“Rome wasn’t burned in a day.”,

“It’s a bold mouse that sits in the cat’s ear.”,

“An ounce of practice is worth a pound of instruction.”

};

String dirname = “C:/Beg Java Stuff”; // Directory name

String filename = “Phrases.txt”; // File name

462

Chapter 10

File dir = new File(dirname); // File object for directory

// Now check out the directory

if (!dir.exists()){ // If directory does not exist

if (!dir.mkdir()){ // ...create it

System.out.println(“Cannot create directory: “ + dirname);

System.exit(1);

}

} else if (!dir.isDirectory()) {

System.err.println(dirname + “ is not a directory”);

System.exit(1);

}

// Create the filestream

File aFile = new File(dir, filename); // File object for the file path

FileOutputStream outputFile = null; // Place to store the stream reference

try {

outputFile = new FileOutputStream(aFile, true);

System.out.println(“File stream created successfully.”);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

}

// Create the file output stream channel

FileChannel outChannel = outputFile.getChannel();

// Create byte buffer to hold data to be written

ByteBuffer buf = ByteBuffer.allocate(1024);

System.out.println(“\nByte buffer:”);

System.out.printf(“position = %2d Limit = %4d capacity = %4d%n”,

buf.position(), buf.limit(), buf.capacity());

// Create a view buffer

CharBuffer charBuf = buf.asCharBuffer();

System.out.println(“Char view buffer:”);

System.out.printf(“position = %2d Limit = %4d capacity = %4d%n”,

charBuf.position(),charBuf.limit(),charBuf.capacity());

Formatter formatter = new Formatter(charBuf);

// Write to the view buffer using a formatter

int number = 0; // Proverb number

for(String phrase : phrases) {

formatter.format(“%nProverb%3d: %s”, ++number, phrase);

System.out.println(“\nView buffer after loading:”);

System.out.printf(“position = %2d Limit = %4d capacity = %4d%n”,

charBuf.position(), charBuf.limit(),charBuf.capacity());

charBuf.flip(); // Flip the view buffer

System.out.println(“View buffer after flip:”);

System.out.printf(“position = %2d Limit = %4d length = %4d%n”,

charBuf.position(),charBuf.limit(),charBuf.length());

buf.limit(2*charBuf.length()); // Set byte buffer limit

System.out.println(“Byte buffer after limit update:”);

System.out.printf(“position = %2d Limit = %4d length = %4d%n”,

463

Writing Files

buf.position(),buf.limit(), buf.remaining());

// Write the file

try {

outChannel.write(buf); // Write the buffer to the file channel

System.out.println(“Buffer contents written to file.”);

buf.clear();

charBuf.clear();

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

}

try {

outputFile.close(); // Close the O/P stream & the channel

} catch (IOException e) {

e.printStackTrace(System.err);

}

}

}

With this example I got the following output:

File stream created successfully.

Byte buffer:

position = 0 Limit = 1024 capacity = 1024

Char view buffer:

position = 0 Limit = 512 capacity = 512

View buffer after loading:

position = 42 Limit = 512 capacity = 512

View buffer after flip:

position = 0 Limit = 42 length = 42

Byte buffer after limit update:

position = 0 Limit = 84 length = 84

Buffer contents written to file.

View buffer after loading:

position = 59 Limit = 512 capacity = 512

View buffer after flip:

position = 0 Limit = 59 length = 59

Byte buffer after limit update:

position = 0 Limit = 118 length = 118

Buffer contents written to file.

View buffer after loading:

position = 67 Limit = 512 capacity = 512

View buffer after flip:

position = 0 Limit = 67 length = 67

Byte buffer after limit update:

position = 0 Limit = 134 length = 134

Buffer contents written to file.

464

Chapter 10

You can inspect the contents of the file with a plaintext editor. Remember that the data is written as
Unicode characters.

How It Works
You first create an array of three strings that will be written to the file. You can add more to the array if
you like. I kept it at three to keep the volume of output down. You’ve seen the first part of the code that
sets up the File, FileOutputStream, and FileChannel objects before, so I’ll go straight to where the
buffer is loaded.

You set up the buffers with the statements:

ByteBuffer buf = ByteBuffer.allocate(1024);

CharBuffer charBuf = buf.asCharBuffer();

Some output statements between these record the initial state of the byte buffer. After outputting the
state of the view buffer charBuf, you create the Formatter object you’ll use to load the buffer:

Formatter formatter = new Formatter(charBuf);

The format() method for the Formatter object will write data to charBuf.

After defining the variable number that will store the proverb sequence number, you load the buffer and
write to the file in a for loop:

for(String phrase : phrases) {

// Load the buffer...

// Write the buffer to the file...

}

This loop iterates over each of the strings in the phrases array. You load a proverb from phrases into
the view buffer with the statement:

formatter.format(“%nProverb%3d: %s”, ++number, phrase);

This will transfer the incremented value of number followed by the string phrase, formatted according
to the first argument to the format() method. This will update the position for the view buffer, but not
the byte buffer.

You flip the view buffer with the statement:

charBuf.flip(); // Flip the view buffer

Flipping the view buffer sets its limit as the current position and resets its position to 0. The length()
method for the view buffer returns the number of characters in the buffer, which is limit-position.
You could obtain the same result by calling the remaining method that the CharBuffer class inherits
from the Buffer class. You update the limit for the byte buffer with the statement:

buf.limit(2*charBuf.length()); // Set byte buffer limit

Since each Unicode character occupies 2 bytes, the statement sets the byte buffer limit to twice the num-
ber of characters in charBuf.

465

Writing Files

With the byte buffer set up ready to be written to the channel, you write the data to the file with the
statement:

outChannel.write(buf); // Write the buffer to the file channel

You now need to reset the limit and position for both the byte buffer and the view buffer to be ready for
the next proverb to be written. The following two statements do this:

buf.clear();

charBuf.clear();

Calling the clear() method for a buffer sets the buffer’s position back to 0 and its limit to the capacity.

This example looks a little more complicated than it really is because of all the statements tracing the
states of the buffer. If you delete these, you’ll find the code is quite short.

The output shown for this example was produced on a Microsoft Windows system where a newline is
written as two characters, CR and LF. If you are using Linux or other operating systems that represent a
newline as a single NL character, the values for position after the buffer has been loaded by the
Formatter object will be less if a newline character is in the data that was loaded.

Direct and Indirect Buffers
When you allocate a byte buffer by calling the static allocate() method for the ByteBuffer class, you
get an indirect buffer. An indirect buffer is not used by the native I/O operations, which have their own
buffers. Data to be written to a file has to be copied from your indirect buffer to the buffer that the native
output routine uses before the write operation can take place. Similarly, after a read operation the data is
copied from the input buffer used by your operating system to the indirect buffer that you allocate.

Of course, with small buffers and limited amounts of data being read, using an indirect buffer doesn’t
add much overhead. With large buffers and lots of data, it can make a significant difference though. In
this case, you can use the allocateDirect() method in the ByteBuffer class to allocate a direct
buffer. The JVM will try to make sure that the native I/O operation makes use of the direct buffer, thus
avoiding the overhead of the data copying process. The allocation and de-allocation of a direct buffer
carries its own overhead, which may outweigh any advantages gained if the buffer size and data vol-
umes are small.

You can test whether a buffer object encapsulates a direct buffer by calling its isDirect() method. This
will return true if it is a direct buffer and false otherwise.

You could try this out by making a small change to the WriteProverbs example. Just replace the state-
ment

ByteBuffer buf = ByteBuffer.allocate(2*maxLength + 4);

with the following two statements:

ByteBuffer buf = ByteBuffer.allocateDirect(2*maxLength + 4);

System.out.println(“Buffer is “+ (buf.isDirect()?””:”not”)+”direct.”);

466

Chapter 10

This will output a line telling you whether the program is working with a direct buffer or not. If it is, it
will produce the following output:

Buffer is direct.

Proverbs written to file.

Writing Numerical Data to a File
Let’s see how you could set up the primes-generating program from Chapter 4 to write primes to a file
instead of outputting them. You will base the new code on the MorePrimes version of the program.
Ideally, you could add a command-line argument to specify how many primes you want. This is not too
difficult. Here’s how the code will start off:

import static java.lang.Math.ceil;

import static java.lang.Math.sqrt;

import static java.lang.Math.min;

public class PrimesToFile {

public static void main(String[] args) {

int primesRequired = 100; // Default prime count

if (args.length > 0) {

try {

primesRequired = Integer.valueOf(args[0]).intValue();

} catch (NumberFormatException e) {

System.out.println(“Prime count value invalid. Using default of “

+ primesRequired);

}

// Code to generate the primes...

// Code to write the file...

}

}

}

Here, if you don’t find a command-line argument that you can convert to an integer, you just use a
default count of 100. The static import statements allow you to use the static methods in the Math class
that you’ll need for the calculation without qualifying their names.

You can now generate the primes with code similar to that in Chapter 4 as follows:

long[] primes = new long[primesRequired]; // Array to store primes

primes[0] = 2; // Seed the first prime

primes[1] = 3; // and the second

int count = 2; // Count of primes found up to now

long number = 5; // Next integer to be tested

outer:

for (; count < primesRequired; number += 2) {

// The maximum divisor we need to try is square root of number

467

Writing Files

long limit = (long)ceil(sqrt((double)number));

// Divide by all the primes we have up to limit

for (int i = 1; i < count && primes[i] <= limit; i++)

if (number % primes[i] == 0) // Is it an exact divisor?

continue outer; // yes, try the next number

primes[count++] = number; // We got one!

}

Now all you need to do is add the code to write the primes to the file. Let’s put this into a working
example.

Try It Out Writing Primes to a File
Here’s the complete example, with the additional code to write the file shown shaded:

import static java.lang.Math.ceil;

import static java.lang.Math.sqrt;

import static java.lang.Math.min;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.LongBuffer;

import java.nio.channels.FileChannel;

public class PrimesToFile {

public static void main(String[] args) {

int primesRequired = 100; // Default count

if (args.length > 0) {

try {

primesRequired = Integer.valueOf(args[0]).intValue();

} catch (NumberFormatException e) {

System.out.println(“Prime count value invalid. Using default of “

+ primesRequired);

}

}

long[] primes = new long[primesRequired]; // Array to store primes

primes[0] = 2; // Seed the first prime

primes[1] = 3; // and the second

// Count of primes found – up to now, which is also the array index

int count = 2;

// Next integer to be tested

long number = 5;

outer:

for (; count < primesRequired; number += 2) {

// The maximum divisor we need to try is square root of number

468

Chapter 10

long limit = (long)ceil(sqrt((double)number));

// Divide by all the primes we have up to limit

for (int i = 1; i < count && primes[i] <= limit; i++)

if (number % primes[i] == 0) // Is it an exact divisor?

continue outer; // yes, try the next number

primes[count++] = number; // We got one!

}

File aFile = new File(“C:/Beg Java Stuff/primes.bin”);

FileOutputStream outputFile = null;

try {

outputFile = new FileOutputStream(aFile); // Create the file stream

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel file = outputFile.getChannel(); // Get the channel from the stream

final int BUFFERSIZE = 100; // Byte buffer size

ByteBuffer buf = ByteBuffer.allocate(BUFFERSIZE);

LongBuffer longBuf = buf.asLongBuffer(); // View buffer for type long

// Count of primes written to file

int primesWritten = 0;

while (primesWritten < primes.length) {

longBuf.put(primes, // Array to be written

primesWritten, // Index of 1st element to write

min(longBuf.capacity(), primes.length – primesWritten));

buf.limit(8*longBuf.position()); // Update byte buffer position

try {

file.write(buf);

primesWritten += longBuf.position();

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

longBuf.clear();

buf.clear();

}

try {

System.out.println(“File written is “ + file.size() + “ bytes.”);

outputFile.close(); // Close the file and its channel

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

469

Writing Files

If you don’t supply the number of primes you want as a command-line argument, this program pro-
duces the following output:

File written is 800 bytes.

This looks reasonable since you wrote 100 values of type long as binary data and they are 8 bytes each.

How It Works
You create a FileOutputStream object and obtain the channel in the way that you have previously.
Since you did not specify that you want to append to the file when you create the stream object, the file
will be overwritten each time you run the program.

You create the ByteBuffer object with a capacity of 100 bytes. This is a poor choice for the buffer size as
it is not an exact multiple of 8 — so it doesn’t correspond to a whole number of prime values. However, I
chose this value to make the problem of managing the buffer more interesting. You can change the buffer
size by change the value specified for BUFFERSIZE.

The primes will be transferred to the buffer through a view buffer of type LongBuffer that you obtain
from the original byte buffer. Since the buffer is too small to hold all the primes, you have to load it and
write the primes to the file in a loop.

The primesWritten variable counts how many primes have been written to the file, so you use this to
control the while loop that writes the primes to the file. The loop continues as long as primesWritten
is less than the number of elements in the primes array. The number of primes that the LongBuffer
object can hold corresponds to longBuf.capacity().You can transfer this number of primes to the
buffer as long as there is that many left in the array still to be written to the file, so you transfer a block of
primes to the buffer like this:

longBuf.put(primes, // Array to be written

primesWritten, // Index of 1st element to write

min(longBuf.capacity(), primes.length – primesWritten));

The first argument to the put() method is the array that is the source of the data, and the second argu-
ment is the index position of the first element to be transferred. The third argument will be the capacity
of the buffer as long as there is more than that number of primes still in the array. If there is less than this
number on the last iteration, you transfer primes.length-primesWritten values to the buffer.

Since you are using a relative put operation, loading the view buffer will change the position for that
buffer to reflect the number of values transferred to it. However, the backing byte buffer that you use in
the channel write operation will still have its limit and position unchanged. You therefore set the limit
for the byte buffer with the statement:

buf.limit(8*longBuf.position());

Since each prime occupies 8 bytes, multiplying the position value for the view buffer by 8 gives you the
number of bytes occupied in the primary buffer. You then go ahead and write that buffer to the file and
increment primesWritten by the position value for the view buffer, since this will be the number of
primes that were written. Before the next iteration you call clear() for both buffers to reset their posi-

470

Chapter 10

tions and limits to their original states — to 0 and the capacity, respectively. When you have written all
the primes, the loop ends and you output the length of the file before closing it.

Since this file contains binary data, you will not want to view it except perhaps for debugging purposes.

Writing Mixed Data to a File
Sometimes, you may want to write more than one kind of binary data to a file. You may want to mix
integers with floating-point values with text perhaps. One way to do this is to use multiple view buffers.
You can get an idea of how this works by outputting some text along with each binary prime value in
the previous example. Rather than taking the easy route by just writing the same text for each prime
value, let’s add a character representation of the prime value preceding each binary value. You’ll add
something like “prime = nnn” ahead of each binary value.

The first point to keep in mind is that if you ever want to read the file successfully, you can’t just dump
strings of varying lengths in it. You would have no way to tell where the text ended and where the binary
data began. You either have to fix the length of the string so you know how many bytes correspond to text
when you read the file, or you must provide data in the file that specifies the length of the string. Let’s
therefore choose to write the data corresponding to each prime as three successive data items:

1. A count of the length of the string as binary value (it would sensibly be an integer type but
you’ll make it type double since you need the practice)

2. The string representation of the prime value “prime = nnn”, where obviously the number of
digits will vary

3. The prime as a binary value of type long

The basic prime calculation will not change at all, so you need only update the shaded code at the end in
the previous example that writes the file.

The basic strategy you will adopt is to create a byte buffer and then create a series of view buffers that
map the three different kinds of data into it. A simple approach would be to write the data for one prime
at a time, so let’s try that first. Setting up the file stream and the channel will be more or less the same:

File aFile = new File(“C:/Beg Java Stuff/primes.txt”);

FileOutputStream outputFile = null;

try {

outputFile = new FileOutputStream(aFile);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel file = outputFile.getChannel();

The file extension has been changed to .txt to differentiate it from the original binary file that you
wrote with the previous version. You will want to make use of both the binary file and this file when you
are looking into file read operations in the next chapter, so don’t delete them.

471

Writing Files

The byte buffer has to be large enough to hold the double value that counts the characters in the string,
the string itself, plus the long value for the prime. The original byte buffer with 100 bytes capacity will
be plenty big enough so let’s go with that:

final int BUFFERSIZE = 100; // Buffer size in bytes

ByteBuffer buf = ByteBuffer.allocate(BUFFERSIZE);

You need to create three view buffers from the byte buffer, one that will hold the double value for the
count, one for the string, and one for the binary prime value, but you have a problem, which is illus-
trated in Figure 10-13.

Figure 10-13

Because the length of the string depends on the number of decimal digits in the prime value, you don’t
know where it ends. This implies you can’t map the last buffer, longBuf, to a fixed position in the byte
buffer, buf. You are going to have to set this buffer up dynamically inside the file-writing loop after you
figure out how long the string for the prime is. You can set up the first two view buffers outside the loop
though:

DoubleBuffer doubleBuf = buf.asDoubleBuffer();

buf.position(8);

CharBuffer charBuf = buf.asCharBuffer();

The first buffer that will hold the string length as type double will map to the beginning of the byte
buffer, buf. The view buffer into which you will place the string needs to map to the position in buf
immediately after the space required for the double value — 8 bytes from the beginning of buf in other
words. Remember that the first element in a view buffer maps to the current position in the byte buffer.
Thus, you can just set the position for buf to 8 before creating the view buffer, charBuf. All that’s now
needed is the loop that will load up the first two view buffers, create the third view buffer and load it,
and then write the file. Let’s put the whole thing together as a working example.

bufbuf

charBuf

doubleBuf

The number of bytes occupied by the string in charBuf will vary according to the number of
digits in the prime value.
Thus the number of bytes to be written from buf to the file will also vary for different primes.

longBuf

472

Chapter 10

Try It Out Using Multiple View Buffers
The code for the loop is shaded in the following complete program:

import static java.lang.Math.ceil;

import static java.lang.Math.sqrt;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.LongBuffer;

import java.nio.DoubleBuffer;

import java.nio.CharBuffer;

import java.nio.channels.FileChannel;

public class PrimesToFile2 {

public static void main(String[] args) {

int primesRequired = 100; // Default count

if (args.length > 0) {

try {

primesRequired = Integer.valueOf(args[0]).intValue();

} catch (NumberFormatException e) {

System.out.println(“Prime count value invalid. Using default of “

+ primesRequired);

}

}

long[] primes = new long[primesRequired]; // Array to store primes

primes[0] = 2; // Seed the first prime

primes[1] = 3; // and the second

// Count of primes found – up to now, which is also the array index

int count = 2;

long number = 5; // Next integer to be tested

outer:

for (; count < primesRequired; number += 2) {

// The maximum divisor we need to try is square root of number

long limit = (long)ceil(sqrt((double)number));

// Divide by all the primes we have up to limit

for (int i = 1; i < count && primes[i] <= limit; i++)

if (number % primes[i] == 0) // Is it an exact divisor?

continue outer; // yes, try the next number

primes[count++] = number; // We got one!

}

File aFile = new File(“C:/Beg Java Stuff/primes.txt”);

FileOutputStream outputFile = null;

try {

473

Writing Files

outputFile = new FileOutputStream(aFile);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel file = outputFile.getChannel();

final int BUFFERSIZE = 100; // Buffer size in bytes

ByteBuffer buf = ByteBuffer.allocate(BUFFERSIZE);

DoubleBuffer doubleBuf = buf.asDoubleBuffer();

buf.position(8);

CharBuffer charBuf = buf.asCharBuffer();

LongBuffer longBuf = null;

String primeStr = null;

for (long prime : primes) {

primeStr = “prime = “ + prime; // Create the string

doubleBuf.put(0,(double)primeStr.length()); // Store the string length

charBuf.put(primeStr); // Store the string

buf.position(2*charBuf.position() + 8); // Position for 3rd buffer

longBuf = buf.asLongBuffer(); // Create the buffer

longBuf.put(prime); // Store the binary long value

buf.position(buf.position() + 8); // Set position after last value

buf.flip(); // and flip

try {

file.write(buf); // Write the buffer as before.

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

buf.clear();

doubleBuf.clear();

charBuf.clear();

}

try {

System.out.println(“File written is “ + file.size() + “ bytes.”);

outputFile.close(); // Close the file and its channel

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

With the default number of primes to be produced, this example should produce the following output:

File written is 3742 bytes.

474

Chapter 10

How It Works
I’ll discuss only the body of the collection-based for loop that iterates over the elements in the primes
array because that’s the new function in the example.

You create the string first because you need to know its length so you can put that in the buffer first. You
insert the length as type double in the view buffer, doubleBuf. You then put the string into charBuf as
this buffer already maps to the position starting 8 bytes along from the start of buf. Next, you update the
position in buf to the element following the string. This allows you to map longBuf to the byte buffer
correctly. After creating the third view buffer, longBuf, you load the prime value. You then update the
position for buf to the byte following this value. This will be the position as previously set plus 8.
Finally, you flip buf to set the position and limit for writing, and then the channel writes to the file.

If you inspect the file with a plaintext editor you should get an idea of what is in the file. You should be
able to see the Unicode strings separated by the binary values you have written to the file. Of course, the
binary value won’t look particularly meaningful when viewed as characters.

This example writes the file one prime at a time, so it’s not going to be very efficient. It would be better
to use a larger buffer and load it with multiple primes. Let’s see how you can do that with another ver-
sion of the program.

Try It Out Multiple Records in a Buffer
You will be loading the byte buffer using three different view buffers repeatedly to put data for as many
primes into the buffer as you can. The basic idea is illustrated in Figure 10-14.

Figure 10-14

I’ll just show the new code that replaces the code in the previous example here. This is the code that allo-
cates the buffers and writes the file:

import static java.lang.Math.ceil;

import static java.lang.Math.sqrt;

import java.io.File;

// Remaining import statements as before...

public class PrimesToFile3 {

public static void main(String[] args) {

ByteBuffer

1st prime record

DoubleBuffer CharBuffer DoubleBufferLongBuffer LongBufferCharBuffer

String Length The String String LengthPrime Value Prime ValueThe String

2nd prime record

475

Writing Files

// Code as in the previous example...

final int BUFFERSIZE = 1024; // Buffer size in bytes – bigger!

ByteBuffer buf = ByteBuffer.allocate(BUFFERSIZE);

String primeStr = null;

int primesWritten = 0;

while (primesWritten < primes.length) {

while (primesWritten < primes.length) {

primeStr = “prime = “ + primes[primesWritten];

if ((buf.position() + 2*primeStr.length() + 16) > buf.limit()) {

break;

}

buf.asDoubleBuffer().put(0, (double)primeStr.length());

buf.position(buf.position() + 8);

buf.position(buf.position()

+ 2*buf.asCharBuffer().put(primeStr).position());

buf.asLongBuffer().put(primes[primesWritten++]);

buf.position(buf.position() + 8);

}

buf.flip();

try {

file.write(buf);

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

buf.clear();

}

try {

System.out.println(“File written is “ + file.size() + “ bytes.”);

outputFile.close(); // Close the file and its channel

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

You should get the same output as for the previous example here.

How It Works
To start with, you just create a byte buffer with a capacity of 1024 bytes. All the view buffers are created
inside the inner while loop. Both loops end when primesWritten, which counts the number of primes
written to the file, reaches a value that equals the length of the primes array. The inner loop loads up the
buffer and the outer loop writes the contents of the buffer to the file.

The first step in the inner loop is to create the prime string. This makes it possible to check whether there
is enough free space in the byte buffer to accommodate the string plus the two binary values — the
string length as type double and the prime itself of type long. If there isn’t enough space, the break
statement will be executed so the inner loop will end, and the channel will write the buffer contents to

476

Chapter 10

the file after flipping it. After the buffer has been written, the buffer’s clear() method is called to reset
the position to 0 and the limit to the capacity.

When there is space in the byte buffer, the inner loop loads the buffer starting with the statement:

buf.asDoubleBuffer().put(0, (double)primeStr.length());

This creates a view buffer of type DoubleBuffer and calls its put() method to transfer the length of the
string to the buffer. You don’t save the view buffer reference because you will need a different view
buffer on the next iteration — one that maps to the position in the byte buffer following the data you are
transferring for the current prime.

The next statement increments the position of the byte buffer by the number of bytes in the string length
value. You then execute the statement:

buf.position(buf.position()

+ 2*buf.asCharBuffer().put(primeStr).position());

This statement is a little complicated so let’s dissect it. The expression for the argument to the position()
method within the parentheses executes first. This calculates the new position for buf as the current
position, given by buf.position(), plus the value resulting from the expression

2*buf.asCharBuffer().put(primeStr).position()

The subexpression, buf.asCharBuffer(), creates a view buffer of type CharBuffer. You call the
put() method for this buffer to transfer primeStr to it, and this returns a reference to the CharBuffer
object. You use this reference to call the put() method for the CharBuffer object to transfer the string.
You use the reference that put() returns to call the position() method for the CharBuffer object,
which will return the position after the string has been transferred, so multiplying this value by 2 gives
the number of bytes occupied by the string in buf. Thus, you update the position for buf to the point
following the string that you transfer to the buffer.

The last step in the loop is to execute the following statements:

buf.asLongBuffer().put(primes[primesWritten++]);

buf.position(buf.position() + 8);

The first statement here transfers the binary prime value to the buffer via a view buffer of type
LongBuffer and increments the count of the number of primes written to the file. The second statement
updates the position for buf to the next available byte. The inner while loop then continues with the
next iteration to load the data for the next prime into the buffer. This will continue until there is insuffi-
cient space for data for another prime, whereupon the inner loop will end, and the buffer will be written
to the file.

Gathering-Write Operations
I’ll introduce one further file channel output capability before you try reading a file — the ability to trans-
fer data to a file from several buffers in sequence in a single write operation. This is called a gathering-
write operation. The advantage of this capability is that it avoids the necessity to copy information

477

Writing Files

into a single buffer before writing it to a file. A gathering-write operation is one side of what are called
scatter-gather I/O operations. You will look into the other side — the scattering-read operation — in the
next chapter.

Just to remind you of what I said earlier, a file channel has two methods that can perform a gathering-
write operation:

Method Description

write(ByteBuffers[] buffers) Writes bytes from each of the buffers in the buffers
array to the file in sequence, starting at the channel’s
current file position

write(ByteBuffers[] buffers, Writes data to the file starting at the channel’s current
int offset, file position from buffers[offset] to
int length) buffers[offset+length-1] inclusive and in

sequence

Both these methods can throw the same five exceptions as the write method for a single ByteBuffer
object. The second of these methods can also throw an IndexOutOfBoundsException if offset or
offset+length-1 is not a legal index value for the buffers array.

The data that is written from each buffer to the file is determined from that buffer’s position and limit, in
the way you have seen. One obvious application of the gathering-write operation is when you are read-
ing data from several different files into a number of buffers, and you want to merge the data into a sin-
gle file. You can see how it works by using a variation on the primes-writing program.

Try It Out The Gathering Write
To simulate conditions where a gathering-write could apply, you will set up the string length, the string
itself, and the binary prime value in separate byte buffers. You will also write the prime string as bytes in
the local encoding.

Here’s the code:

import static java.lang.Math.ceil;

import static java.lang.Math.sqrt;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.LongBuffer;

import java.nio.DoubleBuffer;

import java.nio.CharBuffer;

import java.nio.channels.FileChannel;

public class GatheringWrite {

public static void main(String[] args) {

int primesRequired = 100; // Default count

478

Chapter 10

if (args.length > 0) {

try {

primesRequired = Integer.valueOf(args[0]).intValue();

} catch (NumberFormatException e) {

System.out.println(“Prime count value invalid. Using default of “

+ primesRequired);

}

}

long[] primes = new long[primesRequired]; // Array to store primes

primes[0] = 2; // Seed the first prime

primes[1] = 3; // and the second

// Count of primes found – up to now, which is also the array index

int count = 2;

long number = 5; // Next integer to be tested

outer:

for (; count < primesRequired; number += 2) {

// The maximum divisor we need to try is square root of number

long limit = (long)ceil(sqrt((double) number));

// Divide by all the primes we have up to limit

for (int i = 1; i < count && primes[i] <= limit; i++) {

if (number % primes[i] == 0) { // Is it an exact divisor?

continue outer; // yes, try the next number

}

}

primes[count++] = number; // We got one!

}

File aFile = new File(“C:/Beg Java Stuff/primes2.txt”); // Different file!

FileOutputStream outputFile = null;

try {

outputFile = new FileOutputStream(aFile);

} catch (FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel file = outputFile.getChannel();

ByteBuffer[] buffers = new ByteBuffer[3]; // Array of buffer references

buffers[0] = ByteBuffer.allocate(8); // To hold a double value

buffers[2] = ByteBuffer.allocate(8); // To hold a long value

String primeStr = null;

for (long prime : primes) {

primeStr = “prime = “ + prime;

buffers[0].putDouble((double) primeStr.length()).flip();

buffers[1] = ByteBuffer.allocate(primeStr.length());

buffers[1].put(primeStr.getBytes()).flip();

buffers[2].putLong(prime).flip();

try {

479

Writing Files

file.write(buffers);

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

buffers[0].clear();

buffers[2].clear();

}

try {

System.out.println(“File written is “ + file.size() + “ bytes.”);

outputFile.close(); // Close the file and its channel

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.out.println(“File closed”);

System.exit(0);

}

}

When you execute this, it should produce the following output:

File written is 2671 bytes.

File closed

The length of the file is considerably less than before, because you are writing the string as bytes rather
than Unicode characters. The part of the code that is different is shaded, and I’ll concentrate on that.

How It Works
You use three byte buffers — one for the string length, one for the string itself, and one for the binary
prime value:

ByteBuffer[] buffers = new ByteBuffer[3]; // Array of buffer references

You create a ByteBuffer[] array with three elements to hold references to the buffers that you need.
The buffers holding the string length and the prime value are fixed in length so you are able to create
those straight away to hold 8 bytes each:

buffers[0] = ByteBuffer.allocate(8); // To hold a double value

buffers[2] = ByteBuffer.allocate(8); // To hold a long value

You have to create the buffer to hold the string dynamically, inside the for loop that iterates over all the
prime values you have in the primes array.

After assembling the prime string, you transfer the length to the first buffer:

buffers[0].putDouble((double) primeStr.length()).flip();

Note that you flip the buffer in the same statement after the data value has been transferred, so it is set
up ready to be written to the file.

480

Chapter 10

Next, you create the buffer to accommodate the string, load the byte array equivalent of the string, and
flip the buffer:

buffers[1] = ByteBuffer.allocate(primeStr.length());

buffers[1].put(primeStr.getBytes()).flip();

All of the put() methods for the byte buffers you are using in this example automatically update the
buffer position, so you can flip each buffer as soon as the data is loaded. As an alternative to allocating
this byte buffer directly to accommodate the byte array from the string, you could call the static wrap()
method in the ByteBuffer class that wraps a byte array. You could achieve the same as the previous
two statements with the following single statement:

buffers[1] = ByteBuffer.wrap(primeStr.getBytes());

Since the wrap() method creates a buffer with a capacity that is the same as the length of the array, with
the position set to zero, and the limit to the capacity, you don’t need to flip the buffer — it is already in a
state to be written.

The three buffers are ready, so you write the array of buffers to the file like this:

try {

file.write(buffers);

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

This applies the gathering-write operation to write the contents of the three buffers in the array to the
file.

Finally, you ready the first and third buffers for the next iteration by calling the clear() method for
each of them:

buffers[0].clear();

buffers[2].clear();

Of course, the second buffer is re-created on each iteration, so there’s no need to clear it. Surprisingly
easy, wasn’t it?

Summary
In this chapter, I have discussed the facilities for checking out physical files and directories and writing
basic types of data to a file. The important points that I’ve discussed include:

❑ An object of the class File can represent the path to a physical file.

❑ An object of type FileDescriptor can also represent a physical file.

❑ A FileOutputStream object can be created from a File object, and the file will be opened for
writing. If the file does not exist, it will be created where possible.

481

Writing Files

❑ A FileChannel object for a file is returned by the getChannel() method for a file stream
object.

❑ A buffer contains data to be written to a file or data that has been read from a file. Only
ByteBuffer objects can be used directly in file I/O operations.

❑ A buffer’s position is the index position of the first element in the buffer to be written or read. A
buffer’s limit specifies the index position of the first element that is not to be written or read.

❑ A view buffer is a buffer that allows the data in a backing byte buffer to be viewed as being of a
particular basic type.

❑ You insert data into a buffer using its put() methods and retrieve data from it using its get()
methods. Relative get() and put() methods increment the buffer’s position, whereas absolute
get() and put() methods do not.

❑ You write the contents of a ByteBuffer object to a file using a write() method belonging to
the FileChannel object for the file.

❑ The amount of data transferred between a buffer and a file in an I/O operation is determined by
the buffer’s position and limit. Data is read or written starting at the file’s current position.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Modify the example that writes proverbs to a file to separate the proverbs using a delimiter
character. You will need to choose a delimiter character that will not appear in normal text.

2. Write a program that, using an integer array of date values containing month, day, and year as
integers for some number of dates (10, say, so the integer array will be two-dimensional with 10
rows and 3 columns), will write a file with a string representation of each date written as
Unicode characters. For example, the date values 3,2,1990 would be written to the file as 2nd
March 1990. Make sure that the date strings can be read back, either by using a separator char-
acter of some kind to mark the end of each string or by writing the length of each string before
you write the string itself.

3. Extend the previous example to write a second file at the same time as the first, but containing
the month, day, and year values as binary data. You should have both files open and be writing
to both at the same time.

4. Write a program that, for a given String object defined in the code, will write strings to a file in
the local character encoding (as bytes) corresponding to all possible permutations of the words
in the string. For example, for the string the fat cat, you would write the strings the fat
cat, the cat fat, cat the fat, cat fat the, fat the cat, and fat cat the, to the file,
although not necessarily in that sequence. (Don’t use very long strings; with n words in the
string, the number of permutations is n!).

482

Chapter 10

11
Reading Files

In this chapter you’ll investigate how you read files containing basic types of data. You’ll be
exploring how to read files sequentially or at random and how you can open a file for both read
and write operations.

In this chapter you’ll learn:

❑ How to obtain a file channel for reading a file

❑ How to use buffers in file channel read operations

❑ How to read different types of data from a file

❑ How to retrieve data from random positions in a file

❑ How you can read from and write to the same file

❑ How you can do direct data transfer between channels

❑ What a memory-mapped file is and how you can access a memory-mapped file

❑ What a file lock is and how you can lock all or part of a file

File Read Operations
The process for reading a file parallels that of writing a file. You obtain a FileChannel object from
a file stream, and use the channel to read data from the file into one or more buffers. Initially you
will be using a channel object that you obtain from a FileInputStream object to read a file. Later
you will be using a FileChannel object obtained from a RandomAccessFile object to read and
write the same file. Like the FileOutputStream class, the FileInputStream class defines its
own methods for file input, as does the RandomAccessFile class. However, I’ll completely ignore
these because the file channel methods for reading the file are much more efficient and will even-
tually supersede the stream methods. In any event, if you are curious to see how the old stream
input mechanism works you can find details about the methods that read from a file stream in the
descriptions for the FileInputStream and RandomAccessFile classes in the documentation that
accompanies the JDK.

The starting point for reading a file is to create a FileInputStream object. Creating FileInputStream
objects is not very different from creating FileOutputStream objects, so I’ll explain how you do that
first.

Creating File Input Streams
A FileInputStream object encapsulates a file that is essentially intended to be read so the file must
already exist and contain some data. It follows that a constructor for this class type can create an object
only for a file that already exists. You have three constructors for FileInputStream objects, each of
which takes a single argument.

First of all, you can create a FileInputStream object from a String object that specifies the file name.
For example:

FileInputStream inputFile = null; // Place to store the input stream reference

try {

inputFile = new FileInputStream(“C:/Beg Java Stuff/myFile.txt”);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

The try block is necessary here because this constructor will throw a FileNotFoundException if the
file does not exist or the argument to the constructor specifies a directory rather than a file.

You can also use a File object to identify the file, like this:

File aFile = new File(“C:/Beg Java Stuff/myFile.txt”);

FileInputStream inputFile = null; //Place to store the input stream reference

try {

inputFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

This constructor can also throw a FileNotFoundException, so again, you must create the
FileInputStream object within a try block. Using a File object to create a FileInputStream object
is the preferred approach because you can check that the file exists before creating the stream and thus
avoid the possibility of throwing a FileNotFoundException.

In the examples in this chapter you’ll be reading some of the files that you created in
the last chapter, so I hope that you kept them.

484

Chapter 11

The third possibility is to use a FileDescriptor object that you have obtained by calling the getFD()
method for an existing FileInputStream object, or possibly a RandomAccessFile object. For example:

File aFile = new File(“C:/Beg Java Stuff/myFile.text”);

FileInputStream inputFile1 = null; // Place to store an input stream reference

FileDescriptor fd = null; // Place to store the file descriptor

try {

// Create the stream opened to write

inputFile1 = new FileInputStream(aFile);

fd = inputFile1.getFD(); // Get the file descriptor for the file

} catch(IOException e) { // For IOException or FileNotFoundException

e.printStackTrace(System.err);

System.exit(1);

}

// You can now create another input stream for the file from the file descriptor...

FileInputStream inputFile2 = new FileInputStream(fd);

The getFD() method can throw an exception of type IOException if an I/O error occurs. Because
IOException is a superclass of FileNotFoundException, the catch block will catch either type of
exception.

I’m sure that you noticed that the constructor call that creates inputFile2 is not in a try block. This is
not an oversight. When you create the FileInputStream object from a FileDescriptor object, the
FileNotFoundException cannot be thrown since a FileDescriptor object always refers to an exist-
ing file. This is because a FileDescriptor object can be obtained only from a file stream object that
already encapsulates a connection to a physical file, so there can be no doubt that the file is real.

As with the FileOutputStream constructors, any of the FileInputStream constructors will throw a
SecurityException if a security manager exists on the system and read access to the file is not permit-
ted. Since this is a type of RuntimeException, you don’t have to catch it.

File Channel Read Operations
You obtain a reference to a FileChannel object that you can use to read a file by calling the
getChannel() method of a FileInputStream object. Because a FileInputStream object opens a file
as read-only, only channel read operations are legal. The channel returned by a FileInputStream
object has three basic read operations available, each of which reads bytes starting at the byte indicated
by the current position in the file. The file position will be incremented by the number of bytes read. The
three read() methods for a FileChannel object are:

485

Reading Files

read(ByteBuffer buf) Tries to read buf.remaining() bytes (equivalent to
limit-position bytes) from the file into the buffer,
buf, starting at the buffer’s current position. The number
of bytes read is returned as type int. The value is -1 if
the channel reaches the end-of-file during the operation.
The buffer position will be incremented by the number of
bytes read and the buffer’s limit will be left unchanged.

read(ByteBuffer[] buffers) Tries to read bytes into each of the buffers in the buffers
array in sequence. Bytes will be read into each buffer
starting at the point defined by that buffer’s position.
The number of bytes read into each buffer is defined by
the remaining() method for that buffer. The read()
method returns the total number of bytes read as type
int, or -1 if the channel reaches the end-of-file during
the operation. Each buffer’s position will be incremented
by the number of bytes read into it. Each buffer’s limit
will be unchanged.

read(ByteBuffer[] buffers, This operates in the same way as the previous method
int offset, except that bytes are read starting with the buffer
int length) buffers[offset], and up to and including the buffer

buffers[offset+length-1]. This method will throw
an exception of type IndexOutOfBoundsException if
offset or offset+length-1 are not valid index values
for the buffers array.

As you can see, all three read() methods read data into one or more buffers of type ByteBuffer. Since
you can use only ByteBuffer objects to receive the data read from the file, you can read data from a file
only via a channel as a series of bytes. How you interpret these bytes afterwards though is up to you.

All three methods can throw exceptions of any of the following types:

NonReadableChannelException Thrown if the file was not opened for reading

ClosedChannelException Thrown if the channel is closed

AsynchronousCloseException Thrown if the channel is closed by another thread while
the read operation is in progress

ClosedByInterruptException Thrown if another thread interrupts the current thread
while the read operation is in progress

IOException Thrown if some other I/O error occurs

The first of these is a subclass of RuntimeException so you are not obliged to catch this exception. If
you don’t need to identify the other exceptions individually, you can use a single catch block for excep-
tions of type IOException to catch any of them.

The FileChannel object keeps track of the file’s current position, and this is initially set to zero, corre-
sponding to the first byte available from the file. Each read operation increments the channel’s file posi-
tion by the number of bytes read, so the next read operation will start at that point, assuming you don’t

486

Chapter 11

modify the file position by some other means. When you need to change the file position in the channel —
to reread the file, for example — you just call the position() method for the FileChannel object, with
the index position of the byte where you want the next read to start as the argument to the method. For
example, with a reference to a FileChannel object stored in a variable inChannel, you could reset the
file position back to the beginning of the file with the following statements:

try {

inChannel.position(0); // Set file position to first byte

} catch(IOException e) {

e.printStackTrace();

}

This method will throw a ClosedChannelException if the channel is closed, or an IOException if
some other error occurs, so you need to put the call in a try block. It can also throw an
IllegalArgumentException if the argument you supply to the method is negative.
IllegalArgumentException is a subclass of RuntimeException. You can legally specify a position
beyond the end of the file, but a subsequent read operation will just return -1 indicating that the end-of-
file has been reached.

Calling the position() method with no argument specified returns the current file position. This ver-
sion of the method can also throw exceptions of type ClosedChannelException and IOException so
you must put the call in a try block or make the calling method declare the exceptions in a throws
clause.

The amount of data read from a file into a byte buffer is determined by the position and limit for the
buffer when the read operation executes, as Figure 11-1 illustrates. Bytes are read into the buffer starting
at the byte in the buffer given by its position; and assuming sufficient bytes are available from the file, a
total of limit-position bytes from the file will be stored in the buffer.

Figure 11-1

File position
after read

Initial buffer
position = 0

Buffer limit

Buffer position after read

Initial file
position

Data in the fileData in the fileData in the file

Bytes readBytes readBytes read ByteBuffer bufByteBuffer buf

Channel.read()channel.read()

487

Reading Files

You’ll see some other channel read() methods later that you can use to read data from a particular
point in a file.

Reading a Text File
You can now attempt to read the very first file that you wrote in the previous chapter —charData.txt.
You wrote this file as Unicode characters, so you must take this into account when interpreting the con-
tents of the file.

Your first step will be to define a File object encapsulating the file path and create a FileInputStream
object from that. You can then obtain a reference to the channel from the FileInputStream object that
you’ll use to read the file. I won’t include all the checking here that you should apply to validate the file
path, as you know how to do that:

File aFile = new File(“C:/Beg Java Stuff/charData.txt”);

FileInputStream inFile = null;

try {

inFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel inChannel = inFile.getChannel();

Of course, you can only read the data from the file as bytes into a byte buffer. You create a ByteBuffer
object exactly as you saw previously when you were writing the file. You know that you wrote 48 bytes
at a time to the file — you wrote the string “Garbage in, garbage out\n” that consists of 24 Unicode
characters. However, you tried appending to the file an arbitrary number of times, so you should pro-
vide for reading as many Unicode characters as there are in the file. You can set up the ByteBuffer with
exactly the right size for the data from a single write operation with the following statement:

ByteBuffer buf = ByteBuffer.allocate(48);

The code that you use to read from the file needs to allow for an arbitrary number of 24-character strings
in the file. Of course, it will also allow for the end-of-file being reached while you are reading the file.
You can read from the file into the buffer like this:

try {

while(inChannel.read(buf) != -1) {

// Code to extract the data that was read into the buffer...

buf.clear(); // Clear the buffer for the next read

}

System.out.println(“EOF reached.”);

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

488

Chapter 11

The file is read in the expression you use for the while loop condition. The read() method will return -1
when the end-of-file is reached, so that will end the loop. Within the loop you have to extract the data from
the buffer, do what you want with it, and then clear the buffer to be ready for the next read operation.

Getting Data from the Buffer
After each read operation, the buffer’s position will point to the byte following the last byte that was
read. Before you attempt to extract any data from the buffer, you therefore need to flip the buffer to reset
the position back to the beginning of the data, and the limit to the byte following the last byte of data
that was read. One way to extract bytes from the buffer is to use the getChar() method for the
ByteBuffer object. This will retrieve a Unicode character from the buffer at the current position and
increment the position by 2. This could work like this:

buf.flip();

StringBuffer str = new StringBuffer(buf.remaining()/2);

while(buf.hasRemaining())

str.append(buf.getChar());

System.out.println(“String read: “+ str.toString());

This code should replace the comment in the previous fragment that appears at the beginning of the
while loop. You first create a StringBuffer object in which you will assemble the string. This is the
most efficient way to do this — using a String object would result in the creation of a new String object
each time you add a character to the string. Of course, because there’s no possibility of multiple threads
accessing the string, you could use a StringBuilder object here instead of the StringBuffer object and
gain a little more efficiency. The remaining() method for the buffer returns the number of bytes read
after the buffer has been flipped, so you can just divide this by 2 to get the number of characters read. You
extract characters one at a time from the buffer in the while loop and append them to the StringBuffer
object. The getChar() method increments the buffer’s position by 2 each time, so eventually
hasRemaining() will return false when all the characters have been extracted, and the loop will end.
You then just convert the StringBuffer to a String object and output the string on the command line.

This approach works okay, but a better way is to use a view buffer of type CharBuffer. The
toString() method for the CharBuffer object will give you the string that it contains directly. Indeed,
you can boil the whole thing down to a single statement:

System.out.println(“String read: “ +

((ByteBuffer)(buf.flip())).asCharBuffer().toString());

The flip() method returns a reference of type Buffer, so you have to cast it to type ByteBuffer to
make it possible to call the asCharBuffer() method for the buffer object. This is necessary because the
asCharBuffer() method is defined in the CharBuffer class, not in the Buffer class.

You can assemble these code fragments into a working example.

Try It Out Reading Text from a File
Here’s the code for the complete program to read the charData.txt file that you wrote in the previous
chapter:

489

Reading Files

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ReadAString {

public static void main(String[] args) {

File aFile = new File(“C:/Beg Java Stuff/charData.txt”);

FileInputStream inFile = null;

try {

inFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel inChannel = inFile.getChannel();

ByteBuffer buf = ByteBuffer.allocate(48);

try {

while(inChannel.read(buf) != -1) {

System.out.println(“String read: “ +

((ByteBuffer)(buf.flip())).asCharBuffer().toString());

buf.clear(); // Clear the buffer for the next read

}

System.out.println(“EOF reached.”);

inFile.close(); // Close the file and the channel

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

When you compile and run this, you should get output something like the following:

String read: “Garbage in, garbage out

String read: “Garbage in, garbage out

String read: “Garbage in, garbage out

EOF reached.

The number of lines of output depends on how many times you ran the example that wrote the file. The
gap between the lines of output occurs because each string ends with a ‘\n’ character.

490

Chapter 11

How It Works
Nothing is new here beyond what I have already discussed. If you want to output the length of the file,
you could add a statement to call the size() method for the inChannel object:

System.out.println(“File contains “+ inChannel.size() + “ bytes.”);

Immediately before the while loop would be a good place to put it, as the size() method can throw an
IOException. You might also like to modify the code to output the buffer’s position and limit before
and after the read. This will show quite clearly how these change when the file is read.

Reading Binary Data
When you read binary data, you still read bytes from the file, so the process is essentially the same as
you used in the previous example. To read a binary file, you create a FileInputStream object and get
the FileChannel object from it, and then you read the data into a byte buffer. You could set up a file
channel to read the primes.bin file that you created in the previous chapter, like this:

File aFile = new File(“C:/Beg Java Stuff/primes.bin”);

FileInputStream inFile = null;

try {

inFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel inChannel = inFile.getChannel();

You have some options for the size of the byte buffer. The number of bytes in the buffer should be a mul-
tiple of 8 because a prime value is of type long, but other than that you can make it whatever size you
like. You could allocate a buffer to accommodate the number of primes that you want to output to the
command line — six values, say. This would make accessing the data very easy since you need to set up
a view buffer of type LongBuffer only each time you read from the file. One thing against this is that
reading such a small amount of data from the file in each read operation would not be a very efficient
way to read the file. Before data transfer can start for a read operation, you have significant delay, usu-
ally of the order of several milliseconds, waiting for the disk to rotate until the data that you want to
read is under the read heads. Therefore, the more read operations you use to retrieve a given amount of
data from the file, the longer it takes. However, in the interests of understanding the mechanics of this,
let’s see how it would work anyway. The buffer would be created like this:

final int PRIMECOUNT = 6; // Number of primes to read at a time

ByteBuffer buf = ByteBuffer.allocate(8*PRIMECOUNT);

You can then read the primes in a while loop inside a try block:

long[] primes = new long[PRIMECOUNT];

try {

while(inChannel.read(buf) != -1) {

491

Reading Files

// Access the primes via a view buffer of type LongBuffer...

// Output the primes read...

buf.clear(); // Clear the buffer for the next read

}

System.out.println(“EOF reached.”);

inFile.close(); // Close the file and the channel

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

You can create a view buffer of type LongBuffer that will help you get at the primes once a block of
data has been read from the file. You obtain the view buffer by calling the asLongBuffer() method for
the byte buffer, buf. The LongBuffer class offers you a choice of four get() methods for accessing val-
ues of type long in the buffer:

get() Extracts a single value of type long from the buffer at the current
position and returns it. The buffer position is then incremented by 1.

get(int index) Extracts a single value of type long from the buffer position speci-
fied by the argument and returns it. The current buffer position is not
altered. Remember: The buffer position is in terms of values.

get(long[] values) Extracts values.length values of type long from the buffer start-
ing at the current position and stores them in the array values. The
current position is incremented by the number of values retrieved
from the buffer. The method returns a reference to the buffer as type
LongBuffer. If insufficient values are available from the buffer
to fill the array that you pass as the argument — in other words,
limit-position is less than values.length— the method will
throw an exception of type BufferUnderflowException, no values
will be transferred to the array, and the buffer’s position will be
unchanged.

get(long[] values, Extracts length values of type long from the buffer starting at the
int offset, current position and stores them in the values array, starting at
int length) values[offset]. The current position is incremented by the num-

ber of values retrieved from the buffer. The method returns a refer-
ence to the buffer as type LongBuffer. If there are insufficient
values available from the buffer — in other words, limit-position
is less than length— the method will throw an exception of type
BufferUnderflowException. In this case no values will be
transferred to the array, and the buffer’s position will be unchanged.

The BufferUnderflowException class is a subclass of RuntimeException, so you are not obliged to
catch this exception, although it may be useful to do so if you want to avoid references to array elements
that have not been loaded with data from the buffer.

With the buffer size you have specified in the previous code fragment, perhaps the simplest way to
access the primes in the buffer is like this:

492

Chapter 11

LongBuffer longBuf = ((ByteBuffer)(buf.flip())).asLongBuffer();

System.out.println(); // Newline for the buffer contents

while(longBuf.hasRemaining()) { // While there are values

System.out.print(“ “ + longBuf.get()); // output them on the same line

}

If you wanted to collect the primes into an array, using the form of get() method that transfers values
to an array will be more efficient than writing a loop to transfer them one at a time, but you have to be
careful. Let’s try it out in an example to see why.

Try It Out Reading a Binary File
You will read the primes six at a time into an array. Here’s the program:

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ReadPrimes {

public static void main(String[] args) {

File aFile = new File(“C:/Beg Java Stuff/primes.bin”);

FileInputStream inFile = null;

try {

inFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel inChannel = inFile.getChannel();

final int PRIMECOUNT = 6;

ByteBuffer buf = ByteBuffer.allocate(8*PRIMECOUNT);

long[] primes = new long[PRIMECOUNT];

try {

while(inChannel.read(buf) != -1) {

((ByteBuffer)(buf.flip())).asLongBuffer().get(primes);

// List the primes read on the same line

System.out.println();

for(long prime : primes) {

System.out.printf(“%10d”, prime);

}

buf.clear(); // Clear the buffer for the next read

}

System.out.println(“\nEOF reached.”);

inFile.close(); // Close the file and the channel

} catch(IOException e) {

493

Reading Files

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

You get a whole lot of prime values, six to a line, and then, when you almost have them all displayed,
you suddenly get the latter part of the following output:

2 3 5 7 11 13

17 19 23 29 31 37

...

467 479 487 491 499 503

Exception in thread “main” java.nio.BufferUnderflowException

at java.nio.LongBuffer.get(LongBuffer.java:650)

at java.nio.LongBuffer.get(LongBuffer.java:674)

at ReadPrimes.main(ReadPrimes.java:27)

Exception in thread “main”

How It Works
The reason is doesn’t work very well is that the number of primes in the file is not divisible by the num-
ber of primes that you read into the view buffer. This is determined by the number of elements in the
primes array. On the last iteration of the while loop that reads the file, you have insufficient values to
fill the array so the get() method throws an exception of type BufferUnderflowException.

One way to deal with this is to catch the exception that is thrown. It’s not a particularly good way
because of the overhead in throwing and catching exceptions, but let’s see how you could do it anyway.
You could rewrite the while loop like this:

int primesRead = 0;

while(inChannel.read(buf) != -1) {

try {

((ByteBuffer)(buf.flip())).asLongBuffer().get(primes);

primesRead = primes.length;

} catch(BufferUnderflowException e) {

LongBuffer longBuf = buf.asLongBuffer();

primesRead = longBuf.remaining();

longBuf.get(primes,0, primesRead);

}

// List the primes read on the same line

System.out.println();

for(int i = 0 ; i<primesRead ; i++) {

System.out.printf(“%10d”, primes[i]);

}

buf.clear(); // Clear the buffer for the next read

}

494

Chapter 11

When the exception is thrown on the last iteration, you catch it and read the remaining values in the
view buffer using the alternate form of the get() method, where the second argument specifies the first
array element in which to store a value, and the third argument specifies the number to be stored. To
take account of the possibility that less than the whole array will contain primes when you output it, you
set the number of primes that are read in the loop. Note that you must set the value of primesRead
inside the catch block before you execute the get() method. Afterwards, the number remaining will be
zero. Of course, you now have to use a different for loop to output the primes, as the last block of out-
put won’t fill the array.

Of course, although this works, it is a very poor way to deal with the problem. A better way is to avoid it
altogether, like this:

int primesRead = 0;

while(inChannel.read(buf) != -1) {

LongBuffer longBuf = ((ByteBuffer)(buf.flip())).asLongBuffer();

primesRead = longBuf.remaining();

longBuf.get(primes,0, longBuf.remaining());

// List the primes read on the same line

System.out.println();

for(int i = 0 ; i< primesRead ; i++) {

System.out.printf(“%10d”, primes[i]);

}

buf.clear(); // Clear the buffer for the next read

}

The shaded lines reflect changes to the code in the original example. Now you always read the number
of values available in longBuf, so you can’t cause the BufferUnderflowException to be thrown.

A further possibility is to use a buffer large enough to hold all the primes in the file. You can work this
out from the value returned by the size() method for the channel — which is the length of the file in
bytes. You could do that like this:

final int PRIMECOUNT = (int)inChannel.size()/8;

Of course, you also must alter the for loop that outputs the primes so it doesn’t attempt to put them all
on the same line. There is a hazard with this though if you don’t know how large the file is. Unless your
computer is unusually replete with RAM, it could be inconvenient if the file contains the first billion
primes. It might be as well to add an assertion to protect against an excess of primes:

assert inChannel.size()<=100000;

final int PRIMECOUNT = (int)inChannel.size()/8;

Now the program will not proceed if you have more than 100,000 primes in the file. Don’t forget that to
execute a program with assertions, you must specify the -enableassertions option.

495

Reading Files

Reading Mixed Data
The primes.txt file that you created in the previous chapter contains data of three different types. You
have the string length as a binary value of type double of all things, followed by the string itself describ-
ing the prime value, followed by the binary prime value as type long. Reading this file is a little trickier
than it looks at first sight.

To start with you’ll set up the file input stream and obtain the channel for the file. Since, apart from the
name of the file, this is exactly the same as in the previous example, I won’t repeat it here. Of course, the
big problem is that you don’t know ahead of time exactly how long the strings are. You have two strate-
gies to deal with this:

❑ You can read the string length in the first read operation, then read the string and the binary
prime value in the next. The only downside to this approach is that it’s not a particularly effi-
cient way to read the file, as you will have read operations that each read a very small amount
of data.

❑ You can set up a sizable byte buffer of an arbitrary capacity and just fill it with bytes from the
file. You can then sort out what you have in the buffer. The problem with this approach is that
the buffer’s contents may well end part way through one of the data items from the file. You
will have to do some work to detect this and figure out what to do next, but this will be much
more efficient than the first approach since you will vastly reduce the number of read opera-
tions that are necessary to read the entire file.

Let’s try the first approach first, as it’s easier.

To read the string length you need a byte buffer with a capacity to hold a single value of type double:

ByteBuffer lengthBuf = ByteBuffer.allocate(8);

You can create a byte buffer to hold both the string and the binary prime value, but only after you know
the length of the string. Remember, you wrote the string as Unicode characters so you must allow 2
bytes for each character in the original string. Some variables will come in handy:

int strLength = 0; // Stores the string length

ByteBuffer buf = null; // Stores a reference to the second byte buffer

byte[] strChars = null; // Stores a reference to an array to hold the string

Since you need two read operations to get at all the data for a single prime, your strategy for reading the
entire file will have to provide for this. A good approach would be to put both read operations in an
indefinite loop and use a break statement to exit the loop when you hit the end-of-file (EOF). Here’s
how you can read the file using this technique:

while(true) {

if(inChannel.read(lengthBuf) == -1) // Read the string length, if it’s EOF

break; // exit the loop

lengthBuf.flip();

strLength = (int)lengthBuf.getDouble(); // Extract length & convert to int

buf = ByteBuffer.allocate(2*strLength+8); // Buffer for string & prime

496

Chapter 11

if(inChannel.read(buf) == -1) { // Read string & binary prime value

assert false; // Should not get here!

break; // Exit loop on EOF

}

buf.flip();

strChars = new byte[2*strLength]; // Create the array for the string

buf.get(strChars); // Extract string & binary prime value

System.out.printf(“String length: %3s String: %-12s Binary Value: %3d%n”,

strLength, ByteBuffer.wrap(strChars).asCharBuffer(),buf.getLong());

lengthBuf.clear(); // Clear the buffer for the next read

}

After reading the string length into lengthBuf you can create the second buffer and allocate an array of
type byte[] to store the bytes corresponding to the string characters. With this approach you don’t need
any view buffers at all to get at the data from the file. The getDouble() method for lengthBuf pro-
vides you with the length of the string. You get the bytes that form the string using the get() method
for buf. You obtain the binary prime value using the getLong() method for buf in the argument to the
printf() method. To access the bytes in the strChars array as a string, you wrap the array in a byte
buffer and then create a view buffer of type CharBuffer from that. Of course, if you find a string length
value, there ought to be a string and a binary prime, so you have an assertion to signal something has
gone wrong if this turns out not to be the case.

Let’s see how it works out in practice.

Try It Out Reading Mixed Data from a File
Here’s the complete program code:

import java.io.FileInputStream;

import java.io.IOException;

import java.io.File;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ReadPrimesMixedData {

public static void main(String[] args) {

File aFile = new File(“C:/Beg Java Stuff/primes.txt”);

FileInputStream inFile = null;

try {

inFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel inChannel = inFile.getChannel();

try {

497

Reading Files

ByteBuffer lengthBuf = ByteBuffer.allocate(8);

int strLength = 0; // Stores the string length

ByteBuffer buf = null; // Stores a reference to the second byte buffer

byte[] strChars = null; // A reference to an array to hold the string

while(true) {

if(inChannel.read(lengthBuf) == -1) // Read the string length,

break; // if its EOF exit the loop

lengthBuf.flip();

// Extract the length and convert to int

strLength = (int)lengthBuf.getDouble();

// Buffer for the string & the prime

buf = ByteBuffer.allocate(2*strLength+8);

if(inChannel.read(buf) == -1) { // Read the string & binary prime value

assert false; // Should not get here!

break; // Exit loop on EOF

}

buf.flip();

strChars = new byte[2*strLength]; // Create the array for the string

buf.get(strChars); // Extract the string

System.out.printf(“String length: %3s String: %-12s Binary Value: %3d%n”,

strLength, ByteBuffer.wrap(strChars).asCharBuffer(),buf.getLong());

lengthBuf.clear(); // Clear the buffer for the next read

}

System.out.println(“\nEOF reached.”);

inFile.close(); // Close the file and the channel

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

Don’t forget that you need to specify the -enableassertions option when you execute it. You should
get the following output:

String length: 9 String: prime = 2 Binary Value: 2

String length: 9 String: prime = 3 Binary Value: 3

String length: 9 String: prime = 5 Binary Value: 5

and so on down to the end:

String length: 11 String: prime = 523 Binary Value: 523

String length: 11 String: prime = 541 Binary Value: 541

EOF reached.

498

Chapter 11

How It Works
You read the file with a relatively straightforward process. On each iteration of the loop that reads the
file, you first read 8 bytes into lengthBuf since this will be the length of the following string as a value
of type double. Knowing the length of the string, you are able to create a second buffer, buf, to accom-
modate the string plus the 8-byte long value that is the prime in binary. The string is extracted as an
array of bytes using the get() method for the buffer, and you view this as a Unicode string by wrap-
ping the array in a ByteBuffer and viewing that as a CharBuffer. You read the binary prime value
from the byte buffer, buf, by calling its getLong() method. The loop continues until the read operation
using lengthBuf reaches the end-of-file. If you reach EOF while reading data into buf, this means that
the file structure is not as it should be and the program will assert. The ‘-’ flag in the string format
specification “%-12s” in the format string for the printf() method left-justifies the string in the output
field; without this the string would align on the right rather than the left and the output wouldn’t look
so pretty.

You can choose other ways of extracting the string from buf. Here’s how you might use a view buffer to
do it:

char[] str = new char[strLength]; // Array to hold the string

buf.asCharBuffer().get(str);

System.out.printf(“String length: %3s String: %-12s Binary Value: %3d%n”,

strLength, new String(str),

((ByteBuffer)(buf.position(2*strLength))).getLong());

You use the get() method for the view buffer to extract the string as an array of characters. You then
create a String object from this array in the argument to the printf() method. Extracting data from
the view buffer leaves the position value for the byte buffer unchanged, so you have to modify the posi-
tion before calling getLong() to extract the binary value.

You could also use the getChar() method for the byte buffer to retrieve the string characters one at
a time:

char[] str = new char[strLength]; // Array to hold the string

for(int i = 0 ; i<str.length ; i++) {

str[i] = buf.getChar();

}

System.out.printf(“String length: %3s String: %-12s Binary Value: %3d%n”,

strLength, new String(str), buf.getLong());

You retrieve the string characters in a for loop. Because the getChar() method does update the posi-
tion for buf, you can just call getLong() to access the binary prime value.

Compacting a Buffer
The alternative approach to reading the file is to read bytes from the file into a large buffer for efficiency
and then figure out what is in it. Processing the data will need to take account of the possibility that the
last data item in the buffer may be incomplete — part of a double or long value or part of a string. The
essence of this approach is therefore as follows:

1. Read from the file into the buffer.

2. Extract the string length, the string, and the binary prime value from the buffer repeatedly until
no more complete values are available.

499

Reading Files

3. Shift any bytes that are left over in the buffer back to the beginning of the buffer. These will be
some part of a complete set of the string length, the string, and the binary prime value. Go back
to point 1 to read more from the file.

The buffer classes provide the compact() method for performing the operation you need in the third
step here to shift bytes that are left over back to the beginning. An illustration of the action of the com-
pact() method on a buffer is shown in Figure 11-2.

Figure 11-2

As you can see, the compacting operation copies everything in the buffer, which will be the data ele-
ments from the buffer’s current position up to but not including the buffer’s limit, to the beginning of
the buffer. The position is then set to the element following the last element that was copied, and the
limit is set to the capacity. This is precisely what you want when you have worked partway through the
data in an input buffer and you want to add some more data from the file. Compacting the buffer sets
the position and limit such that the buffer is ready to receive more data. The next read operation using
the buffer will add data at the end of what was left in the buffer.

Try It Out Reading into a Large Buffer
Here are the changes to the original program code to read data into a large buffer:

import java.io.FileInputStream;

import java.io.IOException;

import java.io.File;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ReadPrimesMixedData2 {

limit = 17

position = 9 limit = 20

position = 8

Buffer before compactingBuffer before compacting

buf .compact()buf .compact()

capacity = 20

Buffer after compacting

500

Chapter 11

public static void main(String[] args) {

File aFile = new File(“C:/Beg Java Stuff/primes.txt”);

FileInputStream inFile = null;

try {

inFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel inChannel = inFile.getChannel();

try {

ByteBuffer buf = ByteBuffer.allocateDirect(1024);

buf.position(buf.limit()); // Set the position for the loop operation

int strLength = 0; // Stores the string length

byte[] strChars = null; // Array for string

while(true) {

if(buf.remaining() < 8) { // Verify enough bytes for string length

if(inChannel.read(buf.compact()) == -1)

break;

buf.flip();

}

strLength = (int)buf.getDouble();

// Verify enough bytes for complete string

if(buf.remaining()<2*strLength) {

if(inChannel.read(buf.compact()) == -1)

break;

buf.flip();

}

strChars = new byte[2*strLength];

buf.get(strChars);

if(buf.remaining()<8) { // Verify enough bytes for prime value

if(inChannel.read(buf.compact()) == -1)

break;

buf.flip();

}

System.out.printf(“String length: %3s String: %-12s Binary Value: %3d%n”,

strLength, ByteBuffer.wrap(strChars).asCharBuffer(),buf.getLong());

}

System.out.println(“\nEOF reached.”);

inFile.close(); // Close the file and the channel

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

This should result in the same output as the previous example.

501

Reading Files

How It Works
All the work is done in the indefinite while loop. Before the loop executes you create a direct buffer
with a capacity of 1024 bytes by calling the allocateDirect() method. A direct buffer will be faster if
you are reading a lot of data from a file, as the data is transferred directly from the file to our buffer. The
code within the loop determines whether there are data values in the buffer by calling the remaining()
method for the buffer object. The default settings for the buffer, with the position at zero and the limit at
the capacity, would suggest falsely that there is data in the buffer, so you set the position to the limit ini-
tially so that the remaining() method will return zero.

Within the loop you first check whether there are sufficient bytes for the double value that specifies the
string length. On the first iteration, this will definitely not be the case, so the compact() method will be
called to compact the buffer, and the reference to buf that is returned will be passed to the read()
method for inChannel to read data from the file. You then flip the buffer and get the length of the string.
Of course, data in the file should be in groups of three items — the string length, the string, the binary
prime value — so the end-of-file should be detected trying to obtain the first of these by the read()
method for the channel returning -1. In this case you exit the loop by executing a break statement.

Next you get the string itself, after checking that you have sufficient bytes left in the buffer. You should
never find EOF, so you put an assertion rather than a break if EOF is detected. Finally, you obtain the
binary prime value in a similar way and output the group of three data items. The loop continues until all
data has been read and processed and EOF is recognized when you are looking for a string length value.

Copying Files
You probably don’t need a file copy program, as your operating system is bound to provide a facility for
this. However, it is a useful way of demonstrating how a file channel for any input file can transfer data
directly to a file channel for an output file without involving explicit buffers.

A file channel defines two methods for direct data transfer:

transferTo(long position, Attempts to transfer count bytes from this
long count, channel to the channel dst. Bytes are read
WritableByteChannel dst) from this channel starting at the file position

specified by position. The position of this
channel is not altered by this operation, but
the position of dst will be incremented by
the number of bytes written. Fewer than
count bytes will be transferred if this chan-
nel’s file has fewer than count bytes
remaining, or if dst is non-blocking and has
fewer than count bytes free in its system
output buffer. The number of bytes trans-
ferred is returned as a value of type int.

502

Chapter 11

transferFrom(ReadableByteChannel src, Attempts to transfer count bytes to this
long position, channel from the channel src. Bytes are
long count) written to this channel starting at the file

position specified by position. The posi-
tion of this channel is not altered by the
operation, but the position of src will be
incremented by the number of bytes read
from it. If position is greater than the size
of the file, then no bytes will be transferred.
Fewer than count bytes will be transferred
if the file corresponding to src has fewer
than count bytes remaining in the file or if
it is non-blocking and has fewer than
count bytes free in its system input buffer.
The number of bytes transferred is returned
as a value of type int.

A channel that was obtained from a FileInputStream object will support only the transferTo()
method. Similarly, a channel that was obtained from a FileOutputStream object will support only the
transferFrom() method. Both of these methods can throw any of the following flurry of exceptions:

IllegalArgumentException Thrown if either count or position is
negative

NonReadableChannelException Thrown if the operation attempts to read
from a channel that was not opened for
reading

NonWritableChannelException Thrown if the operation attempts to write
to a channel that was not opened for writ-
ing

ClosedChannelException Thrown if either channel involved in the
operation is closed

AsynchronousCloseException Thrown if either channel is closed by
another thread while the operation is in
progress

ClosedByInterruptException Thrown if another thread interrupts the
current thread while the operation is in
progress

IOException Thrown if some other I/O error occurs

The value of these methods lies in the potential for using the I/O capabilities of the underlying operat-
ing system directly. Where this is possible, the operation is likely to be much faster than copying from
one file to another in a loop using the read() and write() methods you have seen.

A file copy program is an obvious candidate for trying out these methods.

503

Reading Files

Try It Out Direct Data Transfer between Channels
This example is a program that will copy the file that is specified by a command-line argument. You’ll
copy the file to a backup file that you’ll create in the same directory as the original. You’ll create the
name of the new file by appending “_backup” to the original file name as many times as necessary to
form a unique file name. That operation is a good candidate for writing a helper method:

// Method to create a unique backup File object

public static File createBackupFile(File aFile) {

aFile = aFile.getAbsoluteFile(); // Ensure you have an absolute path

File parentDir = new File(aFile.getParent()); // Get the parent directory

String name = aFile.getName(); // Get the file name

int period = name.indexOf(‘.’); // Find the extension separator

if(period == -1) { // If there isn’t one

period = name.length(); // set it to the end of the string

}

String nameAdd = “_backup”; // String to be appended

// Create a File object that is unique

File backup = aFile;

while(backup.exists()) { // If the name already exists...

name = backup.getName(); // Get the current name of the file

backup = new File(parentDir, name.substring(0,period) // add _backup again

+ nameAdd + name.substring(period));

period += nameAdd.length(); // Increment separator index

} return backup;

}

This method assumes the argument has already been validated as a real file. After making sure that
aFile is not a relative path, you extract the basic information you need to create the new file — the par-
ent directory, the file name, and where the period separator is, if there is one. You then create a File
variable, backup, that you initialize using the original file name and path. The while loop will execute
as long as the name already exists as a file, and will repeatedly append instances of “_backup” until a
unique file name is arrived at.

You can now write the main() method to use the createBackupFile() method to create the destina-
tion file for the file copy operation:

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.nio.channels.FileChannel;

public class FileCopy {

public static void main(String[] args) {

if(args.length==0) {

System.out.println(“No file to copy. Application usage is:\n”+

“java -classpath . FileCopy \”filepath\””);

System.exit(1);

}

File fromFile = new File(args[0]);

504

Chapter 11

if(!fromFile.exists()) {

System.out.printf(“File to copy, %s, does not exist.”,

fromFile.getAbsolutePath());

System.exit(1);

}

File toFile = createBackupFile(fromFile);

FileInputStream inFile = null;

FileOutputStream outFile = null;

try {

inFile = new FileInputStream(fromFile);

outFile = new FileOutputStream(toFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

assert false;

}

FileChannel inChannel = inFile.getChannel();

FileChannel outChannel = outFile.getChannel();

try {

int bytesWritten = 0;

long byteCount = inChannel.size();

while(bytesWritten<byteCount) {

bytesWritten += inChannel.transferTo(bytesWritten,

byteCount-bytesWritten,

outChannel);

}

System.out.printf(“File copy complete. %d bytes copied to %s%n”,

byteCount, toFile.getAbsolutePath());

inFile.close();

outFile.close();

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

// Code for createBackupFile() goes here...

}

You could try this out by copying the file containing the primes as binary values using the command:

java -enableassertions FileCopy “C:/Beg Java Stuff/primes.bin”

You should get output something like the following:

File copy complete. 4000 bytes copied to C:\Beg Java Stuff\primes_backup.bin

Of course, the file path will be your path, not mine. In any event, you should be able to check that the
new file’s contents are identical to the original.

505

Reading Files

How It Works
You first obtain the command-line argument and create a File object from it with the following code:

if(args.length==0) {

System.out.println(“No file to copy. Application usage is:\n”+

“java -classpath . FileCopy \”filepath\””);

System.exit(1);

}

File fromFile = new File(args[0]);

If there’s no command-line argument, you supply a message explaining how to use the program before
exiting.

Next, you verify that this is a real file:

if(!fromFile.exists()) {

System.out.printf(“File to copy, %s, does not exist.”,

fromFile.getAbsolutePath());

System.exit(1);

}

If it isn’t, there’s nothing you can do, so you bail out of the program.

Creating a File object for the backup file is a piece of cake:

File toFile = createBackupFile(fromFile);

You saw how this helper method works earlier in this chapter.

You now create a pair of file stream objects to work with:

FileInputStream inFile = null;

FileOutputStream outFile = null;

try {

inFile = new FileInputStream(fromFile);

outFile = new FileOutputStream(toFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

assert false;

}

Since you checked the File objects, you know you won’t see a FileNotFoundException being thrown,
but you still must provide for the possibility. Of course, the FileInputStream object corresponds to the
file name entered on the command line. Creating the FileOutputStream object will result in a new
empty file being created, ready for loading with the data from the input file.

Next, you get the channel for each file from the file streams:

FileChannel inChannel = inFile.getChannel();

FileChannel outChannel = outFile.getChannel();

506

Chapter 11

Once you have the channel objects, you transfer the contents of the input file to the output file like this:

try {

int bytesWritten = 0;

long byteCount = inChannel.size();

while(bytesWritten<byteCount) {

bytesWritten += inChannel.transferTo(bytesWritten,

byteCount-bytesWritten,

outChannel);

}

System.out.printf(“File copy complete. %d bytes copied to %s%n”,

byteCount, toFile.getAbsolutePath());

inFile.close();

outFile.close();

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

You copy the data using the transferTo() method for inChannel. You could equally well use the
transferFrom() method for outChannel. The chances are good that the transferTo() method will
transfer all the data in one go. The while loop is there just in case it doesn’t. The loop condition checks
whether the number of bytes written is less than the number of bytes in the file. If it is, the loop executes
another transfer operation for the number of bytes left in the file, with the file position specified as the
number of bytes written so far.

Random Access to a File
You can already read from or write to a file at random. The FileChannel class defines both a read()
and a write() method that operate at a specified position in the file:

read(ByteBuffer buf, Reads bytes from the file into buf in the same way as you have
long position) seen previously except that bytes are read starting at the file

position specified by the second argument. The channel’s posi-
tion is not altered by this operation. If position is greater than
the number of bytes in the file, then no bytes are read.

write(ByteBuffer buf, Writes bytes from buf to the file in the same way as you have
long position) seen previously except that bytes are written starting at the file

position specified by the second argument. The channel’s posi-
tion is not altered by this operation. If position is less than
the number of bytes in the file, then bytes from that point will
be overwritten. If position is greater than the number of
bytes in the file then the file size will be increased to this point
before bytes are written. In this case the bytes between the orig-
inal end-of-file and where the new bytes are written will con-
tain junk values.

507

Reading Files

These methods can throw the same exceptions as the corresponding method accepting a single argu-
ment; plus, they may throw an exception of type IllegalArgumentException if a negative file posi-
tion is specified.

Let’s see how you can access a file randomly using the preceding read() method.

Try It Out Reading a File Randomly
To show how easy it is to read from random positions in a file, you will write an example to extract a
random selection of values from our primes.bin file. Here’s the code:

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class RandomFileRead {

public static void main(String[] args) {

File aFile = new File(“C:/Beg Java Stuff/primes.bin”);

FileInputStream inFile = null;

FileOutputStream outFile = null;

try {

inFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel inChannel = inFile.getChannel();

final int PRIMESREQUIRED = 10;

ByteBuffer buf = ByteBuffer.allocate(8*PRIMESREQUIRED);

long[] primes = new long[PRIMESREQUIRED];

int index = 0; // Position for a prime in the file

try {

// Count of primes in the file

final int PRIMECOUNT = (int)inChannel.size()/8;

// Read the number of random primes required

for(int i = 0 ; i<PRIMESREQUIRED ; i++) {

index = 8*(int)(PRIMECOUNT*Math.random());

inChannel.read(buf, index); // Read the value

buf.flip();

primes[i] = buf.getLong(); // Save it in the array

buf.clear();

}

// Output the selection of random primes 5 to a line in field width of 12

508

Chapter 11

int count = 0; // Count of primes written

for(long prime : primes) {

System.out.printf(“%12d”, prime);

if(++count%5 == 0) {

System.out.println();

}

}

inFile.close(); // Close the file and the channel

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

When I ran this, I got the following output:

359 107 383 109 7

173 443 337 17 113

You should get something similar but not the same because the random number generator is seeded
using the current clock time. The number of random selections is fixed, but you could easily add code
for a value to be entered on the command line.

How It Works
You access a random prime in the file by generating a random position in the file with the expression
8*(int)(PRIMECOUNT*Math.random()). The value of index is a pseudo-random integer that can be
from 0 to the number of primes in the file minus one, multiplied by 8 since each prime occupies 8 bytes.
Since buf has a capacity of 8 bytes, only one prime will be read each time. You store each randomly
selected prime in an element of the primes array. Finally, you output the primes five to a line in a field
width of 12 characters.

The need to be able to access and update a file randomly arises quite often. Even with a simple person-
nel file, for example, you are likely to need the capability to update the address or the phone number for
an individual. Assuming you have arranged for the address and phone number entries to be of a fixed
length, you could update the data for any entry simply by overwriting it. If you want to read from and
write to the same file you can just create two file streams and get two file channels for the file, one for
input and one for output. Let’s try that, too.

Try It Out Reading and Writing a File Randomly
You can modify the previous example so that you overwrite each random prime that you retrieve with
the value 99999L to make it stand out from the rest. This will mess up the primes_backup.bin file that
you will use here, but you can always run the program that will copy files to copy primes.bin if you
want to restore it. Here’s the code:

509

Reading Files

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class RandomReadWrite {

public static void main(String[] args)

{

File aFile = new File(“C:/Beg Java Stuff/primes_backup.bin”);

FileInputStream inFile = null;

FileOutputStream outFile = null;

try {

inFile = new FileInputStream(aFile);

outFile = new FileOutputStream(aFile, true);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel inChannel = inFile.getChannel();

FileChannel outChannel = outFile.getChannel();

final int PRIMESREQUIRED = 10;

ByteBuffer buf = ByteBuffer.allocate(8);

long[] primes = new long[PRIMESREQUIRED];

int index = 0; // Position for a prime in the file

final long REPLACEMENT = 99999L; // Replacement for a selected prime

try {

final int PRIMECOUNT = (int)inChannel.size()/8;

System.out.println(“Prime count = “+PRIMECOUNT);

for(int i = 0 ; i<PRIMESREQUIRED ; i++) {

index = 8*(int)(PRIMECOUNT*Math.random());

inChannel.read(buf, index); // Read at a random position

buf.flip(); // Flip the buffer

primes[i] = buf.getLong(); // Extract the prime

buf.flip(); // Flip to ready for insertion

buf.putLong(REPLACEMENT); // Replacement into buffer

buf.flip(); // Flip ready to write

outChannel.write(buf, index); // Write the replacement to file

buf.clear(); // Reset ready for next read

}

int count = 0; // Count of primes written

for(long prime : primes) {

System.out.printf(“%12d”, prime);

if(++count%5 == 0) {

System.out.println();

}

}

510

Chapter 11

inFile.close(); // Close the file and the channel

outFile.close();

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

This will output from the file a set of ten random prime selections that have been overwritten. If you
want to verify that you have indeed overwritten these values in the file, you can run the ReadPrimes
example that you wrote earlier in this chapter with the file name as “primes_backup.bin”.

How It Works
All you had to do to write the file as well as read it was to create a FileOutputStream object for the file
in addition to the FileInputStream object and access its file channel. You are then able to use one chan-
nel for writing to the file and the other for reading it. The output file stream was opened in append
mode so that any additional values written to the file would be added to the end of the file.

You can read and write sequentially or at random. The channel read() and write() methods you are
using here explicitly specify the position where the data is to be read or written as an argument. In this
case the file position recorded by the channel does not change. You could equally well change the file
position for the channel before performing the read or write, like this:

for(int i = 0 ; i<PRIMESREQUIRED ; i++) {

index = 8*(int)(PRIMECOUNT*Math.random());

inChannel.read(buf, index); // Read at a random position

buf.flip(); // Flip the buffer

primes[i] = buf.getLong(); // Extract the prime

buf.flip(); // Flip to ready for insertion

buf.putLong(REPLACEMENT); // Replacement into buffer

buf.flip(); // Flip ready to write

outChannel.write(buf, index); // Write the replacement to file

buf.clear(); // Reset ready for next read

}

Now the file positions recorded by the channels are set explicitly and each channel’s position is updated
when it executes an I/O operation. Note that the position() method for a channel does not return a
reference to the channel object so you cannot chain the position() and read() method calls together.
You can do this only with buffer objects.

One problem with the example as it stands is that some of the selections could be 99999L, which is
patently not prime. You could fix this by checking each value you store in the primes array:

for(int i = 0 ; i<PRIMESREQUIRED ; i++)

{

while(true)

{

index = 8*(int)(PRIMECOUNT*Math.random());

inChannel.read(buf, index); // Read at a random position

511

Reading Files

buf.flip(); // Flip the buffer

primes[i] = buf.getLong(); // Extract the prime

if(primes[i] != REPLACEMENT) {

break; // It’s good so exit the inner loop

} else {

buf.clear(); // Clear ready to read another

}

}

buf.flip(); // Flip to ready for insertion

buf.putLong(REPLACEMENT); // Replacement into buffer

buf.flip(); // Flip ready to write

outChannel.write(buf, index); // Write the replacement to file

buf.clear(); // Reset ready for next read

}

The while loop now continues if the value read from the file is the same as REPLACEMENT, so another
random file position will be selected. This continues until something other than the value of REPLACE-
MENT is found. Of course, if you run the example often enough, you won’t have enough primes in the file
to fill the array, so the program will loop indefinitely looking for something other than REPLACEMENT.
You could deal with this in several ways . For example, you could count how many iterations have
occurred in the while loop and bail out if it reaches the number of primes in the file. You could also
inspect the file first to see whether there are sufficient primes in the file to fill the array. If there are
exactly 10, you can fill the array immediately. I’ll leave it to you to fill in these details.

Read/Write Operations with a Single File
Channel

If you want to be able to read from and write to a file using a single channel, you must use the channel
provided by a RandomAccessFile object. A RandomAccessFile object is not related to the other file
stream classes since its only base class is Object. Its original purpose was to provide random access to a
file, which the other file stream classes could not, but as you have seen, this capability has been usurped
by a channel anyway.

Two constructors are available for creating RandomAccessFile objects, and both require two argu-
ments. For one constructor, the first argument is a File object that identifies the file path, and the sec-
ond is a String object that specifies the access mode. The other constructor offers the alternative of
using a String object as the first argument specifying the file path, with the second argument defining
the access mode as before.

The access mode can be any of the following four values:

“r” Indicates that you just want to read the file. In this mode the file cannot be written.

“rw” Indicates that you want to open the file to allow both read and write operations.

“rwd” Indicates that you want to allow both read and write operations but you want all
write operations to force immediate writing of data to the device.

“rws” Indicates that you want to allow both read and write operations but you want all
write operations to force immediate writing of data and metadata (such as the file
length) to the device.

512

Chapter 11

If you specify the mode as anything other than the four shown in the preceding table, the constructor
will throw an IllegalArgumentException. You use the “rwd” and “rws” mode when you are writing
to a local device and you want the data to be written immediately to minimize the possibility of data
loss in the event of a system crash. The “rwd” mode requires fewer operations than “rws” mode for
write operations because writing the data and the metadata typically involves a separate low-level write
operation.

To create a RandomAccessFile object, you could write:

File myPrimes = new File(“c:/Beg Java Stuff/primes.bin”);

RandomAccessFile primesFile = null;

try {

primesFile = new RandomAccessFile(myPrimes, “rw”);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

assert false;

}

This will create the random access file object primesFile, corresponding to the physical file
primes.bin, and will open it for both reading and writing.

If the file does not exist when you specify “rw”, “rwd”, or “rws” as the mode, the file will be created
automatically as long as the parent directory exists. Of course, the implicit assumption is that you intend
to write to the file before you try to read it. If you specify the mode as “r”, the file must already exist. If
it doesn’t, the constructor will throw a FileNotFoundException. The same exception will be thrown if
the file exists but cannot be opened for some reason. Like the file stream class constructors, a
RandomAccessFile constructor can throw a SecurityException if a security manager exists and
access to the file is denied.

You obtain the FileChannel object from a RandomAccessFile object in the same way as for the file
stream objects you have been working with:

FileChannel ioChannel = primesFile.getChannel();

You can now use this channel to read from and write to the file sequentially or at random. It should be a
trivial exercise for you to modify the previous example to use a channel from a RandomAccessFile
object instead of the channels for the two file stream objects.

If you check the documentation for the RandomAccessFile class, you will find that it, too, records the
file position and it describes it as a file-pointer. It also defines the getFilePointer() method for
obtaining the current value of the file-pointer and the seek() method that alters it. The file-pointer for a
RandomAccessFile object is identical to the file position recorded by its channel, and changes to one
are immediately reflected in the other.

Memory-Mapped Files
A memory-mapped file is a file that has its contents mapped into an area of virtual memory in your
computer. This enables you to reference or update the data in the file directly without performing any
explicit file read or write operations on the physical file yourself. When you reference a part of the file

513

Reading Files

that is not actually in real memory, it will be automatically paged in by your operating system. The
memory that a file maps to may be paged in or out by the operating system, just like any other memory
in your computer, so its immediate availability in real memory is not guaranteed. Because of the poten-
tially immediate availability of the data it contains, a memory-mapped file is particularly useful when
you need to access the file randomly. Your program code can reference the data in the file just as though
it were all resident in memory.

Mapping a file into memory is implemented by a FileChannel object. The map() method for a
FileChannel object will return a reference to a buffer of type MappedByteBuffer that will map to a
specified part of the channel’s file:

map(int mode, Maps a region of the channel’s file to a buffer of type
long position, MappedByteBuffer. The file region that is mapped starts at
long size) position in the file and is of length size bytes. The first argument,

mode, specifies how the buffer’s memory may be accessed and can be
any of the following three constant values, which are defined in the
MapMode class, which is a static inner class of the FileChannel class:

MapMode.READ_ONLY— This is valid if the channel was opened for
reading the file — in other words, if the channel was obtained from a
FileInputStream object or a RandomAccessFile object. In this
mode the buffer is read-only. If you try to modify the buffer’s con-
tents, an exception of type ReadOnlyBufferException will be
thrown.

MapMode.READ_WRITE— This is valid if the channel was obtained
from a RandomAccessFile object with “rw”, “rwd”, or “rws” as its
access mode. You can access and change the contents of the buffer
and any changes to the contents will be propagated to the file, possi-
bly later if the access mode is “rw”.

MapMode.PRIVATE— This mode is for a “copy-on-write” mapping.
This option for mode is also valid only if the channel was obtained
from a RandomAccessFile object with “rw” as its access mode. You
can access or change the buffer, but changes will not be propagated
to the file. Private copies of modified portions of the buffer will be
created and used for subsequent buffer accesses.

When you access or change data in the MappedByteBuffer object that is returned when you call the
map() method for a FileChannel object, you are effectively accessing the file that is mapped to the
buffer. Once you have called the map() method, the file mapping and the buffer that you have estab-
lished are independent of the FileChannel object. You can close the channel, and the mapping of the
file into the MappedByteBuffer object will still be valid and operational.

Because the MappedByteBuffer class is a subclass of the ByteBuffer class, you have all the
ByteBuffer methods available for a MappedByteBuffer object. This implies that you can create view
buffers for a MappedByteBuffer object, for instance.

514

Chapter 11

The MappedByteBuffer class defines three methods of its own to add to those inherited from the
ByteBuffer class:

force() If the buffer was mapped in MapMode.READ_WRITE mode, this method forces
any changes made to the buffer’s contents to be written to the file and returns
a reference to the buffer. For buffers created with other access modes, this
method has no effect.

load() Tries on a “best efforts” basis to load the contents of the buffer into memory
and returns a reference to the buffer.

isLoaded() Returns true if it is likely that this buffer’s contents are available in physical
memory and false otherwise.

The load() method is dependent on external operating system functions executing to achieve the
desired result, so the result cannot in general be guaranteed. Similarly, when you get a true return from
the isLoaded() method, this is an indication of a probable state of affairs rather than a guarantee. This
doesn’t imply any kind of problem. It just means that accessing the data in the mapped byte buffer may
take longer that you might expect in some instances. Using a memory-mapped file through a
MappedByteBuffer is simplicity itself, so let’s try it.

Try It Out Using a Memory-Mapped File
You will access and modify the primes_backup.bin file using a MappedByteBuffer, so you may wish
to rerun the file copy program to restore it to its original condition. Here’s the code:

import java.io.File;

import java.io.RandomAccessFile;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.nio.MappedByteBuffer;

import java.nio.channels.FileChannel;

import static java.nio.channels.FileChannel.MapMode.READ_WRITE;

public class MemoryMappedFile {

public static void main(String[] args) {

File aFile = new File(“C:/Beg Java Stuff/primes_backup.bin”);

RandomAccessFile ioFile = null;

try {

ioFile = new RandomAccessFile(aFile,”rw”);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

}

FileChannel ioChannel = ioFile.getChannel();

final int PRIMESREQUIRED = 10;

long[] primes = new long[PRIMESREQUIRED];

int index = 0; // Position for a prime in the file

final long REPLACEMENT = 999999L; // Replacement for a selected prime

try {

515

Reading Files

final int PRIMECOUNT = (int)ioChannel.size()/8;

MappedByteBuffer buf = ioChannel.map(READ_WRITE, 0L,ioChannel.size()).load();

ioChannel.close(); // Close the channel

for(int i = 0 ; i<PRIMESREQUIRED ; i++) {

index = 8*(int)(PRIMECOUNT*Math.random());

primes[i] = buf.getLong(index);

buf.putLong(index, REPLACEMENT);

}

int count = 0; // Count of primes written

for(long prime : primes) {

System.out.printf(“%12d”, prime);

if(++count%5 == 0) {

System.out.println();

}

}

ioFile.close(); // Close the file and the channel

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

This should output ten randomly selected primes, but some or all of the selections may turn out to be
999999L, the value of REPLACEMENT if you have not refreshed the contents of primes_backup.bin. The
highlighted lines of code are those that are new or different compared to the previous example.

How It Works
The only statements of interest are those that are shaded because the others you have seen before. You can
see import statements for RandomAccessFile and MappedByteBuffer class names, and you import the
static member of the MapMode inner class to the FileChannel class that you will use in the code.

You create a RandomAccessFile object with “rw” access to the file:

ioFile = new RandomAccessFile(aFile,”rw”);

This statement executes in a try block since it can throw a FileNotFoundException. You could also
use the “rwd” or “rws” access modes if you want any changes written to the physical file immediately.

You get the file channel for the ioFile object with the statement:

FileChannel ioChannel = ioFile.getChannel();

You then create and load a MappedByteBuffer object with the statement:

MappedByteBuffer buf = ioChannel.map(READ_WRITE, 0L,ioChannel.size()).load();

The buffer is created with the READ_WRITE mode, which permits the buffer to be accessed or modified.
The buffer maps to the entire file because you specify the start file position as zero, and the length that is
mapped as the length of the file. The map() method returns a reference to the MappedByteBuffer object

516

Chapter 11

that is created and you use this to call its load() method to request that the contents of the file be
loaded into memory immediately. The load() method also returns the same buffer reference, and you
store that in buf.

Note that it is not essential to call the load() method before you access the data in the buffer. If the data
is not available when you try to access it through the MappedByteBuffer object, it will be loaded for
you. Try running the example with the call to load() removed. It should work the same as before.

The next statement closes the file channel because it is no longer required:

ioChannel.close(); // Close the channel

It is not essential to close the channel but doing so demonstrates that memory-mapped file operations
are independent of the channel once the mapping has been established.

Inside the for loop, you retrieve a value from the buffer at a random position, index:

primes[i] = buf.getLong(index);

Note that you have not needed to execute any explicit read() operations. The file contents are available
directly through the buffer and any read operations that need to be executed to make the data you are
accessing available are initiated automatically.

Next, you change the value at the position from which you retrieved the value to store in primes[i]:

buf.putLong(index, REPLACEMENT);

This will change the contents of the buffer, and this change will subsequently be written to the file at
some point. When this occurs depends on the underlying operating system.

Finally, you output the contents of the primes array. You have been able to access and modify the con-
tents of the file without having to execute any explicit I/O operations on the file. This is potentially
much faster than using explicit read and write operations. How much faster depends on how efficiently
your operating system handles memory-mapped files and whether the way in which you access the data
results in a large number of page faults.

Memory-mapped files have one risky aspect that you need to consider, and we’ll look at that in the next
section.

Locking a File
You need to take care that an external program does not modify a memory-mapped file that you are
working with, especially if the file could be truncated externally while you are accessing it. If you try to
access a part of the file through a MappedByteBuffer that has become inaccessible because a segment
has been chopped off the end of the file by another program, then the results are somewhat unpre-
dictable. You may get a junk value back that your program may not recognize as such, or an exception of
some kind may be thrown. You can acquire a lock on the file to prevent this sort of problem. A file lock
simply ensures your right of access to the file and may also inhibit the ability of others to change or pos-
sibly access the file as long as your lock is in effect. This facility is available only if the underlying oper-
ating system supports file locking.

517

Reading Files

A lock on a file is encapsulated by an object of the FileLock class, which is defined in the
java.nio.channels package. The lock() method for a FileChannel object tries to obtain an exclu-
sive lock on the channel’s file. Acquiring an exclusive lock on a file ensures that another program cannot
access the file at all, and is typically used when you want to write to a file, or when any modification of
the file by another process will cause you problems. Here’s one way to obtain an exclusive lock on a file:

FileLock ioFileLock = null;

try {

ioFileLock = ioChannel.lock();

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

This method attempts to acquire an exclusive lock on the channel’s file so that no other program or
thread can access the file while this channel holds the lock. A prerequisite for obtaining an exclusive lock
is that the file has been opened for both reading and writing so the code fragment assumes that this
applies to ioChannel. If another program or thread already has a lock on the file, the lock() method
will block until the lock on the file is released and can be acquired by this channel. The lock that is
acquired is owned by the channel, ioChannel, and will be automatically released when the channel is
closed. By saving the reference to the FileLock object, you can release the lock on the file when you are
done by calling the release() method for the FileLock object. This invalidates the lock so file access is
no longer restricted. You can call the isValid() method for a FileLock object to determine whether it
is valid. A return value of true indicates a valid lock; otherwise, false will be returned indicating that
the lock is not valid. Note that once created, a FileLock object is immutable. It also has no further effect
on file access once it has been invalidated. If you want to lock the file a second time, you must acquire a
new lock.

Having your program hang until a lock is acquired is not an ideal situation. It is quite possible a file
could be locked permanently — at least until the computer is rebooted — because of a programming
error in another program, in which case your program will hang indefinitely. The tryLock() method
for a channel offers an alternative way of requesting a lock that does not block. It either returns a refer-
ence to a valid FileLock object or returns null if the lock could not be acquired. This gives your pro-
gram a chance to do something else or retire gracefully:

FileLock ioFileLock = null;

try {

ioFileLock = ioChannel.tryLock();

if(ioFileLock == null) {

System.out.println(“The file’s locked – again!! Oh, I give up...”);

System.exit(1);

}

} catch (IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

You’ll see a better response to a lock than this in an example, but you get the idea.

518

Chapter 11

Locking Part of a File
Overloaded versions of the lock() and tryLock() methods allow you to specify just the part of the file
you want to obtain a lock on so you don’t lock the whole file:

lock(long position, Requests a lock on the region of this channel’s file starting at
long size, position and of length size. If the last argument is true,
boolean shared) the lock requested is a shared lock. If it is false, the lock

requested is an exclusive lock. If the lock cannot be obtained
for any reason, the method will block until the lock can be
obtained or the channel is closed by another thread.

tryLock(long position, This works in the same way as the previous method, except
long size, that null will be returned if the requested lock cannot be
boolean shared) acquired. This avoids the potential for hanging your program

indefinitely.

A shared lock allows concurrent read access to the file by several processes. The effect of a shared lock is
to prevent an exclusive lock being acquired by another program that overlaps the region that is locked.
However, a shared lock does permit another program to acquire a shared lock on a region of the file that
may overlap the region to which the original shared lock applies. This implies that more than one pro-
gram may be accessing the same region of the file, so the effect of a shared lock is simply to ensure that
your code is not prevented from doing whatever it is doing by some other program with a shared lock
on the file. Some operating systems do not support shared locks, in which case the request will always
be treated as an exclusive lock regardless of what you requested.

Note that a single Java Virtual Machine (JVM) does not allow overlapping locks, so different threads
running on the same JVM cannot have overlapping locks on a file. However, the locks within two or
more JVMs on the same computer can overlap. If another program changing the data in a file would
cause a problem for you, then the safe thing to do is to obtain an exclusive lock on the file you are work-
ing with. If you want to test for the presence of an overlapping lock, you can call the overlaps()
method for your lock object.

Practical File Locking Considerations
You can apply file locks in any context, not just with memory-mapped files. The fact that all or part
of a file can be locked by a program means that you cannot ignore file locking when you are writing a
real-world Java application that may execute in a context where file locking is supported. You need
to include at least shared file locks for regions of a file that your program uses. In some instances,
though, you’ll want to use exclusive locks since external changes to a file’s contents can still be a
problem even when the parts you are accessing cannot be changed. As I’ve said, you can obtain an
exclusive lock only on a channel that is open for both reading and writing; and an exception of type
NonReadableChannelException or NonWritableChannelException will be thrown, as appropriate,
if you have opened the file just for input or just for output. This means that if you really must have an
exclusive lock on a file, you have to have opened it for reading and writing, and this means that you will
have obtained the FileChannel object from a RandomAccessFile object that you created with the
mode as “rw”, “rws”, or “rwd”.

519

Reading Files

You don’t need to obtain a lock on an entire file. Generally, if it is likely that other programs will be using
the same file concurrently, it is not reasonable practice to lock everyone else out, unless it is absolutely
necessary, such as a situation in which you may be performing a transacted operation that must either
succeed or fail entirely. Circumstances where it would be necessary are when the correctness of your
program result is dependent on the entire file’s contents not changing. If you were computing a check-
sum for a file, for example, you would need to lock the entire file. Any changes made while your check-
sum calculation is in progress are likely to make it incorrect.

Most of the time it is quite sufficient to lock the portion of the file you are working with, and then release
it once you are done with it. You can get an idea of how you might do this in the context of the program
that lists the primes from the primes.bin file.

Try It Out Using a File Lock
You will lock the region of the primes.bin file that you intend to read, and then release it after the read
operation is complete. You will use the tryLock() method since it does not block, and try to acquire the
lock again if it fails to return a reference to a FileLock object. To do this sensibly you need to be able to
pause the current thread rather than roaring round a tight loop frantically calling the tryLock()
method. I’ll bring forward a capability from Chapter 16 to do this for you. You can pause the current
thread by 200 milliseconds with the following code:

try {

Thread.sleep(200); // Wait for 200 milliseconds

} catch(InterruptedException e) {

e.printStackTrace(System.err);

}

The static sleep() method in the Thread class causes the current thread to sleep for the number of mil-
liseconds specified by the argument. While the current thread is sleeping, other threads can execute, so
whoever has a lock on our file has a chance to release it.

Here’s the code for the complete example:

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.nio.ByteBuffer;

import java.nio.LongBuffer;

import java.nio.channels.FileChannel;

import java.nio.channels.FileLock;

public class LockingPrimesRead {

public static void main(String[] args) {

File aFile = new File(“C:/Beg Java Stuff/primes.bin”);

FileInputStream inFile = null;

try {

inFile = new FileInputStream(aFile);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

520

Chapter 11

}

FileChannel inChannel = inFile.getChannel();

final int PRIMECOUNT = 6;

ByteBuffer buf = ByteBuffer.allocate(8*PRIMECOUNT);

long[] primes = new long[PRIMECOUNT];

try {

int primesRead = 0;

FileLock inLock = null;

// File reading loop

while(true) {

int tryLockCount = 0;

// Loop to get a lock on the file region you want to read

while(true) {

inLock = inChannel.tryLock(inChannel.position(), buf.remaining(), true);

if(inLock != null) { // If you have a lock

System.out.println(“\nAcquired file lock.”);

break; // exit the loop

}

if(++tryLockCount>=100) { // If you’ve tried too often

System.out.printf(“Failed to acquire lock after %d tries.”+

“Terminating...%n”, tryLockCount);

System.exit(1); // end the program

}

// Wait 200 msec before the next try for a file lock

try {

Thread.sleep(200); // Wait for 200 milliseconds

} catch(InterruptedException e) {

e.printStackTrace(System.err);

}

}

// You have a lock so now read the file

if(inChannel.read(buf) == -1) {

break;

}

inLock.release(); // Release lock as read is finished

System.out.println(“Released file lock.”);

LongBuffer longBuf = ((ByteBuffer)(buf.flip())).asLongBuffer();

primesRead = longBuf.remaining();

longBuf.get(primes,0, longBuf.remaining());

for(int i = 0 ; i< primesRead ; i++) {

if(i%6 == 0) {

System.out.println();

}

System.out.printf(“%12d”, primes[i]);

}

buf.clear(); // Clear the buffer for the next read

}

521

Reading Files

System.out.println(“\nEOF reached.”);

inFile.close(); // Close the file and the channel

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.exit(0);

}

}

This will output primes from the file just as the ReadPrimes example does, but interspersed with com-
ments showing where you acquire and release the file lock.

How It Works
The overall while loop for reading the file is now indefinite since you need to obtain a file lock before
reading the file. You attempt to acquire the file lock in the inner while loop with the statement:

inLock = inChannel.tryLock(inChannel.position(), buf.remaining(), true);

This requests a shared lock on buf.remaining() bytes in the file starting with the byte at the current
file position. You can’t get an exclusive lock on a file unless it has been opened for both reading and
writing, and this doesn’t apply here. Acquiring a shared lock on just the part of the file that you want to
read ensures that other programs are not prevented from accessing the file, but the bit you are working
with cannot be changed externally. Another program cannot acquire an exclusive overlapping lock, but
it can acquire a shared overlapping lock.

You have to test the value returned by the tryLock() method for null to determine whether you have
obtained a lock or not. The if statement that does this is quite simple:

if(inLock != null) { // If you have a lock

System.out.println(“\nAcquired file lock.”);

break; // exit the loop

}

If inLock is not null, you have a lock on the file, so you exit the loop to acquire the lock. If inLock is
null, you then check how often you have tried to acquire a lock and failed:

if(++tryLockCount>=100) { // If you’ve tried too often

System.out.printf(“Failed to acquire lock after %d tries.”+

“Terminating...%n”, tryLockCount);

System.exit(1); // end the program

}

The only reason for the string concatenation here is that the string won’t fit in the width of the page. If
you have already tried 100 times to obtain a lock, you give up and exit the program. If it’s fewer tries
than this, you’re prepared to give it another try, but first you pause the current thread:

try {

Thread.sleep(200); // Wait for 200 milliseconds

522

Chapter 11

} catch(InterruptedException e) {

e.printStackTrace(System.err);

}

This will pause the current thread for 200 milliseconds, which will provide an opportunity for the pro-
gram that has an exclusive lock on the file to release it. After returning from the sleep() method, the
while loop continues for another try at acquiring a lock.

Once you have acquired a lock, you read the file in the usual way and release the lock:

if(inChannel.read(buf) == -1) {

break;

}

inLock.release(); // Release lock as read is finished

System.out.println(“Released file lock.”);

By releasing the lock immediately after reading the file, you ensure that the amount of time the file is
blocked is a minimum. Of course, if the read() method returns -1 because EOF has been reached, you
won’t call the release() method for the FileLock object here because you exit the outer loop.
However, after exiting the outer while loop you close the file stream and the channel, and closing the
channel will release the lock.

Summary
In this chapter, I have discussed the various ways in which you can read basic types of data from a file.
The important points I have discussed include:

❑ You can read a file using a FileChannel object obtained from a FileInputStream object or
from a RandomAccessFile object.

❑ You can use a channel obtained from a RandomAccessFile object that was created with mode
“rw”, “rwd”, or “rws” to both read and write the file.

❑ Data that is read from a file using a channel is stored in one or more buffers of type
ByteBuffer.

❑ You can use view buffers to interpret the data read from a file as any basic type other than
boolean.

❑ A memory-mapped file enables you to access data in the file as though it were resident in mem-
ory. You access a memory-mapped file through a MappedByteBuffer object.

❑ Acquiring an exclusive lock on a file ensures that no other program can access the file while you
hold the lock. You can obtain an exclusive lock only on a file you have opened for both reading
and writing.

❑ Acquiring a shared lock on a file ensures that your program has access to the file in circum-
stances where other programs may be accessing the same file, and protects the region of the file
you have locked from being altered.

523

Reading Files

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Write a program to read back and list the contents of the file written by the first exercise in the
previous chapter.

2. Extend the ReadPrimes example that you produced in this chapter to optionally display the nth
prime, when n is entered from the keyboard.

3. Extend the ReadPrimes program further to output a given number of primes, starting at a
given number. For example, output 15 primes starting at the 30th. The existing capabilities
should be retained.

4. Write a program that will output the contents of a file to the command line as groups of eight
hexadecimal digits with five groups to a line, each group separated from the next by a space.

5. Write a program that will allow either one or more names and addresses to be entered from the
keyboard and appended to a file, or the contents of the file to be read back and output to the
command line.

6. Modify the previous example to store an index to the name and address file in a separate file.
The index file should contain each person’s second name, plus the position where the corre-
sponding name and address can be found in the name and address file. Provide support for an
optional command argument allowing a person’s second name to be entered. When the com-
mand-line argument is present, the program should then find the name and address and output
it to the command line.

524

Chapter 11

12
Serializing Objects

In this chapter, you’ll see how you can transfer objects to and from a stream. By the end of this
chapter you will have learned:

❑ What serialization is and how you make a class serializable

❑ How to write objects to a file

❑ What transient fields in a class are

❑ How to write basic types of data to an object file

❑ How to implement the Serializable interface

❑ How to read objects from a file

❑ How to implement serialization for classes containing objects that are not serializable
by default

Storing Objects in a File
The process of storing and retrieving objects in an external file is called serialization. Writing an
object to a file is referred to as serializing the object, and reading an object from a file is called
deserializing an object. Serialization is concerned with writing objects and the fields they contain
to a stream, so this excludes static members of a class. Static fields will have whatever values
are assigned by default in the class definition. Note that an array of any type is an object and can
be serialized, even an array of values of a primitive type, such as type int or type double.

I think you will be surprised at how easy this is. Perhaps the most impressive aspect of the way
serialization is implemented in Java is that you can generally read and write objects of almost any
class type, including objects of classes that you have defined yourself, without adding any code
to the classes involved to support this mechanism. For the most part, everything is taken care of
automatically.

Two classes from the java.io package are used for serialization. An ObjectOutputStream object man-
ages the writing of objects to a file, and reading the objects back is handled by an object of the class
ObjectInputStream. As you saw in Chapter 8 and as Figure 12-1 illustrates, these are derived from
OutputStream and InputStream, respectively.

Figure 12-1

The ObjectInput and ObjectOutput interfaces extend the DataInput and DataOutput interfaces that
declare methods for reading and writing data of the primitive types and add the methods for reading
and writing objects. Both object stream classes implement the ObjectStreamConstants interface,
which defines constants that are used to identify elements of an object in the stream.

Writing an Object to a File
To write objects to a file, the constructor for the ObjectOutputStream class requires a reference to a
FileOutputStream object as an argument, and this object defines the stream that encapsulates the file
in which you intend to store your objects. You could create an ObjectOutputStream object with the
following statements:

File theFile = new File(“MyFile”);

// Check out the file...

// Create the object output stream for the file

ObjectOutputStream objectOut = null;

try {

objectOut = new ObjectOutputStream(new FileOutputStream(theFile));

InputStream
implements

Closeable

This is an abstract class that is a superclass of all
classes representing an input stream of bytes.

This class defines an input stream from which you
can read objects as well as primitive types of data.

This is an abstract class that is a superclass of all
classes representing an output stream of bytes.

This class defines an output stream to which you can
write objects as well as primitive types of data.

ObjectInputStream
implements

ObjectInput, ObjectStreamConstants

OutputStream
implements

Closeable

ObjectOutputStream
implements

ObjectOutput, ObjectStreamConstants

526

Chapter 12

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

You know from your earlier investigations into file output that the FileOutputStream constructor can
throw a FileNotFoundException if the File object that you pass to the constructor represents a direc-
tory rather than a file, or if the file does not exist and cannot be created for some reason. In addition, the
ObjectOutputStream constructor will throw an IOException if an error occurs while the stream
header is being written to the file. The catch block here will handle either of these exceptions because
the IOException class is a superclass of the FileNotFoundException class.

While the previous code fragment will work perfectly well, it does not result in a stream that is particularly
efficient because each output operation will write directly to the file. In practice you will probably want to
buffer write operations to the file in memory, in which case you would create the ObjectOutputStream
object like this:

objectOut = new ObjectOutputStream(

new BufferedOutputStream(

new FileOutputStream(theFile)));

The BufferedOutputStream constructor creates an object that buffers the OutputStream object
that is passed to it, so here you get a buffered FileOutputStream object that you pass to the
ObjectOutputStream constructor. With this arranged, each write operation to the ObjectOutputStream
will write to the BufferedOutputStream object. The BufferedOutputStream object will write the data
to an internal buffer. Data from the buffer will be written to the file whenever the buffer is full, or when
you close the stream by calling its close() method or flush the stream by calling its flush() method.
By default, the buffer has a capacity of 2048 bytes. If you want to use a buffer of a different size, you can
use the BufferedOutputStream constructor, which accepts a second argument of type int that defines
the size of the buffer in bytes.

To write an object to the file MyFile, you call the writeObject() method for objectOut with a refer-
ence to the object to be written as the argument. Since this method accepts a reference of type Object as
an argument, you can pass a reference of any class type to the method and this includes enum types and
arrays. Three basic conditions have to be met for an object to be written to a stream:

❑ The class must be declared as public.

❑ The class must implement the Serializable interface.

❑ If the class has a direct or indirect base class that is not serializable, then that base class must
have a default constructor — that is, a constructor that requires no arguments. The derived class
must take care of transferring the base class data members to the stream.

Implementing the Serializable interface is a lot less difficult than it sounds, and you will see how in a
moment. Later I will come back to the question of how to deal with a non-serializable base class.

If myObject is an instance of a public class that implements Serializable, then to write myObject to
the stream that you defined previously, you would use the following statement:

527

Serializing Objects

try {

objectOut.writeObject(myObject);

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

The writeObject() method can throw any of the following three exceptions:

InvalidClassException Thrown when there is something wrong with the class defi-
nition for the object being written. This might be because
the class is not public, for instance.

NotSerializableException Thrown if the object’s class, or the class of a data member of
the class, does not implement the Serializable interface.

IOException Thrown when a file output error occurs.

The first two exception classes here are subclasses of ObjectStreamException, which is itself a sub-
class of IOException. Thus, you can catch any of them with a catch block for IOException. Of course,
if you want to take some specific action for any of these then you can catch them individually. Just be
sure to put the catch blocks for the first two types of exception before the one for IOException.

The call to writeObject() takes care of writing everything to the stream that is necessary to reconsti-
tute the object later in a read operation. This includes information about the class and all its superclasses,
as well as the contents and types of the data members of the class. Remarkably, this works even when
the data members are themselves class objects, as long as they are objects of Serializable classes. Our
writeObject() call will cause the writeObject() method for each object that is a data member to be
called, and this mechanism continues recursively until everything that makes up our object has been
written to the stream. Each independent object that you write to the stream requires a separate call to the
writeObject() method, but the objects that are members of an object are taken care of automatically.
This is not completely foolproof in that the relationships between the class objects can affect this process,
but for the most part this is all you need to do. You will be using serialization to write fairly complex
objects to files in Chapter 21.

Writing Basic Data Types to an Object Stream
You can write data of any of the primitive types using the methods declared in the DataInput interface
and defined in the ObjectOutputStream class for this purpose. For writing individual items of data of
various types, you have the following methods:

writeByte(int b) writeByte(byte b) writeChar(int ch)

writeShort(int n) writeInt(int n) writeLong(long n)

writeFloat(float x) writeDouble(double x)

528

Chapter 12

None of these methods returns a value, and they can all throw an IOException since they are output
operations.

When you want to write a String object to the file as an object, you would normally use the
writeObject() method. You can also write a string to the file as a sequence of bytes using the
writeBytes() method, passing a reference to a String as the argument to the method. In this case, each
character in the string is converted to a byte using the default charset. You can write a string simply as a
sequence of Unicode characters by using the writeChars() method, again with a reference of type
String as the argument. This writes each Unicode character in the string as 2 bytes. Note that the
writeBytes() and writeChars() methods write just a sequence of bytes or characters. No information
about the original String object is written so the fact that these characters belonged to a string is lost.

You have two methods defined in the ObjectOutputStream class that apply to arrays of bytes:

write(byte[] array) Writes the contents of array to the file as bytes.

write(byte[] array, Writes length elements from array to the file starting with
int offset, array[offset].
int length)

In both cases just bytes are written to the stream as binary data, not the array object itself. An array of
type byte[] will be written to the stream as an object by default, so you will need to use these methods
only if you do not want an array of type byte[] written as an object.

You can mix writing data of the basic types and class objects to the stream. If you have a mixture of
objects and data items of basic types that you want to store in a file, you can write them all to the same
ObjectOutputStream. You just have to make sure that you read everything back in the sequence and
form that it was written.

Implementing the Serializable Interface
A necessary condition for objects of a class to be serializable is that the class implements the Serializable
interface, but this may not be sufficient, as you’ll see. In most instances, you need only declare that the class
implements the Serializable interface to make the objects of that class type serializable. No other code
is necessary. For example, the following declares a class that implements the interface:

public MyClass implements Serializable {

// Definition of the class...

}

As long as all the fields in MyClass are serializable, then simply declaring that the class implements
the Serializable interface is sufficient to make objects of type MyClass serializable. If your class is
derived from another class that implements the Serializable interface, then your class also imple-
ments Serializable so you don’t have to declare that this is the case. Let’s try this out on a simple
class to verify that it really works.

529

Serializing Objects

Try It Out Writing Objects to a File
You will first define a serializable class that has some arbitrary fields with different data types:

import java.io.Serializable;

public class Junk implements Serializable {

private static java.util.Random generator = new java.util.Random();

private int answer; // The answer

private double[] numbers; // Valuable data

private String thought; // A unique thought

public Junk(String thought) {

this.thought = thought;

answer = 42; // Answer always 42

numbers = new double[3+generator.nextInt(4)]; // Array size 3 to 6

for(int i = 0 ; i<numbers.length ; i++) { // Populate with

numbers[i] = generator.nextDouble(); // random values

}

}

public String toString() {

StringBuffer strBuf = new StringBuffer(thought);

strBuf.append(‘\n’).append(String.valueOf(answer));

for(int i = 0 ; i<numbers.length ; i++) {

strBuf.append(“\nnumbers[“)

.append(String.valueOf(i))

.append(“] = “)

.append(numbers[i]);

}

return strBuf.toString();

}

}

An object of type Junk has three instance fields: a simple integer that is always 42, a String object, and
an array of double values. The toString() method provides a String representation of a Junk object
that you can output to the command line. The static field generator will not be written to the stream
when an object of type Junk is serialized. The only provision you have made for serializing objects of
type Junk is to declare that the class implements the Serializable interface.

You can write objects of this class type to a file with the following program:

import java.io.ObjectOutputStream;

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class SerializeObjects {

public static void main(String[] args) {

Junk obj1 = new Junk(“A green twig is easily bent.”);

530

Chapter 12

Junk obj2 = new Junk(“A little knowledge is a dangerous thing.”);

Junk obj3 = new Junk(“Flies light on lean horses.”);

ObjectOutputStream objectOut = null;

try {

// Create the object output stream

objectOut = new ObjectOutputStream(

new BufferedOutputStream(

new FileOutputStream(“C:/Beg Java Stuff/JunkObjects.bin”)));

// Write three objects to the file

objectOut.writeObject(obj1); // Write object

objectOut.writeObject(obj2); // Write object

objectOut.writeObject(obj3); // Write object

System.out.println(“\n\nobj1:\n” + obj1

+”\n\nobj2:\n” + obj2

+”\n\nobj3:\n” + obj3);

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

// Close the stream

try {

objectOut.close(); // Close the output stream

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

}

}

When I ran this, I got the following output:

obj1:

A green twig is easily bent.

42

numbers[0] = 0.20157825618636616

numbers[1] = 0.7123542196242817

numbers[2] = 0.8027761971323069

obj2:

A little knowledge is a dangerous thing.

42

numbers[0] = 0.929629487353265

numbers[1] = 0.5402881072148746

numbers[2] = 0.03259660544653753

numbers[3] = 0.94945294401263

numbers[4] = 0.17383591141346522

obj3:

Flies light on lean horses.

42

531

Serializing Objects

numbers[0] = 0.6765377168813207

numbers[1] = 0.3933764846876555

numbers[2] = 0.7633265658906377

numbers[3] = 0.31411955819992887

You should get something vaguely similar.

How It Works
You first create three objects of type Junk in the main() method. You then define a variable that will hold
the object output stream reference. If you were to define this variable within the first try block, then it
would not exist beyond the end of the try block so you could not refer to it after that point. Within the
try block you create the ObjectOutputStream object that you will use to write objects to the file
C:/Beg Java Stuff/JunkObjects.bin via a buffered output stream. Each Junk object is written to the
file by passing it to the writeObject() method for the ObjectOutputStream object. Each object will be
written to the file, including the values of its three instance fields, answer, thought, and numbers. The
String object and the array are written to the file as objects. This is taken care of automatically and
requires no special provision within the code. The static field generator is not written to the file.

Before you exit the program, you close the stream by calling its close() method. You could put the call
to close() within the first try block, but if an exception were thrown due to an I/O error, the method
would not get called. By putting it in a separate try block you ensure that you do call the close()
method. The stream would be closed automatically when the program terminates but it is good practice
to close any streams as soon as you are done with them. You’ll read the objects back from the file a little
later in this chapter.

Conditions for Serialization
In general, you could encounter a small fly in the ointment. For implementing the Serializable inter-
face to be sufficient to make objects of the class serializable, all the fields in the class must be serializable
(or transient— which I’ll come to), and all superclasses of the class must also be serializable. This
implies that the fields must be either of primitive types or of class types that are themselves serializable.

If a superclass of your class is not serializable, it still may be possible to make your class serializable. The
conditions that must be met for this to be feasible are:

❑ Each superclass that is not serializable must have a public default constructor — a constructor
with no parameters.

❑ Your class must be declared as implementing the Serializable interface.

❑ Your class must take responsibility for serializing and deserializing the fields for the super-
classes that are not serializable.

This will usually be the case for your own classes, but one or two classes that come along with Java do
not implement the Serializable interface, and what’s more, you can’t make them serializable because
they do not have a public default constructor. The Graphics class in the package java.awt is an exam-
ple of such a class — you will see more of this class when you get into programming using windows. All
is not lost, however. You have an escape route. As long as you know how to reconstruct any fields that
were not serializable when you read an object back from a stream, you can still serialize your objects by
declaring the non-serializable fields as transient.

532

Chapter 12

Transient Data Members of a Class
If your class has fields that are not serializable, or that you just don’t want to have written to the stream,
you can declare them as transient. For example:

public class MyClass implements Serializable {

transient protected Graphics g; // Transient class member

// Rest of the class definition

}

Declaring a data member as transient prevents the writeObject() method from attempting to write
the data member to the stream. When the class object is read back, it will be created properly, including
any members that you declared as transient. They just won’t have their values set, because they were
not written to the stream. Unless you arrange for something to be done about it, the transient fields will
be null.

You may well want to declare some data members of a class as transient. You would do this when
they have a value that is not meaningful long term or out of context — objects that represent the current
time, or today’s date, for example. You must either provide code to explicitly reconstruct the members
that you declare as transient when the object that contains them is read from the stream or accept the
defaults for these that apply when the objects are recreated.

Reading an Object from a File
Reading objects back from a file is just as easy as writing them. First, you need to create an
ObjectInputStream object for the file. To do this you just pass a reference to a FileInputStream
object that encapsulates the file to the ObjectInputStream class constructor:

File theFile = new File(“MyFile”);

// Perhaps check out the file...

// Create the object output stream for the file

ObjectInputStream objectIn = null;

try {

objectIn = new ObjectInputStream(new FileInputStream(theFile));

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

The ObjectInputStream constructor will throw an exception of type StreamCorruptedException—
a subclass of IOException— if the stream header is not correct, or of type IOException if an error
occurs while reading the stream header. Of course, as you saw in the previous chapter, the
FileInputStream constructor can throw an exception of type FileNotFoundException.

Once you have created the ObjectInputStream object, you call its readObject() method to read an
object from the file:

533

Serializing Objects

Object myObject = null;

try {

myObject = objectIn.readObject();

} catch(ClassNotFoundException e){

e.printStackTrace(System.err);

System.exit(1);

} catch(IOException e){

e.printStackTrace(System.err);

System.exit(1);

}

The readObject() method can throw the following exceptions:

ClassNotFoundException Thrown if the class for an object read from the stream can-
not be found.

InvalidClassException Thrown if something is wrong with the class for an object.
This is commonly caused by using a definition for a class
when you read an object from a stream that is different from
the definition in effect when you wrote it.

StreamCorruptedException When objects are written to the stream, additional control
data is written so that the object data can be validated when
it is read back. This exception is thrown when the control
information in the stream violates consistency checks.

OptionalDataException Thrown when basic types of data are read rather than an
object. For example, if you wrote a String object using the
writeChars() method and then attempted to read it back
using the readObject() method, this exception would be
thrown.

IOException Thrown if an error occurred reading the stream.

Clearly, if you do not have a full and accurate class definition for each type of object that you want to read
from the stream, the stream object will not know how to create the object and the read will fail. The last
four of the five possible exceptions are flavors of IOException, so you can use that as a catchall as you
have in the preceding code fragment. However, ClassNotFoundException is derived from Exception,
so you must put a separate catch block for this exception in your program. Otherwise, the code will not
compile.

As the code fragment implies, the readObject() method will return a reference to the object as type
Object, so you need to cast it to the appropriate class type to use it. Note that arrays are considered to
be objects and are treated as such during serialization, so if you explicitly read an array from a file, you
will have to cast it to the appropriate array type.

For example, if the object in the previous code fragment was of type MyClass, you could read it back
from the file with the statements:

534

Chapter 12

MyClass theObject = null; // Store the object here

try {

theObject = (MyClass)(objectIn.readObject());

} catch(ClassNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

To deserialize the object, you call the readObject() method and cast the reference that is returned to
type MyClass.

Armed with the knowledge of how the readObject() method works, you can now read the file that
you wrote in the previous example.

Try It Out Deserializing Objects
You can read the file containing Junk objects with the following code:

import java.io.FileInputStream;

import java.io.BufferedInputStream;

import java.io.ObjectInputStream;

import java.io.IOException;

import java.io.EOFException;

class DeserializeObjects {

public static void main(String args[]) {

ObjectInputStream objectIn = null; // Stores the stream reference

int objectCount = 0; // Number of objects read

Junk object = null; // Stores an object reference

try {

objectIn = new ObjectInputStream(

new BufferedInputStream(

new FileInputStream(“C:/Beg Java Stuff/JunkObjects.bin”)));

// Read from the stream until we hit the end

while(true) {

object = (Junk)objectIn.readObject();// Read an object

objectCount++; // Increment the count

System.out.println(object); // Output the object

}

} catch(ClassNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

535

Serializing Objects

} catch(EOFException e) { // This will execute when we reach EOF

System.out.println(“EOF reached. “+ objectCount + “ objects read.”);

} catch(IOException e) { // This is for other I/O errors

e.printStackTrace(System.err);

System.exit(1);

}

// Close the stream

try {

objectIn.close(); // Close the input stream

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

}

}

Don’t forget that you need to put the Junk.java source file in the same directory as this source file. I got
the following output from this example:

A green twig is easily bent.

42

numbers[0] = 0.20157825618636616

numbers[1] = 0.7123542196242817

numbers[2] = 0.8027761971323069

A little knowledge is a dangerous thing.

42

numbers[0] = 0.929629487353265

numbers[1] = 0.5402881072148746

numbers[2] = 0.03259660544653753

numbers[3] = 0.94945294401263

numbers[4] = 0.17383591141346522

Flies light on lean horses.

42

numbers[0] = 0.6765377168813207

numbers[1] = 0.3933764846876555

numbers[2] = 0.7633265658906377

numbers[3] = 0.31411955819992887

EOF reached. 3 objects read.

You should get output corresponding to the objects that were written to your file.

How It Works
You first define the objectIn variable that will store the reference to the stream. You will use the
objectCount variable to accumulate a count of the total number of objects read from the stream. The
object variable stores the reference to each object that you read. To make the program a little more gen-
eral, the read operation is in a loop to show how you might read the file when you don’t know how
many objects there are in it. To read each object, you just call the readObject() method for the input
stream and cast the reference returned to type Junk before storing it in object.

536

Chapter 12

So you can see what you have read from the file, the string representation of each object is displayed on
the command line. The while loop will continue to read objects from the stream indefinitely. When the
end of the file is reached, an exception of type EOFExcepion will be thrown. This will effectively termi-
nate the loop, and the code in the catch block for this exception will execute. This outputs a message to
the command line showing the number of objects that were read. As you can see, you get back all the
objects that you wrote to the file originally. This is obviously very encouraging — getting fewer objects
than you wrote would be inconvenient to say the least, and getting more would be worrying.

Determining the Class of a Deserialized Object
Clearly, since the readObject() method returns the object that it reads from the stream as type Object,
you need to know what the original type of the object was to be able to cast it to its actual type. For the
most part, you will know what the class of the object is when you read it back. It is possible that in some
circumstances you won’t know exactly, but you have a rough idea, in which case you can test it. To bring
the problem into sharper focus, consider a hypothetical situation.

Suppose you have a file containing objects that represent employees. The basic characteristics of all
employees are defined in a base class, Person, but various different types of employee are represented
by subclasses of Person. You might have subclasses Manager, Secretary, Admin, and ShopFloor, for
example. The file can contain any of the subclass types in any sequence. Of course, you can cast any
object read from the file to type Person because that is the base class, but you want to know precisely
what each object is so you can call some type-specific methods. Since you know what the possible types
are, you can check the type of the object against each of these types and cast accordingly:

Person person = null;

try {

person = (Person)objectIn.readObject();

if(person instanceof Manager)

processManager((Manager)person);

else if(person instanceof Secretary)

processSecretary((Secretary)person);

// and so on...

} catch (IOException e){

}

Here you determine the specific class type of the object read from the file before calling a method that
deals with that particular type of object. Don’t forget though that the instanceof operator does not guar-
antee that the object being tested is actually of the type tested for —Manager, say. The object could also be
of any type that is a subclass of Manager. In any event, the cast to type Manager will be perfectly legal.

Where you need to be absolutely certain of the type, you can use a different approach:

if(person.getClass().getName().equals(Manager))

processManager((Manager)person);

else if(person.getClass().getName().equals(Secretary))

processSecretary((Secretary)person);

// and so on...

This calls the getClass() method (inherited from Object) for the object read from the file and that
returns a reference to the Class object representing the class of the object. Calling the getName()
method for the Class object returns the fully qualified name of the class. This approach guarantees that
the object is of the type for which you are testing, and is not a subclass of that type.

537

Serializing Objects

Another approach would be to just execute a cast to a particular type, and catch the ClassCastException
that is thrown when the cast is invalid. This is fine if you do not expect the exception to be thrown under
normal conditions, but if on a regular basis the object read from the stream might be other than the type to
which you are casting, you will be better off with code that avoids the need to throw and catch the excep-
tion because this adds quite a lot of overhead.

Reading Basic Data from an Object Stream
The ObjectInputStream class defines the methods declared in the DataInput interface for reading
basic types of data back from an object stream and binary values. They are:

readBoolean() readByte() readChar() readShort()

readInt() readLong() readFloat() readDouble()

They each return a value of the corresponding type, and they can all throw an IOException if an error
occurs, or an EOFException if the end-of-file is reached.

Just to make sure that the process of serializing and deserializing objects is clear, let’s try it again in
another simple example.

Using Object Serialization
Back in Chapter 6, you produced an example that created PolyLine objects containing Point objects in a
generalized linked list. This is a good basis for demonstrating how effectively serialization takes care of han-
dling objects that are members of objects. You can just modify the class TryPolyLine to use serialization.

Try It Out Serializing a Linked List
The classes PolyLine, Point, and LinkedList and the inner class ListItem are exactly the same as in
Chapter 6 except that you need to implement the Serializable interface in each of them.

The PolyLine definition needs to be amended to:

import java.io.Serializable;

public final class PolyLine implements Serializable {

// Class definition as before...

}

The Point definition needs a similar change:

import java.io.Serializable;

public class Point implements Serializable {

// Class definition as before...

}

538

Chapter 12

The LinkedList class and its inner class likewise:

import java.io.Serializable;

public class LinkedList implements Serializable {

// Class definition as before...

private class ListItem implements Serializable {

// Inner class definition as before...

}

}

Of course, each file must also have an import statement for the java.io.Serializable class as in the
preceding code.

The modified version of the TryPolyLine class to write the PolyLine objects to a stream looks like this:

import java.io.ObjectOutputStream;

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

import java.io.ObjectInputStream;

import java.io.BufferedInputStream;

import java.io.FileInputStream;

import java.io.IOException;

public class TryPolyLine {

public static void main(String[] args) {

// Create an array of coordinate pairs

double[][] coords = { {1., 1.}, {1., 2.}, { 2., 3.},

{-3., 5.}, {-5., 1.}, {0., 0.} };

// Create a polyline from the coordinates and display it

PolyLine polygon = new PolyLine(coords);

System.out.println(polygon);

// Add a point and display the polyline again

polygon.addPoint(10., 10.);

System.out.println(polygon);

// Create Point objects from the coordinate array

Point[] points = new Point[coords.length];

for(int i = 0; i < points.length; i++)

points[i] = new Point(coords[i][0],coords[i][1]);

// Use the points to create a new polyline and display it

PolyLine newPoly = new PolyLine(points);

System.out.println(newPoly);

// Write both polyline objects to the file

try {

// Create the object output stream

ObjectOutputStream objectOut =

new ObjectOutputStream(

new BufferedOutputStream(

new FileOutputStream(“C:/Beg Java Stuff/Polygons.bin”)));

539

Serializing Objects

objectOut.writeObject(polygon); // Write first object

objectOut.writeObject(newPoly); // Write second object

objectOut.close(); // Close the output stream

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

// Read the objects back from the file

System.out.println(“\nReading objects from the file: “);

try {

ObjectInputStream objectIn =

new ObjectInputStream(

new BufferedInputStream (

new FileInputStream(“C:/Beg Java Stuff/Polygons.bin”)));

PolyLine theLine = (PolyLine)objectIn.readObject();

System.out.println(theLine); // Display the first object

theLine = (PolyLine)objectIn.readObject();

System.out.println(theLine); // Display the second object

objectIn.close(); // Close the input stream

} catch(ClassNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

} catch(IOException e){

e.printStackTrace(System.err);

System.exit(1);

}

}

}

This produces the following output:

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0)

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0) (10.0,10.0)

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0)

Reading objects from the file:

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0) (10.0,10.0)

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0)

How It Works
You create two different PolyLine objects in the same manner as in the original example, and you display
them on standard output as before. You then create an ObjectOutputStream for the file, Polygons.bin,
in the C:\Beg Java Stuff directory and write each of the PolyLine objects to the file using the
writeObject() method. You should adjust the file name and directory to suit your environment if neces-
sary. You then call the close() method to close the output stream. You don’t need to explicitly write the
LinkedList and Point objects to the stream. These are part of the PolyLine object, so they are taken care
of automatically. The same goes for when you read the PolyLine objects back. All the subsidiary objects
are reconstructed automatically.

540

Chapter 12

To read the file, you create an ObjectInputStream object for Polygons.bin. You read the first object
using the readObject() method and store the reference to it in the variable theObject. You then
output the object, read, to the standard output stream. You repeat the same process for the second
PolyLine object. It couldn’t be simpler really, could it?

Serializing Classes Yourself
Earlier I identified situations where the default serialization that you used in the example won’t work.
One such situation occurs if your class has a superclass that is not serializable. As I said earlier, to make
it possible to overcome this, the superclass must have a default constructor, and you must take care of
serializing the fields that are inherited from the superclass yourself. If the superclass does not have a
default constructor and you do not have access to the original definition of the superclass, you have a
problem with no obvious solution.

Another situation where the default serialization mechanism won’t be satisfactory is where your class
has fields that don’t travel well. If you use the hashCode() method that your classes will inherit from
Object, then the hashcode() value for an object will be derived from its internal address. When you
read the object back from a file its address will be different and therefore so will its hashcode. You may
have a class with vast numbers of fields with zero values, for example, that you may not want to have
written to the file. These are all cases where do-it-yourself serialization is needed.

To implement and control the serialization of a class yourself, you must implement two private
methods in the class: one for input from an ObjectInputStream object and the other for output to an
ObjectOutputStream object. The readObject() and writeObject() methods for the stream will
call these methods to perform I/O on the stream if you implement them.

Even though it isn’t necessary in this class, let’s take the PolyLine class as a demonstration vehicle for
how this works. To do your own serialization, the class would be:

class PolyLine implements Serializable {

// Class definition as before...

.

// Serialized input method

private void readObject(ObjectInputStream in) throws IOException {

// Code to do the serialized input...

}

// Serialized output method

private void writeObject(ObjectOutputStream out)

throws IOException, ClassNotFoundException {

// Code to do the serialized output...

}

}

These two methods must have exactly the same signature in any class where they are required, and they
must be declared as private.

In a typical situation, you will want to use the default serialization operations provided by the object
stream and just add your own code to fix up the data members that you want to take care of — or have
to in the case of a non-serialized base class. To get the default serialization done on input, you just call
the defaultReadObject() method for the stream in your serialization method:

541

Serializing Objects

private void readObject(ObjectInputStream in) throws IOException {

in.defaultReadObject(); // Default serialized input

// Your code to do serialized input...

}

You can get the default serialized output operation in a similar fashion by calling the
defaultWriteObject() method for the stream object that is passed to your output method.
Obviously, you must read back the data in exactly the same sequence as it was written, so the two
methods will have essentially mirror operations on the same sequence of data items.

Serialization Problems and Complications
For most classes and applications, serialization will work in a straightforward fashion. You will have situ-
ations that can cause confusion though. One such situation is when you want to write several versions of
the same object to a file. You need to take care to ensure that the result is what you want. Suppose you
write an object to a file — a PolyLine object, say. A little later in your code, you modify the PolyLine
object in some way, by moving a point perhaps, and you now write the same object to the file again in its
modified state. What happens? Does the file contain the two versions of the object? The answer — perhaps
surprisingly — is no. Let’s explore this in a little more detail.

Try It Out Serializing Variations on an Object
Let’s start by defining a very simple serializable class that you can use in our example:

import java.io.Serializable;

public class Data implements Serializable {

private int value;

public Data(int init) {

value = init;

}

// Method to compare two Data objects

public boolean equals(Object obj) {

if(obj instanceof Data && ((Data)obj).value == value) {

return true;

}

return false;

}

public void setValue(int val) {

value = val;

}

public int getValue() {

return value;

}

}

542

Chapter 12

Objects of type Data have a single field of type int. Two Data objects are equal if their value fields con-
tain the same value. You can alter the value field for an object by calling its setValue() method so you
can easily create variations on the same object. Now you can write an example that will write variations
on a single instance of type Data to a file and then read them back:

import java.io.ObjectOutputStream;

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

import java.io.ObjectInputStream;

import java.io.BufferedInputStream;

import java.io.FileInputStream;

import java.io.IOException;

public class TestData {

public static void main(String[] args) {

Data data = new Data(1);

try {

// Create the object output stream

ObjectOutputStream objectOut =

new ObjectOutputStream(

new BufferedOutputStream(

new FileOutputStream(“C:/Beg Java Stuff/dataObjects.bin”)));

// Write three variants of the object to the file

objectOut.writeObject(data); // Write object

System.out.println(“1st Object written has value: “+data.getValue());

data.setValue(2); // Modify the object

objectOut.writeObject(data); // and write it again

System.out.println(“2nd Object written has value: “+data.getValue());

data.setValue(3); // Modify the object again...

objectOut.writeObject(data); // and write it once more

System.out.println(“3rd Object written has value: “+data.getValue());

objectOut.close(); // Close the output stream

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

// Read the three objects back from the file

System.out.println(“\nReading objects from the file: “);

try {

ObjectInputStream objectIn =

new ObjectInputStream(

new BufferedInputStream(

new FileInputStream(“C:/Beg Java Stuff/dataObjects.bin”)));

Data data1 = (Data)objectIn.readObject();

Data data2 = (Data)objectIn.readObject();

Data data3 = (Data)objectIn.readObject();

System.out.println(“1st object is “ + (data1.equals(data2)? “” : “not “)

+ “Equal to 2nd object.”);

System.out.println(“2nd object is “ + (data2.equals(data3)? “” : “not “)

+ “Equal to 3rd object.”);

543

Serializing Objects

System.out.println(“data1 = “+data1.getValue() // Display object values

+ “ data2 = “ + data2.getValue()

+ “ data3 = “+data3.getValue());

objectIn.close(); // Close the input stream

} catch(ClassNotFoundException e) {

e.printStackTrace(System.err);

System.exit(1);

} catch(IOException e) {

e.printStackTrace(System.err);

System.exit(1);

}

}

}

This is a simple program that writes three objects to the file and records on the command line what
objects were written. It then reads the objects back from the file and writes details of the objects that
were read to the command line. When you run it you should see the following output:

1st Object written has value: 1

2nd Object written has value: 2

3rd Object written has value: 3

Reading objects from the file:

1st object is Equal to 2nd object.

2nd object is Equal to 3rd object.

data1 = 1 data2 = 1 data3 = 1

All three objects that you read from the file are equal and identical to the first object that was written.
This seems rather strange and unexpected so let’s try to understand what is happening here.

How It Works
As you know, all variables of a class type store references, not objects, and you may have several different
variables referring to the same object in your program. For this reason, the serialization output process
keeps track of the objects that are written to the stream. Any attempt to write the same object to the stream
will not result in duplicates of the object being written. Only a handle, which is a sort of reference, will be
written to the stream, and this will point to the first occurrence of the object in the stream.

Thus, in the example, the modified versions of the Data object will not be written to the file. The first
write operation writes the original object referenced by Data to the stream. For the second and third write
operations, the serialization process detects that you are writing an object that has previously been written
to the file, and so only a handle that refers to the original unmodified version of the object will be
written, and so the changes will be lost. This explains why, when you read the three objects back from the
file, they all turn out to be identical. This is not what you intended in this case, so how can you avoid this?

Resetting an Object Output Stream
The appropriate course of action in such situations is obviously going to be application-dependent, but
in the previous example it is clear — you want each version of Data explicitly written to the file. You can

544

Chapter 12

make the ObjectOutputStream object forget the objects it has previously written to a stream by calling
its reset() method:

objectOut.reset(); // Reset the stream

This clears the record that is kept within the stream object of what has been written and writes a “reset
marker” to the stream. When an ObjectInputStream object reads a “reset marker” it too clears its
record of what has been read, so that subsequent object read operations will be as if the stream started at
that point. To make effective use of this, your code will clearly need to accommodate the possibility of
multiple versions of the same object existing in the stream. It’s your code, so you will know what you
want to do. To make the example work as you want, you can reset the stream before each output opera-
tion after the first call to writeObject(), like this:

objectOut.writeObject(data); // Write object

System.out.println(“1st Object written has value: “+data.getValue());

data.setValue(2); // Modify the object

objectOut.reset();

objectOut.writeObject(data); // and write it again

System.out.println(“2nd Object written has value: “+data.getValue());

data.setValue(3); // Modify the object again...

objectOut.reset();

objectOut.writeObject(data); // and write it once more

System.out.println(“3rd Object written has value: “+data.getValue());

If you insert the calls to reset() in the original code and run the example again, you should get the out-
put you were expecting.

A further complication arises with serialized objects when you change the definition of a class in some
way. When an object is written to a file, part of the information identifying the class is a sort of hashcode,
called a version ID, that is intended to ensure that the definition of the class used when you are reading
an object from a file is the same as the class definition that was used when the object was written. Even
cosmetic changes between writing and reading a stream, such as changing the name of a field, can alter
the version ID, so in this case a read operation will fail with an InvalidClassException being thrown.
In general, you need to make sure that the class definitions in a program reading a file are the same as
those used when the file was written, although you can explicitly set the version number and deal with
any changes yourself.

For more complex situations, it is possible to take complete control of the serialization process within
your classes by implementing the Externalizable interface. This is important when the class defini-
tion for the object involves change over time. With careful programming you can accommodate modifi-
cations to classes without invalidating existing serialized objects. A detailed discussion of what is
involved in this is outside the scope of this book.

Summary
In this chapter you have explored how you can write objects to a file and read them back. Making your
class serializable makes it very easy to save your application data in a file. While what I have discussed
is by no means exhaustive, you now know enough to deal with straightforward object serialization. The
important points in this chapter are:

545

Serializing Objects

❑ To make objects of a class serializable the class must implement the Serializable interface.

❑ If a class has a superclass that does not implement the Serializable interface, then the super-
class must have a public default constructor if it is to be possible to serialize the class.

❑ Objects are written to a file using an ObjectOutputStream object and read from a file using
and ObjectInputStream object.

❑ Objects are written to a file by calling the writeObject() method for the
ObjectOutputStream object corresponding to the file.

❑ Objects are read from a file by calling the readObject() method for the ObjectInputStream
object corresponding to the file.

❑ When necessary — for example, if a superclass is not serializable — you can implement the
readObject() and writeObject() methods for your classes.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Define a Person class to encapsulate a person’s name and address with the name and address
being fields of type Name and Address. Write a program to allow names and addresses to be
entered from the keyboard and stored as Person objects in a file. Once the file exists new entries
should be appended to the file.

2. Extend the previous example to optionally list all the names and addresses contained within the
file on the command line.

3. Extend the previous example to add an index based on the person’s name for each person
entered at the keyboard to locate the corresponding Person object in the object file. The index
file will contain entries of type IndexEntry, each of which encapsulates a name and a file posi-
tion in the object file. The index file should be a separate file from the original file containing
Person objects.

Note: You will probably find it easiest to delete the previous file before you run this example so
that the object file can be reconstructed along with the index file. You can’t get the file position in
an object stream in the same way as you can with a channel. However, you can use the sequence
number for an object as the index — the first object being 1, the second being 2, and so on.

4. Use the index file to provide random direct access to the object file for querying random names
entered from the keyboard. Entering a name from the keyboard should result in the address for
the individual, or a message indicating the entry is not present in the file. The process will be to
first search the index file for an object with a name field matching the keyboard entry. When an
IndexEntry is found, you use the sequence number it contains to retrieve the appropriate
Person object.

546

Chapter 12

13
Generic Class Types

Generic class types are not a separate capability from the class and interface types that you have
seen in earlier chapters. The facility for defining generic class and interface types is an extension of
the ordinary definition of classes and interfaces that you are already familiar with that enables you
to define families of classes and interfaces. In this chapter you will learn:

❑ What a generic type is

❑ How you define a generic type

❑ How you specify type parameters for a generic type

❑ What parameter type bounds are and how you use them

❑ What wildcard type specifications are and how you use them

❑ How you define bounds for a wildcard

❑ How you define and use parameterized methods

What Are Generic Types?
A generic type, which is also referred to as a parameterized type, is a class or interface type defini-
tion that has one or more type parameters. You define an actual class or interface type from a generic
type by supplying a type argument for each of the type parameters that the generic type has. It’ll
be easier to understand what this means with a concrete example of where and how you could
apply the concept.

I’m sure you recall the LinkedList class that you first saw in Chapter 6 and used in an example
in the previous chapter. You used the LinkedList class to encapsulate a linked list of Point objects,
but the idea of a linked list applies to any set of objects that you want to organize in this way. A
linked list is just one example of classes that define objects for organizing other objects of a given
type into a collection in some way. Such classes are described as collection classes for obvious rea-
sons, and in Chapter 14 you’ll meet a variety of these that are defined in the java.util package.

The LinkedList class that you implemented in Chapter 6 can organize objects of any given type into a
linked list. This clearly has the advantage that the code for a single class defines a linked list class that
you can use for objects of any kind, but it has significant disadvantages, too. When you were adding
Point objects to a LinkedList object, nothing in the code prevented you from adding a Line object,
or indeed any type of object, to the same linked list. Of course, if you were to do this inadvertently, the
result would be a disaster, because when you retrieved objects from the list, you would not know that
some of the objects were not of type Point. If you attempted to use an object as a Point object that was
actually type Line or type String, your program would fail.

To avoid such problems, ideally what you need is a LinkedList class that is typesafe. By typesafe I
mean that when you are using a LinkedList object to store Point objects, no possibility of any other
type of object being added exists. In other words, you want a class that will always prevent you from
accidentally adding objects of the wrong type. Of course, you can define a LinkedList class that works
only with objects of type Point. You just use parameters of type Point in the methods that you use to
add objects to the list and to retrieve them. The problem with this solution is that you must write a new
LinkedList class for every type of object that you want to organize in this way, so you end up with a
LinkedLineList class, a LinkedPointList class, a LinkedElephantList class — well, you can see
the problem.

That’s exactly where generic types come in. Generic types provide a way for you to define a generic
LinkedList class that can transform itself into a class that defines a typesafe LinkedList class for
objects of any type that you want to organize in a linked list. Broadly, a generic type can assume the
guise of any particular class from the set or family of classes that it represents. You just supply the
appropriate type arguments for the parameters in the generic type and it will behave as that particular
class. Let’s see how that works in practice.

Defining a Generic Class Type
I’ll use the LinkedList class as a model for showing how you define a generic type because you already
know how a linked list works. A definition of a generic class type looks very much like the definition of
an ordinary class, but with a parameter specification added following the class name. Here’s how the
LinkedList class from Chapter 6 looks as an outline of a generic type:

public class LinkedList<T> { // T is the type parameter

// Generic type definition...

}

The parameter that appears between the angled brackets, <>, that follows the generic type name,
LinkedList, is called a type parameter. The name, T, identifies the type parameter, and you use the
parameter name in the definition of the methods and fields in the generic type where there is a depen-
dency on the argument value for this parameter in the implementation detail. Occurrences of the type
parameter name in the definition of a generic type are called type variables because they will be replaced
by a value that is a type, in a similar way to how method parameters are replaced by the arguments that
you supply.

Although I’ve used a single letter, T, as the type parameter name to indicate that the argument should be
a Type, you can use any legal identifier. For example, you could use InsertYourTypeHere as the parame-
ter name, but this would make the code in the body of the generic type definition rather cumbersome.

548

Chapter 13

It’s generally best to keep the parameter names as short as possible — ideally as a single letter. Within
the text I’ll append angled brackets to a generic type name to differentiate when I’m referring to a generic
type such as LinkedList<> from when I’m referring to an ordinary class or interface type. While the
LinkedList<> example is a generic class type, you can equally well define generic interface types, and
you’ll find quite a number of these in the standard packages. You’ll be working with the Iterable<>
and Comparable<> generic interface types from the java.lang package later in this chapter.

To create a class from the generic type, LinkedList<>, you just supply an appropriate argument for the
parameter between the angled brackets. All occurrences of the type variable, T, that appear in the defini-
tion will be replaced by the type argument that you supply. This will result in a class type that you can
use to create an object that implements a linked list that will store objects of the type that you specified,
as illustrated in Figure 13-1.

Figure 13-1

Thus, a generic type essentially defines a set of types, the set being produced by different arguments for
the parameters or parameters for the generic type. Note that although Figure 13-1 show three types being
defined, there aren’t three classes. There’s just the generic class type to which you supply a type argu-
ment to produce a particular type. The three types in Figure 13-1 are produced by plugging the three
type arguments shown into the generic type.

You can supply only a class or interface type such as type String or type Point as an argument for a
type parameter in a generic type. In other words, you cannot use a primitive type such as int or type
double as an argument, although, of course, you can use type Integer or type Double. When you cre-
ate a particular type from the generic type definition by supplying an argument value for T, the argument
will be substituted for every occurrence of T in the generic type specification. This applies to fields as
well as the definitions of methods in the generic type.

You put a generic type definition in a source file with the extension .java, just like an ordinary class, so
you could save the code for the preceding outline generic type as LinkedList.java. It will even com-
pile as it is, although it’s not very useful at the moment.

Generic Type

Class TypeClass Type Class Type

LinkedList<Point>
that defines an object
to store Point object

references in a linked list

LinkedList<Point>
that defines an object
to store Point object

references in a linked list

LinkedList<Point>
that defines an object
to store Point object

references in a linked list

LinkedList<T>

Specify
T as Point

Specify
T as PolyLine

Specify
T as String

Specify
T as Point

Specify
T as PolyLine

Specify
T as String

549

Generic Class Types

Implementing a Generic Type
You can easily convert the definition of the LinkedList class you were working with earlier into a
generic type. Here’s how an initial stab at a LinkedList<> generic type definition would look:

public class LinkedList<T> {

// Default constructor - creates an empty list

public LinkedList() {}

// Constructor to create a list containing one object

public LinkedList(T item) {

if(item != null) {

current=end=start=new ListItem(item); // item is the start and end

}

}

// Construct a linked list from an array of objects

public LinkedList(T[] items) {

if(items != null) {

// Add the items to the list

for(int i = 0; i < items.length; i++) {

addItem(items[i]);

}

current = start;

}

}

// Add an item object to the list

public void addItem(T item) {

ListItem newEnd = new ListItem(item); // Create a new ListItem

if(start == null) { // Is the list empty?

start = end = newEnd; // Yes, so new element is start and end

} else { // No, so append new element

end.next = newEnd; // Set next variable for old end

end = newEnd; // Store new item as end

}

}

// Get the first object in the list

public T getFirst() {

current = start;

return start == null ? null : start.item;

}

// Get the next object in the list

public T getNext() {

if(current != null) {

current = current.next; // Get the reference to the next item

}

return current == null ? null : current.item;

}

private ListItem start = null; // First ListItem in the list

private ListItem end = null; // Last ListItem in the list

private ListItem current = null; // The current item for iterating

550

Chapter 13

private class ListItem {

// Constructor

public ListItem(T item) {

this.item = item; // Store the item

next = null; // Set next as end point

}

// Return class name & object

public String toString() {

return “ListItem “ + item ;

}

ListItem next; // Refers to next item in the list

T item; // The item for this ListItem

}

}

The shaded lines reflect changes to the original LinkedList class definition that you created in Chapter 6.
Each of the lines that have been modified in the body of the generic type definition have just had the
type variable, T, substituted wherever the type Object appeared in the original. The item field in the
ListItem inner class is now of type T, for example, and the return type for the getNext() method is
now type T. All the methods that make use of the parameter T in their definitions will be customized by
the argument type that is supplied for T when you define a type from the generic type. A generic type
definition can include ordinary methods that do not involve any parameters in their definitions as well
as methods that do. This just means that the ordinary methods are not customized for particular
instances of the generic type.

You now have a generic LinkedList<T> type that you can use to create a new LinkedList class for
storing objects of any type that you want. Let’s look at how you use it.

Instantiating a Generic Type
You use the generic type name followed by a class or interface type name between angled brackets to
define a new type. For example:

LinkedList<String> strings; // A variable of type LinkedList<String>

This just defines a variable with the name strings. The type for this variable is LinkedList<String>,
which is from the generic type that you defined in the previous section. As a result of this statement, the
compiler will use the type argument String that you supplied to replace every instance of the type vari-
able, T, in the generic type definition to arrive at the notional class type definition for
LinkedList<String>.

Of course, you can define an object when you define the variable, like this:

LinkedList<String> strings = new LinkedList<String>();

This calls the default constructor for the LinkedList<String> class type to define an object that imple-
ments a linked list of String objects.

551

Generic Class Types

The argument that you supply to a generic type could also be a type that you define using a generic type.
Look at this example:

LinkedList<LinkedList<String>> texts = new LinkedList<LinkedList<String>>();

Here you have created an object that implements a linked list in which you can store objects that are
linked lists of type LinkedList<String>. Thus, you have defined a linked list of linked lists!

To apply the new generic LinkedList<> type that you have defined in a working context, let’s repeat
the TryPolyLine example from Chapter 6 but using a type that is generated from the LinkedList<>
generic type.

Try It Out Using a Generic Linked List Type
First you need a modified version of the PolyLine class that uses the LinkedList<T> generic type:

public class PolyLine {

// Construct a polyline from an array of coordinate pairs

public PolyLine(double[][] coords) {

Point[] points = new Point[coords.length]; // Array to hold points

// Create points from the coordinates

for(int i = 0; i < coords.length ; i++) {

points[i] = new Point(coords[i][0], coords[i][1]);

}

// Create the polyline from the array of points

polyline = new LinkedList<Point>(points); // Create list of Point objects

}

// Construct a polyline from an array of points

public PolyLine(Point[] points) {

polyline = new LinkedList<Point>(points); // Create list of Point objects

}

// Add a Point object to the list

public void addPoint(Point point) {

polyline.addItem(point); // Add the point to the list

}

// Add a point from a coordinate pair to the list

public void addPoint(double x, double y) {

polyline.addItem(new Point(x, y)); // Add the point to the list

}

// String representation of a polyline

public String toString() {

StringBuffer str = new StringBuffer(“Polyline:”);

Point point = (Point) polyline.getFirst();

// Set the 1st point as start

while(point != null) {

str.append(“ (“+ point+ “)”); // Append the current point

point = (Point)polyline.getNext(); // Make the next point current

552

Chapter 13

}

return str.toString();

}

private LinkedList<Point> polyline; // The linked list of points

}

I have shaded all the lines that have been changed from the original version — yes, all three of them! The
constructor calls that create objects implementing a linked list now use the LinkedList<T> generic type
with Point as the type argument. The polyline field is now of type LinkedList<Point>.

Put this source file in a directory along with the Point class source file that you created in Chapter 6,
and the source file containing the LinkedList<> generic type. You can then add the following source
file that will try out the new version of the PolyLine class:

public class TryGenericLinkedList {

public static void main(String[] args) {

// Create an array of coordinate pairs

double[][] coords = { {1., 1.}, {1., 2.}, { 2., 3.},

{-3., 5.}, {-5., 1.}, {0., 0.} };

// Create a polyline from the coordinates and display it

PolyLine polygon = new PolyLine(coords);

System.out.println(polygon);

// Add a point and display the polyline again

polygon.addPoint(10., 10.);

System.out.println(polygon);

// Create Point objects from the coordinate array

Point[] points = new Point[coords.length];

for(int i = 0; i < points.length; i++) {

points[i] = new Point(coords[i][0],coords[i][1]);

}

// Use the points to create a new polyline and display it

PolyLine newPoly = new PolyLine(points);

System.out.println(newPoly);

}

}

Apart from the class name, this is the same as the TryPolyLine source file that you created in
Chapter 6. Compiling this program results in five .class files. Two of these are the result of compiling
LinkedList.java. The source for generic type compiles into LinkedList.class plus the
LinkedList$ListItem.class corresponding to the inner class. When you execute this example,
it produces the same output as the example in Chapter 6.

How It Works
The PolyLine class creates the LinkedList<Point> type from the LinkedList<T> generic type that
will implement a linked list of Point objects because of this statement:

private LinkedList<Point> polyline; // The linked list of points

553

Generic Class Types

The class type that results from this is produced by passing Point as the argument for the type variable
T in the LinkedList<T> generic type definition. This process is described as type erasure because all
occurrences of the type variable T are eliminated, so you end up with a notional class with the following
definition:

public class LinkedList {

// Default constructor - creates an empty list

public LinkedList() {}

// Constructor to create a list containing one object

public LinkedList(Object item) {

if(item != null) {

current=end=start=new ListItem(item); // item is the start and end

}

}

// Construct a linked list from an array of objects

public LinkedList(Object[] items) {

if(items != null) {

// Add the items to the list

for(int i = 0; i < items.length; i++) {

addItem(items[i]);

}

current = start;

}

}

// Add an item object to the list

public void addItem(Object item) {

ListItem newEnd = new ListItem(item); // Create a new ListItem

if(start == null) { // Is the list empty?

start = end = newEnd; // Yes, so new element is start and end

} else { // No, so append new element

end.next = newEnd; // Set next variable for old end

end = newEnd; // Store new item as end

}

}

// Get the first object in the list

public Object getFirst() {

current = start;

return start == null ? null : start.item;

}

// Get the next object in the list

public Object getNext() {

if(current != null) {

current = current.next; // Get the reference to the next item

}

return current == null ? null : current.item;

}

private ListItem start = null; // First ListItem in the list

private ListItem end = null; // Last ListItem in the list

private ListItem current = null; // The current item for iterating

554

Chapter 13

private class ListItem {

// Constructor

public ListItem(Point item) {

this.item = item; // Store the item

next = null; // Set next as end point

}

// Return class name & object

public String toString() {

return “ListItem “ + item ;

}

ListItem next; // Refers to next item in the list

Object item; // The item for this ListItem

}

}

The type parameter following the class name in the original generic type definition has been removed,
and all occurrences of the type variable Point within the class definition have been replaced by type
Object. Type Object is chosen by the compiler to replace the type variable because type Object is the
ultimate superclass class from which type Point is derived. The type that the compiler selects to replace
a type variable is the leftmost bound of the type variable. Type Object is the default leftmost bound
that applies to any class type because all classes have type Object as their ultimate superclass, but you’ll
see later in the chapter how you can specify a different leftmost bound for a type parameter and what
the reasons are for doing this.

Of course, this class doesn’t exist as a separate entity. The preceding code represents a description of
how the generic type behaves when you supply a type argument as type Point. Looking at the class
that now works with references of type Object, you may wonder what the advantage of being able to
specify the type parameter is; after all, you can supply a reference to an object of any type for a parame-
ter of type Object. The answer is that the type variable you supply is used by the compiler to ensure
compile-time type safety. When you use an object of type LinkedList<Point> in your code, the com-
piler checks that you use it only to store objects of type Point and flags any attempt to store objects of
other types as an error. When you call methods for an object of type LinkedList<Point>, the compiler
will ensure that you supply references only of type Point where the original method parameter was
specified as the type parameter.

You use the methods in the parameterized type in the same way as those in the original LinkedList
class definition. Everything is very straightforward, and you now have a PolyLine implementation that
uses a typesafe linked list. I think you’ll agree that the essentials of defining and using a generic type
could be described as a piece of cake.

Using Primitive Type Wrapper Class Types as Arguments
On occasion you will want to store values of a primitive type in a collection such as a linked list. In
this situation you use the generic type with one of the wrapper classes for values of primitive types as
the type argument — these are the classes Integer, Short, Double, and so on that are defined in the
java.lang package. Here’s how you could use the LinkedList<T> generic type to hold values of type
double:

LinkedList<Double> temperatures = new LinkedList<Double>();

555

Generic Class Types

Here you have created a linked list that will store objects of type Double, and the autoboxing facility
that you met in Chapter 5 makes it very easy to use the LinkedList<Double> object directly with val-
ues of type double. For example, to effectively add a value of type double to the linked list you have
just created, you could write:

temperatures.addItem(10.5);

Because the parameter type for this method for the LinkedList<Double> object is of type Double, the
compiler will automatically insert a boxing conversion to convert the double value 10.5 to an object of
type Double that encapsulates it. Thus, the creation of the appropriate wrapper class object is taken care
of automatically, so you can use the linked list object as though it stored values of the primitive type.

Let’s see if the linked list type can really take the heat.

Try It Out Autoboxing with Generic Types
In this example you’ll create an instance of the LinkedList<T> generic type and use that to store ran-
dom temperature values of type double. Here’s the code:

public class TryAutoboxing {

public static void main(String[] args) {

LinkedList<Double> temperatures = new LinkedList<Double>();

// Insert 6 temperature values 0 to 25 degress Centigrade

for(int i = 0 ; i<6 ; i++) {

temperatures.addItem(25.0*Math.random());

}

System.out.printf(“%.2f degrees Fahrenheit%n”,

toFahrenheit(temperatures.getFirst()));

Double value = null;

while((value=temperatures.getNext()) != null) {

System.out.printf(“%.2f degrees Fahrenheit%n”, toFahrenheit(value));

}

}

// Convert Centigrade to Fahrenheit

public static double toFahrenheit(double temperature) {

return 1.8*temperature+32.0;

}

}

This will output something similar to the following:

72.88 degrees Fahrenheit

32.80 degrees Fahrenheit

38.36 degrees Fahrenheit

65.76 degrees Fahrenheit

65.92 degrees Fahrenheit

67.56 degrees Fahrenheit

556

Chapter 13

How It Works
Here you create an object of type LinkedList<Double> from the parameterized type to store elements
of type Double in the linked list. When you pass a value of type double to the addItem() method of
the linked list class that you have created, the compiler inserts a boxing conversion to type Double
because that’s the argument type that the method requires.

When you extract Double objects from the linked list and pass them to the toFahrenheit() method, the
compiler automatically inserts an unboxing conversion to extract the original double values and those will
be passed to the method. You could equally well use the reference returned by getFirst() or getNext()
in an arithmetic expression; you would get the same unboxing conversion provided automatically.

You can see how the printf() method is helpful in making the output more readable by limiting the
display of temperature values to two decimal places after the decimal point.

The Runtime Type of Generic Type Instances
Suppose you create two different types from the LinkedList<T> generic type:

LinkedList<Double> numbers = new LinkedList<Double>(); // List to store numbers

LinkedList<String> proverbs = new LinkedList<String>(); // List to store strings

Clearly the variables numbers and proverbs are instances of different class types. One type represents a
linked list that stores values of type Double, and the other represents a linked list that stores values of
type String. However, things are not quite as straightforward as that. Because you have only one
generic type, both classes share the same Class object at runtime, which is the Class object that corre-
sponds to the generic type, so their class type names will be identical. Indeed, all types that you generate
from a given generic type share the same class name at run time. You can demonstrate this with the fol-
lowing simple example.

Try It Out The Run-Time Types of Generic Type Instances
In this example you’ll create two different instances of the LinkedList<T> generic type and see what
their type names are:

public class TestClassTypes {

public static void main(String[] args) {

LinkedList<String> proverbs = new LinkedList<String>();

LinkedList<Double> numbers = new LinkedList<Double>();

System.out.println(“numbers class name “ + numbers.getClass().getName());

System.out.println(“proverbs class name “ + proverbs.getClass().getName());

System.out.println(“Compare Class objects: “

+ numbers.getClass().equals(proverbs.getClass()));

}

}

This will produce the following output:

numbers class name LinkedList

proverbs class name LinkedList

Compare Class objects: true

557

Generic Class Types

How It Works
You call the getClass() method that is inherited from the Object class to obtain the Class objects for
the objects referenced by proverbs and numbers. You then call the getName() method for the Class
object to get the run-time type name. In both instances the type name is LinkedList. The fact that
the run-time types are identical is further confirmed by the comparison of the Class objects for the
LinkedList<String> and LinkedList<Double> objects, and the output shows they are identical.

Thus, you have the unavoidable conclusion that all instances of a given type share the same Class
object at run-time, and therefore the same run-time type. Of course, this does not mean that the objects
are the same type. For example, the following statement will not compile:

proverbs = (LinkedList<String>)numbers; // Illegal cast - will not compile

The compiler knows that these objects are really of different types and will not allow you to do this.

However, not a lot prevents you from doing the following:

Object obj = (Object)numbers;

proverbs = (LinkedList<String>)obj; // Will result in a compiler warning

Here the cast of numbers to type Object is legal — every class has Object as a base so the compiler will
allow this. With the second statement, though, the compiler knows only that you are casting a reference
of type Object and therefore cannot identify this as an illegal operation. Even at run time this will not
be checked because the run-time type of the reference stored in obj will be LinkedList, the same as
that of proverbs. This means that you will end up with a reference to an object that is really of type
LinkedList<Double> in a variable of type LinkedList<String>. You will discover that this is a prob-
lem only when you attempt to call methods for the object. If you want to verify that this is the case, you
can add the following code to the end of the example:

Object obj = (Object)numbers;

System.out.println(“obj class name “ + obj.getClass().getName());

proverbs = (LinkedList<String>)obj;

System.out.println(“obj in proverbs class name “ + obj.getClass().getName());

The example will then produce the following output:

numbers class name LinkedList

proverbs class name LinkedList

compare: true

obj class name LinkedList

obj in proverbs class name LinkedList

You can deduce from this that the type checking related to the use of types produced by a generic type
happens at compile time, not at run time. At run time the class types of all the types that you generate
from a given parameterized type are the same, so you have no programmatic way to differentiate them.
You can further conclude that casts to types that you produce from a generic type are unchecked and
inherently risky. Where such casts in your code are recognized by the compiler, you will get a warning
message to indicate that you have a potential problem. You should use such casts only when they are
absolutely necessary, and always double-check that the cast is valid. Of course, you do encounter instances
where such casts are unavoidable. One example is when you are deserializing objects that are instances
of a class produced from a generic type. You’ll be trying this a little later in this chapter.

558

Chapter 13

One further point to keep in mind about types that you create from a generic type: Because all types that
you produce from a generic type have the same run-time type, you cannot use the instanceof operator
to test for such types.

Relationships between Generic Type Instances
It’s easy to be misled about whether types you create from a generic type are related. Suppose you create
an object as follows:

LinkedList<String> strings = new LinkedList<String>(); // A list of strings

You have created a linked list that will store objects of type String. Suppose you now create another
object with the following statement:

LinkedList<Object> things = new LinkedList<Object>(); // A list of objects

This object stores objects of type Object organized as a linked list. Of course, it also stores objects of any
class type that is a subclass of Object, so any class type is acceptable. Is there any relationship between the
type of things, LinkedList<Object>, and the type of strings, LinkedList<String>? Superficially,
you might jump to the conclusion that there is; after all, Object is a superclass of every class type, includ-
ing type String. However, if you think about it, the relationship between the type arguments is an irrele-
vancy, and the conclusion would be wrong. The types just happen to be produced by a single generic type,
LinkedList<>, but there’s no reason why the type argument that you use should establish any relation-
ship between these types, no more than there would be between two ordinary collection classes that you
might define to store String objects and Object objects.

Multiple Type Parameters
The LinkedList<T> generic type has a single type parameter, but in general you can define a generic
type with as many type parameters as you wish. Suppose that you want to define a generic type that
defines a set of classes that encapsulate a pair of objects of arbitrary types. This would typically arise
where one object is used as a key to access the other in a collection. For example, you might store Person
objects in a collection that encapsulates personal details such as the name, the address, and the phone
number. You could associate each Person object with a Name object that you use as a key to retrieve the
Person object. One way of establishing the association between an object and its key would be to encap-
sulate both in another object — of type Pair, say.

Here’s how you might define a generic type, Pair<K,V>, that is to be used for defining classes that
encapsulate a key/value pair of any type:

public class Pair <KeyType, ValueType> {

// Constructor

public Pair(KeyType key, ValueType aValue) {

key = aKey;

value = aValue;

}

// Get the key for this pair

public getKey() {

return key;

}

559

Generic Class Types

// Get the value for this pair

public getValue() {

return value;

}

// Set the value for this pair

public setValue(ValueType aValue) {

value = aValue;

}

private KeyType key;

private ValueType value;

}

Obviously, a practical definition would be more complicated than this — you’d need a means of compar-
ing key objects, for example — but it suffices to demonstrate how you can use two parameters in the def-
inition of a generic type.

Here’s an example of how you could use this generic type:

Pair<String, String> entry = new Pair<String, String>(“Fred Thrump”,

“212 222 3333”);

This creates an object of type Pair<String, String> and stores a reference to it in the variable with
the name entry.

Type Parameter Scope
The scope of a type parameter is the entire generic class definition, but excluding any static members
or initializers in the class. This implies that you cannot specify the type of a static field within a generic
type definition by the type variable for the generic type. Similarly, static methods cannot have parame-
ters or return types that are type variables corresponding to the type parameter, and you must not use
the type variables in the bodies of static method definitions.

This does not mean that static methods cannot be parameterized — I am talking only about type variables
corresponding to parameters that apply to a generic type definition. You’ll see later in this chapter that
you can define generic methods that have their own independent parameterized definitions involving
their own set of parameters, and such parameterized methods may be static or non-static.

Static Fields in a Generic Type
Even though all types produced from a given generic type share the same run-time type, they still have
their own independent static fields. For example, suppose you were to add a static field —count, say —
of type int to the LinkedList<> type definition to record the number of objects created. You’d then
add a statement to the constructor to increment count each time it was called. Each type instance, such
as LinkedList<String> or LinkedList<Point>, would have its own copy of count, so the static
count member of the LinkedList<String> type would correctly reflect the number of times the
LinkedList<String> constructor had been called.

560

Chapter 13

Type Parameter Bounds
In some situations you will be defining a generic type where you want to constrain the type arguments
that are supplied to define a class instance so that they extend a particular class, or implement specific
interfaces, or even both. The reason for this would be that your generic type has to make some assump-
tions about the capabilities of the objects an instance of the type will be dealing with. Such constraints
are called type parameter bounds. The first bound that you specify for a type parameter can be a class
type or an interface type. Any additional bounds after the first for a type parameter can be interface types
only. If you don’t specify any bounds for a type parameter, it will have type Object as its implicit bound
because all classes have this type as their ultimate base class.

To understand how you specify a type parameter bound, consider a simple example of where this applies.
Suppose that you wanted to modify the LinkedList<T> generic type that you saw earlier so that objects
of classes produced by this type would be serializable. Not only would LinkedList<T> need to imple-
ment the Serializable interface, but objects of type T that were stored in the list would, too. The defi-
nition for the generic type would therefore look like this:

class LinkedList<T extends Serializable> implements Serializable {

// Default constructor - creates an empty list

public LinkedList() {}

// Constructor to create a list containing one object

public LinkedList(T item) {

if(item != null) {

current=end=start=new ListItem(item); // item is the start and end

}

}

// Construct a linked list from an array of objects

public LinkedList(T[] items) {

if(items != null) {

// Add the items to the list

for(int i = 0; i < items.length; i++) {

addItem(items[i]);

}

current = start;

}

}

// Add an item object to the list

public void addItem(T item) {

ListItem newEnd = new ListItem(item); // Create a new ListItem

if(start == null) { // Is the list empty?

start = end = newEnd; // Yes, so new element is start and end

} else { // No, so append new element

end.next = newEnd; // Set next variable for old end

end = newEnd; // Store new item as end

}

}

// Get the first object in the list

public T getFirst() {

current = start;

return start == null ? null : start.item;

}

561

Generic Class Types

// Get the next object in the list

public T getNext() {

if(current != null) {

current = current.next; // Get the reference to the next item

}

return current == null ? null : current.item;

}

private ListItem start = null; // First ListItem in the list

private ListItem end = null; // Last ListItem in the list

private ListItem current = null; // The current item for iterating

private class ListItem implements Serializable {

// Constructor

public ListItem(T item) {

this.item = item; // Store the item

next = null; // Set next as end point

}

// Return class name & object

public String toString() {

return “ListItem “ + item ;

}

ListItem next; // Refers to next item in the list

T item; // The item for this ListItem

}

}

The only changes to the previous version of the generic type definition are the two shaded lines. Notice
how you use the extends keyword regardless of whether the type parameter bound is a class or an
interface. Of course, this applies only to bounds for type parameters in a generic type. Where the generic
type itself implements an interface, you use the implements keyword, and where it extends a class,
you use the extends keyword, just as you would for an ordinary class type. Of course, the ListItem
inner class must also implement the Serializable interface because you need ListItem objects to be
serializable.

Where you need to specify a type parameter that has several bounds, you use a special notation. You put
& between the type names that are bounds following the extends keyword. Here’s how that looks:

class MyType<T extends FancyClass & Serializable & MyInterface> {

// Code defining the generic type...

}

The parameter for the MyType<> generic type has three bounds: the FancyClass class and the interfaces
Serializable and MyInterface. All type arguments for T to the MyType<T> parameterized type must
extend the FancyClass class and implement both the Serializable and the MyInterface interfaces.

Let’s see if the serializable LinkedList<> generic type works.

562

Chapter 13

Try It Out Using Parameter Bounds in a Generic Type
This example exercises the last version of the LinkedList<> generic type by serializing a list of integers
and then deserializing it. Here’s the code:

import java.io.FileOutputStream;

import java.io.FileInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.IOException;

import static java.lang.Math.random;

public class TrySerializableLinkedList {

public static void main(String[] args) {

LinkedList<Integer> numbers = new LinkedList<Integer>();

for(int i = 0 ; i<10 ; i++) {

numbers.addItem(1+(int)(100.0*random())); // Add ten random integers 1 to 100

}

System.out.println(“\nnumbers list contains:”);

listAll(numbers); // List contents of numbers

// Now serialize the list to a file

String filename = “C:/Beg Java Stuff/Numbers.bin”;

try {

ObjectOutputStream objOut = new ObjectOutputStream(

new FileOutputStream(filename));

objOut.writeObject(numbers);

objOut.close();

} catch(IOException e) {

e.printStackTrace();

System.exit(1);

}

LinkedList<Integer> values = null; // Variable to store list from the file

// Deserialize the list from the file

try {

ObjectInputStream objIn = new ObjectInputStream(

new FileInputStream(filename));

values = (LinkedList<Integer>)(objIn.readObject());

objIn.close();

} catch(IOException e) {

e.printStackTrace();

System.exit(1);

} catch(ClassNotFoundException e) {

e.printStackTrace();

System.exit(1);

}

System.out.println(“\nvalues list contains:”);

listAll(values); // List contents of values

}

563

Generic Class Types

// Helper method to list the contents of a linked list

static void listAll(LinkedList<Integer> list) {

Integer number = list.getFirst();

int count = 0;

do {

System.out.printf(“%5d”,number);

if(++count%5 == 0) {

System.out.println();

}

} while((number = list.getNext()) != null);

}

}

Include the source file for LinkedList<> in the same directory as this source file. When you compile
this program, you will get the following message from the compiler:

TrySerializableLinkedList.java:36: warning: [unchecked] unchecked cast

found : java.lang.Object

required: LinkedList<java.lang.Integer>

values = (LinkedList<Integer>)(objIn.readObject());

^

1 warning

This example will produce output along the following lines:

numbers list contains:

56 79 36 64 43

78 81 3 36 56

values list contains:

56 79 36 64 43

78 81 3 36 56

How It Works
You first create a linked list of type LinkedList<Integer> that stores objects of type integer:

LinkedList<Integer> numbers = new LinkedList<Integer>();

You populate this list with ten Integer objects that encapsulate random integer values from 1 to 100 in
the for loop:

for(int i = 0 ; i<10 ; i++) {

numbers.addItem(1+(int)(100.0*random())); // Add ten random integers 1 to 100

}

This relies on autoboxing to create the Integer objects to be passed as arguments to the addItem()
method.

The static listAll() method is a helper method that lists the contents of a linked list of integers, and
you call that to output what is stored in the numbers linked list.

564

Chapter 13

Since the linked list is now supposed to be serializable, you demonstrate that this in the case by writing
the numbers object to the file in the way you saw in the previous chapter. You then read it back and store
a reference to the list read from the file in a new variable, values. The statement in the try block that
reads the object from the file is:

values = (LinkedList<Integer>)(objIn.readObject());

The readObject() method returns a reference of type Object, so you must cast it to type
LinkedList<Integer> before storing it in values. The compiler recognizes that this cast is unchecked
at run time, so you get the warning message shown earlier as a result of this statement. However, you
have no alternative to casting in this instance.

Having read the LinkedList<Integer> from the file, you demonstrate that it is indeed the same as the
original by listing its contents via a call to the listAll() method. The output shows that the serializa-
tion and deserialization operations were successful.

Generic Types and Generic Interfaces
A generic type can implement one or more interface types, including generic interface types. The syntax
that you use for this is the same as for ordinary class and interface types, the only difference being that
each generic type name will be followed by its type parameter list between angled brackets. For example:

public class MyClass<T> implements MyInterface<T> {

// Details of the generic type definitions

}

You can see how this works by taking a practical example.

Enabling the Collection-Based for Loop
The for loop you have been using to extract the elements stored in a linked list, such as in the
TryAutoboxing example at the beginning of this chapter, for example, was rather cumbersome.
Wouldn’t it be nice if you could use the collection-based for loop with the classes produced from the
LinkedList<> generic type? It’s not that difficult, so let’s see how to do it.

For an object of a container class type to be usable with the collection-based for loop, the class must
fulfill just one requirement — it must implement the generic Iterable<> interface that is defined in
the java.lang package. The Iterable<> interface is a generic type that declares a single method,
iterator(), that returns a reference of type Iterator<>, which is another generic interface type.
All your class has to do then is declare that it implements the Iterable<> interface and provide an
implementation for the iterator() method.

Here’s the outline of what you need to add to the LinkedList<> generic type that you developed at the
beginning of this chapter to make it usable with the collection-based for loop:

import java.util.Iterator;

public class LinkedList<T> implements Iterable<T> {

565

Generic Class Types

// Returns an iterator for this list

public Iterator<T> iterator() {

// Code to return a reference to an iterator for this list...

}

// Rest of the LinkedList<T> generic type definition as before...

}

The generic LinkedList<> class type now implements the generic Iterable<> interface type, and they
share a common type parameter. The type argument that you supply for LinkedList<> also applies to
Iterable<>. You can see why the Iterable<> and Iterator<> interfaces need to be generic types.
The type parameter allows them to be automatically adapted to any type. Because these interfaces are
defined as generic types, you can define classes that contain sets of objects of any type and enable them
to be iterated over using the collection-based for loop by implementing the Iterable<> interface. The
interface will automatically be customized to work with whatever type of object a particular container
contains.

The Iterator<T> type that is the return type for the iterator() method is a generic interface type that is
defined in the java.util package. Thus your implementation of the iterator() method must return an
object of a class type that implements the Iterator<> interface. This implies that for your class to define
an iterator, it must implement the methods that are declared in the Iterator<> interface. These methods
provide a mechanism for iterating once over each of the elements in a collection in turn and may also pro-
vide the ability to remove elements. The methods that the Iterator<> interface declares are the following:

T next() Returns a reference of type T to the next object that is available
from the iterator and throws an exception of type
java.util.NoSuchElementException if no further elements
are available. T is the type parameter for the generic interface and
corresponds to the type of objects stored in the container. Note
that you’ll also see E used as the type parameter that represents
Element instead of T for Type.

boolean hasNext() Returns true if at least one more element is available from the
iterator, so calling the next() method for the iterator returns a
reference to the object in the container. The method returns false
if no more elements are available from the iterator. Thus this
method provides a way to check whether calling the next()
method for the iterator will return a reference or throw an
exception.

void remove() If the remove operation is supported, this method removes
the last element that was retrieved by the preceding next()
method call from the collection. If the remove operation is
supported, this method throws an exception of type
java.lang.UnsupportedOperationException. It will also
throw an exception of type java.lang.IllegalStateExcep-
tion if the next() method has not been called for the iterator
object prior to calling the remove() method.

566

Chapter 13

The basic idea of the first two methods is to provide a mechanism for iterating over all the elements in a
collection such as the linked lists produced by the LinkedList<> generic type. Suppose that you have a
LinkedList<String> reference stored in a variable, strings, where LinkedList<> is the version that
implements Iterable<>. The mechanism for retrieving elements from the linked list works like this:

Iterator<String> iter = strings.iterator(); // Get an iterator

String str = null; // Stores an element from the list

while(iter.hasNext()) { // If there are more elements

str = iter.next(); // Get the next one...

// Do something with str...

}

The while loop continues to retrieve elements from iter as long as the hasNext() method returns
true. Within the loop, successive elements are retrieved by calling the next() method. You don’t need
to put this loop in a try block because the exception that the next() method can throw is of a type
derived from RuntimeException. Removing an element would just involve calling the remove()
method for strings after a call of the next() method, typically after you have analyzed the object
retrieved to determine that you really do want to remove it. The exceptions that the remove() method
can throw are also derived from RuntimeException so you are not obliged to catch them.

Implementing an Iterator Capability
As I said in the previous section, the iterator() method in the LinkedList<> type must return an
object reference as type Iterator<>, so the class type for the object must implement the Iterator<>
interface. You could define a class representing an iterator as an inner class to the LinkedList<> generic
class type:

import java.util.Iterator;

public class LinkedList<T> implements Iterable<T> {

// Returns an iterator for this list

public Iterator<T> iterator() {

return new ListIterator(); // Create iterator of the inner class type

}

// Inner class defining iterator objects for this linked list

private class ListIterator implements Iterator<T> {

// Constructor

public ListIterator() {

// Code to initialize the iterator...

}

// Method to test whether more elements are available

public boolean hasNext() {

// Code to determine if there are more elements...

}

// Method to return the next available object from the linked list

public T next() {

// Code to return the next element...

}

567

Generic Class Types

// Method to remove the last element retrieved from the linked list

public void remove() {

// Code to remove the element last accessed by next()...

}

// Any other members needed for ListIterator<T>...

}

// Rest of the LinkedList<T> generic type definition as before...

}

You have added an inner class to define an iterator object for a linked list. The ListIterator class
defines the methods declared in the Iterator<> interface plus a constructor. Note that you do not need
to specify a type parameter for the ListIterator class. Only the interface that is implemented by the
ListIterator class is parameterized, and that uses the type variable name for the outer class. The type
argument you supply for the container type will also apply to the methods declared by the Iterator<>
interface that are implemented by the ListIterator inner class.

A ListIterator object is able to access the members of its parent LinkedList<> object directly, but
because it must provide a one-pass iteration through the elements in the linked list, it will need to track
what is happening during successive calls of the next() method. You can provide this by adding a field
of type T to the ListIterator class to record the element from the linked list that will be available
when the next() method is called next. You can easily initialize such a field in the constructor and then
implement the other methods to make use of it. The inner class definition would then look like this:

private class ListIterator implements Iterator<T> {

// Constructor

public ListIterator() {

nextElement = getFirst();

}

// Method to test whether more elements are available

public boolean hasNext() {

return nextElement != null;

}

// Method to return the next available object from the linked list

public T next() {

T element = nextElement;

if(element == null) {

throw new java.util.NoSuchElementException();

}

nextElement = getNext();

return element;

}

// Method to remove the last element retrieved from the linked list

// You don’t want to support this operation for the linked list

// so just throw the exception

public void remove() {

throw new IllegalStateException();

}

private T nextElement;

}

568

Chapter 13

If you add this inner class to the definition of LinkedList<>, you can use a new version of the
TryAutoboxing example to try it out.

Try It Out Using the Collection-Based for Loop
Here’s a version of the original TryAutoboxing example that has been modified to use the collection-
based for loop:

public class TryAutoboxing {

public static void main(String[] args) {

LinkedList<Double> temperatures = new LinkedList<Double>();

// Insert 6 temperature values 0 to 25 degrees Centigrade

for(int i = 0 ; i<6 ; i++) {

temperatures.addItem(25.0*Math.random());

}

// Collection-based for loop used with LinkedList<Double>

for(Double value : temperatures) {

System.out.printf(“%.2f degrees Fahrenheit%n”, toFahrenheit(value));

}

}

// Convert Centigrade to Fahrenheit

public static double toFahrenheit(double temperature) {

return 1.8*temperature+32.0;

}

}

Put the source file for this class in the same directory as the new version of LinkedList<> that imple-
ments the Iterable<> interface. If you use the old version, the program will not compile.

The output will be the same as the previous version of TryAutoboxing.

How It Works
The collection-based for loop requires an iterator of type Iterator<T> that it uses to iterate over the
members of a collection or an array. Clearly, all arrays implement the Iterator<> interface; otherwise,
you couldn’t use them with this form of for loop. Because the LinkedList<> type now implements
Iterable<>, you can use the collection-based for loop with any LinkedList<> collection, as the
example demonstrates.

A Parameterized Type for Binary Trees
Let’s consider another kind of container as a candidate for being a generic type. A binary tree is a struc-
ture for organizing data in the form of a tree, where each node in the tree has at most two child nodes.
One interesting application of a binary tree is for sorting. Figure 13-2 shows an example of integers orga-
nized in a binary tree structure.

569

Generic Class Types

Figure 13-2

The first node in a binary tree is called the root node, because this node is the root of the tree and is the
starting point for accessing nodes in the tree. Each node in a binary tree, including the root node, can
have two child nodes, usually referred to as the left child node and the right child node. Thus, each
node in a binary tree may have zero, one, or two child nodes, and Figure 13-2 contains examples of all
three possibilities.

By constructing the tree so that for each node the object stored as the left node is always less than the
object represented by the node and the object in the right node is always greater, you’ll be able to extract
the objects that are stored in the tree so that they are in sequence. The tree in Figure 13-2 has been con-
structed like this. For every node that has child nodes, the left child node is always less than the current
node, and the right child node is always greater. Adding a node to a tree involves starting with the root
node and seeing whether the new node is less than or greater than the current node. This establishes
whether it is a potential left node or right node for the root node. If the root node already has a child
node in the position where the new node belongs, you repeat the comparison process with the child
node. Eventually you’ll find a child node position that is null where the new node fits, so that’s where
you put it. Clearly, a recursive method will help make this process easy. Given that you have constructed
a tree in this manner and that you know the root node, you can work your way through all the nodes in
a tree by following the left and right child nodes in an orderly fashion to obtain all the objects in the tree
in sequence. Since all the nodes are similar, the use of recursion will help to simplify this process, too.

Because a binary tree is a structure you can apply to organizing objects of any type, it is an obvious can-
didate for being a generic type. It also provides another example of where being able to constrain the
type parameter is important. The way the tree is constructed implies that you must be able to compare
objects that are added to a tree. This means that every object in the tree must have a method available for

546

244 622

54 379

37 59

42

630

420

380

635

Root Node

570

Chapter 13

comparing objects. Making the object type implement an interface that declares a method that compares
objects is the way to do this. A binary tree implementation also provides an example of a situation where
you can apply the power of recursion to very good effect.

Defining the Generic Type
You can come to some general conclusions about what the characteristics of your BinaryTree<> class
are going to be by considering how it will work. Objects of type Node are going to be a fundamental part
of a binary tree. The Node objects in the tree are really part of the inner workings of the container so they
don’t need to be known about or accessible externally. It is therefore appropriate if you define Node
objects by a private inner class to the BinaryTree<> class. All nodes in a binary tree must be different,
but you can allow duplicate data items to be added to a tree by providing for a count of the number of
identical objects to be recorded in a Node object. Obviously, as a minimum, a BinaryTree<> object will
have to store the Node object that is the root node for the tree and provide a method for adding new
nodes. It’ll also need a method for returning all the data that was stored in the tree in sequence, so you
need some facility for packaging this. The generic LinkedList<> type from the previous example pro-
vides a convenient facility for this.

The type for objects that can be added to the tree must have a method for comparing them. The
Comparable<> interface that is defined in the java.lang package declares a single method, the
compareTo() method, that will fit the bill. The compareTo() method returns a negative integer if
the object for which it is called is less than the argument to the method, 0 if it equals the argument,
and a positive integer if it is greater, so it does precisely what you need for placing new values in a
BinaryTree<> class object. If you specify the Comparable<> interface as a constraint on the type
parameter for the BinaryTree<> class, it ensures that all objects added to a BinaryTree<> object
implement the compareTo() method. Because the Comparable<> interface is defined as a parameter-
ized type, it fits exactly with what you want here.

Here’s a first stab at outlining the BinaryTree<> generic type:

public class BinaryTree<T extends Comparable<T>> {

// Add a value to the tree

public void add(T value) {

// Add a value to the tree...

}

// Create a list containing the values from the tree in sequence

public LinkedList<T> sort() {

// Code to extract object from the tree in sequence

// and insert then in a LinkedList object and return that...

}

LinkedList<T> values; // Stores sorted values

private Node root; // The root node

// Private inner class defining nodes

private class Node {

Node(T value) {

obj = value;

count = 1;

}

571

Generic Class Types

T obj; // Object stored in the node

int count; // Count of identical nodes

Node left; // The left child node

Node right; // The right child node

}

}

No BinaryTree<> constructor is defined because the default constructor suffices. The default no-arg
constructor creates an object with the root node as null. Thus, all objects are added to the tree by calling
the add() method. The sort() method returns a LinkedList<> object that it creates, containing the
objects that were stored in the tree in ascending sequence.

The inner Node class has four fields that store the value, the count of the number of values identical to
this, and references to its left and right child nodes. The constructor just initializes the obj and count

fields in the Node object that is created, leaving left and right with their default values of null. Of
course, when a Node object is first created, it won’t have any child nodes, and the count of identical
objects in the tree will be 1. Let’s look at how objects will be inserted into a tree.

Inserting Objects in a Binary Tree
It’s easy to see how adding an object to the tree can be a recursive operation in general. The process is
illustrated in Figure 13-3.

Figure 13-3

New Node to be inserted:

Check the root node(546):
It's less so the left child fits

Check the node(244):
It's less so the left child fits

Check the node(54):
It's greater so the right child fits

Check the node(59):
It's less so the left child fits

No child node so insert the new code:

546

244 622

54 379

37

57

59

57

630

420

Root Node

Success!

572

Chapter 13

The shaded nodes in Figure 13-3 are the ones that have to be considered in the process of inserting the
value 57 in the tree. To find where the new node for an object should be placed in relation to the existing
nodes, you’ll start with the root node to see which of its child nodes represents a potential position for
the new node. If the candidate child node that you choose already exists, then you must repeat the pro-
cess you’ve just gone through with the root node with the chosen child node. Of course, this child node
may itself have child nodes so the process may need to be repeated again. You should be able to visual-
ize how this can continue until either you find a child node that contains an object that is identical to the
one contained in the new node or you find a vacant child node position where the new node fits.

You can implement the add() method in the BinaryTree<> generic type definition like this:

public void add(T value) {

if(root == null) { // If there’s no root node

root = new Node(value); // store it in the root

} else { // Otherwise...

add(value, root); // add it recursively

}

}

If the root node is null, the add() method creates a new root node containing the value to be inserted.
If root is not null, then the node where it fits in the tree must be found, and this is the function per-
formed by another version of the add() method that accepts two arguments specifying the value to be
inserted into the tree and the node where it might be inserted. The second argument allows the method
to be called recursively. This method can be private as it does not need to be accessed externally. You
could implement it like this:

private void add(T value, Node node) {

int comparison = node.obj.compareTo(value);

if(comparison == 0) { // If it is equal to the current node

++node.count; // just increment the count

return;

}

if(comparison > 0) { // If it’s less than the current node

if(node.left == null) { // and the left child node is not null

node.left = new Node(value); // Store it as the left child node

} else { // Otherwise...

add(value, node.left); // ...add it to the left node

}

} else { // It must be greater than the current node

if(node.right == null) { // so it must go to the right...

node.right = new Node(value);

} else {

add(value, node.right);

}

}

}

This method is called only with a non-null second argument. The first step is to compare the object to
be inserted, which is given by the first argument, value, with the object stored in the current node, spec-
ified by the second argument. If the new object equals the one stored in the current node, you need to
update the count only for the current node and you are done.

573

Generic Class Types

If the new object is not equal to that stored in the current node, you first check whether it’s less. Remember:
The compareTo() method returns a positive integer when the object for which it is called is greater than
the argument, so the value of comparison being positive means that the new object is less than that in
the current node. That makes it a candidate for the left child node of the current node, but only if the left
child node is null. If the left child node is not null, you call the add() method recursively to add the
object relative to the left node. You’ve tested for zero and positive values of comparison, so the only
other possibility is that the comparison value is negative. In this case you repeat the same procedure,
but with the right child node. This process finds the place for the new node containing the inserted
object so that each node has only a left child that is less than the current node and a right child that is
greater. In fact, for any node, the values stored in the whole left subtree will be less than the current
node, and the values in the whole right subtree will be greater. Now that you’ve got them in, you have
to figure out how you’re going to get them out again.

Extracting Objects from the Binary Tree
Calling the sort() method for a BinaryTree<> object will return a LinkedList<> object containing
the objects from the tree in ascending sequence. The process for selecting the objects to be inserted into
the linked list is also recursive. You can define the sort() method like this:

public LinkedList<T> sort() {

values = new LinkedList<T>(); // Create a linked list

treeSort(root); // Sort the objects into the list

return values;

}

The LinkedList<> object is a field in the BinaryTree<> object and the sort() method eventually
returns a reference to it. You create a new LinkedList<> object each time to hold the sorted values of
type T from the tree. The sort() method could be called several times for a BinaryTree<> object, with
the contents of the binary tree being changed in the intervening period, so you must be sure you create
the linked list from scratch each time. The real work of inserting the objects from the tree into the linked
list values is going to be done by the recursive treeSort() method. You can get an inkling of how this
will work if you recall that the left child node object of every node will be less than the current node,
which will be less than the right child node. Therefore, you want to access the objects in the sequence:

left child node - node - right child node

Of course, the child nodes may themselves have child nodes, but the same applies to them. Take the left
child node, for example. The objects here should be accessed in the sequence:

left child of left child node - left child node - right child of left child node

The same goes for the right child node and its children. All you have to do is express this as code, and
you can do that like this:

private void treeSort(Node node) {

if(node != null) { // If the node isn’t null

treeSort(node.left); // process its left child

// List the duplicate objects for the current node

for(int i = 0 ; i<node.count ; i++) {

values.addItem(node.obj);

}

574

Chapter 13

treeSort(node.right); // Now process the right child

}

}

If the node that is passed to the treeSort() method is null, nothing further is left to do so the method
returns. If the argument is not null, you process the left child node, then the node that was passed as
the argument, then the right child node — just as you saw earlier. That does it all. The actual insertion
of an object into the linked list always occurs in the for loop. This loop typically executes one iteration
because most of the time, no duplicate objects are in the tree. The value of the left child node, if it exists,
is always added to the linked list before the value of the current node because you don’t add the value
from the current node until the treeSort() method call for the left child returns. Similarly, the value
from the right child node will always be added to the linked list after that of the current node.

You’re ready to give the BinaryTree<> generic type a whirl.

Try It Out Sorting Using a Binary Tree
You’ll need to create a directory to hold the three source files for this program. When you’ve set that up,
copy the LinkedList.java source file from the previous example to the new directory. You can then
add the BinaryTree.java source file containing the following code to the directory:

public class BinaryTree<T extends Comparable<T>> {

// Add a value to the tree

public void add(T value) {

if(root == null) { // If there’s no root node

root = new Node(value); // store it in the root

} else { // Otherwise...

add(value, root); // add it recursively

}

}

// Recursive insertion of an object

private void add(T value, Node node) {

int comparison = node.obj.compareTo(value);

if(comparison == 0) { // If it is equal to the current node

++node.count; // just increment the count

return;

}

if(comparison > 0) { // If it’s less than the current node

if(node.left == null) { // and the left child node is not null

node.left = new Node(value); // Store it as the left child node

} else { // Otherwise...

add(value, node.left); // ...add it to the left node

}

} else { // It must be greater than the current node

if(node.right == null) { // so it must go to the right...

node.right = new Node(value);

} else {

add(value, node.right);

}

}

}

575

Generic Class Types

// Create a list containing the values from the tree in sequence

public LinkedList<T> sort() {

values = new LinkedList<T>(); // Create a linked list

treeSort(root); // Sort the objects into the list

return values;

}

// Extract the tree nodes in sequence

private void treeSort(Node node) {

if(node != null) { // If the node isn’t null

treeSort(node.left); // process its left child

// List the duplicate objects for the current node

for(int i = 0 ; i<node.count ; i++) {

values.addItem(node.obj);

}

treeSort(node.right); // Now process the right child

}

}

LinkedList<T> values; // Stores sorted values

private Node root; // The root node

// Private inner class defining nodes

private class Node {

Node(T value) {

obj = value;

count = 1;

}

T obj; // Object stored in the node

int count; // Count of identical nodes

Node left; // The left child node

Node right; // The right child node

}

}

You can try out sorting integers and strings using BinaryTree<> objects with the following code:

public class TryBinaryTree {

public static void main(String[] args) {

int[] numbers = new int[30];

for(int i = 0 ; i<numbers.length ; i++) {

numbers[i] = (int)(1000.0*Math.random()); // Random integers 0 to 999

}

// List starting integer values

int count = 0;

System.out.println(“Original values are:”);

for(int number : numbers) {

System.out.printf(“%6d”, number);

if(++count%6 == 0) {

System.out.println();

576

Chapter 13

}

}

// Create the tree and add the integers to it

BinaryTree<Integer> tree = new BinaryTree<Integer>();

for(int number:numbers) {

tree.add(number);

}

// Get sorted values

LinkedList<Integer> values = tree.sort();

count = 0;

System.out.println(“\nSorted values are:”);

for(Integer value : values) {

System.out.printf(“%6d”, value);

if(++count%6 == 0) {

System.out.println();

}

}

// Create an array of words to be sorted

String[] words = {“vacillate”, “procrastinate”, “arboreal”, “syzygy”,

“xenocracy”, “zygote” , “mephitic”, “soporific”,

“grisly” , “gristly” };

// List the words

System.out.println(“\nOriginal word sequence:”);

for(String word : words) {

System.out.printf(“%-15s”, word);

if(++count%5 == 0) {

System.out.println();

}

}

// Create the tree and insert the words

BinaryTree<String> cache = new BinaryTree<String>();

for(String word : words) {

cache.add(word);

}

// Sort the words

LinkedList<String> sortedWords = cache.sort();

// List the sorted words

System.out.println(“\nSorted word sequence:”);

count = 0;

for(String word : sortedWords) {

System.out.printf(“%-15s”, word);

if(++count%5 == 0) {

System.out.println();

}

}

}

}

577

Generic Class Types

The output should be along the lines of the following:

Original values are:

110 136 572 589 605 832

565 765 514 616 347 724

152 527 124 324 42 508

621 653 480 236 1 793

324 31 127 170 724 546

Sorted values are:

1 31 42 110 124 127

136 152 170 236 324 324

347 480 508 514 527 546

565 572 589 605 616 621

653 724 724 765 793 832

Original word sequence:

vacillate procrastinate arboreal syzygy xenocracy

zygote mephitic soporific grisly gristly

Sorted word sequence:

arboreal grisly gristly mephitic procrastinate

soporific syzygy vacillate xenocracy zygote

How It Works
You have defined BinaryTree<> as a parameterized type with a type parameter that is constrained to
implement the parameterized interface type Comparable<>. Thus, a type argument that you use with
the BinaryTree<> generic type must implement the Comparable<> interface. If it doesn’t, the code
won’t compile. This ensures that all objects added to a BinaryTree<> object will have the compareTo()
function available. The definition for BinaryTree<> also demonstrates that a generic type definition can
include a field of another generic type —LinkedList<> in this instance. The LinkedList<> field type
is determined by the type argument supplied to the BinaryTree<> generic type.

After creating and displaying an array of 30 random integer values, you define a BinaryTree<Integer>
object that will store objects of type Integer. The following statement does this:

BinaryTree<Integer> tree = new BinaryTree<Integer>();

You then insert the integers into the binary tree in a loop:

for(int number:numbers) {

tree.add(number);

}

The parameter type for the add() method will be type Integer, but autoboxing automatically takes
care of converting your arguments of type int to objects of type Integer.

Calling the sort() method for the BinaryTree object, values, returns the objects from the tree con-
tained in a LinkedList object:

LinkedList<Integer> values = tree.sort();

578

Chapter 13

The Integer objects in the linked list container are ordered in ascending sequence. You list these in a
for loop:

for(Integer value : values) {

System.out.printf(“%6d”, value);

if(++count%6 == 0) {

System.out.println();

}

}

You are able to use the collection-based for loop here because the LinkedList<> type implements the
Iterable<> interface; this is the sole prerequisite on a container for it to allow you to apply this for
loop to access the elements.

Just to demonstrate that BinaryTree<> works with more types than just Integer, you create an object
of type BinaryTree<String> that you use to store a series of String objects that are words. You use
essentially the same process as you used with the integers to obtain the words sorted in ascending
sequence. Note the use of the ‘-’ flag in the format specifier for the strings in the first argument to the
printf() method. This outputs the string left-justified in the output field, which makes the output of
the strings look tidier.

Hidden Constraints in the BinaryTree<> Type
So the BinaryTree<> class works well then? Well, not as well as it might. The parameterized type has a
built-in constraint that was not exposed by the examples storing String and Integer objects. Suppose
you define a Person class like this:

public class Person implements Comparable<Person> {

public Person(String name) {

this.name = name;

}

public int compareTo(Person person) {

if(person == this) {

return 0;

}

return this.name.compareTo(person.name);

}

public String toString() {

return name;

}

protected String name;

}

This is a simple class representing a person. It implements the Comparable<> interface so you can use a
BinaryTree<Person> object to store and sort objects of type Person. This will work just as well as the
BinaryTree<String> and BinaryTree<Integer> examples.

579

Generic Class Types

However, you might possibly subclass the Person type like this:

public class Manager extends Person {

public Manager(String name, int level) {

super(name);

this.level = level;

}

public String toString() {

return “Manager “+ super.toString() + “ level: “ + level;

}

protected int level;

}

This class defines a special kind of Person— a manager no less! You have just one extra field specifying
the level that reflects where the manager sits in the corporate pecking order. You also have a version of
the toString() method that presents the Person as a manager with his or her level. The class inherits
the implementation of the Comparable<> interface from the base class. If that’s sufficient for differenti-
ating two persons, it should be okay for separating two managers. However, it’s not good enough for
the BinaryTree<> type. You could try adding Manager objects to a binary tree like this:

BinaryTree<Manager> people = new BinaryTree<Manager>();

Manager[] managers = { new Manager(“Jane”,1), new Manager(“Joe”,3),

new Manager(“Freda”,3)};

for(Manager manager: managers){

people.add(manager);

}

However, it doesn’t work. If you insert this fragment at the end of main() in the previous example,
you’ll get a compiler error message relating to the statement that creates the BinaryTree<Manager>
object; it’ll say something along the lines of “type parameter Manager is not within its bound.”

The problem is that your BinaryTree<> class requires that the Manager class itself should implement
the Comparable<Manager> interface. The inherited implementation of Comparable<Person> is not
acceptable. Obviously, this is a serious constraint. You don’t want the binary tree implementation to be
as rigid as that. As long as there’s an implementation of Comparable<> in a class that allows objects to
be compared, that should suffice. What you really want is for your BinaryTree<> generic type to accept
any type argument that is of a type that implements Comparable<> for the type itself or for any super-
class of the type. You don’t have the tools to deal with this at this point, but I’ll return to the solution of
this problem a little later in this chapter.

Variables of a Raw Type
You have seen that the run-time type of all instances of a generic type is the same and is just the generic
type name without any parameters. You can use the generic type name by itself to define variables. For
example:

LinkedList list = null;

580

Chapter 13

This creates a variable with the name list that is of type LinkedList from the LinkedList<T> generic
type. This type that results from eliminating the parameters from the generic type is referred to as a raw
type.

The class that corresponds to the raw type is produced by removing the type parameters from the generic
type definition and replacing each instance of a type variable in the definition by the leftmost bound of its
correspond type parameter. This process of mapping from a generic type to a non-generic type is called
type erasure because all occurrences of the type variable are effectively erased from the generic class defini-
tion. A raw type exists as a consequence of implementing generic types using type erasure.

Since in the absence of any explicit type parameter bounds every type parameter T is implicitly bounded
by type Object, all occurrences of T in a generic type definition will be replaced by Object to produce
the raw type. This is important for interface types such as Iterable<> and Comparable<> in the stan-
dard packages. Interfaces in the standard packages that define methods are generally defined as generic
types for maximum flexibility. When you implement such an interface in an ordinary class without spec-
ifying a type argument, your class is implementing the raw type, so the methods in the interface will be
declared with parameters and/or return types of type Object.

Suppose you have specified that the type parameter T for a parameterized type is bounded by the type
Comparable<>. This is the case for the BinaryTree<> type that you implemented earlier. In the raw
type for the parameterized type, all occurrences of the type variable T will be replaced by Comparable.
The raw type corresponding to Comparable<> will be produced by using type Object as the replace-
ment for the type parameter because no parameter constraints are specified for the Comparable<> generic
type. Thus for the BinaryTree<> type that you defined earlier, the raw type definition will be produced
by replacing the type variable, T, in the definition of BinaryTree<> by Comparable. This may be what
you want for a valid raw type in this case. The parameter type to the add() method will be Comparable,
so you can pass an object of any class type that implements the Comparable interface to it. However,
in other instances where methods with a return type are specified by a type parameter, you may want
the raw type to be produced using Object as the upper bound for the type parameter. This applies to
the serializable version of the LinkedList<> generic type where the bound on the type parameter is
Serializable. It might be better to have the getFirst() and getNext() methods return a reference
of type Object instead of type Serializable. You can accomplish this quite easily by simply defining
the first bound for the type parameter as type Object, like this:

class LinkedList<T extends Object & Serializable> implements Serializable {

// Class definition as before...

}

Now the leftmost bound for the type parameter is type Object, so the raw type will be produced by
replacing the type variable T by Object in the generic type definition.

You can store a reference of any of the types produced from a generic type in a variable of the corre-
sponding raw type. For example, you could write:

list = new LinkedList<String>();

However, this is legal for compatibility with code written before generic types were available in Java.
Therefore, you should not regard it as part of your normal programming repertoire as it’s an inherently
risky practice.

581

Generic Class Types

Using Wildcards as Type
Parameter Arguments

You express a particular type from the set defined by a generic type by supplying a type argument for
each of its type parameters. For example, to specify the BinaryTree<> type that stores objects of type
String, you specify the type argument as String— so the type is BinaryTree<String>. Instead of
supplying a specific type as the type argument for a generic type, you can specify the argument as ?, in
which case you have specified the type argument as a wildcard. A wildcard type represents any class or
interface type.

You can declare variables of a generic type using a wildcard type argument. For example:

BinaryTree<?> tree = new BinaryTree<Double>();

The tree variable is of type BinaryTree<?> so you can store a reference to any type of BinaryTree<>
object in it. In this instance you have stored a reference to an object of type BinaryTree<Double>, but
BinaryTree<String> or BinaryTree<AnyType> would be equally acceptable — as long as the type
argument is not a primitive type. You can think of the use of a variable of a wildcard type as loosely par-
alleling the use of a variable of type Object. Because the tree variable type is the result of a wildcard
type argument, the actual type of the reference stored is not known, so you cannot use this variable to
call methods specific to the object that it references.

You can use a wildcard type argument to specify a method parameter type where there is no depen-
dency in the code on the actual type argument. If you specify the type of a parameter to a method
as BinaryTree<?>, then the method will accept an argument of type BinaryTree<String>,
BinaryTree<Double>, or indeed any BinaryTree<> type. To make this clearer, let’s consider a specific
situation where you might use a wildcard as an argument for a method parameter of a generic type.

In the previous example, the main() method listed the objects in the LinkedList<> object that the sort()
method returns by executing a specific loop for each of the two cases —Integer objects and String
objects. You could write a static method that would list the items stored in a linked list, whatever they
are. Here’s how you could define such a method as a static member of the TryBinaryTree class:

public static void listAll(LinkedList<?> list) {

for(Object obj : list) {

System.out.println(obj);

}

}

The parameter type for the listAll() method uses a wildcard specification instead of an explicit type
argument. Thus, the method accepts an argument of any LinkedList<> type. Because every object will
have a toString() method regardless of the actual type, the argument passed to println() in the
body of the method will always be valid. Now you could list the integers in the values object of type
LinkedList<Integer> with the statement:

listAll(values);

You could also list the contents of the sortedWords object of type LinkedList<String> with the
statement:

582

Chapter 13

listAll(sortedWords);

You can plug these code fragments, including the definition of the method, of course, into the
TryBinaryTree class and recompile to see it working.

Try It Out Using a Wildcard Type Argument
Here’s a modified version of the previous example:

public class TryWildCard {

public static void main(String[] args) {

int[] numbers = new int[30];

for(int i = 0 ; i<numbers.length ; i++) {

numbers[i] = (int)(1000.0*Math.random()); // Random integers 0 to 999

}

// List starting integer values

int count = 0;

System.out.println(“Original values are:”);

for(int number : numbers) {

System.out.printf(“%6d”, number);

if(++count%6 == 0) {

System.out.println();

}

}

// Create the tree and add the integers to it

BinaryTree<Integer> tree = new BinaryTree<Integer>();

for(int number:numbers) {

tree.add(number);

}

// Get sorted values

LinkedList<Integer> values = tree.sort();

System.out.println(“\nSorted values are:”);

listAll(values);

// Create an array of words to be sorted

String[] words = {“vacillate”, “procrastinate”, “arboreal”,

“syzygy”, “xenocracy”, “zygote”,

“mephitic”, “soporific”, “grisly”, “gristly” };

// List the words

System.out.println(“\nOriginal word sequence:”);

for(String word : words) {

System.out.printf(“%-15s”, word);

if(++count%5 == 0) {

System.out.println();

}

}

// Create the tree and insert the words

BinaryTree<String> cache = new BinaryTree<String>();

for(String word : words) {

cache.add(word);

}

583

Generic Class Types

// Sort the words

LinkedList<String> sortedWords = cache.sort();

// List the sorted words

System.out.println(“\nSorted word sequence:”);

listAll(sortedWords);

}

// List the elements in any linked list

public static void listAll(LinkedList<?> list) {

for(Object obj : list) {

System.out.println(obj);

}

}

}

You should get essentially the same output as before except that the sorted data will be listed with each
item on a separate line.

How It Works
You have a static method defined in the TryWildcard class that will list the elements in any
LinkedList<> object. You use this to list the contents of objects of type LinkedList<Integer> and
LinkedList<String>. The listAll() method relies on only the toString() method being imple-
mented for the objects retrieved from the linked list, and this will be the case for any type of object
because the toString() method will always be inherited from the Object class.

Constraints on a Wildcard
It may be the case that you’d like to limit a wildcard specification to some extent — after all, allowing any
non-primitive type at all is an incredibly wide specification. You can explicitly constrain a wildcard specifi-
cation. One possibility is to specify that it extends another type. This type of constraint is described as an
upper bound of the wildcard type because it implies that any subclass of the type that the wildcard
extends is acceptable, including the type itself, of course.

For example, suppose you wanted to implement a method that would write the objects stored in a
LinkedList<> object to a file. A prerequisite would be that the objects in the list implement the
Serializable interface, whatever type they are. You could define a static method to do this using a
constraint on the wildcard type specification:

public static void saveAll(LinkedList<? extends java.io.Serializable> list) {

// Serialize the objects from the list...

}

The parameter to the listAll() method is of type:

LinkedList<? extends java.io.Serializable>

This says that the argument to the listAll() method can be a linked list of objects of any type as long
as they implement the Serializable interface. Knowing that the objects in the list implement the
Serializable interface means that you can serialize them without knowing exactly what type they are.

584

Chapter 13

You can just pass an object reference to the writeObject() method for the stream, and everything will
be taken care of.

To make the upper bound for a wildcard type Object you just write it as ? extends Object. You
might think that specifying a wildcard with an upper bound that is type Object is stating the obvious
and not a useful thing to do. However, it does have a very useful effect. It forces the specification to rep-
resent only class types, and not interface types, so you can use this when you want to specify any type,
as long as it’s a class type.

You can also constrain a wildcard type specification by specifying that it is a superclass of a given type.
In this case you use the super keyword to define a lower bound for the wildcard. Here’s an example:

public static void analyze(LinkedList<? super MyClass> list) {

// Code to do whatever with the list...

}

In this case you are saying that the elements in the list that is passed as the argument to the analyze()
method must be of type MyClass, or of a type that MyClass extends or implements. This should ring a bell
in relation to the BinaryTree<> generic type from earlier in this chapter. A wildcard that is a superclass of
a given type sounds like a good candidate for what you were looking for to make the BinaryTree<> type
more flexible, and it would accept a type argument that possibly inherited an implementation of the
Comparable<> interface. You could modify the definition to the following to allow this:

public class BinaryTree<T extends Comparable<? super T>> {

// Details exactly as before...

}

The only change you have made to the BinaryTree<> type definition is that you’ve changed the
type parameter for the Comparable<> interface to a wildcard that is a superclass of T, the type param-
eter for BinaryTree<>. The effect is to allow any type argument to be accepted that implements the
Comparable<> interface or inherits an implementation of it. This should allow the BinaryTree<> type
to be used with classes such as the Manager class, which could not be used as a type argument in the
previous BinaryTree<> implementation. Let’s prove it.

Try It Out A More Flexible Binary Tree
You’ll need the definition of the Person and Manager classes that you saw earlier. The Person class def-
inition is:

public class Person implements Comparable<Person> {

public Person(String name) {

this.name = name;

}

public int compareTo(Person person) {

if(person == this) {

return 0;

}

return this.name.compareTo(person.name);

}

585

Generic Class Types

public String toString() {

return name;

}

protected String name;

}

The Manager class definition is:

public class Manager extends Person {

public Manager(String name, int level) {

super(name);

this.level = level;

}

public String toString() {

return “Manager “+ super.toString() + “ level: “ + level;

}

protected int level;

}

You can put the Person and Manager class definitions in the same directory as the following source file,
which stores Manager objects in a BinaryTree<Manager> object:

public class TryFlexibleBinaryTree {

public static void main(String[] args) {

BinaryTree<Manager> people = new BinaryTree<Manager>();

Manager[] managers = { new Manager(“Jane”, 1), new Manager(“Joe”, 3),

new Manager(“Freda”, 3), new Manager(“Albert”, 2)};

for(Manager manager: managers){

people.add(manager);

System.out.println(“Added “+ manager);

}

System.out.println();

listAll(people.sort());

}

// List the elements in any linked list

public static void listAll(LinkedList<?> list) {

for(Object obj : list) {

System.out.println(obj);

}

}

}

You’ll also need the modified version of BinaryTree<> and the source file for LinkedList<>. The out-
put should be:

Added Manager Jane level: 1

Added Manager Joe level: 3

Added Manager Freda level: 3

Added Manager Albert level: 2

586

Chapter 13

Manager Albert level: 2

Manager Freda level: 3

Manager Jane level: 1

Manager Joe level: 3

How It Works
The output demonstrates that the BinaryTree<> generic type works with a type argument that imple-
ments Comparable<> even when the implementation is inherited. The use of a wildcard with a lower
bound as the parameter for the constraint adds the flexibility to allow inherited implementations of the
constraint type. This is usually what you will want for any constraint on a type argument for a parame-
terized type, so you should always use this pattern with constraints for all your generic types unless you
have a reason not to.

More on the Class Class
I mentioned back in Chapter 6 that the Class class is not an ordinary class type; rather, it’s defined as a
parameterized type. The Class<> object for a given type such as Person or java.lang.String in your
application is produced by supplying the type as the argument for the generic type parameter, so of type
Class<Person> and Class<java.lang.String> in these two instances. Because these class types are
produced from a generic type, many of the methods have parameters or return types that are specifically
the type argument —Person or java.lang.String in the two examples I’ve cited.

The Class<> type defines a lot of methods, but I’ll mention only a few of them here as their application
is beyond the scope of this book. You’ll probably find that the primary use you have for Class<> is
obtaining the class of an object by calling the getClass() method for the object. However, you also get
a number of other useful methods with an object of a Class<> type:

Method Purpose

forName() This is a static method that you can use to get the Class<> object for a
known class or interface type. You pass the fully qualified name of the
type as a String object to this method, and it returns a Class<> object
(e.g., Class<String>) for the type that has the name you have
supplied. If no class or interface of the type you specify exists, a
ClassNotFoundException exception is thrown.

newInstance() This method calls the default constructor for the class represented by the
current Class<> object and returns a new object of that type. When things
don’t work as they should, this method can throw exceptions of type
IllegalAccessException if the class or its no-arg constructor is not
accessible or of type InstantiationsException if the Class<> object
represents an abstract class, an interface, an array type, a primitive type,
or void, or if the class does not have a no-arg constructor. It can also throw
an exception of type ExceptionInitializerError if the object initial-
ization fails, or of SecurityException if no permission for creating the
new object exists.

Table continued on following page

587

Generic Class Types

Method Purpose

getSuperclass() This method returns a Class<> object for the superclass of the class repre-
sented by the current Class<> object. Where the type represented is a
class type that is not a derived class or is an array type, the method will
return a Class<> object for the Object class. If the current Class<>
object represents the Object class or a primitive type or void, then null
is returned.

isInterface() This method returns true if the current Class<> object represents an
interface.

getInterfaces() This method returns an array of type Class[] containing objects that repre-
sent the interfaces implemented by the class or interface type corresponding
to the current Class<> object. If the class or interface does not implement
any interfaces, the array that is returned will have a length of 0.

toString() This method returns a String object representing the current Class object.

Because Class<> is a generic type, you can define a method in a generic type definition with a parame-
ter of type Class<T>. This is helpful when you need to be able to create an object of type T. You can’t
call a T class constructor because you don’t know what type T is, but you can create an object of type T
by calling the newInstance() method for an object of type Class<T>. For example:

public class AGenericType<T> {

public T makeObject(Class<T> cobj) {

T obj = cobj.newInstance();

// Set the values of fields in obj...

return obj;

}

// Other code for the definition...

}

The type argument will result in a specific class<T> type for the cobj parameter to the makeObject()
method, so given a Class<T> object, you can always create an object of type T at run time even though
at compile time type T is unknown.

As I said, the preceding list of methods for the Class<> type is not exhaustive. A number of other methods
defined in the class enable you to find out details of the contents of a class — the fields, the public meth-
ods defined in the class, or even classes that are defined within the class. If you need this kind of capabil-
ity, you can find out more by browsing the API documentation relating to the Class<> generic type that
comes with the JDK.

Arrays and Parameterized Types
Arrays of elements that are of a specific type produced from a generic type are not allowed. For exam-
ple, although it looks quite reasonable, the following statement is not permitted and will result in a com-
piler error message:

588

Chapter 13

LinkedList<String>[] lists = new LinkedList<String>[10]; // Will not compile!!!

Although you can declare a field in a generic type by specifying the type using a type variable, you are
not allowed to create arrays of elements using a type variable. For example, you can define a data mem-
ber like this:

public class MyType<T> {

// The methods and data members of the type...

private T[] data; // This is OK

}

While defining the data field as being of type T[] is legal and will compile, the following is not legal
and will not compile:

public class MyType<T> {

// Constructor

public MyType() {

data = new T[10]; // Not allowed!!

}

// The methods and data members of the type...

private T[] data; // This is OK

}

In the constructor you are attempting to create an array of elements of the type given by the type vari-
able T, and this is not permitted.

However, you can define arrays of elements of a generic type where the element type is the result of an
unbounded wildcard type argument. For example, you can define the following array:

LinkedList<?>[] lists = new LinkedList<?>[10]; // OK

Each element in the array can store a reference to any specific LinkedList<> type, and they could all be
different types. Just so that you can believe it, let’s try it.

Try It Out A Wildcard Array
You can modify the previous TryWildcard example to demonstrate using a wildcard type in an array:

public class TryWildCardArray {

public static void main(String[] args) {

BinaryTree<?>[] trees = {new BinaryTree<Integer>(), new BinaryTree<String>()};

LinkedList<?>[] lists = new LinkedList<?>[trees.length];

int[] numbers = new int[30];

for(int i = 0 ; i<numbers.length ; i++) {

numbers[i] = (int)(1000.0*Math.random()); // Random integers 0 to 999

}

// List starting integer values

int count = 0;

System.out.println(“Original values are:”);

for(int number : numbers) {

589

Generic Class Types

System.out.printf(“%6d”, number);

if(++count%6 == 0) {

System.out.println();

}

}

// Add the integers to first tree

for(int number:numbers) {

((BinaryTree<Integer>)trees[0]).add(number);

}

// Create an array of words to be sorted

String[] words = {“vacillate”, “procrastinate”, “arboreal”, “syzygy”,

“xenocracy”, “zygote”, “mephitic”, “soporific”,

“grisly”, “gristly” };

// List the words

System.out.println(“\nOriginal word sequence:”);

for(String word : words) {

System.out.printf(“%-15s”, word);

if(++count%5 == 0) {

System.out.println();

}

}

// Insert the words into second tree

for(String word : words) {

((BinaryTree<String>)trees[1]).add(word);

}

// Sort the values in both trees

for(int i = 0 ; i<lists.length ; i++){

lists[i] = trees[i].sort();

}

// List the sorted values from both trees

for(LinkedList<?> list : lists){

System.out.println(“\nSorted results:”);

listAll(list);

}

}

// List the elements in any linked list

public static void listAll(LinkedList<?> list) {

for(Object obj : list) {

System.out.println(obj);

}

}

}

You should copy the BinaryTree.java and LinkedList.java source files to the directory containing
TryWildcardArray.java. When you compile this program, you will get two warnings from the com-
piler from the statements that involve explicit casts. The output will be similar to that from the previous
example. The sorted lists of values will be output one value per line because that’s how the listAll()
method displays them.

590

Chapter 13

How It Works
You create two array using wildcard type specifications:

BinaryTree<?>[] trees = {new BinaryTree<Integer>(), new BinaryTree<String>()};

LinkedList<?>[] lists = new LinkedList<?>[trees.length];

The length of the trees array is determined by the number of values in the initializing list — two in this
case. You can see that you can happily initialize the array with references to objects of different specific
types as long as they are produced from the generic type BinarayTree<>. The lists array is of type
LinkedList<?>[] and is defined as having the same number of elements as the trees array. You’ll
store the LinkedList<> references returned by the sort() method in these elements eventually.

After creating the array of random integer values, you add them to a binary tree in a loop:

for(int number:numbers) {

((BinaryTree<Integer>)trees[0]).add(number);

}

You can’t call the add() method while the reference stored in trees[0] is of type BinaryTree<?>
because the compiler cannot decide on the form of the add() method without having a specific type
argument available. The type argument determines the parameter type for the method. Without that
there’s no way to decide how the argument to the method is to be passed. You must cast the reference
to a specific type, BinaryTree<Integer> in this case, to allow the add() method for that type to be
called. You get a warning from the compiler at this point because the compiler cannot verify that this
cast is valid. If it isn’t, calling the add() method will cause an exception to be thrown at run time so you
have to accept responsibility for it. Actually, it works, and the integer values will be converted automati-
cally to type Integer.

You then create an array of String objects as you did in the previous version and add these to the sec-
ond binary tree:

for(String word : words) {

((BinaryTree<String>)trees[1]).add(word);

}

Again it is necessary to cast the reference in trees[1] to type BinaryTree<String>, and this results in
the second warning from the compiler.

You sort the contents of the binary trees in another loop:

for(int i = 0 ; i<lists.length ; i++){

lists[i] = trees[i].sort();

Sorting a tree is not dependent on a specific type. You can call the sort() method without a cast because
the operation does not depend on a type argument. The method returns a LinkedList<> reference of a
specific type, LinkedList<Integer> in the first call and LinkedList<String> in the second, but the
lists array is of type LinkedList<?> so you can store references of any LinkedList<> type in it.

You list the sorted values stored in the lists that result from calls to the sort() method for the
BinaryTree<> objects in a loop:

591

Generic Class Types

for(LinkedList<?> list : lists){

System.out.println(“\nSorted results:”);

listAll(list);

}

The loop variable is of a wildcard type, LinkedList<?>, and it iterates over the elements in the
lists array. This is fine here because the static listAll() method does not require a particular
type of LinkedList<> reference as the argument; it works for LinkedList types created from the
LinkedList<> generic type using any type argument.

Note that you can create arrays of a generic type only using a wildcard specification that is unbounded.
If you specify an upper or lower bound for a wildcard type argument when defining an array type, it
will be flagged by the compiler as an error.

Parameterized Methods
You can define a method with its own independent set of one or more type parameters, in which case
you have a parameterized method, which is also referred to as a generic method. You can have parame-
terized methods in an ordinary class. Methods within a generic type definition can also have indepen-
dent parameters.

You could modify the listAll() method that you defined in the TryWildcardArray class in the previ-
ous example so that it is a parameterized method. Here’s how that would look:

public static <T> void listAll(LinkedList<T> list) {

for(T obj : list) {

System.out.println(obj);

}

}

The <T> following the public and static keywords is the type parameter list for the generic method.
Here you have only one type parameter, T, but you could have more. The type parameter list for a generic
method always appears between angled brackets and should follow any modifiers such as public and
static, as you have here, and should precede the return type.

Not that calling this version of the listAll() method does not require the type argument to be supplied
explicitly. The type argument will be deduced from the parameter type supplied when the method is
called. If you replace the listAll() code in the previous example by the version here, you should find
that it works just as well. No other changes to the program are necessary to make use of it.

You could also gain some advantage by using parameterized methods in the BinaryTree<> type defini-
tion. With the present version of this generic type, the add() method accepts an argument of type T, which
is the type argument. In general, you might want to allow subclasses of T to be added to a BinaryTree<T>
object. Harking back to the Person and Manager classes you saw earlier, it might well be the case that you
would want to add Manager objects and objects of any subclass of Person to a BinaryTree<Person> con-
tainer. You could accommodate this by redefining the add() method in the class as an independently
parameterized method:

592

Chapter 13

public <E extends T> void add(E value) {

if(root == null) { // If there’s no root node

root = new Node(value); // store it in the root

} else { // Otherwise...

add(value, root); // add it recursively

}

}

Now the method has an independent parameter, E. This parameter has an upper bound, which in this
case is the type variable for the BinaryTree<> type. Thus, you are saying here that the add() method
accepts an argument of any type that is type T, or a subclass of T. This clearly adds flexibility to the use
of BinaryTree<> objects. You have no need to change the body of the method in this case. All the flexi-
bility is provided simply by the way you have defined the method parameter.

Of course, you must also alter the other version of the add() method that is defined in BinaryTree<>
to have an independent parameter:

private <E extends T> void add(E value, Node node) {

int comparison = node.obj.compareTo(value);

if(comparison == 0) { // If it is equal to the current node

++node.count; // just increment the count

return;

}

if(comparison > 0) { // If it’s less than the current node

if(node.left == null) { // and the left child node is not null

node.left = new Node(value); // Store it as the left child node

} else { // Otherwise...

add(value, node.left); // ...add it to the left node

}

} else { // It must be greater than the current node

if(node.right == null) { // so it must go to the right...

node.right = new Node(value);

} else {

add(value, node.right);

}

}

}

Although you’ve used the same identifier, E, as the type parameter for this method, it has nothing to do
with the E you used as the type parameter for the previous version of add(). The scope of a parameter
for a method is just the method itself, so the two Es are quite separate and independent of one another.
You could use K or some other parameter name here if you want to make it absolutely obvious.

Let’s give it a whirl.

Try It Out Using Parameterized Methods
First, create a directory to hold the source files for this example and copy the files containing the Person
and Manager class definitions to it. You’ll also need the BinaryTree.java file containing the version
with the parameterized add() methods and the source file for the LinkedList<> generic type. Here’s
the program to make use of these:

593

Generic Class Types

public class TryParameterizedMethods {

public static void main(String[] args) {

BinaryTree<Person> people = new BinaryTree<Person>();

// Create and add some Manager objects

Manager[] managers = { new Manager(“Jane”,1), new Manager(“Joe”,3),

new Manager(“Freda”,3)};

for(Manager manager : managers){

people.add(manager);

}

// Create and add some Person objects objects

Person[] persons = {new Person(“Will”), new Person(“Ann”), new Person(“Mary”),

new Person(“Tina”), new Person(“Stan”)};

for(Person person : persons) {

people.add(person);

}

listAll(people.sort()); // List the sorted contents of the tree

}

// Parameterized method to list the elements in any linked list

public static <T> void listAll(LinkedList<T> list) {

for(T obj : list) {

System.out.println(obj);

}

}

}

The output should be as follows:

Ann

Manager Freda level: 3

Manager Jane level: 1

Manager Joe level: 3

Mary

Stan

Tina

Will

How It Works
You create an object of a BinaryTree type that will store Person objects:

BinaryTree<Person> people = new BinaryTree<Person>();

You then define an array of Manager objects and add those to the people binary tree:

Manager[] managers = { new Manager(“Jane”,1), new Manager(“Joe”,3),

new Manager(“Freda”,3)};

for(Manager manager : managers){

people.add(manager);

}

594

Chapter 13

The add() method is defined as a parameterized method in the BinaryTree<> type definition, where
the method’s parameter, E, has an upper bound that is the type variable for the BinaryTree<> type.
This enables the add() method to accept arguments that are of a type that can be type Person or any
subclass of Person. You defined the Manager class with Person as the base class so the add() method
happily accepts arguments of type Manager.

Just to demonstrate that you can, you create an array of Person objects and add those to the people
binary tree:

Person[] persons = {new Person(“Will”), new Person(“Ann”), new Person(“Mary”),

new Person(“Tina”), new Person(“Stan”)};

for(Person person : persons) {

people.add(person);

}

You now have a mix of Person and Manager objects in the binary tree. You list the contents of the binary
tree in ascending alphabetical order by calling the parameterized listAll() method that you defined
as a static member of the TryParameterizedMethods class:

listAll(people.sort()); // List the sorted contents of the tree

The argument to the listAll() method is of type BinaryTree<Person>, so the compiler supplies
Person as the type argument to the method. This means that within the method, the loop iterates over
an array of Person references using a loop variable of type Person. The output demonstrates that the
mix of Person and Manager objects were added to the binary tree correctly and are displayed in the
correct sequence.

Generic Constructors
A constructor is a specialized kind of method and you can define class constructors with their own inde-
pendent parameters. You can define parameterized constructors for both ordinary classes and generic
class types. Let’s take an example.

Suppose you want to add a constructor to the BinaryTree<> type definition that will accept an argument
that is an array of items to be added to the binary tree. In this case, defining the constructor as a parame-
terized method gives you the same flexibility you have with the add() method. Here’s how the con-
structor definition looks:

public <E extends T> BinaryTree(E[] items) {

for(E item : items) {

add(item);

}

}

The constructor parameter is E. You have defined this with an upper bound of T, so the argument to the
constructor can be an array of elements of the type specified by the type variable T or any subclass of T.
For example, if you define a binary tree of type BinaryTree<Person>, then you can pass an array to
the constructor with elements of type Person or any type that is a subclass of Person.

Let’s try it.

595

Generic Class Types

Try It Out Using a Parameterized Constructor
The definition of BinaryTree<> will now be as follows:

public class BinaryTree<T extends Comparable<T>> {

// No-arg constructor

public BinaryTree() {}

// Parameterized constructor

public <E extends T> BinaryTree(E[] items) {

for(E item : items) {

add(item);

}

}

// Add a value to the tree

public <E extends T> void add(E value) {

if(root == null) { // If there’s no root node

root = new Node(value); // store it in the root

} else { // Otherwise...

add(value, root); // add it recursively

}

}

// Recursive insertion of an object

private <E extends T> void add(E value, Node node) {

int comparison = node.obj.compareTo(value);

if(comparison == 0) { // If it is equal to the current node

++node.count; // just increment the count

return;

}

if(comparison > 0) { // If it’s less than the current node

if(node.left == null) { // and the left child node is not null

node.left = new Node(value); // Store it as the left child node

} else { // Otherwise...

add(value, node.left); // ...add it to the left node

}

} else { // It must be greater than the current node

if(node.right == null) { // so it must go to the right...

node.right = new Node(value);

} else {

add(value, node.right);

}

}

}

// Create a list containing the values from the tree in sequence

public LinkedList<T> sort() {

treeSort(root); // Sort the objects into the list

return values;

}

596

Chapter 13

// Extract the tree nodes in sequence

private void treeSort(Node node) {

if(node != null) { // If the node isn’t null

treeSort(node.left); // process its left child

// List the duplicate objects for the current node

for(int i = 0 ; i<node.count ; i++) {

values.addItem(node.obj);

}

treeSort(node.right); // Now process the right child

}

}

LinkedList<T> values = new LinkedList<T>(); // Stores sorted values

private Node root; // The root node

// Private inner class defining nodes

private class Node {

Node(T value) {

obj = value;

count = 1;

}

T obj; // Object stored in the node

int count; // Count of identical nodes

Node left; // The left child node

Node right; // The right child node

}

}

The only changes from the previous version are the addition of the constructor that accepts an array as
an argument and the definition of the no-arg constructor, which is not supplied by the compiler when
you explicitly define a constructor of your own. Put this source file in a new directory and copy the
LinkedList.java, Person.java, and Manager.java files from the previous example to this directory.

You can add the following source file to try out the parameterized constructor:

public class TryParameterizedConstructor {

public static void main(String[] args) {

Manager[] managers = {new Manager(“Jane”,1), new Manager(“Joe”,3),

new Manager(“Freda”,3), new Manager(“Bert”, 2),

new Manager(“Ann”, 2),new Manager(“Dave”, 2)};

BinaryTree<Person> people = new BinaryTree<Person>(managers);

listAll(people.sort());

}

// List the elements in any linked list

public static <T> void listAll(LinkedList<T> list) {

for(T obj : list) {

System.out.println(obj);

}

}

}

597

Generic Class Types

The output will be:

Manager Ann level: 2

Manager Bert level: 2

Manager Dave level: 2

Manager Freda level: 3

Manager Jane level: 1

Manager Joe level: 3

How It Works
After you create an array of Manager objects you create a BinaryTree<Person> object with the contents
of the managers array as the initial contents of the binary tree:

BinaryTree<Person> people = new BinaryTree<Person>(managers);

Because the constructor has an independent parameter and that parameter has the type variable for the
BinaryTree<> type as its upper bound, the constructor accepts the managers array as the argument
because it is a subclass of Person, the type argument that you use to specify the type of the binary tree
object.

The output shows that the array elements were added to the binary tree and were successfully extracted
and stored in sequence in a linked list by the sort() method.

Parameterized Types and Inheritance
You can define a class as a subclass of a class type that is an instance of a generic type. For example, you
could derive a new class from type LinkedList<Person> or from type BinaryTree<String>. Methods
and fields will be inherited from the base class in the usual way. However, you can encounter complica-
tions because of the way the compiler translates methods that involve type arguments into bytecodes, so
let’s first understand that process.

Each method that involves parameters and/or the return value type specified by a type argument is trans-
lated by the compiler to a method with the same name, but with the type of each parameter whose type is a
type variable replaced by its leftmost bound. Where the type of the return value is a type variable, then
that, too, is replaced by its leftmost bound. Casts are inserted in the body of the translated method where
necessary to produce the actual types required. You’ll find that an example will help clarify this.

Earlier you saw a version of the LinkedList<> type defined as:

public LinkedList<T extends Object & Serializable> {

public void addItem(T item) {

// Code for the method...

}

// More code for the type definition...

}

If you define an object of type LinkedList<String>, notionally the addItem() method for the object is
like this:

598

Chapter 13

public void addItem(String item) {

// Code for the method...

}

However, the compiler will translate the addItem() method to the following:

public void addItem(Object item) {

// Code for the method...

// References to fields originally of type T will be cast to type String

// as will values returned by method calls originally of type T.

}

Normally you don’t need to be aware of this. However, suppose you derive a new class from type
LinkedList<String>:

public class SpecialList extends LinkedList<String> {

// Override base class version of addItem() method

public void addItem(String item) {

// New code for the method...

}

// Rest of the code for SpecialList...

}

Here you are quite correctly overriding the version of addItem() that your class inherits from
LinkedList<String>. Because the compiler chooses to compile the method to bytecodes with a different
signature, as it is your method doesn’t override the base class at all. The base class method parameter will
be of type Object, whereas the parameter for your version of the method is of type String. To fix the
problem the compiler will create a bridge method in your derived SpecialList class that looks like this:

public void addItem(Object item) {

addItem((String)item); // Call derived class version

}

The effect of the bridge method is to convert any calls to the inherited version of addItem() to a call to
your version, thus making your override of the base class method effective.

However, the approach adopted by the compiler has implications for you. You must take care not to
define methods in your derived class that have the same signature as an inherited method. Since the
compiler changes the parameter types and return types involving type variables to their bounds, you
must consider the inherited methods in these terms when you are defining your derived class methods.
If a method in a class that you have derived from a generic type has the same signature as the erasure of
an inherited method, your code will not compile.

Summary
In this chapter you have learned the essentials of how generic types are defined and used. In the next
chapter you’ll see how the java.util package provides you with an extensive range of standard generic
types you can use in your programs. The important points you have seen in this chapter include:

599

Generic Class Types

❑ A generic type, which is also referred to as a parameterized type, defines a family of classes or
interfaces using one or more type parameters. Container classes are typically defined as generic
types.

❑ The argument you supply for a type parameter can be a class type or an interface type. It cannot
be a primitive type.

❑ You can limit the scope of type arguments for a given type parameter by specifying one or more
bounds for the parameter using the extends keyword. The first bound can be a class or inter-
face type; the second and subsequent bounds must be interface types.

❑ You define a specific type from a generic type by supplying a type argument for each type
parameter.

❑ All types produced from a given generic type share the same run-time type.

❑ A parameterized method defines a family of methods using one or more independent type
parameters.

❑ A parameterized method can be a member of an ordinary class type or a generic type.

❑ You can use wildcards as type arguments in a parameterized type in situations where there is no
dependency on a specific type.

❑ You can constrain a wildcard type argument with either an upper bound that you specify using
the extends keyword or with a lower bound that you specify using the super keyword.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. A stack is a container that stores objects in a manner indicated by its name — in a vertical stack
where only the object at the top of the stack is accessible. It works rather like a sprung stack of
plates in a cafeteria. Only the top plate is at counter level and, therefore, is the only one you can
access. When you add a plate to the stack, the existing plates are pushed down so the new plate
is now the one that you can access. Define a generic Stack<> type with a method push() that
adds the object that is passed as an argument to the top of the stack, and with a method pop()
that removes and returns the object that is currently at the top of the stack. The pop() method
should return null when the stack is empty. Demonstrate the operation of your Stack<>
implementation by storing and retrieving 10 strings and 10 Double objects in stacks of a suit-
able type.

2. Implement and demonstrate a listAll() method in the Stack<> class definition that will list
the objects in the stack.

3. Modify your Stack<> type to make it serializable. Demonstrate that this is the case by creating
a Stack<String> object and adding 10 strings to it, then serializing and deserializing the
Stack<String> object, and listing the contents of the deserialized stack.

600

Chapter 13

14
The Collections Framework

In this chapter you’ll look at the Java collections framework, which consists of generic types that
represent sets of collection classes. These generic types are defined in the java.util package, and
they provide you with a variety of ways for structuring and managing collections of objects in your
programs. In particular, the collection types enable you to deal with situations where you don’t
know in advance how many objects you’ll need to store, or where you need a bit more flexibility
in the way in which you access an object from a collection than the indexing mechanism provided
by an array.

In this chapter you will learn:

❑ What sets, sequences, and maps are, and how they work

❑ What a Vector<T> collection object is and how to use Vector<T> objects in your
programs

❑ How to manage Vector<T> objects so that storing and retrieving elements is typesafe

❑ What a Stack<T> collection is and how you use it

❑ How you use the LinkedList<T> collections

❑ How you store and retrieve objects in a hash table represented by a HashMap<K,V> object

❑ How you can generate hashcodes for your own class objects

Understanding the Collections
Framework

The Java collections framework is a set of generic types that you use to create collection classes
that support various ways for you to store and manage objects of any kind in memory. As I’m sure
you appreciate from the previous chapter, a collection class is simply a class that organizes a set of
objects of a given type in a particular way, such as in a linked list or a pushdown stack. The major-
ity of types that make up the collections framework are defined in the java.util package.

Using a generic type for your collections of objects means that you get static checking by the compiler
for whatever types of objects you want to manage. This ensures that you do not inadvertently attempt to
store objects of the wrong type in a collection. The collections framework includes a professional imple-
mentation of a generic type that implements a linked list, which is vastly superior to the linked list that
you took so much trouble to develop for yourself first as an ordinary class back in Chapter 6, and later as
a generic type in Chapter 13. However, the effort wasn’t entirely wasted as you now have a good idea of
how linked lists work and how generic types are defined.

You’ll find that the collections framework is a major asset in most of your programs. When you want an
array that automatically expands to accommodate however many objects you throw into it, or you need
to be able to store and retrieve an object based on what it is rather than using an index or a sequence
number, then look no further. You get all this and more in the generic types implemented within the col-
lections framework.

The collections framework involves too much for me to discuss it in complete detail, but you’ll be look-
ing at how you can apply some representative examples of collections that you’re likely to need most
often. You’ll be exploring the capabilities provided by the following generic types in detail:

Generic Class/Interface Type Description

The Iterator<T> interface type Declares methods for iterating through elements of a
collection, one at a time. You met this interface in the
previous chapter.

The Vector<T> type Supports an array-like structure for storing any type of
object. The number of objects that you can store in a
Vector<T> object increases automatically as necessary.

The Stack<T> type Supports the storage of any type of object in a pushdown
stack.

The LinkedList<T> type Supports the storage of any type of object in a doubly-linked
list, which is a list that you can iterate though forwards or
backwards.

The HashMap<K,V> type Supports the storage of an object of type V in a hash table,
sometimes called a map. The object is stored using an asso-
ciated key object of type K. To retrieve an object you just
supply its associated key.

I’ll start by looking in general terms at various possible types of collections for objects.

Collections of Objects
In Chapter 13 you put together a generic type that defined a linked list. An object of type LinkedList<T>
represented an example of a collection of objects of type T, where T could be any class or interface type.
A collection is the term used to describe any object that represents a set of objects grouped together and

602

Chapter 14

organized in a particular way in memory. A class that defines collection objects is often referred to as a
container class. A linked list is just one of a number of ways of organizing objects together in a collection.

There are three main types of collections that organize objects in different ways, called sets, sequences,
and maps. Let’s first get an understanding of how these three types of collections work in principle and
then come back to look at the generic types that implement versions of these. One point I’d like to empha-
size about the following discussion is that when I talk about a collection of objects, I mean a collection of
references to objects. In Java, collections store references only — the objects themselves are external to the
collection.

Sets
A set is probably the simplest kind of collection you can have. Here the objects are not ordered in any
particular way at all, and objects are simply added to the set without any control over where they go. It’s
a bit like putting things in your pocket — you just put things in and they rattle around inside your pocket
in no particular order. Figure 14-1 illustrates the idea of a set.

Figure 14-1

You can add objects to a set and iterate over all the objects in a set. You can also check whether a given
object is a member of the set or not. For this reason you cannot have duplicate objects in a set — each
object in the set must be unique. Of course, you can also remove a given object from a set, but only if you
know what the object is in the first place — in other words, if you have a reference to the object in the set.

There are variations on the basic set that I have described here. For example, sets can be ordered, so
objects added to a set will be inserted into a sequence of objects ordered according to some criterion of
comparison. Such sets require that the objects to be stored are of a class type that defines methods suit-
able for comparing the objects.

contains(object4)
Returns true since
object4 is in the set

anObject

add(anObject)

object3

object4

object2

object1

Sets

603

The Collections Framework

Sequences
The linked list that you have already explored to some extent is an example of a more general type of
collection called a sequence. A primary characteristic of a sequence is that the objects are stored in a lin-
ear fashion, not necessarily in any particular order, but organized in an arbitrary fixed sequence with a
beginning and an end. This contrasts with the set discussed in the previous section, where there is no
order at all. An ordinary array is basically another example of a sequence, but is much more limited than
the equivalent collection because it holds a fixed number of elements.

Collections generally have the capability to expand to accommodate as many elements as necessary. The
Vector<T> type, for example, is an example of a sequence that provides similar functionality to an array,
but also has the capability to accommodate as many new elements as you wish to add to it. Figure 14-2
illustrates the organization of objects in the various types of sequence collections that you have available.

Figure 14-2

Because a sequence is linear, you will be able to add a new object only at the beginning or at the end, or
insert a new object following a given object position in the sequence — after the fifth, say. Generally, you
can retrieve an object from a sequence in several ways. You can select the first or the last; you can get the
object at a given position — as in indexing an array; or you can search for an object identical to a given
object by checking all the objects in the sequence either backwards or forwards. You can also iterate
through the sequence backwards or forwards accessing each object in turn. You didn’t implement all
these capabilities in the linked list class in Chapter 6, but you could have.

You have essentially the same options for deleting objects from a sequence as you have for retrieving
them; that is, you can remove the first or the last, you can delete the object at a particular position in the

Object

array[0]
Array or Vector

Linked List

Stack

Queue

Object

array[1]

Object

array[2]

Object

array[3]

Object Object Object Object

Object

last-in

first-out

next

Object

next

Object

next

Object

next

null

first-out first-in

Object Object Object Object

604

Chapter 14

sequence, or you can remove an object that is equal to a given object. Sequences have the facility to store
several copies of the same object at different places in the sequence. This is not true of all types of collec-
tions, as you already know from the outline of a set in the previous section.

A stack, which is a last-in, first-out (LIFO) storage mechanism, is also considered to be a sequence, as is a
queue, which is usually a first-in, first-out (FIFO) mechanism. As you’ll see, the Java collections frame-
work implements a queue as a priority queue in which elements in the queue are ordered, which implies
that FIFO won’t apply in general. The elements are in ascending sequence from the head of the queue so
it’s more a case of “lowest in, first out.” It’s easy to see that a linked list can act as a stack, since using the
methods to add and remove objects at the end of a list makes the list operate as a stack. Similarly, only
adding objects by using the method to add an object to the end of a linked list, and only retrieving objects
from the head of the list, makes it operate as a FIFO queue.

In the Java collections framework, types that define sequences are subdivided into two subgroups, lists
and queues. Vectors, linked lists, and stacks are all lists.

Maps
A map is rather different from a set or a sequence collection because each entry involves a pair of objects.
A map is also referred to sometimes as a dictionary because of the way it works. Each object that is stored
in a map has an associated key object, and the object and its key are stored together as a pair. The key
determines where the object is stored in the map, and when you want to retrieve an object, you must
supply the appropriate key — so it acts as the equivalent of a word that you look up in a regular dictio-
nary. Figure 14-3 shows how a map works.

Figure 14-3

Maps

key object

key object

key object key

Retrieving an object requires a key to be
supplied. A hashcode is generated, and the
key (or keys) at the location determined by

the hashcode is compared with the
supplied key.

hashcode
determines

location to search

object

key object

key object

get(objectKey) The key is used to generate a
hashcode, which determines where in
memory the key/object pair is stored.

605

The Collections Framework

A key can be any kind of object that you want to use to reference the object stored. Because the key has to
uniquely identify the object, all the keys in a map must be different. To put this in context, suppose you
were creating a program to provide an address book. You might store all the details of each person — their
name, address, phone number, or whatever — in a single object of type Entry perhaps, and store a refer-
ence to the object in a map. The key is the mechanism for retrieving objects, so assuming that all names are
different, a person’s name would be a natural choice for the key. Thus the entries in the map in this case
would be Name/Entry pairs. You would supply a Name object as the key, and get back the Entry object
corresponding to the key, which might encapsulate data such as the address and/or the phone number.
You might well have another map in this application where entries were keyed on the phone number.
Then you could retrieve an entry corresponding to a given number. Of course, in practice, names are not
unique — hence, the invention of such delightful attachments to the person as social security numbers.

Hashing
Where a key/object pair is stored in a map is determined from the key by a process known as hashing.
Hashing processes the key object to produce an integer value called a hashcode. The hashCode() method
that is defined in the Object class produces a hashcode of type int for an object. The hashcode is typi-
cally used to calculate an offset from the start of the memory that has been allocated within the map for
storing objects, and the offset determines the location where the key/object pair is to be stored. Ideally
the hashing process should result in values that are uniformly distributed within a given range, and
every key should produce a different hashcode. In general, this may not be the case. However, there are
ways of dealing with hashcodes that don’t turn out to be ideal, so it is not a problem. The implementa-
tions for map collections usually have provision for dealing with the situation where two or more differ-
ent key objects produce the same hashcode. I will explain keys and hashcodes in a little more detail when
I discuss using maps later in this chapter.

Now let’s look at how you can move through a collection.

Iterators
In the LinkedList<T> class that you developed in Chapter 13 you implemented the Iterable<> inter-
face for getting the objects from the list. This resulted in your LinkedList<> type being able to make an
iterator available. As you know, an iterator is an object that you can use once to retrieve all the objects in
a collection one by one. Someone dealing cards from a deck one by one is acting as an iterator for the
card deck — without the shuffle, of course. Implementing the Iterable<> interface was a much better
approach to accessing the members of a list than the technique that you originally implemented, and it
made the collection usable with a collection-based for loop. Using an iterator is a standard mechanism
for accessing each of the elements in a collection.

It is worth noting at this point that Java also provides something called an enumerator that is defined
by any class that implements the java.util.Enumeration<> generic interface type. An enumera-
tor provides essentially the same capability as an iterator, but it is recommended in the Java documenta-
tion that you use an iterator in preference to an enumerator for collections. There’s nothing particularly
wrong with enumerators — it’s just that the Iterator<> interface declares an optional remove()
method that the Enumeration<> interface does not, and the methods in the Iterator<> interface
have shorter names than those in the Enumeration<> interface, so code that uses them will be less
cluttered.

606

Chapter 14

Any collection object that represents a set or a sequence can create an object of type Iterator<> that
behaves as an iterator. Types representing maps do not have methods for creating iterators. However,
as you’ll see, a map class provides methods to enable the keys or objects, or indeed the key/object pairs,
to be viewed as a set, so you can then obtain an iterator to iterate over the objects in the set view of the
map. An Iterator<> object encapsulates references to all the objects in the original collection in some
sequence, and they can be accessed one by one using the Iterator<> interface methods that you saw in
the previous chapter. In other words, an iterator provides an easy way to get at all the objects in a collec-
tion one at a time. Just to remind you, the basic mechanism for using an iterator in Java is illustrated in
Figure 14-4.

Figure 14-4

Calling its iterator() method
creates an object that is an

iterator.

Collection object (set or list)

false

true

No more objects available.

Collection

An iterator is for one pass
through the objects. To access
the objects from a collection
again, you just obtain another
iterator object.

Iterator
object.

Test Using
hasNext()

Each successive call of the next() method
for the iterator returns the next object

collection

iterator

object1 object2 object3 object4

607

The Collections Framework

The Iterator<> interface in java.util declares the following three methods:

Method Description

T next() Returns an object as type T starting with the first and sets the
Iterator<T> object to return the next object on the next call of this
method. If there is no object to be returned, the method throws a
NoSuchElementException exception.

boolean hasNext() Returns true if there is a next object to be retrieved by a call to
next().

void remove() Removes the last object returned by next() from the collection that
supplied the Iterator<T> object. If next() has not been called or if you
call remove() twice after calling next(), an IllegalStateException
will be thrown. Not all iterators support this method, in which case an
UnsupportedOperationException exception will be thrown if you
call it.

Calling the next() method for an object that implements Iterator<> returns successive objects from
the collection, starting with the first, so you can progress through all the objects in a collection very eas-
ily with a loop such as the following:

MyClass item; // Store an object from the collection

while(iter.hasNext()) { // Check that there’s another

item = iter.next(); // Retrieve next object

// Do something with item...

}

This code fragment assumes that iter is of type Iterator<MyClass> and stores a reference to an object
obtained from whatever collection class you were using. As you will see shortly, most objects that are
collections have an iterator() method that returns an iterator for the current contents of the collection.
The next() method returns an object as the original type so there’s no need for casting. The loop contin-
ues as long as the hasNext() method returns true, which indicates that there is at least one more object
available from the iterator. When all the objects have been accessed, the hasNext() method will return
false. Each time you need to go through the objects in a collection you obtain another iterator, as an
iterator is a “use once” object.

The iterator you’ve seen here is a one-way street — you can go through the objects in a collection one at
a time, once, and that’s it. This is fine for many purposes but not all, so you have other possibilities for
accessing the entire contents of a collection. You can access the objects in any collection that implements
the Iterable<> interface using the collection-based for loop. If this is not enough, there’s another kind
of iterator that is more flexible than the one you’ve seen so far — called a list iterator.

List Iterators
The ListIterator<> interface that is defined in java.util declares methods that you can use to tra-
verse a collection of objects backwards or forwards. You don’t have to elect for a particular direction
either. You can change from forwards to backwards and vice versa at any time so an object can be
retrieved more than once.

608

Chapter 14

The ListIterator<> interface extends the Iterator<> interface type so the iterator methods you have
already seen and used still apply. The methods defined in the ListIterator<> interface that you use to
traverse the list of objects are:

Method Description

T next() Retrieves the next object in sequence as the type of the objects in
the collection — the same as for the Iterator<> interface.

boolean hasNext() Returns true if there is an object that will be returned by next().

int nextIndex() Returns the index of the object that will be returned by the next
call to next() as type int, or returns the number of elements in
the list if the ListIterator<> object is at the end of the list.

T previous() Returns the previous object in sequence in the list. You use this
method to run backwards through the list.

boolean hasPrevious() Returns true if the next call to previous() will return an object.

int previousIndex() Returns the index of the object that will be returned by the next
call to previous(), or returns -1 if the ListIterator<> object is
at the beginning of the list.

You can alternate between calls to next() and previous() to go backwards and forwards through
the list. Calling previous() immediately after calling next() will return the same element — and vice
versa.

With a ListIterator<> object you can add and replace objects as well as remove them from the collec-
tion. ListIterator declares the following methods for this:

Method Description

void remove() Removes the last object that was retrieved by next() or
previous(). The UnsupportedOperation exception is thrown
if the remove operation is not supported for this collection,
and an IllegalStateException will be thrown if next() or
previous() have not yet been called for the iterator.

void add(T obj) Adds the argument immediately before the object that would be
returned by the next call to next(), and after the object that would
be returned by the next call to previous(). The call to next() after
the add() operation will return the object that was added. The next
call to previous() will not be affected. This method throws an
UnsupportedOperationException if objects cannot be added, a
ClassCastException if the class of the argument prevents it from
being added, and IllegalOperationException if there is some
other reason why the add cannot be done.

Table continued on following page

609

The Collections Framework

610

Chapter 14

Method Description

void set(T obj) Replaces the last object retrieved by a call to next() or
previous(). If neither next() nor previous() have been
called, or add() or remove() have been called most recently,
an IllegalStateException will be thrown. If the
set() operation is not supported for this collection an
UnsupportedOperationException will be thrown. If the class of
the reference passed as an argument prevents the object from being
stored in the collection, a ClassCastException will be thrown. If
some other characteristic of the argument prevents it from being
stored in the collection, an IllegalArgumentException will be
thrown.

Now that you know more about iterators, you need to find out a bit about the collection classes them-
selves to make use of them.

Collection Classes
You have a total of 15 classes in java.util that you can use to manage collections of objects, and they
support collections that are sets, lists, queues, and maps, as follows:

Class Description

Sets: HashSet<T> An implementation of a set that uses
HashMap<> under the covers. Although a set is
by definition unordered, there has to be some
way to find an object reasonably efficiently.
The use of a HashMap object to implement the
set enables store and retrieve operations to be
done in a constant time. However, the order in
which elements of the set are accessed is not
necessarily constant over time.

LinkedHashSet<T> Implements a set using a hash table with all
the entries linked in a doubly-linked list. This
class can be used to make a copy of any set
such that iteration ordering is preserved —
something that does not apply to a HashSet<>.

TreeSet<T> An implementation of a set that orders the
objects in the set in ascending sequence. This
means that an iterator obtained from a
TreeSet<> object will provide the objects in
ascending sequence. The TreeSet<> classes
use a TreeMap<> object under the covers.

EnumSet<T extends Enum<T>> Implements a specialized set that stores enum
values from a single enum type, T

611

The Collections Framework

Class Description

Lists: Vector<T> Implements a list as an array that automatically
increases in size to accommodate as many
elements as you need. Objects are stored and
retrieved using an index as in a normal array.
You can also use an iterator to retrieve objects
from a Vector<>. The Vector<> type is one
of two container classes in the java.util
package that are synchronized — that is, it is
well behaved when concurrently accessed by
two or more threads. I will discuss threads
and synchronization in Chapter 16.

Stack<T> This class is derived from Vector<> and
“adds methods to implement a stack — a
last-in first-out storage mechanism.

LinkedList<T> Implements a linked list. The linked list
defined by this class can also be used as a
stack or a queue.

ArrayList<T> Implements an array that can vary in size
and can also be accessed as a linked list. This
provides a similar function to the Vector<>
generic type but is unsynchronized so it is not
safe for use by multiple threads.

Queues: PriorityQueue<T> Implements a priority queue in which objects
are ordered in ascending sequence from the
head of the queue. The order is determined
either by a Comparator<> object supplied to
the constructor for the collection class that
can be used to compare objects, or through
the compareTo() method declared in the
Comparable<> interface that the object type
implements.

Maps: Hashtable<K,V> Implements a map with keys of type K and
values of type V where all keys must be
non-null. The class defining a key must
implement the hashcode() method and the
equals() method to work effectively. This
type, like Vector<>, is synchronized so it’s
safe to use by two or more threads.

HashMap<K,V> Implements a map where objects of type V are
stored using keys of type K. This collection
allows null objects to be stored and allows a
key to be null (only one of course, since keys
must be unique).

Table continued on following page

Class Description

LinkedHashMap<K,V> Implements a map storing values of type V
using keys of type K with all of its entries in a
doubly-linked list. This class can be used to
create a copy of a map of any type such that
the order of the entries in the copy is the same
as the original.

WeakHashMap<K,V> Implements a map storing values of type V
using keys of type K such that if a key to an
object is no longer referenced ordinarily,
the key/object pair will be discarded. This
contrasts with HashMap<> where the presence
of the key in the map maintains the life of the
key/object pair, even though the program
using the map no longer has a reference to the
key and therefore cannot retrieve the object.

IdentityHashMap<K,V> Implements a map storing values of type V
using keys of type K using a hash table where
comparisons in searching the map for a key or
a value compares references, not objects. This
implies that two keys are equal only if they are
the same key. The same applies to values.

TreeMap<K,V> Implements a map storing values of type V
using keys of type K such that the objects are
arranged in ascending key order.

In addition to the generic types listed in the table, the java.util.concurrent package defines further
collection class types that are specifically designed to support concurrent operations by multiple threads.
I won’t be discussing these in this chapter.

The generic types representing sets, lists, and queues are related in the manner shown in Figure 14-5.

The shaded boxes identify generic types that you would use to define collections. The others are
abstract types that you cannot instantiate. All types that define sequences share a common base class,
AbstractCollection<>. This class defines methods for the operations that are common to sets, lists,
and queues. The operations provided by the AbstractCollection<> class include adding objects to a
collection, removing objects, providing an iterator for a collection, and testing for the presence of one or
more objects in a collection.

The parameterized types that define maps of various kinds are related as shown in Figure 14-6.

All the concrete types that define maps have the AbstractMap<> type as a common base class. This pro-
vides an outline implementation of operations that apply to maps, thus simplifying the definitions of the
more specialized types of maps.

612

Chapter 14

Figure 14-5

Figure 14-6

AbstractMap<T>

HashMap<T>

LinkedHashMap<T>IdentityHashMap<T> WeakHashMap<T>

EnumMap<T> EnumMap<T>

AbstractCollection<T>

AbstractList<T>

LinkedHashSet<T>

EnumSet<T> Vector<T> PriorityQueue<T>

Stack<T>

TreeSet<T> ArrayList<T>

HashSet<T> AbstractSequentialList<T>

LinkedList<T>

AbstractSet<T> AbstractQueue<T>

613

The Collections Framework

I don’t have the space to go into all these classes in detail, but to show you some examples of how and
where these can be applied, I’ll describe the three generic types that you are likely to find most useful,
Vector<T>, LinkedList<T>, and HashMap<K,V>. These are representative examples of the most fre-
quently used collections, and once you have worked with these you’ll have little difficulty with the oth-
ers. Before I get into the specifics of using these classes, I’ll introduce the interfaces that they implement,
because these define the operations that the collection classes support and thus define the ways in which
you can apply them.

Collection Interfaces
The java.util package defines eight generic collection interface types that determine the methods that
you use to work with each type of collection class. These interfaces are related in the manner shown in
Figure 14-7.

You can see that the interfaces for maps have no connection to the interfaces implemented by sets and
lists. You can also see that the map interfaces do not implement the Iterable<> interface, so you cannot
use the collection-based for loop to iterate over the objects in a map. However, the Map<> interface
declares a values() method that returns a collection view of the objects in a map as type Collection<>.
You can then use the Collection<> reference with a collection-based for loop to access the contents of
the map because the Collection<> type extends Iterable<>.

Figure 14-7

For Sets, Lists, and Queues

Iterable<T>

Collection<T>

For Maps

Map<K,V>

SortedMap<K,V>

List<T>

SortedList<T>

Set<T> Queue<T>

614

Chapter 14

There are four basic collection interfaces, the Set<>, List<>, Queue<>, and Map<> interfaces, that relate to
the fundamental organization of objects in a collection. The first three inherit the members of Iterable<>
and Collection<>, so sets, lists, and queues share the characteristics specified by these two interfaces.
SortedSet<> and SortedMap<> are specialized versions of their respective superinterfaces that add
methods that provide for ordering objects within a collection. Don’t confuse the Collection<> interface
with the Collections class (with an s) that you will see later. The two other interfaces for collections are
SortedSet<>, which extends the Set<> interface, and SortedMap<>, which extends the Map<> interface.
These two interfaces are implemented by collection classes that maintain their contents in ascending order.

These interfaces are implemented amongst the classes in the java.util package as follows:

Interface Type Implemented by

Set<T> HashSet<T>, LinkedHashSet<T>, EnumSet<T>

SortedSet<T> TreeSet<T>

List<T> Vector<T>, Stack<T>, ArrayList<T>, LinkedList<T>

Queue<T> PriorityQueue<T>, LinkedList<T>

Map<K,V> Hashtable<K,V>, HashMap<K,V>, LinkedHashMap<K,V>,
WeakHashMap<K,V>, IdentityHashMap<K,V>

SortedMap<T> TreeMap<T>

The LinkedList<> type implements both the List<> interface and the Queue<> interface, so it really
does have a dual personality in that you can regard a LinkedList<> object as a linked list or as a queue.

Keep in mind that any collection class object that implements the Collection<> interface can be refer-
enced using a variable of type Collection<>. This means that any of the list or set collections can be refer-
enced in this way; only the map class types are excluded (but not entirely, as you can obtain a set from a
map, and the classes implementing a map can provide a view of the values stored as a Collection<>
reference). You will see that using a parameter of type Collection<> is a standard way of passing a list
or a set to a method.

These interfaces involve quite a large number of methods, so rather than go through them in the abstract,
let’s see them at work in the context of specific collection class types. I’ll consider the Vector<> type
first since it is close to the notion of an array and you are already familiar with that.

Using Vectors
The Vector<T> parameterized type defines a sequence collection of elements of any type T. A Vector<>

object works rather like an array, but with the additional feature that it can grow itself automatically
when you need more capacity. The Vector<> type implements the List<> interface, so you can also
access the contents of containers of this type as a list.

615

The Collections Framework

Creating a Vector
You have four constructors for a Vector<>. The default constructor creates an empty Vector<> object
with the capacity to store up to a default number of objects of the type argument that you supply. The
default capacity of a Vector<> object is ten objects, and the Vector<> object will double in size when
you add an object when it is full. For example:

Vector<String> transactions = new Vector<String>();

This statement creates an empty vector with a capacity for ten String objects. If the default capacity
isn’t suitable for what you want to do, you can set the initial capacity of the Vector<> object explicitly
when you create it by using a different constructor. You just specify the capacity you require as an argu-
ment of type int. For example:

Vector<String> transactions = new Vector<String>(100);

The Vector<> object you’re defining here will store 100 strings initially. It will also double in capacity
each time you exceed the current capacity. The process of doubling the capacity of a vector when more
space is required can be quite inefficient. For example, if you end up storing 7000 String object refer-
ences in the Vector<> you’ve just defined, it will actually have space for 12800 object references. The
capacity doubling mechanism means that the capacity will always be a value of the form 100*2n, and the
smallest n to accommodate 7000 references is 128. As each object reference requires 4 bytes, you’ll be
occupying more than 20 K of memory unnecessarily.

One way of avoiding this is to specify the amount by which the Vector should be incremented as well
as the initial capacity when you create the Vector object. Both of these arguments to the constructor are
of type int. For example:

Vector<String> transactions = new Vector<String>(100,10);

This Vector<> object has an initial capacity of 100, but the capacity will only be increased by 10 ele-
ments each time more space is required.

Why not increment the vector object by 1 each time then? The reason is that the process of incrementing
the capacity takes time because it involves copying the contents to a new area of memory. The bigger the
vector is, the longer the copy takes, and that will affect your program’s performance if it happens very
often.

The last constructor creates a Vector<> object containing object references from another collection. It
is passed to the constructor as an argument of type Collection<>. Since all the set and list collection
classes implement the Collection<> interface, the constructor argument can be of any set or list class

Like arrays, vectors hold object references only, not actual objects. To keep the text
simple I’ll refer to a Vector<> as holding objects, and I’ll make the distinction only
when it’s important. However, you should keep in mind that all the collection
classes you’re about to encounter hold object references.

616

Chapter 14

type, including another Vector<>. The objects are stored in the Vector<> object that is created; they are
stored in the sequence in which they are returned from the iterator for the Collection<> object that is
passed as the argument.

Let’s see a vector working.

Try It Out Using a Vector
I’ll take a very simple example here, just storing a few strings in a vector:

import java.util.Vector;

public class TrySimpleVector {

public static void main(String[] args) {

Vector<String> names = new Vector<String>();

String[] firstnames = { “Jack”, “Jill”, “John”,

“Joan”, “Jeremiah”, “Josephine”};

// Add the names to the vector

for(String firstname : firstnames) {

names.add(firstname);

}

// List the contents of the vector

for(String name : names) {

System.out.println(name);

}

}

}

If you compile and run this, it will list the names that are defined in the program.

How It Works
You first create a vector to store strings using the default constructor:

Vector<String> names = new Vector<String>();

This vector will have the default capacity to store ten references to strings. You copy the references to the
Vector<String> object, names, in the first for loop. The add() method adds the object to the vector at
the next available position.

The second for loop iterates over the String references in the vector:

for(String name : names) {

System.out.println(name);

}

All collection classes that are sequences implement the Iterable<> interface so you can always use the
collection-based for loop to access the contents of the collection. Of course, you could also use an itera-
tor. The following code will produce the same result as the for loop:

617

The Collections Framework

java.util.Iterator<String> iter = names.iterator();

while(iter.hasNext()) {

System.out.println(iter.next());

}

The iter object provides a one-time pass through the contents of the names collection. The boolean
value returned by the hasNext() method determines whether or not the loop should continue. The
next() method returns the object reference as the type argument you used to create the vector so no
casting is necessary.

You are spoiled for choice when accessing elements stored in a vector because you have a third mecha-
nism you can use. The get() method for a Vector<> object returns a reference to the object at an index
position specified by the argument to the method. The argument to the get() method is a zero-based
index, just like an array. To iterate over all the index values for elements in a vector you need to know
how many elements are stored in it; the size() method supplies this as a value of type int. You can
combine these facilities to provide the following alternative to the collection-based for loop:

for(int i = 0 ; i<names.size() ; i++) {

System.out.println(names.get(i));

}

The collection-based for loop is the simplest and clearest mechanism for iterating over the contents of a
vector. The get() method is useful for accessing an element stored at a particular index position.

The Capacity and Size of a Vector
Although I said earlier that a Vector<> works like an array, you can now appreciate that this isn’t strictly
true. One significant difference is in the information you can get about the storage space it provides. An
array has a single measure, its length, which is the count of the total number of elements it can reference.
A vector has two measures relating to the space it provides — the capacity and the size, as Figure 14-8
illustrates.

Figure 14-8

Initial capacity

Size is the number of objects stored.
The size will increase each time you add an object.

Capacity increases
automatically

name1 name2 name10 name11

v.add(name1) v.add(name2) v.add(name10) v.add(name11)

Capacity is the maximum number
of objects that can be stored.

618

Chapter 14

Obtaining and Ensuring Capacity
The capacity of a Vector<> is the maximum number of objects that it can hold at any given instant. Of
course, the capacity can vary over time, because when you store an object in a Vector<> object that is
full, its capacity will automatically increase. For example, the Vector<> object transactions that you
defined in the last of the constructor examples earlier had an initial capacity of 100. You also specified
the capacity increment as 10. After you’ve stored 101 objects in it, its capacity will be 110 objects. A vec-
tor typically contains fewer objects than its capacity.

You can obtain the capacity of a Vector<> by calling its capacity() method, which returns the current
capacity as a value of type int. For example:

int namesMax = names.capacity(); // Get current capacity

If this statement follows the definition you have for names in the previous example, the variable namesMax
will have the value 10.

You can also ensure that a Vector has a sufficient capacity for your needs by calling its
ensureCapacity() method. For example:

names.ensureCapacity(150); // Set minimum capacity to 150

If the capacity of names is less than 150, the capacity will be increased to that value. If it’s already 150 or
greater, it will be unchanged by this statement. The argument you specify for ensureCapacity() is of
type int. There’s no return value.

Changing the Size
When you first create a Vector<> object of a given size, no element references are stored in it. The space
allocated for an element reference will be occupied once you’ve stored a reference in it. The number of
elements you have stored in a Vector<> is referred to as its size. The size of a Vector<> clearly can’t be
greater than the capacity. As you’ve seen, you can obtain the size of a Vector<> object as a value of type
int by calling the size() method for the object. You could use the size() method in conjunction with
the capacity() method to calculate the number of free entries in the Vector object transactions
with the statement:

int freeCount = names.capacity() – names.size();

You will usually increase the size value for a Vector<> indirectly by storing an object in it, but you can
also change the size directly by calling a method. Using the method setSize(), you can increase and
decrease the size. For example:

names.setSize(50); // Set size to 50

The size of the names vector is set to the argument value (of type int). If the names vector has less than
50 elements occupied, the additional elements up to 50 will be filled with null references. If it already
contains more than 50 objects, all object references in excess of 50 will be discarded. The objects them-
selves may still be available if other references to them exist.

619

The Collections Framework

Looking back to the situation I discussed earlier, you saw how the effects of incrementing the capacity
by doubling each time the current capacity was exceeded could waste memory. A Vector<> object pro-
vides you with a direct way of dealing with this — the trimToSize() method. This just changes the
capacity to match the current size. For example:

names.trimToSize(); // Set capacity to size

If the size of the names is 30 when this statement executes, then the capacity will be set to 30. Of course,
you can still add more objects to the Vector<> object, as it will grow to accommodate them by whatever
increment is in effect.

Storing Objects in a Vector
The simplest way to store an object in a vector is to use the add() method as you did in the last example.
To store a name in the names vector, you could write:

transactions.add(aName);

This will add a reference to the object aName to the Vector<> object called names. The new entry will be
added at the end of the existing objects in the vector, and the size of the vector will be increased by 1. All
the objects that were already stored in the vector remain at their previous index position.

You can also store an object at a particular index position in a Vector<> object using another version of
add() that has two parameters. The first argument is the index position and the second argument is the
object to be stored. The index value must be less than or equal to the size of the vector, which implies
that either there is already an object reference at this position or it is the position at the end of the Vector
that is next in line to receive one. The index value is the same as for an array — an offset from the first
element — so you reference the first element using an index value of zero. For example, to insert the
object aName as the third entry of names, you would write:

names.add(2, aName);

The index value is of type int and represents the index value for the position of the new object. The
new object, aName, is inserted in front of the object that previously corresponded to the index value 2, so
objects stored in elements with index values equal to or greater than 2 will be shuffled along, and their
index values will increase by 1. If you specify an index value argument that is negative, or greater than
or equal to the size of the vector, the method will throw an ArrayIndexOutOfBoundsException.

To change an element in a vector you use the set() method. This accepts two arguments: The first argu-
ment is the index position where the object specified by the second argument is to be stored. To change
the third element in the Vector object from names to newName, you would write:

names.set(2, newName);

The method returns a reference to the object that was previously stored at this position. This gives
you a chance to hang on to the displaced object if you want to keep it. If the first argument is
negative, or is greater than or equal to the current size of the Vector, the method will throw an
ArrayIndexOutOfBoundsException.

620

Chapter 14

You can add all the objects from another collection to a vector, either appended at the end or inserted
following a given index position. For example, to append the contents of a LinkedList<> object,
myNamesList— and here I’m referring to the java.util.LinkedList<> type, not the homemade
version — to a Vector<> object, names, you would write:

names.addAll(myNamesList);

The parameter to the method is of type Collection<T>, so because the names vector is of type
Vector<String>, the object reference passed as the argument must be of type Collection<String>.
Here, this implies that myNamesList is of type LinkedList<String>.

To insert the collection objects at a particular position relative to the existing objects in the vector, you
specify the index position as the first argument. So to insert the objects from myNamesList starting at
index position i, you would write:

names.addAll(i, myNamesList);

The object originally at position i, and objects originally to the right of position i, will all be shuffled to
the right to make room for the new objects. If the index value passed as the first argument is negative, or
is not less than the size of names, an ArrayIndexOutOfBoundsException object will be thrown. Adding
a collection will increase the size of the vector by the number of objects added.

Retrieving Objects from a Vector
As you saw in the simple example earlier, if you have the index for an element, you can obtain the ele-
ment at a particular position by using the get() method for the Vector<>. For the names vector you
could write:

String name = names.get(4);

This statement will retrieve the fifth element in the vector. The return type for the get() method is
determined by the type argument you used to create the Vector<> object.

Note that the get() method will throw an exception of type ArrayIndexOutOfBoundsException if
the argument is an illegal index value. The index must be non-negative and less than the size of the vector.

You can retrieve the first element in a Vector<> by using the firstElement() method. For example:

String name = names.firstElement();

You can also retrieve the last element in a Vector<> by using the method lastElement() in a similar
manner. However, a vector has a flavor of a list about it, and if you want to process the objects in your
vector like a list, you can obtain an iterator.

Accessing Elements in a Vector through a List Iterator
You’ve already seen how you can obtain all the elements in a Vector<> object by using an Iterator<>
object that you obtain from the Vector<> object so I won’t repeat it. You can also obtain a ListIterator
reference from a vector by calling the listIterator() method:

621

The Collections Framework

ListIterator<String> listIter = names.listIterator();

Now you can go backwards or forwards though the objects using the ListIterator methods that you
saw earlier.

It is also possible to obtain a ListIterator<> object that encapsulates just a part of the vector, using a
version of the listIterator() method that accepts an argument specifying the index position of the
first vector element in the iterator:

ListIterator<String> listIter = names.listIterator(2);

This statement results in a list iterator that encapsulates the elements from names from the element at
index position 2 to the end. The argument must not be negative and must be less than the size of names;
otherwise, an IndexOutOfBoundsException will be thrown. Take care not to confuse the interface
name ListIterator, with a capital L, with the method of the same name, with a small l.

To cap that, you can retrieve an internal subset of the objects in a vector as a collection of type List<>
using the subList() method:

List<String> list = names.subList(2, 5); //Extract elements 2 to 4 as a sublist

The first argument is the index position of the first element from the vector to be included in the list, and
the second index is the element at the upper limit — not included in the list. Thus this statement extracts
elements 2 to 4, inclusive. Both arguments to subList() must be positive, the first argument must be
less than the size of the vector, and the second argument must not be greater than the size; otherwise,
an IndexOutOfBoundsException will be thrown.

You have lots of ways of using the subList() method in conjunction with other methods, for example:

ListIterator<String> listIter = names.subList(5, 15).listIterator(2);

The call to subList() returns a List<String> object that encapsulates the elements from names at
index positions 5 to 14, inclusive. You then call the listIterator() method for this List<String>
object, which will return a list iterator of type ListIterator<String> for elements in the list from
index position 2 to the end in the List<String> collection. This corresponds to elements 7 to 14, inclu-
sive, from the original names vector. You can use this iterator to roam backwards and forwards through
elements 7 to 14 from the names vector to your heart’s content.

Extracting All the Elements from a Vector
A Vector<> object provides you with tremendous flexibility in use, particularly with the capability to
automatically adjust its capacity. Of course, the flexibility you get through using a Vector<> object comes
at a price. There is always some overhead involved when you’re retrieving elements. For this reason,
there may be times when you want to retrieve the elements contained in a Vector<> object as a regular
array. The method toArray() will do this for you. You would typically use the method toArray() to
obtain the elements of a Vector<> object, names, as follows:

String[] data = names.toArray(new String[names.size());

622

Chapter 14

The argument to the toArray() method must be an array of the same type or a supertype of the type of
elements in the vector. If it isn’t, an exception of type ArrayStoreException will be thrown. If the
argument is null, then an exception of type NullPointerException will be thrown. If the array you
pass as the argument is not large enough to accommodate all the elements in the vector, then a new array
will be created, and a reference to that will be returned. The toArray() method here returns an array of
type String[] containing all the elements from names in the correct sequence.

It’s worth noting that the java.util.Arrays class that you first met back in Chapter 3 defines a static
parameterized method, asList(), that will convert an array of a given type, T, into a List<T> collec-
tion. The argument is the array of type T that you want to convert, and the reference returned is of type
List<T>. For example:

String[] people = { “Brian”, “Beryl”, “Belinda”, “Barry”, “Bill”, “Barbara” };

List<String> nameList = java.util.Arrays.asList(people);

Note that the List<> reference that is returned does not have storage independent of the array. The
List<> object is backed by the array you pass as the argument. From the interface hierarchy that you
saw earlier you know that a List<String> reference is also a Collection<String> reference. You
can therefore pass it as an argument to a Vector<String> constructor. For example:

Vector<String> names = new Vector<String>(java.util.Arrays.asList(people));

Here you are calling the constructor that accepts an argument of type Collection<>. You thus have a
way to create a Vector<> object containing the elements from a predefined array. Of course, the type of
elements in the array must be consistent with the type argument for the vector you are creating.

Removing Objects from a Vector
You can remove the reference at a particular index position by calling the remove() method with the
index position of the object as the argument. For example:

names.remove(3);

will remove the fourth reference from names. The references following this will now be at index positions
that are one less than they were before, so what was previously the fifth object reference will now be
at index position 3. Of course, the index value that you specify must be legal for the Vector<> object
on which you’re operating, meaning greater than or equal to 0 and less than its size(); otherwise, an
exception of type IndexOutOfBoundsException will be thrown. This version of the remove() method
returns a reference to the object removed, so it provides a means for you to retain a reference to the
object after you remove it from the vector:

String name = names.remove(3);

Here you save a reference to the object that was removed from the names vector in name.

Sometimes, you’ll want to remove a particular reference, rather than the reference at a given index. If
you know what the object is that you want to remove, you can use another version of the remove()
method to delete it:

boolean deleted = names.remove(aName);

623

The Collections Framework

This will search the names vector from the beginning to find the first reference to the object aName and
remove it. If the object is found and removed from the vector, the method returns true; otherwise, it
returns false.

Another way to remove a single element is to use the removeElementAt() method, which requires an
argument specifying the index position for the element to be removed. This is clearly similar to the ver-
sion of remove() that accepts an index as an argument, the difference being that here the return type is
void. This is because the element is always removed if the index you supply is valid, and an exception
of type ArrayIndexOutOfBoundsException is thrown if it isn’t.

There is also a removeAll() method that accepts an argument of type Collection<>, which removes
elements from the collection passed to the method if they are present in the vector. The method returns
true if the Vector object is changed by the operation — that is, at least one element was removed. You
could use this in conjunction with the subList() method to remove a specific set of elements:

names.removeAll(names.subList(5,15));

This will remove elements 5 to 14, inclusive, from the Vector<String> object names, plus any dupli-
cates of those objects that are in the vector.

The retainAll() method provides you with a backhanded removal mechanism. You pass a reference
of type Collection<> as the argument to the method that contains the elements to be retained. Any ele-
ments not in the collection you pass to the method will be removed. For example, you could keep the
elements at index positions 5 to 14, inclusive, and discard the rest with the statement:

names.retainAll(names.subList(5,15));

The method returns true if the vector has been changed — in other words, if at least one element has
been removed as a result of the operation. The method will throw an exception of type
NullPointerException if the argument is null.

If you want to discard all the elements in a Vector, you can use the removeAllElements() method to
empty the Vector in one go:

transactions.removeAllElements(); // Dump the whole lot

This removes all the elements and sets the size to zero. The clear() method that is declared in the
List<> interface is identical in function to the removeAllElements() method so you can use that to
empty a vector if you prefer.

With all these ways of removing elements from a Vector<> object, there’s a lot of potential for ending
up with an empty vector. It’s often handy to know whether a vector contains elements or not, particu-
larly if there’s been a lot of adding and deleting of elements. You can determine whether a vector con-
tains elements by calling its isEmpty() method. This returns true if the Vector<> object has zero
size, and false otherwise.

Note that a Vector<> object may contain only null references, but this doesn’t mean the size()
will be zero or that the isEmpty() method will return true. To empty a Vector<> object you must
actually remove the elements, not just set the elements to null.

624

Chapter 14

Searching a Vector
You can get the index position of an object stored in a vector by passing the object as an argument to the
indexOf() method. For example, the statement

int position = names.indexOf(aName);

will search the names vector from the beginning for the object aName using the equals() method for the
argument, so your aName class type needs to have a proper implementation of equals() for this to work.
The variable position will contain either the index of the first reference to the object in transactions or
-1 if the object isn’t found.

Another available version of the method indexOf() accepts a second argument specifying the index
position where the search for the object should begin. The main use for this arises when an object can be
referenced more than once in a vector. You can use the method in this situation to recover all occurrences
of any particular object, as follows:

String aName = “Fred”; // Name to be found

int count = 0; // Number of occurrences

int position = -1; // Search starting index

while(++position<names.size()) { // Search with a valid index

if(position = names.indexOf(aName, position))<0) { // Find next

break;

}

++count;

}

This code fragment counts the number of occurrences of a given name in the names vector. The while
loop will continue as long as the method indexOf() returns a valid index value and the index isn’t
incremented beyond the end of the vector names. Figure 14-9 shows how this works.

Figure 14-9

On each while loop iteration, the indexOf() method will search names from the element given by the
index stored in the variable position. The initial value of -1 is incremented in the while loop condition,

other

0 2

0

87651

aName

index of
object
found

other other aName other other

index of
object
found

++position++position

position = names.indexOf(aName, position)

position = names.indexOf(aName, position)

position = names.indexOf(aName, position)

++position++position

-1 returned

start for
next

search start for
next

search

625

The Collections Framework

so on the first iteration it is 0. On subsequent iterations where indexOf() finds an occurrence of aName,
the loop condition increments position to the next element ready for the next search. When no further
references to the object can be found from the position specified by the second argument, the method
indexOf() will return –1, and the loop will end by executing the break statement. If aName happens to
be found in the last element in the vector at index position size-1, the value of position will be incre-
mented to size by the loop condition expression, so the expression will be false and the loop will end.

Applying Vectors
Let’s implement a simple example to see how using a Vector<> container works out in practice. You’ll
write a program to model a collection of people, where you can add the names of the persons that you
want in the crowd from the keyboard. You’ll first define a class to represent a person:

public class Person {

// Constructor

public Person(String firstName, String surname) {

this.firstName = firstName;

this.surname = surname;

}

public String toString() {

return firstName + “ “ + surname;

}

private String firstName; // First name of person

private String surname; // Second name of person

}

The only data members are the String members to store the first and second names for a person. By
overriding the default implementation of the toString() method provided by the Object class, you
allow objects of the Person class to be used as arguments to the println() method for output, since as
you are well aware by now, toString() will be automatically invoked in this case.

Now you can define an example with which you can try your skills as a casting director.

Try It Out Creating the Crowd
You can now add a class containing a main() method to try storing Person objects in a vector. You can
call it TryVector:

import java.util.Vector;

import java.util.ListIterator;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

public class TryVector {

public static void main(String[] args) {

Person aPerson = null; // A person object

626

Chapter 14

Vector<Person> filmCast = new Vector<Person>();

// Populate the film cast

for(; ;) { // Indefinite loop

aPerson = readPerson(); // Read in a film star

if(aPerson == null) { // If null obtained...

break; // We are done...

}

filmCast.add(aPerson); // Otherwise, add to the cast

}

int count = filmCast.size();

System.out.println(“You added “ + count +

(count == 1 ? “ person”: “ people”) + “ to the cast.\n”);

System.out.println(“The vector currently has room for “

+ (filmCast.capacity() - count) + “ more people.\n”);

// Show who is in the cast using an iterator

ListIterator<Person> thisLot = filmCast.listIterator();

while(thisLot.hasNext()) { // Output all elements

System.out.println(thisLot.next());

}

}

// Read a person from the keyboard

static Person readPerson() {

// Read in the first name and remove blanks front and back

String firstName = null;

String surname = null;

System.out.println(“\nEnter first name or ! to end:”);

try {

firstName = keyboard.readLine().trim(); // Read and trim a string

if(firstName.charAt(0) == ‘!’) { // Check for ! entered

return null; // If so, we are done...

}

// Read in the surname, also trimming blanks

System.out.println(“Enter surname:”);

surname = keyboard.readLine().trim(); // Read and trim a string

} catch(IOException e) {

System.err.println(“Error reading a name.”);

e.printStackTrace();

System.exit(1);

}

return new Person(firstName,surname);

}

static BufferedReader keyboard = new BufferedReader(

new InputStreamReader(System.in));

}

627

The Collections Framework

With a modest film budget, I got the following output (my input is in bold):

Enter first name or ! to end:

Marilyn

Enter surname:

Monroe

Enter first name or ! to end:

Slim

Enter surname:

Pickens

Enter first name or ! to end:

Hopalong

Enter surname:

Cassidy

Enter first name or ! to end:

Mae

Enter surname:

West

Enter first name or ! to end:

!

You added 4 people to the cast.

The vector currently has room for 6 more people.

Marilyn Monroe

Slim Pickens

Hopalong Cassidy

Mae West

How It Works
Here you’ll be assembling an all-star cast for a new blockbuster. The method main() creates a Person
variable, which will be used as a temporary store for an actor or actress, and a Vector<Person> object,
filmCast, to hold the entire cast.

The for loop uses the readPerson() method to obtain the necessary information from the keyboard
and create a Person object. If ! is entered from the keyboard, readPerson() will return null, and this
will end the input process for cast members.

You output the number of stars entered with these statements:

int count = filmCast.size();

System.out.println(“You added “ + count +

(count == 1 ? “ person”: “ people”) + “ to the cast.\n”);

628

Chapter 14

The size() method returns the number of objects in the vector, which is precisely what you want. The
complication introduced by the conditional operator is just to make the grammar in the output sentence
correct.

To output the space remaining in the vector you calculate the difference between the capacity and the size:

System.out.println(“The vector currently has room for “

+ (filmCast.capacity() - count) + “ more people.\n”);

This is interesting but irrelevant because the vector will accommodate as many stars as you care to enter.

Finally, you output the members of the cast using a ListIterator<Person> object — just to try it out.
You could do the job just as well with an Iterator<Person> object or even simply a collection-based
for loop. Using an iterator for listing the members of the cast is still relatively simple:

ListIterator<Person> thisLot = filmCast.listIterator();

while(thisLot.hasNext()) { // Output all elements

System.out.println(thisLot.next());

}

Instead of an iterator, you could also have used the get() method for the filmCast object to retrieve
the actors:

for(int i = 0 ; i<filmCast.size() ; i++)

System.out.println(filmCast.get());

The collection-based for loop would be the simplest way of all for listing the contents of the vector:

for(Person person : filmCast) {

System.out.println(person);

}

The static getPerson() method is a convenient way of managing the input. The input source is the
static class member defined by the following statement:

static BufferedReader keyboard = new BufferedReader(

new InputStreamReader(System.in));

The keyboard object is System.in wrapped in an InputStreamReader object that is wrapped in a
BufferedReader object. The InputStreamReader object provides conversion of the input from the
byte stream System.in to characters. The BufferedReader object buffers the data read from the
InputStreamReader. Because the input consists of a series of strings, entered one to a line of input,
the readLine() method does everything you need. The calls to readLine() must be in a try block
because it can throw an exception of type IOException. The call to the trim() method for the String
object returned by the readLine() method just removes any spurious leading or trailing blanks.

629

The Collections Framework

Sorting a Collection
The output from the last example appears in the sequence in which you enter it. If you want to be socially
correct, say, in the creation of a cast list, you should arrange them in alphabetical order. You could write
your own method to sort Person objects in the filmCast object, but it will be a lot less trouble to take
advantage of another feature of the java.util package, the Collections class — not to be confused
with the Collection<> interface. The Collections class defines a variety of handy static methods that
you can apply to collections, and one of them happens to be a sort() method.

The sort() method will sort lists only — that is, collections that implement the List<> interface.
Obviously, there also has to be some way for the sort() method to determine the order of objects from
the list that it is sorting — in your case, Person objects. The most suitable way to do this for Person
objects is to implement the Comparable<> interface for the class. As you know, the Comparable<> inter-
face declares only one method, compareTo(). You saw this method in the previous chapter so you know
it returns –1, 0, or +1 depending on whether the current object is less than, equal to, or greater than the
argument passed to the method. If the Comparable<> interface is implemented for the type of object
stored in a collection, you can just pass the collection object as an argument to the sort() method. The
collection is sorted in place so there is no return value.

You can implement the Comparable<> interface very easily for your Person class, as follows:

public class Person implements Comparable<Person> {

// Constructor

public Person(String firstName, String surname) {

this.firstName = firstName;

this.surname = surname;

}

public String toString() {

return firstName + “ “ + surname;

}

// Compare Person objects

public int compareTo(Person person) {

int result = surname.compareTo(person.surname);

return result == 0 ? firstName.compareTo(((Person)person).firstName):result;

}

private String firstName; // First name of person

private String surname; // Second name of person

}

You use the compareTo() method for String objects to compare the surnames, and if the surnames are
equal, the result is determined from the first names.

You can just pass your Vector<Person> object to the sort() method, and this will use the
compareTo() method in the Person class to compare members of the list.

Let’s see if it works for real.

630

Chapter 14

Try It Out Sorting the Stars
You can now add statements to the main() method in TryVector to sort the cast members:

public static void main(String[] args) {

// Code as previously...

// Now sort the vector contents and list it

Collections.sort(filmCast);

System.out.println(“\nThe cast is ascending sequence is:\n”);

for(Person person : filmCast) {

System.out.println(person);

}

}

You’ll need the following import statement to the TryVector.java file:

import java.util.Collections;

If you run the example with these changes, you’ll get additional output with the cast in alphabetical
order. Here’s what I got when I entered the same data as last time:

Input record and output exactly as before...

The cast is ascending sequence is:

Hopalong Cassidy

Marilyn Monroe

Slim Pickens

Mae West

How It Works
Passing the filmCast object to the static sort() method in the Collections class sorts the objects in
the vector in place. Like shelling peas!

The sort() method is actually a parameterized method so it works for any type that implements the
Comparable<> interface. The way the method parameter is defined is interesting:

static <T extends Comparable<? super T>> void sort(List<T> list)

You’ll recall from the discussion of parameterized types in the previous chapter that using a wildcard
with the superclass constraint that you see here specifies that the type argument can be any type that
implements the Comparable<> interface or inherits an implementation from a superclass. The method
parameter is of type List<T> rather than Collection<T> because the List<> interface provides
methods that allow the position where elements are inserted to be determined. It also provides the
listIterator() method that returns a ListIterator<T> object that allows iteration forwards or
backwards through the objects in the collection.

631

The Collections Framework

Stack Storage
A stack is a storage mechanism that works on a last-in, first-out basis, often abbreviated to LIFO. Don’t con-
fuse this with FIFO, which is first-in first-out, or FIFI, which is a name for a poodle. The operation of a stack
is analogous to the plate stack you see in some self-service restaurants and is illustrated in Figure 14-10.
The stack of plates is supported by a spring that allows the stack of plates to sink into a hole in the counter-
top so that only the top plate is accessible. The plates come out in the reverse order to the way they went in,
so the cold plates are at the bottom, and the hot plates, fresh from the dishwasher, are at the top.

Figure 14-10

A stack in Java doesn’t have a spring, but it does have all the facilities of a Vector<> object because the
generic Stack<> type is derived from the Vector<> type. Of course, since you know the Vector<> class
implements the List<> interface, a Stack<> object is also a List<>.

The Stack<> class adds five methods to those inherited from Vector<>, two of which provide you with
the LIFO mechanism; the other three give you extra capabilities. These methods are:

Method Description

T push(T obj) Pushes the object of type T that you pass as the argument to the
method onto the top of the stack. It also returns the reference you
pass as the argument.

A Stack

To remove this
element you must
remove the top
three first

Only the top
object in a stack

is accessible

Objects can be
added only to the

top of a stack

632

Chapter 14

Method Description

T pop() Pops the object off the top of the stack and returns it. This
removes the reference from the stack. If the stack contains no
references when you call this method, an exception of type
EmptyStackException will be thrown.

T peek() This method allows you to take a look at the object reference at
the top of the stack without popping it off the stack. It returns the
reference from the top of the stack without removing it. Like the
previous method, this method can throw an exception of type
EmptyStackException.

int search(Object obj) This will return an int value, which is the position on the stack
of the reference to the object that you pass as the argument. The
reference at the top of the stack is at position 1, the next reference
is at position 2, and so on. Note that this is quite different from
referencing elements in a Vector<> or an array, where indexes
start at 0. If the object isn’t found on the stack, –1 is returned.

boolean empty() This method returns true if the stack is empty, and false
otherwise.

The only constructor for a Stack object is the no-arg constructor. This calls the default constructor for
the base class, Vector<>, so you’ll always get an initial capacity for 10 objects, but since it’s basically a
Vector<>, it will grow automatically in the same way.

One possible point of confusion is the relationship between the top of a Stack<> object and the elements
in the underlying Vector<> object. Intuitively, you might think that the top of the stack is going to cor-
respond to the first element in the vector, with index 0. If so, you would be totally wrong! The push()
method for a Stack<> object is analogous to add() for a Vector<>, which adds an object to the end of
the vector. Thus, the top of the stack corresponds to the end of the vector.

Let’s try a Stack<> object out in an example so you get a feel for how the methods are used.

Try It Out Dealing Cards
You can use a Stack<> object along with another useful method from the Collections class to simu-
late dealing cards from a card deck. You’ll need a way of representing a card suit and a card rank. An
enum type will work well because enum types have a fixed set of constant values. Here’s how you can
define the suits:

public enum Suit {

CLUBS, DIAMONDS, HEARTS, SPADES

}

The sequence in which the suits are defined here determines their sort order, so CLUBS is the lowest
and SPADES is the highest. Save this source file as Suit.java in a new directory for the files for this
example.

633

The Collections Framework

You can define the possible card face values just as easily:

public enum Rank {

TWO, THREE, FOUR, FIVE, SIX, SEVEN,

EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE

}

TWO is the lowest card face value, and ACE is the highest. You can save this as Rank.java. You’re now
ready to develop the class that will represent cards. Here’s an initial outline:

public class Card {

public Card(Rank rank, Suit suit) {

this.rank = rank;

this.suit = suit;

}

private Suit suit;

private Rank rank;

}

Your Card class has two data members that are both enumeration types. One defines the suit, and the
other defines the face value of the card.

You will undoubtedly need to display a card, so you will need a String representation of a Card object.
The toString() method will do this for us:

public class Card {

public String toString() {

return rank + “ of “ + suit;

}

// Other members as before...

}

The String representation of an enum constant is the name you assign to the constant, so the String
representation of a Card object with the suit value as CLUBS and the rank value as FOUR will be “FOUR
of CLUBS”.

In general, you will probably need to be able to compare cards, so you could also make the Card class
implement the Comparable<> interface:

public class Card implements Comparable<Card> {

// Compare two cards

public int compareTo(Card card) {

if(suit.equals(card.suit)) { // First compare suits

if(rank.equals(card.rank)) { // So check face values

return 0; // They are equal

}

return rank.compareTo(card.rank)<0 ? -1 : 1;

} else { // Suits are the same

634

Chapter 14

return suit.compareTo(card.suit)<0 ? -1 : 1; // Sequence is C<D<H<S

}

}

// Other members as before...

}

You can see the benefit of the Comparable<> interface being a generic type. The Card class implements
the Comparable<Card> interface, so the compareTo() method works with Card objects and no cast
is necessary in the operation. The suit first determines the card sequence. If the two cards are of the
same suit, then you compare the face values. To compare enum values for equality you use the equals()
method. The Enum<> class that is the base for all enum types implements the Comparable<> interface so
you use the compareTo() method to determine the sequencing of enum values.

You could represent a hand of cards that is dealt from a deck as an object of type Hand. A Hand object
will need to be able to accommodate an arbitrary number of cards, as this depends on what game the
hand is intended for. You can define the Hand class using a Vector<Card> object to store the cards:

// Class defining a hand of cards

import java.util.Vector;

public class Hand {

// Add a card to the hand

public void add(Card card) {

hand.add(card);

}

public String toString() {

StringBuilder str = new StringBuilder();

for(Card card : hand) {

str.append(“ “+ card);

}

return str.toString();

}

private Vector<Card> hand = new Vector<Card>(); // Stores a hand of cards

}

The default constructor generated by the compiler will create a Hand object containing an empty
Vector<Card> member, hand. The add() member will add the Card object passed as an argument by
adding it to the hand vector. You also have implemented a toString() method here that creates a
string that combines the rank name with the suit name. You use the collection-based for loop to traverse
the cards in the hand and construct a string representation of the complete hand. You might be tempted
to use the pop() method in a loop to iterate over the cards in the hand but the pop() method removes
an object from the stack, so using it here would remove all the cards from the hand.

It might be as well to provide a way to sort the cards in a hand. You could do this by adding a sort()
method to the Hand class:

import java.util.Vector;

import java.util.Collections;

635

The Collections Framework

public class Hand {

// Sort the hand

public Hand sort() {

Collections.sort(hand);

return this;

}

// Rest of the class as before...

}

The Card class implements the Comparable<> interface, so you can use the static sort() method in the
Collections class to sort the cards in the hand. return this returns the current Hand object after it
has been sorted. This will make the use of the sort() method a little more convenient, as you’ll see
when you put the main() method together.

You might well want to compare hands in general, but this is completely dependent on the context. The
best approach to accommodate this when required would be to derive a game-specific class from Hand—
a PokerHand class, for example — and make it implement its own version of the compareTo() method
in the Comparable<> interface.

The last class that you’ll define will both represent a deck of cards and deal a hand:

import java.util.Stack;

public class CardDeck {

// Create a deck of 52 cards

public CardDeck() {

for(Suit suit : Suit.values())

for(Rank rank : Rank.values())

deck.push(new Card(rank, suit));

}

// Deal a hand

public Hand dealHand(int numCards) {

Hand hand = new Hand();

for(int i = 0; i<numCards; i++) {

hand.add((Card)deck.pop());

}

return hand;

}

private Stack<Card> deck = new Stack<Card>();

}

The card deck is stored as a Stack<Card> object, deck. In the constructor, the nested for loops create
the cards in the deck. For each suit in turn, you generate all the Card objects for each rank and push
them onto the Stack<> object, deck. The values() method for an enum type returns a collection con-
taining all the enum constants so that’s how the loop iterates over all possible suits and ranks.

The dealHand() method creates a Hand object, and then pops numCards Card objects off the deck stack
and adds each of them to hand. The Hand object is then returned. At the moment your deck is com-
pletely sequenced. You need a method to shuffle the deck before you deal:

636

Chapter 14

import java.util.Stack;

import java.util.Collections;

public class CardDeck {

// Shuffle the deck

public void shuffle() {

Collections.shuffle(deck);

}

// Rest of the class as before...

}

With the aid of another static parameterized method from the Collections class it couldn’t be easier.
The shuffle() method in Collections shuffles the contents of any collection that implements the
List<> interface. The Stack<> class implements List<> so you can use the shuffle() method to
produce a shuffled deck of Card objects. For those interested in the details of shuffling, this shuffle()
method randomly permutes the list by running backwards through its elements swapping the current
element with a randomly chosen element between the first and the current element. The time taken to
complete the operation is proportional to the number of elements in the list.

An overloaded version of the shuffle() method allows you to supply an object of type Random as the
second argument, which is used for selecting elements at random while shuffling.

The final piece is a class that defines main():

class TryDeal {

public static void main(String[] args) {

CardDeck deck = new CardDeck();

deck.shuffle();

Hand myHand = deck.dealHand(5).sort();

Hand yourHand = deck.dealHand(5).sort();

System.out.println(“\nMy hand is” + myHand);

System.out.println(“\nYour hand is” + yourHand);

}

}

I got the following output:

My hand is:

NINE of DIAMONDS SEVEN of HEARTS TWO of CLUBS FOUR of CLUBS NINE of SPADES

Your hand is

FIVE of CLUBS KING of CLUBS TWO of DIAMONDS KING of HEARTS TEN of SPADES

You will almost certainly get something different.

How It Works
Your code for main() first creates a CardDeck object and calls its shuffle() method to randomize the
sequence of Card objects. You then create two Hand objects of five cards with the following statements:

637

The Collections Framework

Hand myHand = deck.dealHand(5).sort();

Hand yourHand = deck.dealHand(5).sort();

The dealHand() method returns a Hand object that you use to call its sort() method. Because the
sort() method returns a reference to the Hand object after sorting, you are able to call it in a single
statement like this. The Hand object that the sort() method returns is stored in the local variable, either
myHand or yourHand as the case may be. The output statements just display the hands that were dealt.

A Stack object is particularly well suited to dealing cards, as you want to remove each card from the
deck as it is dealt, and this is done automatically by the pop() method, which retrieves an object. When
you need to go through all the objects in a Stack collection without removing them, you can use a col-
lection-based for loop, just as you did for the Vector<Card> object in the toString() method in the
Hand class. Of course, since the Stack<> class is derived from Vector<>, all the Vector<> class methods
are available for a stack when you need them.

I think you’ll agree that using a stack is very simple. A stack is a powerful tool in many different con-
texts. A stack is often applied in applications that involve syntactical analysis, such as compilers and
interpreters — including those for Java.

Linked Lists
The LinkedList<> generic collection type implements a generalized linked list. You have already seen
quite a few of the methods that the class implements, as the members of the List<> interface are imple-
mented in the Vector<> class. Nonetheless, let’s quickly review the methods that the LinkedList<>
class implements. There are two constructors: a default constructor that creates an empty list and a con-
structor that accepts a Collection<> argument that will create a LinkedList<> object containing the
objects from the collection that is passed to it.

To add objects to a list you have the add() and addAll() methods, exactly as I discussed for a Vector<>
object. You can also add an object at the beginning of a list using the addFirst() method, and you can
add one at the end using addLast(). Both methods accept an argument of type corresponding to the
type argument you supplied when you created the LinkedList<> object, and neither returns a value.
Of course, the addLast() method provides the same function as the add() method.

To retrieve an object at a particular index position in the list, you can use the get() method, as in
the Vector<> class. You can also obtain references to the first and last objects in the list by using the
getFirst() and getLast() methods, respectively. To remove an object you can use the remove()
method with an argument that is either an index value or a reference to the object that is to be removed.
The removeFirst() and removeLast() methods do what you would expect.

Replacing an existing element in the list at a given index position is achieved by using the set() method.
The first argument is the index value and the second argument is the new object at that position. The old
object is returned, and the method throws an IndexOutOfBoundsException if the index value is not
within the limits of the list. The size() method returns the number of elements in the list.

As with a Vector<> object, you can obtain an Iterator<> object by calling iterator(), and you can
obtain a ListIterator<> object by calling listIterator(). You’ll recall that an Iterator<> object
allows you only to go forward through the elements, whereas a ListIterator<> object enables you to
iterate backwards or forwards.

638

Chapter 14

You could change the TryPolyLine example from Chapter 6 to use a LinkedList<> collection object
rather than your homemade version.

Try It Out Using a Genuine Linked List
Put this example in a new directory, TryNewPolyLine. You can use the TryPolyLine class that contains
main() and the Point class exactly as they are, so if you still have them, copy the source files to the new
directory. You just need to change the PolyLine class definition:

import java.util.LinkedList;

public class PolyLine {

// Construct a polyline from an array of points

public PolyLine(Point[] points) {

// Add the points

for(Point point : points) {

polyline.add(point);

}

}

// Construct a polyline from an array of coordinate

public PolyLine(double[][] coords) {

for(double[] xy : coords) {

addPoint(xy[0], xy[1]);

}

}

// Add a Point object to the list

public void addPoint(Point point) {

polyline.add(point); // Add the new point

}

// Add a point to the list

public void addPoint(double x, double y) {

polyline.add(new Point(x, y));

}

// String representation of a polyline

public String toString() {

StringBuffer str = new StringBuffer(“Polyline:”);

for(Point point : polyline) {

str.append(“ “+ point); // Append the current point

}

return str.toString();

}

private LinkedList<Point> polyline = new LinkedList<Point>();

}

The class is a lot simpler because the LinkedList<> class provides all the mechanics of operating a linked
list. Since the interface to the PolyLine class is the same as the previous version, the original version of
main() will run unchanged and produce exactly the same output.

639

The Collections Framework

How It Works
The only interesting bit is the change to the PolyLine class. Point objects are now stored in the linked
list implemented by the LinkedList<> object, polyline. You use the add() method to add points in
the constructors, and the addPoint() methods. Using a collection class makes the PolyLine class very
straightforward.

I changed the implementation of the second constructor in the PolyLine class to illustrate how you can
use the collection-based for loop with a two-dimensional array:

public PolyLine(double[][] coords) {

for(double[] xy : coords) {

addPoint(xy[0], xy[1]);

}

}

The coords parameter to the constructor is a two-dimensional array of elements of type double. This
is effectively a one-dimensional array of references to one-dimensional arrays that have two elements
each, corresponding to the x and y coordinate values for a point. Thus, you can use the collection-based
for loop to iterate over the array of arrays. The loop variable is xy, which is of type double[] and has
two elements. Within the loop, you pass the elements of the array xy as arguments to the addPoint()
method. This method then creates a Point object and adds it to the LinkedList<Point> collection,
polyline.

Using Maps
As you saw at the beginning of this chapter, a map is a way of storing data that minimizes the need for
searching when you want to retrieve an object. Each object is associated with a key that is used to deter-
mine where to store the reference to the object, and both the key and the object are stored in the map.
Given a key, you can always go more or less directly to the object that has been stored in the map based
on the key. It’s important to understand a bit more about how the storage mechanism works for a map,
and in particular what the implications of using the default hashing process are. You will explore the use
of maps primarily in the context of the HashMap<> generic class type.

The Hashing Process
The implementation of a map in the Java collections framework provided by the HashMap<> class sets
aside an array in which it will store key and object pairs. The index to this array is produced from the
key object by using the hashcode for the object to compute an offset into the array for storing key/object
pairs. By default, this uses the hashCode() method for the object that’s used as a key. This is inherited in
all classes from Object so this is the method that produces the basic hashcode unless the hashcode()
method is redefined in the class for the key. The HashMap<> class doesn’t assume that the basic hashcode
is adequate. To try to ensure that the hashcode that is actually used has the characteristics required for
an efficient map, the basic hashcode is further transformed within the HashMap<> object.

An entry in the table that is used to store key/value pairs is called a bucket. The hashcode produced from
the key selects a particular bucket in which a key/value pair should be stored. This is illustrated in
Figure 14-11.

640

Chapter 14

Figure 14-11

Note that, while every key must be unique, each key doesn’t have to result in a unique hashcode. When
two or more different keys produce the same hash value, it’s called a collision. A HashMap<> object deals
with collisions by storing all the key/object pairs that have the same hash value in a linked list. If this
occurs very often, it is obviously going to slow up the process of storing and retrieving data. Retrieving
an object that resulted in a collision when it was stored is a two-stage process. The key will be hashed to
find the location where the key/object pair should be. The linked list then has to be searched to sort out
the particular key you are searching on from all the others that have the same hash value. There is there-
fore a strong incentive to minimize collisions, and the price of reducing the possibility of collisions in a
hash table is having plenty of empty space in the table.

The Object class defines the method hashCode(), so any object can be used as a key and it will hash
by default. The method as it is implemented in Object in Java, however, isn’t a panacea. Since it usually
uses the memory address where an object is stored to produce the hash value, distinct objects always
produce different hash values. In one sense this is a plus, because the more likely it is that a unique hash
value will be produced for each key, the more efficient the operation of the hash map is going to be. The
downside is that different object instances that have identical data will produce different hash values, so
you can’t compare them.

This becomes a nuisance if you use the default hashCode() method in objects that you’re using as keys.
In this case, an object stored in a hash map can never be retrieved using a different key object instance,
even though that key object may be identical in all other respects. Yet this is precisely what you’ll want
to do in many cases.

Consider an application such as a simple address book. You might store map entries keyed on the names
of the people to whom the entries relate, and you would want to search the map based on a name that

Bucket

Key

Hashing determines where
objects are placed in a

hash map

Object

Key

Object

Key

Object

Key

Object

Key

Object

641

The Collections Framework

was entered from the keyboard. However, the object representing the newly entered name is inevitably
going to be distinct from that used as a key for the entry. Using the former, you won’t be able to find the
entry corresponding to the name.

The solution to this problem is to somehow make a hash of the instance variables of the object. Then, by
comparing the values of the data members of the new name object with those for the name objects used
as keys in the hash map, you’ll be able to make a match.

Using Your Own Class Objects as Keys
For objects of one of your own classes to be usable as keys in a hash table, you must override the equals()
method of the Object class. In its default form, equals() accepts an object of the same class as an argu-
ment and returns a boolean value. The equals() method is used by methods in the HashMap<> class to
determine when two keys are equal, so in order to enable the changes discussed in the previous section,
your version of this method should return true when two different objects contain identical data values.

You can also override the default hashCode() method, which returns the hash value for the object as
type int. The hashCode() method is used to generate the int value that is the key. Your hashCode()

method should produce hashcodes that are reasonably uniform over the possible range of keys, and gen-
erally unique for each key.

Generating Hashcodes
The various techniques for generating hashcodes form a big topic, and I can only scratch the surface here.
How you write the hashCode() method for your class is up to you, but it needs to meet certain require-
ments if it is to be effective. A hashcode is returned by the hashcode() method as a value of type int.
You should aim to return a hashcode that has a strong probability of being unique to the object, and the
hashcodes that you produce for the range of different objects that you’ll be working with should be as
widely distributed across the range of int values as possible.

To achieve the uniqueness, you will typically want to combine the values of all the data members in
an object to produce the hashcode, so the first step is to produce an integer corresponding to each data
member. You must then combine these integers to generate the return value that will be the hashcode for
the object. One technique you can use to do this is to multiply each of the integers corresponding to the
data members by a different prime number and then sum the results. This should produce a reasonable
distribution of values that have a good probability of being different for different objects. It doesn’t mat-
ter which prime numbers you use as multipliers, as long as:

❑ They aren’t so large as to cause the result to fall outside the range of type int

❑ You use a different one for each data member

So how do you get from a data member of a class to an integer? Generating an integer for data members
of type String is easy: you just call the hashCode() method for the member. This has been implemented
in the String class to produce good hashcode values that will be the same for identical strings (take a
look at the source code if you want to see how). You can use integer data members as they are, but float-
ing-point data members need a bit of judgment. If they have a small range in integer terms, you need to
multiply them by a value that’s going to result in a unique integer when they are cast to type int. If they
have a very large range in integer terms you may need to scale them down.

642

Chapter 14

Suppose you intended to use a Person object as a key in a hash table, and the class data members were
firstName and surname of type String and age of type int. You could implement the hashCode()
method for the class as:

public int hashCode() {

return 13*firstName.hashCode() + 17*surname.hashCode() + 19*age;

}

Wherever a data member is an object of another class rather than a variable of one of the basic types, you
need to implement the hashCode() method for that class. You can then use that in the computation of
the hashcode for the key class.

Creating a HashMap Container
As you saw earlier in this chapter, all map classes implement the Map<> interface, so an object of any
map class can be referenced using a variable of type Map<>. You will look in detail at the HashMap<>
class since it is good for most purposes. There are four constructors you can use to create a
HashMap<K,V> object:

Constructor Description

HashMap() Creates a map with the capacity to store a
default number of objects. The default
capacity is 16 objects, and the default load
factor (more on the load factor below)
is 0.75.

HashMap(int capacity) Creates a map with the capacity to store
the number of objects you specify in the
argument and a default load factor of 0.75.

HashMap(int capacity,float loadFactor) Creates a hash table with the capacity and
load factor that you specify.

HashMap(Map<? extends K, ? extends V> map) Creates a map with the capacity and load
factor of the Map object passed as an
argument.

To create a map using the default constructor, you can write something like this:

HashMap<String,Person> theMap = new HashMap<String,Person>();

This statement creates a HashMap<> object that can store Person objects with associated keys of type
String.

The capacity for a map is simply the number of key/object pairs it can store. The capacity increases
automatically as necessary, but this is a relatively time-consuming operation. The capacity value of the
map is combined with the hashcode for the key that you specify to compute the index that determines

643

The Collections Framework

where an object and its key are to be stored. To make this computation produce a good distribution of
index values, you should ideally use prime numbers for the capacity of a hash table when you specify it
yourself. For example:

HashMap myMap = new HashMap(151);

This map has a capacity for 151 objects and their keys, although the number of objects stored can never
actually reach the capacity. You must always have spare capacity in a map for efficient operation. With
too little spare capacity, you have an increased likelihood that keys will generate the same table index,
so collisions become more likely.

The load factor is used to decide when to increase the size of the hash table. When the size of the table
reaches a value that is the product of the load factor and the capacity, the capacity will be increased auto-
matically to twice the old capacity plus 1 — the plus one ensuring it is at least odd, if not prime. The
default load factor of 0.75 is a good compromise, but if you want to reduce it you could do so by using
the third constructor:

// Create a map with a 60% load factor

HashMap<String,Person> aMap = new HashMap<String,Person>(151, 0.6f);

This map will work a bit more efficiently than the current default, but at the expense of having more
unoccupied space. When 90 objects have been stored, the capacity will be increased to 303, (2*151+1).

Storing, Retrieving, and Removing Objects
Storing, retrieving, and removing objects in a HashMap<> is very simple. The four methods involved in
these operations are:

Method Description

V put(K key, V value) Stores the object value in the map
using the key specified by the first
argument. value will displace any
existing object associated with key,
and a reference to the previous
object for the key will be returned.
If no object was previously stored
for key or the key was used to
store null as an object, null is
returned.

void putAll(Map<? extends K,? extends V> map) Transfers all the key/object pairs
from map to the current map,
replacing any objects that exist
with the same keys.

644

Chapter 14

Method Description

V get(Object key) Returns the object stored with the
same key as the argument. If no
object was stored with this key or
null was stored as the object, null
is returned. Note that the object
remains in the table.

V remove(Object key) Removes the entry associated with
key if it exists and returns a refer-
ence to the object. A null is
returned if the entry does not exist,
or if null was stored using key.

If you attempt to retrieve an object using get() and a null is returned, it is still possible that a null
was stored as the object associated with the key that you supplied to the get() method. You can deter-
mine if this is the case by passing your key object to the containsKey() method for the map. This will
return true if the key is stored in the map.

You should ensure that the value returned from the put() method is null. If you don’t, you may unwit-
tingly displace an object that was stored in the table earlier using the same key. The following code frag-
ment illustrates how you might do that:

HashMap<String,Integer> aMap = new HashMap<String,Integer>();

String myKey = “Goofy”;

int value = 12345;

Integer oldValue = null;

for (int i = 0 ; i<4 ; i++) {

if((oldValue = aMap.put(myKey, value++)) != null) {

System.out.println(“Uh-oh, we bounced an object: “ + oldValue);

}

Of course, you could throw your own exception here instead of displaying a message on the command
line. The second parameter to the put() method for the aMap object will be of type Integer, so the
compiler supplies an autoboxing conversion for the int value that is passed as the argument.

If you execute this fragment it will generate the following output:

Uh-oh, we bounced an object: 12345

Uh-oh, we bounced an object: 12346

Uh-oh, we bounced an object: 12347

When the first value is stored, there’s nothing stored in the map for the key, so there’s no message. For
all subsequent attempts to store objects, the previous object is displaced, and a reference to it is returned.

Note that the get() operation will return a reference to the object associated with the key, but it does not
remove it from the table. To retrieve an object and delete the entry containing it from the table, you must
use the remove() method. This removes the object corresponding to the key and returns a reference to it:

645

The Collections Framework

int objectValue = aMap.remove(myKey);

As noted in the table, if there’s no stored object corresponding to myKey, or null was stored as the
object, null will be returned. If you were to append this statement to the previous fragment, a reference
to an Integer object encapsulating the value 12348 would be returned. Since you store it in a variable of
type int, the compiler will insert an unboxing conversion for the return value.

Processing all the Elements in a Map
The Map<> interface provides three ways of obtaining a collection view of the contents of a map. You can
obtain all the keys from a Map<K,V> object as an object of type Set<K>.You can also get a
Collection<V> object that references all the objects in the map. Key/object pairs are stored in a map as
objects of type that implement the Map.Entry<K,V> interface. This is a generic interface type that is
defined within the Map<K,V> interface. You can get all the key/object pairs from the map as an object of
type Set<Map.Entry<K,V>>.

Note that the Set<> or Collection<> object that you get is essentially a view of the contents of a map,
so changes to a HashMap<> object will be reflected in the associated Set<> or Collection<>, and vice
versa. The three methods involved are:

Method Description

keySet() Returns a Set<K> object referencing the keys from the map

entrySet() Returns a Set<Map.Entry<K,V>> object referencing the key/object pairs —
each pair being an object of type Map.Entry<K,V>

values() Returns a Collection<V> object referencing the objects stored in the map

Let’s first see how you can use a set of keys. The keySet() method for a HashMap<K,V> object returns a
Set<K> object referencing the set of keys that you can either use directly to access the keys, or use indi-
rectly to get at the objects stored in the map. For a HashMap<String, Integer> object aMap, you could
get the set of all the keys in the map with the statement:

Set<String> keys = aMap.keySet();

Now you can get an iterator for this set of keys with the statement:

Iterator<String> keyIter = keys.iterator();

You can use the iterator() method for the object keys to iterate over all the keys in the map. Of
course, you can combine these two operations to get the iterator directly. For example:

Iterator<String> keyIter = aMap.keySet().iterator(); // Get the iterator

while(keyIter.hasNext()) { // Iterate over the keys

System.out.println(keyIter.next());

}

646

Chapter 14

This iterates over all the keys and outputs them. Of course, you could use the keys to extract the
objects but the Collection<> object that is returned by the values() method provides you with a
more direct way of doing this. Here’s how you could list the objects stored in aMap, assuming it is of
type HashMap<String,Integer>:

Collection<Integer> collection = aMap.values();

for(Integer i : collection) {

System.out.println(i);

}

This uses a collection-based for loop to iterate over the elements in the collection of objects that the
values() method returns.

Of course, the Set<> interface has Iterable<> as a superinterface, so you could use the collection-based
for loop directly with the object that the keySet() method returns:

Set<String> keys = aMap.keySet();

for(String key : keys) {

System.out.println(key);

}

That’s much neater than messing about with an iterator, isn’t it? In general, the collection-based for
loop will provide you with code that is easier to understand than an iterator.

The method entrySet() returns a Set<Map.Entry<K,V>> object referencing the key/object pairs. In a
similar way that you used for the set of keys, you use a for loop to access the Map.Entry<> objects.
Each Map.Entry<K,V> object will contain the following methods to operate on it:

Method Description

K getKey() Returns the key for the Map.Entry<K,V> object.

V getValue() Returns the object for the Map.Entry<K,V> object.

V setValue(V new) Sets the object for this Map.Entry<K,V> object to the argument
and returns the original object. Remember that this alters the
original map. This method throws:

UnsupportedOperationException if put() is not supported
by the underlying map

ClassCastException if the argument cannot be stored because
of its type

IllegalArgumentException if the argument is otherwise
invalid

NullPointerException if the map does not allow null objects
to be stored. This last exception does not apply to HashMap<>.

647

The Collections Framework

A Map.Entry<> object will also need an equals() method for comparisons with another Map.Entry<>
object passed as an argument, and a hashCode() method to compute a hashcode for the Map.Entry
object. With a set of Map.Entry<> objects you can obviously access the keys and the corresponding objects
using a collection-based for loop, and you can modify the object part of each key/object pair if you
need to.

You have waded through a lot of the theory for HashMap<> objects; let’s put together an example that
applies it.

You can create a very simple phone book that uses a map. We won’t worry too much about error recov-
ery so as not to bulk up the code. You’ll use a variation of the last version of the Person class that you
saw earlier in this chapter in the example where you were sorting objects in a vector. Copy the source file
to a new directory called TryHashMap or something similar. Besides the Person class, you’ll need to cre-
ate a PhoneNumber class and an Entry class that represents an entry in your phone book combining a
name and a number. You could add other stuff such as the address, but this is not necessary to show the
principles. You’ll also define a PhoneBook class to represent the phone book.

Try It Out Using a HashMap Map
You need to improve your old Person class to make Person objects usable as keys in the map that you
will use — to store the phone book entries. You must add an equals() method to do this, and you’ll
override the default hashCode() method just to show how this can work. The extended version of the
class will be as follows:

import java.io.Serializable;

public class Person implements Comparable<Person>, Serializable {

public boolean equals(Object person) {

return compareTo((Person)person) == 0;

}

public int hashCode() {

return 7*firstName.hashCode()+13*surname.hashCode();

}

// The rest of the class as before...

}

You’ve added to the previous version of the class two methods that override the equals() and hash-

code() methods inherited from Object. Because the String class defines a good hashCode() method,
you can easily produce a hash code for a Person object from the data members. To implement the
equals() method you just call the compareTo() method that you implemented for the Comparable<>
interface. You have also made the class serializable just in case it comes in useful at some point.

There’s another thing you can do that will definitely be useful. You can add to the Person class a
static method that will read data for a Person object from the keyboard:

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

import java.io.Serializable;

648

Chapter 14

public class Person implements Comparable<Person>, Serializable {

// Read a person from the keyboard

public static readPerson() {

String firstName = null;

String surname = null;

try {

System.out.print(“Enter first name: “);

firstName = keyboard.readLine().trim();

System.out.print(“Enter surname: “);

surname = keyboard.readLine().trim();

} catch(IOException e) {

System.err.println(“Error reading a name.”);

e.printStackTrace();

System.exit(1);

}

return new Person(firstName,surname);

}

private static BufferedReader keyboard = new BufferedReader(

new InputStreamReader(System.in));

// Rest of the class as before...

}

You should have no trouble seeing how this works as it’s almost identical to the readPerson() method
you used previously in this chapter.

You can make the PhoneNumber class very simple:

import java.io.Serializable;

class PhoneNumber implements Serializable {

public PhoneNumber(String areacode, String number) {

this.areacode = areacode;

this.number = number;

}

public String toString() {

return areacode + “ “ + number;

}

private String areacode;

private String number;

}

You could do a whole lot of validity checking of the number here, but it’s not important for the example.

However, you could use a static method to read a number from the keyboard, so let’s add that, too:

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

import java.io.Serializable;

649

The Collections Framework

class PhoneNumber implements Serializable {

// Read a phone number from the keyboard

public static PhoneNumber readNumber() {

String area = null; // Stores the area code

String localcode = null; // Stores the local code

try {

System.out.print(“Enter area code: “);

area = keyboard.readLine().trim();

System.out.print(“Enter local code: “);

localcode = keyboard.readLine().trim();

System.out.print(“Enter the number: “);

localcode += “ “ + keyboard.readLine().trim();

} catch(IOException e) {

System.err.println(“Error reading a phone number.”);

e.printStackTrace();

System.exit(1);

}

return new PhoneNumber(area,localcode);

}

private static BufferedReader keyboard = new BufferedReader(

new InputStreamReader(System.in));

// Rest of the class as before...

}

This is again very similar to the readPerson() method. You don’t need a separate variable to store the
number that is entered. You just append the string that is read to localcode, with a space character
inserted to make the output look nice. In practice, you’d certainly want to verify that the input was
valid, but you don’t need this to show how a hash map works.

An entry in the phone book will combine the name and the number and would probably include other
things such as the address. You can get by with the basics:

import java.io.Serializable;

class BookEntry implements Serializable {

public BookEntry(Person person, PhoneNumber number) {

this.person = person;

this.number = number;

}

public Person getPerson() {

return person;

}

public PhoneNumber getNumber() {

return number;

}

public String toString() {

return person.toString() + ‘\n’ + number.toString();

}

650

Chapter 14

// Read an entry from the keyboard

public static BookEntry readEntry() {

return new BookEntry(Person.readPerson(), PhoneNumber.readNumber());

}

private Person person;

private PhoneNumber number;

}

This is all pretty standard stuff. In the static readEntry() method, you just make use of the methods
that create Person and PhoneNumber objects using input from the keyboard, so this becomes very simple.

The class that implements the phone book is next — called the PhoneBook class, of course:

import java.io.Serializable;

import java.util.HashMap;

class PhoneBook implements Serializable {

public void addEntry(BookEntry entry) {

phonebook.put(entry.getPerson(), entry);

}

public BookEntry getEntry(Person key) {

return phonebook.get(key);

}

public PhoneNumber getNumber(Person key) {

return getEntry(key).getNumber();

}

private HashMap<Person,BookEntry> phonebook = new HashMap<Person,BookEntry>();

}

To store BookEntry objects you use a HashMap<Person, BookEntry> member, phonebook. You’ll use
the Person object corresponding to an entry as the key, so the addEntry() method has to retrieve only
the Person object from the BookEntry object that is passed to it and use that as the first argument to the
put() method for phonebook.

All you need now is a class containing main() to test these classes:

public class TryPhoneBook {

public static void main(String[] args) {

PhoneBook book = new PhoneBook(); // The phone book

FormattedInput in = new FormattedInput(); // Keyboard input

Person someone;

for(;;) {

System.out.println(“Enter 1 to enter a new phone book entry\n”+

“Enter 2 to find the number for a name\n”+

“Enter 9 to quit.”);

int what = 0; // Stores input selection

try {

what = in.readInt();

651

The Collections Framework

} catch(InvalidUserInputException e) {

System.out.println(e.getMessage()+”\nTry again.”);

continue;

}

switch(what) {

case 1:

book.addEntry(BookEntry.readEntry());

break;

case 2:

someone = Person.readPerson();

BookEntry entry = book.getEntry(someone);

if(entry == null) {

System.out.println(“The number for “ + someone +

“ was not found. “);

} else {

System.out.println(“The number for “ + someone +

“ is “ + entry.getNumber());

}

break;

case 9:

System.out.println(“Ending program.”);

return;

default:

System.out.println(“Invalid selection, try again.”);

break;

}

}

}

}

You’re using the FormattedInput class that you developed in Chapter 8 to read the input values, so
copy the source file for this class along with the source file for the InvalidUserInputException class,
which is also from Chapter 8, to the directory for this example.

This is what the example produces with my input:

Enter 1 to enter a new phone book entry

Enter 2 to find the number for a name

Enter 9 to quit.

1

Enter first name:

Algernon

Enter surname:

Lickspittle

Enter area code:

914

Enter local code:

321

Enter the number :

3333

Enter 1 to enter a new phone book entry

Enter 2 to find the number for a name

652

Chapter 14

Enter 9 to quit.

2

Enter first name:

Algernon

Enter surname:

Lickspittle

The number for Algernon Lickspittle is 914 321 3333

Enter 1 to enter a new phone book entry

Enter 2 to find the number for a name

Enter 9 to quit.

9

Ending program.

Of course, you can try it with several entries if you have the stamina.

How It Works
The main() method runs an ongoing loop that will continue until a 9 is entered. When a 1 is entered, the
addEntry() method for the PhoneBook object is called with the expression BookEntry.readEntry()
as the argument. The static method readEntry() calls the static methods in the Person class and
the PhoneNumber class to read from the keyboard and create objects of these classes. The readEntry()
method then passes these objects to the constructor for the BookEntry class, and the object that is created is
returned. This object will be added to the HashMap member of the PhoneBook object.

If a 2 is entered, the getEntry() method is called. The argument expression calls the readPerson()
member of the Person class to obtain the Person object corresponding to the name entered from the
keyboard. This object is then used to retrieve an entry from the map in the PhoneBook object. Of course,
if there is no such entry null will be returned, so you have to check for it and display an appropriate
message.

Try It Out Storing a Map in a File
This phone book is not particularly useful. The process of echoing what you just keyed in doesn’t hold
one’s interest for long. What you need is a phone book that is held in a file. That’s not difficult. You just
need to add a constructor and another method to the PhoneBook class:

import java.io.File;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.io.FileOutputStream;

import java.io.ObjectOutputStream;

import java.io.IOException;

import java.io.Serializable;

import java.util.HashMap;

class PhoneBook implements Serializable {

public PhoneBook() {

if(filename.exists()) // If there’s a phone book in a file...

try {

ObjectInputStream in = new ObjectInputStream(

new FileInputStream(filename));

phonebook = (HashMap<Person, BookEntry>)in.readObject(); //...read it in.

in.close();

653

The Collections Framework

} catch(ClassNotFoundException e) {

e.printStackTrace();

System.exit(1);

} catch(IOException e) {

e.printStackTrace();

System.exit(1);

}

}

public void save() {

try {

System.out.println(“Saving phone book”);

ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream(filename));

out.writeObject(phonebook);

System.out.println(“Done”);

out.close();

} catch(IOException e) {

e.printStackTrace();

System.exit(1);

}

}

private File filename = new File(“Phonebook.bin”);

// Other members of the class as before...

}

The new private data member filename defines the name of the file where the map holding the phone
book entries is to be stored. Since you have specified only the file name and extension, the file will be
assumed to be in the current directory. The filename object is used in the constructor that now reads
the HashMap<> object from the file if it exists. If it doesn’t exist, the constructor does nothing, and the
PhoneBook object will use the default empty HashMap object. The cast of the reference returned by the
readObject() method to type HashMap<Person, BookEntry> will cause the compiler to issue a
warning message to the effect that you have an unchecked cast. There is no way around this since the
compiler cannot know what the type of the object that is read from the file will be. Everything will be
fine as long as you know what you are doing!

The save() method provides for storing the map away, so you will need to call this method before end-
ing the program.

To make the program a little more interesting you could add a method to the PhoneBook class that will
list all the entries in a phone book. Ideally, the entries should be displayed in alphabetical order by name.
One way to do this would be to create a linked list containing the entries and use the static sort()
method that the Collections class defines to sort them. The sort() method expects an argument that
is of type List<>, where the type of elements in the list implements the Comparable<> interface. Thus,
to be able to sort the entries in the phone book, the BookEntry class must implement the Comparable<>
interface. This is quite easy to arrange:

654

Chapter 14

import java.io.Serializable;

class BookEntry implements Comparable<BookEntry>, Serializable {

public int compareTo(BookEntry entry) {

return person.compareTo(entry.getPerson());

}

// Rest of the class as before...

}

For the purpose of sorting the entries, you’ll want to use the sort order of the Person objects to deter-
mine the sort order of the BookEntry objects. Because the Person class already implements the
Comparable<> interface, you can implement the compareTo() method in the BookEntry class by call-
ing the method for the Person object in the entry.

Now you can implement the listEntries() method in the PhoneBook class to list the entries in alpha-
betical order:

import java.io.File;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.io.FileOutputStream;

import java.io.ObjectOutputStream;

import java.io.IOException;

import java.io.Serializable;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.Collections;

class PhoneBook implements Serializable {

// List all entries in the book

public void listEntries() {

// Get the entries as a linked list

LinkedList<BookEntry> entries = new LinkedList<BookEntry>(phonebook.values());

Collections.sort(entries); // Sort the entries

for(BookEntry entry : entries) {

System.out.println(entry);

}

}

// Other members as before...

}

Listing the entries in name sequence is relatively simple. Calling the values() method for the phone-
book object returns the objects in the map, which are BookEntry objects, as a Collection<>. You pass
this to the constructor for the LinkedList<BookEntry> class to obtain an object of that type. The
LinkedList<> class implements the List<> interface, so you can pass the entries object to the
sort() method to sort the entries. It’s then a simple matter of using the collection-based for loop to
iterate through the sorted entries to output them.

You can update main() to take advantage of the new features of the PhoneBook class:

655

The Collections Framework

class TryPhoneBook {

public static void main(String[] args) {

PhoneBook book = new PhoneBook(); // The phone book

FormattedInput in = new FormattedInput(); // Keyboard input

Person someone;

for(;;) {

System.out.println(“Enter 1 to enter a new phone book entry\n”+

“Enter 2 to find the number for a name\n”+

“Enter 3 to list all the entries\n” +

“Enter 9 to quit.”);

int what = 0;

try {

what = in.readInt();

} catch(InvalidUserInputException e) {

System.out.println(e.getMessage()+”\nTry again.”);

continue;

}

switch(what) {

case 1:

book.addEntry(BookEntry.readEntry());

break;

case 2:

someone = Person.readPerson();

BookEntry entry = book.getEntry(someone);

if(entry == null) {

System.out.println(“The number for “ + someone +

“ was not found. “);

} else {

System.out.println(“The number for “ + someone +

“ is “ + entry.getNumber());

}

break;

case 3:

book.listEntries();

break;

case 9:

book.save();

System.out.println(“Ending program.”);

return;

default:

System.out.println(“Invalid selection, try again.”);

break;

}

}

}

}

How It Works
The first changes here are an updated prompt for input and a new case in the switch to list the entries
in the phone book. The other change is to call the save() method to write the map that stores the phone
book to a file before ending the program.

656

Chapter 14

The first time you run this version of TryPhoneBook it will create a new file and store the entire phone
book in it. On subsequent occasions the PhoneBook constructor will read from the file, so all the previ-
ous entries are available.

In the next chapter you’ll move on to look at some of the other components from the java.util
package.

Summary
All of the classes in this chapter will be useful sooner or later when you’re writing your own Java pro-
grams. You’ll be applying many of them in examples throughout the remainder of the book.

The important elements you’ve covered are:

❑ The Java collections framework provides you with a range of collection classes implemented as
generic types. These enable you to organize your data in various ways.

❑ You can use a Vector<> object as a kind of flexible array that expands automatically to accom-
modate any number of objects stored.

❑ The Stack<> class is derived from the Vector class and implements a pushdown stack.

❑ The HashMap<> class defines a hash map in which objects are stored based on an associated key.

❑ An Iterator<> is an interface for retrieving objects from a collection sequentially. An
Iterator<> object allows you to access all the objects it contains serially — but only once.
There’s no way to go back to the beginning.

❑ The ListIterator<> interface provides methods for traversing the objects in a collection back-
wards or forwards.

❑ Objects stored in any type of collection can be accessed using Iterator<> objects.

❑ Objects stored in a Vector<>, a Stack<>, or a LinkedList<> can be accessed using
ListIterator<> objects.

Be aware of the default hashCode() method in the Object class when storing maps.
The hashcodes are generated from the address of the object, and getting a key object
back from a file in exactly the same place in memory is about as likely as finding
hairs on a frog. The result is that the hashcode generated from the key when it is
read back will be different from what was originally produced, so you will never
find the entry in the map to which it corresponds.

If you override the default hashCode() method, then the hashcodes are produced
from the data members of the key objects, so they are always the same regardless of
where the key objects are stored in memory.

657

The Collections Framework

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Implement a version of the program to calculate prime numbers that you saw in Chapter 4 to
use a Vector<> object instead of an array to store the primes. (Hint: Remember the Integer
class.)

2. Write a program to store a deck of 52 cards in a linked list in random sequence using a Random
class object. You can represent a card as a two-character string —”1C” for the ace of clubs, “JD”
for the jack of diamonds, and so on. Output the cards from the stack as four hands of 13 cards.

3. Extend the program from this chapter that used a map to store names and telephone numbers
such that you can enter a number to retrieve the name.

4. Implement a phone book so that just a surname can be used to search, and have all the entries
corresponding to the name display.

658

Chapter 14

15
A Collection of Useful

Classes

In this chapter you’ll be looking at some more very useful classes in the java.util package, but
this time they are not collection classes — just a collection of classes. You will also be looking at the
facilities provided by classes in the java.util.regex package that implement regular expres-
sions in Java. Support for regular expressions is a very powerful and important feature of Java.

In this chapter you’ll learn:

❑ How to use the static methods in the Arrays class for filling, comparing, sorting,
and searching arrays

❑ How to use the Observable class and the Observer interface to communicate
between objects

❑ What facilities the Random class provides

❑ How to create and use Date and Calendar objects

❑ What regular expressions are and how you can create and use them

❑ What a Scanner class does and how you use it

Utility Methods for Arrays
The Arrays class in java.util provides you with a set of static methods for operating on arrays.
You have methods for sorting and searching arrays, as well as methods for comparing two arrays
of elements of a basic type. You also have methods for filling arrays of elements with a given
value. Let’s look at the simplest method first, the fill() method for filling an array.

Filling an Array
The need to fill an array with a specific value arises quite often, and you already met the static fill()
method that is defined in the Arrays class back in Chapter 4. The fill() method comes in a number of
overloaded versions of the form:

fill(type[] array, type value)

Here type is a placeholder for the types supported by various versions of the method. The method
stores value in each element of array. The return type is void so there is no return value. There are
versions supporting type as any of the following:

boolean byte char float double

short int long Object

Here’s how you could fill an array of integers with a particular value:

long[] values = new long[1000];

java.util.Arrays.fill(values, 888L); // Every element as 888

It’s quite easy to initialize multidimensional arrays. To initialize a two-dimensional array, for example,
you just treat it as an array of one-dimensional arrays. For example:

int[][] dataValues = new int[10][20];

for(int[] row : dataValues) {

Arrays.fill(row, 99);

}

This will set every element on the dataValues array to 99. The loop iterates over the 10 arrays of 20 ele-
ments that make up the dataValues array. If you want to set the rows in the array to different values,
you could do it like this:

int initial = 0;

int[][] dataValues = new int[10][20];

for(int[] row : dataValues) {

Arrays.fill(row, ++initial);

}

This will result in the first row of 20 elements being set to 1, the second row of 20 elements to 2, and so
on through to the last row of 20 elements that will be set to 10.

The version of fill() accepting an array argument of type Object[] will obviously process an array of
any class type. You could fill an array of Person objects like this:

Person[] people = new Person[100];

java.util.Arrays(people, new Person(“John”, “Doe”);

This will insert a reference to the object passed as the second argument to the fill() method in every ele-
ment of the people array. Note that there is only one Person object that all the array elements reference.

660

Chapter 15

There is a further form of fill() method that accepts four arguments. This is of the form:

fill(type[] array, int fromIndex, int toIndex, type value)

This will fill part of array with value, starting at array[fromIndex] up to and including
array[toIndex-1]. There are versions of this method for the same range of types at the previous set of
fill() methods. This variety of fill() will throw an exception of type IllegalArgumentException
if fromIndex is greater than toIndex. It will also throw an exception of type
ArrayIndexOutOfBoundsException if fromIndex is negative or toIndex is greater than
array.length. Here’s an example of using this form of the fill() method:

Person[] people = new Person[100];

java.util.Arrays(people, 0, 50, new Person(“Jane”, “Doe”);

java.util.Arrays(people, 50, 100, new Person(“John”, “Doe”);

This will set the first 50 elements to reference one Person object and the second 50 elements to reference
another.

Comparing Arrays
There are nine overloaded versions of the static equals() method for comparing arrays defined in the
Arrays class, one for each of the types that apply to the fill() method. All versions of equals() are
of the form:

boolean equals(type[] array1, type[] array2)

The method returns true if array1 is equal to array2 and false otherwise. The two arrays are equal if
they contain the same number of elements and the values of all corresponding elements in the two
arrays are equal. If array1 and array2 are both null, they are also considered to be equal.

When floating-point arrays are compared, 0.0 is considered to be equal to -0.0, and two elements that
contain NaN are also considered to be equal. When arrays with elements of a class type are compared, the
elements are compared by calling the equals() method for the class. If you have not implemented the
equals() method in your own classes, then the version inherited from the Object class will be used.
This compares references, not objects, and so returns true only if both object references refer to the same
object.

Here’s how you can compare two arrays:

String[] numbers = {“one”, “two”, “three”, “four” };

String[] values = {“one”, “two”, “three”, “four” };

if(java.util.Arrays.equals(numbers, values)) {

System.out.println(“The arrays are equal”);

} else {

System.out.println(“The arrays are not equal”);

}

In this fragment both arrays are equal so the equals() method will return true.

661

A Collection of Useful Classes

Sorting Arrays
The static sort() method in the Arrays class will sort the elements of an array that you pass as the
argument into ascending sequence. The method is overloaded for eight of the nine types (boolean is
excluded) we saw for the fill() method for each of two versions of sort():

void sort(type[] array)

void sort(type[] array, int fromIndex, int toIndex)

The first variety sorts the entire array into ascending sequence. The second variety sorts the elements
from array[fromIndex] to array [toIndex-1] into ascending sequence. This will throw an exception
of type IllegalArgumentException if fromIndex is greater than toIndex. It will also throw an
exception of type ArrayIndexOutOfBoundsException if fromIndex is negative or toIndex is greater
than array.length.

Obviously, you can pass an array of elements of any class type to the versions of the sort() method that
have the first parameter as type Object[]. If you are using either variety of the sort() method to sort
objects, then the class type of the objects must support the Comparable<> interface since the sort()
method uses the compareTo() method to compare objects.

Here’s how we can sort an array of strings:

String[] numbers = {“one”, “two”, “three”, “four”, “five”,

“six”, “seven”, “eight”};

java.util.Arrays.sort(numbers);

After executing these statements, the elements of the array numbers will contain:

“eight” “five” “four” “one” “seven” “six” “three” “two”

Two additional versions of the sort() method for sorting arrays of type Object[] are both parameter-
ized methods. These are for sorting arrays in which the order of elements is determined by using an
external comparator object. The class type of the comparator object must implement the
java.util.Comparator<> interface. One advantage of using an external comparator for sorting a col-
lection of objects is that you can have several comparators that can impose different orderings depend-
ing on the circumstances. For example, in some cases you might want to sort a name file ordering by
first name within second name. On other occasions you might want to sort by second name within first
name. You can’t do this using the Comparable<> interface implemented by the class. The first version of
the sort() method that makes use of a comparator is:

<T>void sort(T[] array, Comparator<? super T> comparator)

This will sort the elements of the entire array passed as the first argument using the comparator passed
as the second argument.

The second version of the sort() method using a comparator is:

<T>void sort(T[] array,

int fromIndex, int toIndex, Comparator<? super T> comparator)

662

Chapter 15

This sorts the elements of the array from index position fromIndex up to but excluding the element at
index position toIndex.

The wildcard parameter to the Comparator<> type specifies that the type argument to the comparator
can be T or any superclass of T. This implies that so far as the sort() method is concerned it can sort an
array of elements of type T using a Comparator<> object that can compare objects of type T or that can
compare objects of any superclass of T. To put this in a specific context, this means that you can use an
object of type Comparator<Person> to sort an array of objects of type Manager, where Manager is a
subclass of Person.

The Comparator<> interface declares two methods. First is the compare() method, which is used by
the sort() method for comparing elements of the array of type T[]. The method compares two objects
of type T that are passed as arguments, so it’s of the form:

int compare(T obj1, T obj2)

The method returns a negative integer, zero, or a positive integer, depending on whether obj1 is less
than, equal to, or greater than obj2. The method will throw an exception of type ClassCastException
if the types of the argument you pass are such that they cannot be compared by the comparator.

The second method declared by the Comparator<> interface is the equals() method, which is used for
comparing Comparator<> objects for equality. The method is of the form:

boolean equals(Object comparator)

This compares the current Comparator<> object with another object of a type that also implements the
Comparator<> interface that you pass as the argument. It returns a boolean value indicating whether
the current comparator object and the argument impose the same ordering on a collection of objects. I
think it would be a good idea to see how sorting using a Comparator<> object works in practice.

Try It Out Sorting Using a Comparator
You can borrow the version of the Person class that implements the Comparable<> interface from the
TryVector example in Chapter 14 for this example. Copy the Person.java file to the directory you set
up for this example. The comparator will need access to the first name and the surname for a Person
object to make comparisons, so you’ll need to add methods to the Person class to allow that:

public class Person implements Comparable<Person> {

public String getFirstName() {

return firstName;

}

public String getSurname() {

return surname;

}

// Rest of the class as before...

}

663

A Collection of Useful Classes

You can now define a class for a comparator that applies to Person objects:

import java.util.Comparator;

public class ComparePersons implements Comparator<Person> {

// Method to compare Person objects - order is descending

public int compare(Person person1, Person person2) {

int result = -person1.getSurname().compareTo(person2.getSurname());

return result == 0 ?

-person1.getFirstName().compareTo(person2.getFirstName()) : result;

}

// Method to compare with another comparator

public boolean equals(Object collator) {

if(this == collator) { // If argument is the same object

return true; // then it must be equal

}

if(collator == null) { // If argument is null

return false; // then it can’t be equal

}

return getClass() == collator.getClass(); // Class must be the same for equal

}

}

Just to make it more interesting and to demonstrate that it’s this comparator and not the compareTo()
method in the Person class that’s being used by the sort() method, this comparator establishes a
descending sequence of Person objects. By switching the sign that the compareTo() method returns,
you invert the sort order here. Thus, sorting using this comparator will sort Person objects in descend-
ing alphabetical order by surname and then by first name within surname.

You can try this out with the following program:

import java.util.Arrays;

public class TrySortingWithComparator {

public static void main(String[] args) {

Person[] authors = {

new Person(“Danielle”, “Steel”), new Person(“John”, “Grisham”),

new Person(“Tom”, “Clancy”), new Person(“Christina”, “Schwartz”),

new Person(“Patricia”, “Cornwell”), new Person(“Bill”, “Bryson”)

};

System.out.println(“Original order:”);

for(Person author : authors) {

System.out.println(author);

}

Arrays.sort(authors, new ComparePersons()); // Sort using comparator

System.out.println(“\nOrder after sorting using comparator:”);

for(Person author : authors) {

System.out.println(author);

}

664

Chapter 15

Arrays.sort(authors); // Sort using Comparable method

System.out.println(“\nOrder after sorting using Comparable method:”);

for(Person author : authors) {

System.out.println(author);

}

}

}

This example will produce the following output:

Original order:

Danielle Steel

John Grisham

Tom Clancy

Christina Schwartz

Patricia Cornwell

Bill Bryson

Order after sorting using comparator:

Danielle Steel

Christina Schwartz

John Grisham

Patricia Cornwell

Tom Clancy

Bill Bryson

Order after sorting using Comparable method:

Bill Bryson

Tom Clancy

Patricia Cornwell

John Grisham

Christina Schwartz

Danielle Steel

How It Works
After defining the authors array of Person objects, you sort them with the statement:

Arrays.sort(authors, new ComparePersons()); // Sort using comparator

The second argument is an instance of the ComparePersons class, which is a comparator for Person
objects because it implements the Comparator<Person> interface. The sort() method calls the com-
pare() method to establish the order between Person objects, and you defined this method like this:

public int compare(Person person1, Person person2) {

int result = -person1.getSurname().compareTo(person2.getSurname());

return result == 0 ? -person1.getFirstName().compareTo(person2.getFirstName())

: result;

}

665

A Collection of Useful Classes

The primary comparison is between surnames and returns a result that is the opposite of that produced
by the compareTo() method for String objects. Since the order established by the compareTo()
method is ascending, your compare() method establishes a descending sequence. If the surnames are
equal, the order is determined by the first names, again inverting the sign of the value returned by the
compareTo() method to maintain descending sequence. Of course, you could have coded this method
by switching the arguments, person1 and person2, instead of reversing the sign:

public int compare(Person person1, Person person2) {

int result = person2.getSurname().compareTo(person1.getSurname());

return result == 0 ? person2.getFirstName().compareTo(person1.getFirstName())

: result;

}

This would establish a descending sequence for Person objects.

You call the sort() method a second time with the statement:

Arrays.sort(authors); // Sort using Comparable method

Because you have not supplied a comparator, the sort() method expects the class type of the elements
to be sorted to have implemented the Comparable<> interface. Fortunately your Person class does, so
the authors get sorted. This time the result is in ascending sequence because that’s what the
compareTo() method establishes.

Searching Arrays
The static binarySearch() method in the Arrays class will search the elements of a sorted array for a
given value using the binary search algorithm. This works only if the elements of the array are in
ascending sequence, so if they are not, you should call the sort() method to sort the array in ascending
sequence before calling the binarySearch() method. The binary search algorithm works by repeatedly
subdividing the sequence of elements to find the target element value, as illustrated in Figure 15-1.

The figure shows two searches of an array of integers. The first step is always to compare the target with
the element at the approximate center of the array. The second step is to examine the element at the
approximate center of the left or right half of the array, depending of whether the target is less than or
greater than the element. This process of subdividing and examining the element at the middle of the
interval continues until the target is found, or the interval consists of a single element that is different
from the target. When the target is found, the result is the index position of the element that is equal to
the target. You should be able to see from this process that the algorithm implicitly assumes that the ele-
ments are in ascending order.

You have eight overloaded versions of the binarySearch() method supporting the same range of types
that you saw with the fill() method earlier. The boolean type is not supported by the
binarySearch() method:

binarySearch(type[] array, type value)

666

Chapter 15

Figure 15-1

You have an additional version of the binarySearch() method for searching an array of type
Object[] for which you can supply a reference to a Comparator<> object as the fourth argument.

All versions of the binarySearch() method return a value of type int, which is the index position in
array where value was found. Of course, it is possible that the value is not in the array. In this case a
negative integer is returned that is produced by taking the value of the index position of the first ele-
ment that is greater than the value, reversing its sign, and subtracting 1. For example, suppose you have
an array of integers containing the element values 2, 4, 6, 8, and 10:

int[] numbers = {2, 4, 6, 8, 10};

You could search for the value 7 with the statement:

int position = java.util.Arrays.binarySearch(numbers, 7);

10 18

Target is
found so
return 1

Target is
less so

search left

Target is
less so

search left

24 37

Step 1

Step 3 Step 2

Find 18:

40 42 43 54 60 71 72 81 99

Step 2

Step 3

10 18

Target is
found so
return 8

Target is
greater so

search right

Target is
less so

search left

24 37

Step 1Find 60:

40 42 43 54 60 71 72 81 99

667

A Collection of Useful Classes

The value of position will be -4, because the element at index position 3 is the first element that is
greater than 7. The return value is calculated as -3-1, which is -4. This mechanism guarantees that if the
value sought is not in the array, then the return value is always negative, so you’ll always be able to tell
whether a value is in the array by examining the sign of the result.

Unless you are using a method that uses a comparator for searching arrays of objects, the class type of
the array elements must implement the Comparable interface. Here’s how we could search for a string
in an array of strings:

String[] numbers ={“one”, “two”, “three”, “four”, “five”, “six”, “seven”};

java.util.Arrays.sort(numbers);

int position = java.util.Arrays.binarySearch(numbers, “three”);

We have to sort the numbers array; otherwise, the binary search won’t work. After executing these state-
ments the value of position will be 6.

Try It Out In Search of an Author
You could search the authors array from the previous example. Copy the source file for the Person
class to a new directory for this example. Here’s the code to try a binary search:

import java.util.Arrays;

public class TryBinarySearch {

public static void main(String[] args) {

Person[] authors = {

new Person(“Danielle”, “Steel”), new Person(“John”, “Grisham”),

new Person(“Tom”, “Clancy”), new Person(“Christina”, “Schwartz”),

new Person(“Patricia”, “Cornwell”), new Person(“Bill”, “Bryson”)

};

Arrays.sort(authors); // Sort using Comparable method

System.out.println(“\nOrder after sorting into ascending sequence:”);

for(Person author : authors) {

System.out.println(author);

}

// Search for authors

Person[] people = {

new Person(“Christina”, “Schwartz”), new Person(“Ned”, “Kelly”),

new Person(“Tom”, “Clancy”), new Person(“Charles”, “Dickens”)

};

int index = 0;

System.out.println(“\nIn search of authors:”);

for(Person person : people) {

index = Arrays.binarySearch(authors, person);

if(index >= 0) {

System.out.println(person + “ was found at index position “ + index);

} else {

668

Chapter 15

System.out.println(person + “ was not found. Return value is “ + index);

}

}

}

}

This example will produce the following output:

Order after sorting into ascending sequence:

Bill Bryson

Tom Clancy

Patricia Cornwell

John Grisham

Christina Schwartz

Danielle Steel

In search of authors:

Christina Schwartz was found at index position 4

Ned Kelly was not found. Return value is -5

Tom Clancy was found at index position 1

Charles Dickens was not found. Return value is -4

How It Works
You create and sort the authors array in the same way as you did in the previous example. The ele-
ments in the authors array are sorted into ascending sequence because you use the sort() method
without supplying a comparator, and the Comparable<> interface implementation in the Person class
imposes ascending sequence on objects.

You create the people array containing Person objects that may or may not be authors. You use the
binarySearch() method to check whether the elements from the people array appear in the authors
array in a loop:

for(Person person : people) {

index = Arrays.binarySearch(authors, person);

if(index >= 0) {

System.out.println(person + “ was found at index position “ + index);

} else {

System.out.println(person + “ was not found. Return value is “ + index);

}

}

The person variable will reference each of the elements in turn. If the person object appears in the
authors array, the index will be non-negative, and the first output statement in the if will execute; oth-
erwise, the second output statement will execute. You can see from the output that everything works as
expected.

669

A Collection of Useful Classes

Observable and Observer Objects
The Observable class provides you with an interesting mechanism for communicating a change in one
class object to a number of other class objects. One use for this mechanism is in graphical user interface
(GUI) programming where you often have one object representing all the data for the application — a
text document, for example, or a geometric model of a physical object — and several other objects that
represent views of the data that are displayed in separate windows, where each shows a different repre-
sentation or perhaps a subset of the data. This is referred to as the document/view architecture for an
application, or sometimes the model/view architecture. This is a contraction of something referred to as
the model/view/controller architecture, and we will come back to this when we discuss creating GUIs.
The document/view terminology is applied to any collection of application data — geometry, bitmaps,
or whatever. It isn’t restricted to what is normally understood by the term document. Figure 15-2 illus-
trates the document/view architecture.

Figure 15-2

When the Document object changes, all the views need to be notified that a change has occurred, since
they may well need to update what they display. The document is observable, and all the views are
observers. This is exactly what the Observable class is designed to achieve when used in combination
with an interface, Observer. A document can be considered to be an Observable object, and a view can
be thought of as an Observer object. This enables the view to respond to changes in the document.

Document

A Document object
contains all the
application data.

View objects display aspects of the Document data. Views are
usually owned by the Document object.

View View View

A Document object needs to tell its Views when changes occur.A Document object needs to tell its Views when changes occur.

670

Chapter 15

The document/view architecture portrays a many-to-many relationship. A document may have many
observers, and a view may observe many documents.

Defining Classes of Observable Objects
You use the java.util.Observable class in the definition of a class of objects that may be observed.
You simply derive the class for objects to be monitored —Document, say — from the class Observable.

Any class that may need to be notified when a Document object has been changed must implement the
interface Observer. This doesn’t in itself cause the Observer objects to be notified when a change in an
observed object occurs; it just establishes the potential for this to happen. You need to do something else
to link the observers to the observable, which we’ll come to in a moment.

The definition of the class for observed objects could be of the form:

public class Document extends Observable {

// Details of the class definitions

}

The class Document here will inherit methods from the class Observable that operate the communica-
tions to the Observer objects.

A class for observers could be defined as:

public class View implements Observer {

// Method for the interface

public void update(Observable theObservableObject, Object arg) {

// This method is called when the observed object changes

}

// Rest of the class definition...

}

To implement the Observer interface, you need to define just one method, update(). This method is
called automatically when an associated Observable object changes. The first argument that is passed
to the update() method is a reference to the Observable object that changed and caused the method to
be called. This enables the View object to access public methods in the associated Observable object,
which would be used to access the data to be displayed, for example. The second argument passed to
update() is used to convey additional information to the Observer object.

Observable Class Methods
The Observable class maintains an internal record of all the Observer objects related to the object to
be observed. Your class, derived from Observable, will inherit the data members that deal with this.
Your class of observable objects will also inherit nine methods from the class Observable. These are the
following:

671

A Collection of Useful Classes

Method Description

addObserver(Observer o) Adds the object passed as an argument to the internal
record of observers. Only Observer objects in the internal
record will be notified when a change in the Observable
object occurs.

deleteObserver(Observer o) Deletes the object passed as an argument from the internal
record of observers.

deleteObservers() Deletes all observers from the internal record of observers.

notifyObservers(Object arg) Calls the update() method for all of the Observer objects
in the internal record if the current object has been set as
changed. The current object is set as changed by calling the
setChanged() method below. The current object and the
argument passed to the notifyObservers() method will
be passed to the update() method for each Observer
object.

notifyObservers() Calling this method is equivalent to the previous method
with a null argument. (See the setChanged() method
below.)

countObservers() The count of the number of Observer objects for the current
object is returned as type int.

setChanged() Sets the current object as changed. You must call this
method before calling the notifyObservers() method.
Note that this method is protected.

hasChanged() Returns true if the object has been set as changed, and
false otherwise.

clearChanged() Resets the changed status of the current object to
unchanged. Note that this method is also protected.

It’s fairly easy to see how these methods are used to manage the relationship between an Observable
object and its associated observers. To connect an observer to an Observable object, the Observer
object must be registered with the Observable object by calling its addObserver() method. Once this
is done the Observer will be notified automatically when changes to the Observable object occur. An
observable object is responsible for adding Observer objects to its internal record through the
addObserver() method. In practice, the Observer objects are typically created as objects that are
dependent on the Observable object, and then they are added to the record, so there’s an implied own-
ership relationship.

This makes sense if you think about how the mechanism is often used in an application using the docu-
ment/view architecture. A document has permanence since it represents the data for an application. A
view is a transient presentation of some or all of the data in the document, so a Document object should
naturally create and own its View objects. A view will be responsible for managing the interface to the
application’s user, but the update of the underlying data in the Document object would be carried out by
methods in the Document object, which would then notify other View objects that a change has
occurred.

672

Chapter 15

Of course, you’re in no way limited to using the Observable class and the Observer interface in the
way in which I’ve described here. You can use them in any context where you want changes that occur
in one class object to be communicated to others. We can exercise the process in a silly example.

Try It Out Observing the Observable
We’ll first define a class for an object that can exhibit change:

import java.util.Observable;

public class JekyllAndHyde extends Observable {

public void drinkPotion() {

name = “Mr.Hyde”;

setChanged();

notifyObservers();

}

public String getName() {

return name;

}

private String name = “Dr. Jekyll”;

}

Now we can define the class of person who’s looking out for this kind of thing:

import java.util.Observer;

import java.util.Observable;

public class Person implements Observer {

// Constructor

public Person(String name, String says) {

this.name = name;

this.says = says;

}

// Called when observing an object that changes

public void update(Observable thing, Object o) {

System.out.println(“It’s “ + ((JekyllAndHyde)thing).getName() +

“\n” + name + “: “ + says);

}

private String name; // Person’s identity

private String says; // What they say when startled

}

We can gather a bunch of observers to watch Dr. Jekyll with the following class:

// Try out observers

import java.util.Observer;

public class Horrific {

public static void main(String[] args) {

673

A Collection of Useful Classes

JekyllAndHyde man = new JekyllAndHyde(); // Create Dr. Jekyll

Observer[] crowd = {

new Person(“Officer”,”What’s all this then?”),

new Person(“Eileen Backwards”, “Oh, no, it’s horrible – those teeth!”),

new Person(“Phil McCavity”, “I’m your local dentist – here’s my card.”),

new Person(“Slim Sagebrush”, “What in tarnation’s goin’ on here?”),

new Person(“Freaky Weirdo”, “Real cool, man. Where can I get that stuff?”)

};

// Add the observers

for(Observer observer : crowd) {

man.addObserver(observer);

}

man.drinkPotion(); // Dr. Jekyll drinks up

}

}

If you compile and run this, you should get the following output:

It’s Mr.Hyde

Freaky Weirdo: Real cool, man. Where can I get that stuff?

It’s Mr.Hyde

Slim Sagebrush: What in tarnation’s goin’ on here?

It’s Mr.Hyde

Phil McCavity: I’m your local dentist – here’s my card.

It’s Mr.Hyde

Eileen Backwards: Oh, no, it’s horrible – those teeth!

It’s Mr.Hyde

Officer: What’s all this then?

How It Works
JekyllAndHyde is a very simple class with just two methods. The drinkPotion() method encourages
Dr. Jekyll to do his stuff, and the getName() method enables anyone who is interested to find out who
he is. The class extends the Observable class, so we can add observers for an object of this class.

The revamped Person class implements the Observer interface, so an object of this class can observe an
Observable object. When notified of a change in the object being observed, the update() method will
be called. Here, it just outputs who the person is and what they say.

In the Horrific class, after defining Dr. Jekyll in the variable man, you create an array, crowd, of type
Observer to hold the observers — which are of type Person, of course. You can use an array of type
Observer because the class Person implements the Observer interface. We pass two arguments to the
Person class constructor: a name and a string indicating what the person will say when they see a
change in Dr. Jekyll. We add each of the observers for the man object in the for loop.

Calling the drinkPotion() method for the object man results in the internal name being changed, the
setChanged() method being called for the man object, and the notifyObservers() method that is
inherited from the Observable class being called. This causes the update() method for each of the reg-
istered observers to be called, which generates the output. If you comment out the setChanged() call in

674

Chapter 15

the drinkPotion() method, and compile and run the program again, you’ll get no output. Unless
setChanged() is called, the observers aren’t notified.

Now let’s move on to look at the java.util.Random class.

Generating Random Numbers
You have already used the Random class a little, but let’s investigate this in more detail. The Random class
enables you to create multiple random number generators that are independent of one another. Each
object of the class is a separate random number generator. Any Random object can generate pseudo-ran-
dom numbers of types int, long, float, or double. These numbers are created using an algorithm
that takes a seed and grows a sequence of numbers from it. Initializing the algorithm twice with the same
seed would produce the same sequence because the algorithm is deterministic.

The integer values generated will be uniformly distributed over the complete range for the type, and the
floating-point values will be uniformly distributed over the range 0.0 to 1.0 for both types. You can also
generate numbers of type double with a Gaussian (or normal) distribution that has a mean of 0.0 and a
standard deviation of 1.0. This is the typical bell-shaped curve that represents the probability distribu-
tion for many random events. Figure 15-3 illustrates the various flavors of random number generator
that you can define.

Figure 15-3

0.345
double
gaussian

0.769
double

23
int

0.178f
float

997L
long

An object of the class
Random

675

A Collection of Useful Classes

There are two constructors for a Random object. The default constructor will create an object that uses the
current time from your computer clock as the seed value for generating pseudo-random numbers. The
other constructor accepts an argument of type long that will be used as the seed.

Random lottery = new Random(); // Sequence not repeatable

Random repeatable = new Random(997L); // Repeatable sequence

If you use the default constructor, the sequence of numbers that is generated will be different each time a
program is run, although beware of creating two generators in the same program with the default con-
structor. The time resolution used is 1 millisecond, so if you create two objects in successive statements
they will usually generate the same sequence, because the times used for the starting seed values will be
identical.

Random objects that you create using the same seed will always produce the same sequence, which can
be very important when you are testing a program. Testing a program where the output is not repeatable
can be a challenge! A major feature of random number generators created using a given seed in Java is
that not only will they always produce the same sequence of pseudo-random numbers from a given
seed, but they will also do so even on totally different computers.

Random Operations
The public methods provided by a Random object are:

Method Description

nextInt() Returns a pseudo-random number of type int. Values gener-
ated will be uniformly distributed across the complete range of
values for a number of type int.

nextInt(int limit) Returns a pseudo-random number of type int that is greater
than or equal to 0, and less than limit— very useful for creat-
ing random array index values.

nextLong() Returns a pseudo-random number of type long. Values gener-
ated will be uniformly distributed across the complete range of
values for a number of type long.

nextFloat() Returns a pseudo-random number of type float. Values gener-
ated will be uniformly distributed across the range 0.0f to 1.0,
including 0.0f but excluding 1.0f.

nextDouble() Returns a pseudo-random number of type double. Values gen-
erated will be uniformly distributed across the range 0.0 to 1.0,
including 0.0 but excluding 1.0.

nextGaussian() Returns a pseudo-random number of type double selected
from a Gaussian distribution. Values generated will have a
mean of 0.0 and a standard deviation of 1.0.

nextBoolean() Returns true or false as pseudo-random values.

676

Chapter 15

Method Description

nextBytes(byte[] bytes) Fills the array, bytes, with pseudo-random values.

setSeed(long seed) Resets the random number generator to generate values using
the value passed as an argument as a starting seed for the
algorithm.

To produce a pseudo-random number of a particular type, you just call the appropriate method for a
Random object. You can repeat the sequence of numbers generated by a Random object that you created
with a seed value, by calling the setSeed() method with the same seed value as an argument.

We can give the Random class an outing with a simple program that simulates throwing a pair of dice.
We’ll assume you get six throws to try to get a double six.

Try It Out Using Random Objects
Here’s the program:

import java.util.Random;

import java.io.IOException;

public class Dice {

public static void main(String[] args) {

System.out.println(“You have six throws of a pair of dice.\n” +

“The objective is to get a double six. Here goes...\n”);

Random diceValues = new Random(); // Random number generator

String[] goes = {“First”, “Second”, “Third”,

“Fourth”, “Fifth”, “Sixth”};

int die1 = 0; // First die value

int die2 = 0; // Second die value

for(String go : goes) {

die1 = 1 + diceValues.nextInt(6); // Number from 1 to 6

die2 = 1 + diceValues.nextInt(6); // Number from 1 to 6

System.out.println(go + “ throw: “ + die1 + “, “ + die2);

if(die1 + die2 == 12) { // Is it double 6?

System.out.println(“ You win!!”); // Yes !!!

return;

}

}

System.out.println(“Sorry, you lost...”);

return;

}

}

If you compile this program you should get output that looks something like this:

You have six throws of a pair of dice.

The objective is to get a double six. Here goes...

677

A Collection of Useful Classes

First throw: 3, 2

Second throw: 1, 1

Third throw: 1, 2

Fourth throw: 5, 3

Fifth throw: 2, 2

Sixth throw: 6, 4

Sorry, you lost...

How It Works
You use one random number generator here that you create using the default constructor, so it will be
seeded with the current time and will produce a different sequence of values each time the program is
run. You simulate throwing the dice in the for loop. For each throw you need a random number
between 1 and 6 to be generated for each die. The easiest way to produce this is to add 1 to the value
returned by the nextInt() method when you pass 6 as the argument. If you wanted to make a meal of
it, you could obtain the same result by using the statement:

die1 = 1 + abs(diceValues.nextInt())%6; // Number from 1 to 6

Remember that the pseudo-random integer values that you get from the version of the nextInt()
method you are using here will be uniformly distributed across the whole range of possible values for
type int, positive and negative. That’s why you need to use the abs() method from the Math class here
to make sure you end up with a positive die value. The remainder after dividing the value resulting
from abs(diceValues.nextInt()) by 6 will be between 0 and 5. Adding 1 to this produces the result
you want.

Remember that the odds against a double six are 36:1, so you’ll only succeed once on average out of
every six times you run the example.

Now let’s move on to look at dates and times.

Dates and Times
Quite a few classes in the java.util package are involved with dates and times, including the Date
class, the Calendar class, and the GregorianCalendar class. In spite of the class name, a Date class
object actually defines a particular instant in time to the nearest millisecond, measured from January 1,
1970, 00:00:00 GMT. Since it is relative to a particular instant in time, it also corresponds to a date. The
Calendar class is the base class for GregorianCalendar, which represents the sort of day/month/year
calendar everybody is used to and also provides methods for obtaining day, month, and year informa-
tion from a Date object. A Calendar object is always set to a particular date — a particular instant on a
particular date to be precise — but you can change it by various means. From this standpoint a
GregorianCalendar object is more like one of those desk calendars that just show one date, and you
can flip over the days, months, or years to show another date.

You also have the TimeZone class that defines a time zone that can be used in conjunction with a calen-
dar, and that you can use to specify the rules for clock changes due to daylight saving time. The ramifi-
cations of handling dates and times are immense so you’ll only be able to dabble here, but at least you
will get the basic ideas. Let’s take a look at Date objects first.

678

Chapter 15

The Date Class
With the Date class you can create an object that represents a given date and time. You have two ways to
do this using the following constructors:

Method Description

Date() Creates an object based on the current time of your computer
clock to the nearest millisecond

Date(long time) Creates an object based on the time value in milliseconds since
00:00:00 GMT on January 1, 1970 that is passed as an argument

With either constructor, you create a Date object that represents a specific instant in time to the nearest
millisecond. Carrying dates around as the number of milliseconds since the dawn of the year 1970 won’t
grab you as being incredibly user-friendly — but I’ll come back to how we can interpret a Date object
better in a moment. The Date class provides four methods for comparing Date objects:

Comparison Methods Description

after(Date earlier) Returns true if the current object represents a date that’s later
than the date represented by the argument earlier, and false
otherwise.

before(Date later) Returns true if the current object represents a date that’s earlier
than the date represented by the argument later, and false
otherwise.

equals(Object aDate) Returns true if the current object and the argument represent the
same date and time, and false otherwise. This implies that they
would both return the same value from getTime().

compareTo(Date date) This method is the result of the Date class implementing the Com-
parable<Date> interface. As you’ve seen in other contexts, this
method returns a negative integer, zero, or a positive integer
depending on whether the current object is less than, equal to, or
greater than the argument. The presence of this method in the
class means that you can use the sort() method in the Arrays
class to sort an array of Date objects, or the sort() method in the
Collections class to sort a collection of dates.

The equals() method returns true if two different Date objects represent the same date and time.
Since the hashCode() method is also implemented for the class, you have all you need to use Date
objects as keys in a hash table.

Interpreting Date Objects
The DateFormat class is an abstract class that you can use to create meaningful String representations
of Date objects. It isn’t in the java.util package though — it’s defined in the package java.text. You

679

A Collection of Useful Classes

have four standard representations for the date and the time, and these are identified by constants
defined in the DateFormat class. The effects of these will vary in different countries, because the repre-
sentation for the date and the time will reflect the conventions of those countries. The constants in the
DateFormat class defining the four formats are:

Date Format Description

SHORT A completely numeric representation for a date or a time, such as 2/2/97 or
4:15 a.m.

MEDIUM A longer representation than SHORT, such as 5-Dec-97

LONG A longer representation than MEDIUM, such as December 5, 1997

FULL A comprehensive representation of the date or the time such as Friday,
December 5, 1997 AD or 4:45:52 PST (Pacific Standard Time)

A java.util.Locale object identifies information that is specific to a country, a region, or a language.
You can define a Locale object for a specific country, for a specific language, for a country and a lan-
guage, or for a country and a language and a variant, the latter being a vendor- or browser-specific code
such as WIN or MAC. When you are creating a Locale object, you use ISO codes to specify the language
and/or the country. The language codes are defined by ISO-639. Countries are specified by the country
codes in the standard ISO-3166. You can find the country codes on the Internet at:

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

or

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

You can also get a list of the country codes as an array of String objects by calling the static
getISOCountries() method. For example:

String[] countryCodes = java.util.Locale.getISOCountries();

You can find the language codes at:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

or

http://www.loc.gov/standards/iso639-2/englangn.html

You can also get the language codes that are defined by the standard in a String object:

String[] languages = java.util.Locale.getISOLanguages();

For some countries, the easiest way to specify the locale, if you don’t have the ISO codes on the tip of
your tongue, is to use one of the Locale objects defined within the Locale class. In Java 2 these are:

680

Chapter 15

US CANADA CANADA_FRENCH PRC

UK GERMANY FRANCE ITALY

JAPAN KOREA CHINA TAIWAN

Because the DateFormat class is abstract, you can’t create objects of the class directly, but you can
obtain DateFormat objects by using any of the following static methods that are defined in the class,
each of which returns a value of type DateFormat:

Static Method Description

getTimeInstance() Returns a time formatter for the default locale that uses
the default style for the time

getTimeInstance(Returns a time formatter for the default locale that
int timeStyle) uses the style for the time specified by the argument

getTimeInstance(Returns a time formatter for the locale specified by
int style, the second argument that uses the style for the time that
Locale aLocale) is specified by the first argument

getDateInstance() Returns a date formatter for the default locale that uses
the default style for the date

getDateInstance(int dateStyle) Returns a date formatter for the default locale that uses
the style for the date specified by the argument

getDateInstance(Returns a date formatter for the locale specified by the
int dateStyle, second argument that uses the style for the date that is
Locale aLocale) specified by the first argument

getInstance() Returns a default date and time formatter that uses the
SHORT style for both the date and the time

getDateTimeInstance() Returns a date and time formatter for the default locale
that uses the default style for both the date and the time

getDateTimeInstance(Returns a date and time formatter for the current locale
int dateStyle, that uses the styles for the date and the time specified by
int timeStyle) the arguments

getDateTimeInstance(Returns a date and time formatter for aLocale with the
int dateStyle, styles for the date and the time as specified by the first
int timeStyle, two arguments
Locale aLocale)

When you’ve obtained a DateFormat object for the country and the style that you want, and the sort of
data you want to format — the date or the time or both — you’re ready to produce a String from the
Date object.

681

A Collection of Useful Classes

All you need to do is to pass the Date object to the format() method for the DateFormat object. For
example:

Date today = new Date(); // Object for now – today’s date

DateFormat fmt = DateFormat.getDateTimeInstance(DateFormat.FULL,

DateFormat.FULL, Locale.US);

String formatted = fmt.format(today);

The first statement creates a Date object that represents the instant in time when the call to the Date con-
structor executes. The second statement creates a DateFormat object that can format the date and time
encapsulated by a Date object. In this case the formatting style for the data and the time, specified by the
first two arguments to the static getDateTimeInstance(), is defined by the FULL constant in the
DateFormat class. This provides the most detailed specification of the date and time. The third argu-
ment to the getDateTimeInstance() method, Locale.US, determines that the formatting should cor-
respond to that required for the United States. The Locale class defines constants for other major
countries and languages. The third statement applies the format() method of the fmt object to the
Date object that was created. After executing these statements, the String variable formatted will con-
tain a full representation of the date and the time when the Date object today was created.

You can try out some dates and formats in a simple example.

Try It Out Producing Dates and Times
This example will show the four different date formats for four countries:

// Trying date formatting

import java.util.Locale;

import java.text.DateFormat;

import java.util.Date;

import static java.util.Locale.*; // Import names of constants

import static java.text.DateFormat.*; // Import names of constants

public class TryDateFormats {

public static void main(String[] args) {

Date today = new Date();

Locale[] locales = {US, UK, GERMANY, FRANCE};

int[] styles = {FULL, LONG, MEDIUM, SHORT};

String[] styleNames = {“FULL”, “LONG”, “MEDIUM”, “SHORT”};

// Output the date for each locale in four styles

DateFormat fmt = null;

for(Locale locale : locales) {

System.out.println(“\nThe Date for “ +

locale.getDisplayCountry() + “:”);

for(int i = 0 ; i<styles.length ; i++) {

fmt = DateFormat.getDateInstance(styles[i], locale);

System.out.println(“\tIn “ + styleNames[i] +

“ is “ + fmt.format(today));

}

}

}

}

682

Chapter 15

When I compiled and ran this it produced the following output:

The Date for United States:

In FULL is Sunday, March 28, 2004

In LONG is March 28, 2004

In MEDIUM is Mar 28, 2004

In SHORT is 3/28/04

The Date for United Kingdom:

In FULL is 28 March 2004

In LONG is 28 March 2004

In MEDIUM is 28-Mar-2004

In SHORT is 28/03/04

The Date for Germany:

In FULL is Sonntag, 28. März 2004

In LONG is 28. März 2004

In MEDIUM is 28.03.2004

In SHORT is 28.03.04

The Date for France:

In FULL is dimanche 28 mars 2004

In LONG is 28 mars 2004

In MEDIUM is 28 mars 2004

In SHORT is 28/03/04

How It Works
By statically importing the constants from the Locale and DateFormat classes, you obviate the need to
qualify the constants in the program and thus make the code a little less cluttered. The program creates a
Date object for the current date and time and an array of Locale objects for four countries using values
defined in the Locale class. It then creates an array of the four possible styles, and another array con-
taining a String representation for each style that will be used in the output.

The output is produced in the nested for loops. The outer collection-based for loop iterates over the
countries, and the inner loop iterates over the four styles for each country. The inner loop uses a loop
control variable so you can select from the styleNames array. A DateFormat object is created for each
combination of style and country, and the format() method for the DateFormat object is called to pro-
duce the formatted date string in the inner call to println().

You could change the program in a couple ways. You could initialize the locales[] array with the
expression DateFormat.getAvailableLocales(). This will return an array of type Locale contain-
ing all of the supported locales, but be warned — there are a lot of them. You’ll also find that the charac-
ters won’t display for many countries because your machine doesn’t support the country-specific
character set. You could also use the method getTimeInstance() or getDateTimeInstance() instead
of getDateInstance() to see what sort of output they generate.

Under the covers, a DateFormat object contains a DateFormatSymbols object that contains all the
strings for the names of days of the week and other fixed information related to time and dates. This
class is also in the java.text package. Normally you don’t use the DateFormatSymbols class directly,
but it can be useful when all you want are the days of the week.

683

A Collection of Useful Classes

Obtaining a Date Object from a String
The parse() method for a DateFormat object interprets a String object passed as an argument as a
date and time, and returns a Date object corresponding to the date and the time. The parse() method
will throw a ParseException if the String object can’t be converted to a Date object, so you must call
it within a try block.

The String argument to the parse() method must correspond to the country and style that you used
when you obtained the DateFormat object. This makes it a bit tricky to use successfully. For example,
the following code will parse the string properly:

Date aDate;

DateFormat fmt = DateFormat.getDateInstance(DateFormat.FULL, Locale.US);

try {

aDate = fmt.parse(“Saturday, July 4, 1998 “);

System.out.println(“The Date string is: “ + fmt.format(aDate));

} catch(java.text.ParseException e) {

System.out.println(e);

}

This works because the string is what would be produced by the locale and style. If you omit the day
from the string, or you use the LONG style or a different locale, a ParseException will be thrown.

Gregorian Calendars
The Gregorian calendar is the calendar generally in use today in the western world and is represented
by an object of the GregorianCalendar class. A GregorianCalendar object encapsulates time zone
information, as well as date and time data. You have no less than seven constructors for
GregorianCalendar objects, from the default that creates a calendar with the current date and time in
the default locale for your machine through to a constructor specifying the year, month, day, hour,
minute, and second. The default suits most situations.

You can create a calendar with a statement such as:

GregorianCalendar calendar = new GregorianCalendar();

This will be set to the current instant in time, and you can retrieve this as a Date object by calling the
getTime() method for the calendar:

Date now = calendar.getTime();

You can create a GregorianCalendar object encapsulating a specific date and/or time with any of the
following constructors:

GregorianCalendar(int year, int month, int day)

GregorianCalendar(int year, int month, int day, int hour, int minute)

GregorianCalendar(int year, int month, int day, int hour, int minute, int second)

The day argument is the day within the month, so the value can be from 1 to 28, 29, 30, or 31, depending
on the month and whether it’s a leap year or not. The month value is zero-based so January is 0 and
December is 11.

684

Chapter 15

The GregorianCalendar class is derived from the abstract Calendar class from which it inherits a
large number of methods and static constants for use with these methods. The constants include month
values with the names JANUARY to DECEMBER so you could create a calendar object with the statement:

GregorianCalendar calendar = new GregorianCalendar(1967, Calendar.MARCH, 10);

If you statically import the constant members of the GregorianCalendar class you’ll be able to use con-
stants such as MARCH and DECEMBER without the need to qualify them with the class name. The time
zone and locale will be the default for the computer on which this statement executes. If you want to
specify a time zone, there is a GregorianCalendar constructor that accepts an argument of type
java.util.TimeZone. You can get the default TimeZone object by calling the static getDefault()
method, but if you are going to the trouble of specifying a time zone, you probably want something
other than the default. To create a particular time zone you need to know its ID. This is a string specify-
ing a region or country plus a location. For example, here are some examples of time zone IDs:

“Europe/Stockholm” “Asia/Novosibirsk” “Pacific/Guam”

“Antarctica/Palmer” “Atlantic/South_Georgia” “Africa/Accra”

“America/Chicago” “Indian/Comoro” “Europe/London”

To obtain a reference to a TimeZone object corresponding to a given time zone ID, you pass the ID to the
static getTimeZone() method. For example, we could create a Calendar object for the Chicago time
zone like this:

GregorianCalendar calendar =

new GregorianCalendar(TimeZone.getTimeZone(“America/Chicago”));

If you want to know what all the time zones IDs are, you could list them like this:

String[] ids = TimeZone.getAvailableIDs();

for(String id : ids) {

System.out.println(id);

}

Be prepared for a lot of output though, as there are well over 500 time zone IDs.

The calendar created from a TimeZone object will have the default locale. If you want to specify the
locale explicitly, you have a constructor that accepts a Locale reference as the second argument. For
example:

GregorianCalendar calendar =

new GregorianCalendar(TimeZone.getTimeZone(“America/Chicago”). Locale.US);

You can also create a Calendar object from a locale:

GregorianCalendar calendar =

new GregorianCalendar(Locale.UK);

This will create a calendar set to the current time in the default time zone within the UK.

685

A Collection of Useful Classes

Setting the Date and Time
If you have a Date object available, you have a setTime() method that you can pass a Date object to set
a GregorianCalendar object to the time specified by the Date object:

GregorianCalendar calendar = new GregorianCalendar();

calendar.setTime(date);

More typically you will want to set the date and/or time with explicit values such as day, month, and
year, and you have several overloaded versions of the set() method for setting various components of
the date and time. These are inherited in the GregorianCalendar class from its superclass, the
Calendar class. You can set a GregorianCalendar object to a particular date like this:

GregorianCalendar calendar = new GregorianCalendar();

calendar.set(1995, 10, 29); // Date set to 29th November 1999

The three arguments to the set() method here are the year, the month, and the day as type int. You
need to take care with this method because it’s easy to forget that the month is zero-based, with January
specified by 0. Note that the fields reflecting the time setting within the day will not be changed. They
will remain at whatever they were. You can reset all fields for a GregorianCalendar object to zero by
calling its clear() method, so calling clear() before you call set() here would ensure that the time
fields are all zero.

The other versions of the set() method are:

set(int year, int month, int day, int hour, int minute)

set(int year, int month, int day, int hour, int minute, int second)

set(int field, int value)

It’s obvious what the first two of these do. In each case the fields not explicitly set will be left at their
original values. The third version of set() sets a field specified by one of the integer constants defined
in the Calendar class for this purpose:

Field Value

AM_PM Can have the values AM or PM, which correspond to values of 0 and 1

DAY_OF_WEEK Can have the values SUNDAY, MONDAY, etc., through to SATURDAY, which corre-
spond to values of 1 to 7

DAY_OF_YEAR Can be set to a value from 1 to 366

MONTH Can be set to a value of JANUARY, FEBRUARY, etc., through to DECEMBER, corre-
sponding to values of 0 to 11

DAY_OF_MONTH Can be set to a value from 1 to 31
or DATE

WEEK_OF_MONTH Can be set to a value from 1 to 6

WEEK_OF_YEAR Can be set to a value from 1 to 54

HOUR_OF_DAY A value from 0 to 23

686

Chapter 15

Field Value

HOUR A value from 1 to 12 representing the current hour in the a.m. or p.m.

MINUTE The current minute in the current hour — a value from 0 to 59

SECOND The second in the current minute, 0 to 59

MILLISECOND The millisecond in the current second, 0 to 999

YEAR The current year — for example, 2004

ERA Can be set to either GregorianCalendar.BC or GregorianCalendar.AD
(both values being defined in the GregorianCalendar class)

ZONE_OFFSET A millisecond value indicating the offset from GMT

DST_OFFSET A millisecond value indicating the offset for daylight saving time in the cur-
rent time zone

Qualifying the names of these constants with the class name GregorianCalendar can make the code
look cumbersome but you can use static import for the constants to simplify things:

import static java.util.Calendar.*;

import static java.util.GregorianCalendar.*;

The static import statement imports only the names of static members that are defined in a class, not the
names of inherited members. Therefore, you need two import statements if you want access to all the
constants you can use with the GregorianCalendar class.

With these two import statements in effect, you can write statements like this

GregorianCalendar calendar = new GregorianCalendar();

calendar.set(DAY_OF_WEEK, TUESDAY);

Getting Date and Time Information
You can get information such as the day, the month, and the year from a GregorianCalendar object by
using the get() method and specifying what you want as an argument. The possible arguments to the
get() method are those defined in the table of constants above identifying calendar fields. All values
returned are of type int. For example, you could get the day of the week with the statement:

int day = calendar.get(calendar.DAY_OF_WEEK);

You could now test this for a particular day using the constant defined in the class:

if(day == calendar.SATURDAY)

// Go to game...

687

A Collection of Useful Classes

Since the values for day are integers, you could equally well use a switch statement:

switch(day) {

case Calendar.MONDAY:

// do the washing...

break;

case Calendar.MONDAY:

// do something else...

break;

// etc...

}

Modifying Dates and Times
Of course, you might want to alter the current instant in the calendar, and for this you have the add()
method. The first argument determines what units you are adding in, and you specify this argument
using the same field designators as in the previous list. For example, you can add 14 to the year with the
statement:

calendar.add(calendar.YEAR, 14); // 14 years into the future

To go into the past, you just make the second argument negative:

calendar.add(calendar.MONTH, -6); // Go back 6 months

You can increment or decrement a field of a calendar by 1 using the roll() method. This method modi-
fies the field specified by the first argument by +1 or –1, depending on whether the second argument is
true or false. For example, to decrement the current month in the object calendar, you would write:

calendar.roll(calendar.MONTH, false); // Go back a month

The change can affect other fields. If the original month were January, rolling it back by one would make
the date December of the previous year.

Of course, having modified a GregorianCalendar object, you can get the current instant back as a Date
object using the getTime() method that we saw earlier. You can then use a DateFormat object to pre-
sent this in a readable form.

Comparing Calendars
Checking the relationship between dates represented by Calendar objects is a fairly fundamental
requirement and you have four methods available for comparing them:

Method Description

before() Returns true if the current object corresponds to a time before that of
the Calendar object passed as an argument. Note that this implies a
true return can occur if the date is the same but the time is different.

after() Returns true if the current object corresponds to a time after that of
the Calendar object passed as an argument.

688

Chapter 15

Method Description

equals() Returns true if the current object corresponds to a time that is identi-
cal to that of the Calendar object passed as an argument.

compareTo(Calendar c) Returns a value of type int that is negative, zero, or positive
depending on whether the time value for the current object is less
than, equal to, or greater than the time value for the argument.

These are very simple to use. To determine whether the object thisDate defines a time that precedes the
time defined by the object today, you could write:

if(thisDate.before(today)) {

// Do something...

}

Alternatively you could write the same thing as:

if(today.after(thisDate)) {

// Do something...

}

It’s time to look at how we can use calendars.

Try It Out Using a Calendar
This example will deduce important information about when you were born. It uses the
FormattedInput class from Chapter 8 to get input from the keyboard, so copy this class and the source
file for the InvalidUserInputException class to a new directory for the source files for this example.
Here’s the code:

import java.util.GregorianCalendar;

import java.text.DateFormatSymbols;

import static java.util.Calendar.*;

class TryCalendar {

public static void main(String[] args) {

FormattedInput in = new FormattedInput();

// Get the date of birth from the keyboard

int day = 0, month = 0, year = 0;

System.out.println(“Enter your birth date as dd mm yyyy: “);

try {

day = in.readInt();

month = in.readInt();

year = in.readInt();

} catch(InvalidUserInputException e) {

System.out.println(“Invalid input - terminating...”);

System.exit(1);

689

A Collection of Useful Classes

}

// Create birth date calendar – month is 0 to 11

GregorianCalendar birthdate = new GregorianCalendar(year, month-1,day);

GregorianCalendar today = new GregorianCalendar(); // Today’s date

// Create this year’s birthday

GregorianCalendar birthday = new GregorianCalendar(

today.get(YEAR),

birthdate.get(MONTH),

birthdate.get(DATE));

int age = today.get(today.YEAR) - birthdate.get(YEAR);

String[] weekdays = new DateFormatSymbols().getWeekdays(); // Get day names

System.out.println(“You were born on a “ +

weekdays[birthdate.get(DAY_OF_WEEK)]);

System.out.println(“This year you “ +

(birthday.after(today) ?”will be “ : “are “) +

age + “ years old.”);

System.out.println(“In “ + today.get(YEAR) + “ your birthday “ +

(today.before(birthday)? “will be”: “was”) +

“ on a “+ weekdays[birthday.get(DAY_OF_WEEK)] +”.”);

}

}

I got the following output:

Enter your birth date as dd mm yyyy:

5 12 1964

You were born on a Saturday

This year you will be 40 years old.

In 2004 your birthday will be on a Sunday.

How It Works
You start by prompting for the day, month, and year for a date of birth to be entered through the key-
board as integers. You then create a GregorianCalendar object corresponding to this date. Note the
adjustment of the month — the constructor expects January to be specified as 0. You need a
GregorianCalendar object for today’s date so you use the default constructor for this. To compute the
age this year, you just have to subtract the year of birth from this year, both of which you get from the
GregorianCalendar objects.

To get at the strings for the days of the week, you create a DateFormatSymbols object and call its
getWeekdays() method. This returns an array of eight String objects, the first of which is empty to
make it easy to index using day numbers from 1 to 7. The second element in the array contains
“Sunday”. You can also get the month names using the getMonths() method.

To display the day of the week for the date of birth you call the get() method for the
GregorianCalendar object birthdate, and use the result to index the weekdays[] array. To deter-
mine the appropriate text in the next two output statements, you use the after() and before() meth-
ods for Calendar objects to compare today with the birthday date this year.

690

Chapter 15

Regular Expressions
You saw some elementary capability for searching strings when I discussed the String class back in
Chapter 4. You have much more sophisticated facilities for analyzing strings by searching for patterns
known as regular expressions. Regular expressions are not unique to Java. Perl is perhaps better known
for its support of regular expressions. Many word processors, especially on Unix, support regular
expressions, and there are specific utilities for regular expressions, too.

So what is a regular expression? A regular expression is simply a string that describes a pattern that is to
be used to search for matches within some other string. It’s not simply a passive sequence of characters
to be matched, though. A regular expression is essentially a mini-program for a specialized kind of com-
puter called a state-machine. This isn’t a real machine but a piece of software specifically designed to
interpret a regular expression and analyze a given string based on the operations implicit in a regular
expression.

The regular expression capability in Java is implemented through two classes in the java.util.regex
package: the Pattern class, which defines objects that encapsulate regular expressions, and the
Matcher class, which defines an object that encapsulates a state-machine that can search a particular
string using a given Pattern object. The java.util.regex package also defines the
PatternSyntaxException class, which defines exception objects thrown when a syntax error is found
when compiling a regular expression to create a Pattern object.

Using regular expressions in Java is basically very simple:

1. You create a Pattern object by passing a string containing a regular expression to the static
compile() method in the Pattern class.

2. You then obtain a Matcher object, which can search a given string for the pattern, by calling the
matcher() method for the Pattern object with the string that is to be searched as the argu-
ment.

3. You call the find() method (or some other methods, as you will see) for the Matcher object to
search the string.

4. If the pattern is found, you query the Matcher object to discover the whereabouts of the pattern
in the string and other information relating to the match.

While this is a straightforward process that is easy to code, the hard work is in defining the pattern to
achieve the result that you want. This is an extensive topic since in their full glory regular expressions
are immensely powerful and can be very complicated. There are books devoted entirely to this, so my
aim is to give you enough of a bare-bones understanding of how regular expressions work that you will
be in a good position to look into the subject in more depth if you need to. Although regular expressions
can look quite fearsome, don’t be put off. They are always built step-by-step, so although the result may
look complicated and obscure, they are not necessarily difficult to put together. Regular expressions are
a lot of fun and a sure way to impress your friends and maybe confound your enemies.

Defining Regular Expressions
You may not have heard of regular expressions before reading this book and, therefore, may think you
have never used them. If so, you are almost certainly wrong. Whenever you search a directory for files of
a particular type, “*.java”, for example, you are using a form of regular expression. However, to say

691

A Collection of Useful Classes

that regular expressions can do much more than this is something of an understatement. To get an
understanding of what you can do with regular expressions, you’ll start at the bottom with the simplest
kind of operation and work your way up to some of the more complex problems they can solve.

Creating a Pattern
In its most elementary form, a regular expression just does a simple search for a substring. For example,
if you want to search a string for the word had, the regular expression is exactly that. So the string defin-
ing this particular regular expression is “had”. Let’s use this as a vehicle for understanding the pro-
gramming mechanism for using regular expressions. You can create a Pattern object for the expression
“had” with the statement:

Pattern had = Pattern.compile(“had”);

The static compile() method in the Pattern class returns a reference to a Pattern object that contains
the compiled regular expression. The method will throw an exception of type
java.util.regex.PatternSyntaxException if the regular expression passed as the argument is
invalid. However, you don’t have to catch this exception as it is a subclass of RuntimeException and
therefore is unchecked. The compilation process stores the regular expression in a Pattern object in a
form that is ready to be processed by a Matcher state-machine.

A further version of the compile() method enables you to control more closely how the pattern will be
applied when looking for a match. The second argument is a value of type int that specifies one or
more of the following flags that are defined in the Pattern class:

CASE_INSENSITIVE Matches ignoring case, but assumes only US-ASCII characters are
being matched.

MULTILINE Enables the beginning or end of lines to be matched anywhere. With-
out this flag only the beginning and end of the entire sequence will
be matched.

UNICODE_CASE When this is specified in addition to CASE_INSENSITIVE, case-insen-
sitive matching will be consistent with the Unicode standard.

DOTALL Makes the expression . (which we will see shortly) match any char-
acter, including line terminators.

LITERAL Causes the string specifying a pattern to be treated as a sequence of
literal characters, so escape sequences, for example, will not be recog-
nized as such.

CANON_EQ Matches taking account of canonical equivalence of combined char-
acters. For example, some characters that have diacritics may be rep-
resented as a single character or as a single character with a diacritic
followed by a diacritic character. This flag will treat these as a match.

COMMENTS Allows whitespace and comments in a pattern. Comments in a pat-
tern start with # so from the first # to the end of the line will be
ignored.

UNIX_LINES Enables Unix lines mode, where only ‘\n’ is recognized as a line
terminator.

692

Chapter 15

All these flags are unique single-bit values within a value of type int so you can combine them by
ORing them together or by simple addition. For example, you can specify the CASE_INSENSITIVE and
the UNICODE_CASE flags with the expression:

Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CASE

Or you can write this as:

Pattern.CASE_INSENSITIVE + Pattern.UNICODE_CASE

Beware of using addition when you want to add a flag to a variable representing an existing set of flags.
If the flag already exists, addition will produce the wrong result because the addition of the two corre-
sponding bits will result in a carry to the next bit. ORing will always produce the correct result.

If you wanted to match “had” ignoring case, you could create the pattern with the statement:

Pattern had = Pattern.compile(“had”, Pattern.CASE_INSENSITIVE);

In addition to the exception thrown by the first version of the compile() method, this version will
throw an exception of type IllegalArgumentException if the second argument has bit values set that
do not correspond to one of the flag constants defined in the Pattern class.

Creating a Matcher
Once you have a Pattern object, you can create a Matcher object that can search a particular string, like
this:

String sentence = “Smith, where Jones had had ‘had’, had had ‘had had’.”;

Matcher matchHad = had.matcher(sentence);

The first statement defines the string sentence that you want to search. To create the Matcher object, you
call the matcher() method for the Pattern object with the string to be analyzed as the argument. This
will return a Matcher object that can analyze the string that was passed to it. The parameter for the
matcher() method is actually of type CharSequence. This is an interface that is implemented by the
String, StringBuffer, and StringBuilder classes so you can pass a reference of any of these types to
the method. The java.nio.CharBuffer class also implements CharSequence, so you can pass the con-
tents of a CharBuffer to the method, too. This means that if you use a CharBuffer to hold character
data you have read from a file, you can pass the data directly to the matcher() method to be searched.

An advantage of Java’s implementation of regular expressions is that you can reuse a Pattern object to
create Matcher objects to search for the pattern in a variety of strings. To use the same pattern to search
another string, you just call the matcher() method for the Pattern object with the new string as the
argument. You then have a new Matcher object that you can use to search the new string.

You can also change the string that a Matcher object is to search by calling its reset() method with a
new string as the argument. For example:

matchHad.reset(“Had I known, I would not have eaten the haddock.”);

693

A Collection of Useful Classes

This will replace the previous string, sentence, in the Matcher object, so it is now capable of searching
the new string. Like the matcher() method in the Pattern class, the parameter type for the reset()
method is CharSequence, so you can pass a reference of type String, StringBuffer, StringBuilder,
or java.nio.CharBuffer to it.

Searching a String
Now that you have a Matcher object, you can use it to search the string. Calling the find() method for
the Matcher object will search the string for the next occurrence of the pattern. If it finds the pattern, the
method stores information about where it was found in the Matcher object and returns true. If it
doesn’t find the pattern, the find() method returns false. When the pattern has been found, calling
the start() method for the Matcher object returns the index position in the string where the first
character in the pattern was found. Calling the end() method returns the index position following the
last character in the pattern. Both index values are returned as type int. Therefore, you could search for
the first occurrence of the pattern like this:

if(m.find()) {

System.out.println(“Pattern found. Start: “+m.start()+” End: “+m.end());

} else {

System.out.println(“Pattern not found.”);

}

Note that you must not call start() or end() for the Matcher object before you have succeeded in
finding the pattern. Until a pattern has been matched, the Matcher object is in an undefined state and
calling either of these methods will result in an exception of type IllegalStateException being
thrown.

You will usually want to find all occurrences of a pattern in a string. When you call the find() method,
searching starts at an index position in the string called the append position and stops either when the
pattern is found and the value true is returned or when the end of the string is reached, in which case
the return value is false. The append position is initially zero, corresponding to the beginning of the
string, but it is updated if the pattern is found. Each time the pattern is found, the new append position
will be the index position of the character immediately following the last character in the text that
matched the pattern. The next call to find() will start searching at this new append position. Thus, you
can easily find all occurrences of the pattern by searching in a loop like this:

while(m.find()) {

System.out.println(“ Start: “+m.start()+” End: “+m.end());

}

At the end of this loop the append position will be at the index position of the character following the
last occurrence of the pattern in the string. If you want to reset the append position back to zero, you just
call an overloaded version of reset() for the Matcher object that has no arguments:

m.reset(); //Reset this matcher

This resets the Matcher object to its original state before any search operations were carried out.

To make sure you understand the searching process, let’s put it all together in an example.

694

Chapter 15

Try It Out Searching for a Substring
Here’s a complete example to search a string for a pattern:

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import java.util.Arrays;

class TryRegex {

public static void main(String args[]) {

// A regex and a string in which to search are specified

String regEx = “had”;

String str = “Smith, where Jones had had ‘had’, had had ‘had had’.”;

// The matches in the output will be marked (fixed-width font required)

char[] marker = new char[str.length()];

Arrays.fill(marker,’ ‘);

// So we can later replace spaces with marker characters

// Obtain the required matcher

Pattern pattern = Pattern.compile(regEx);

Matcher m = pattern.matcher(str);

// Find every match and mark it

while(m.find()){

System.out.println(“Pattern found at Start: “+m.start()+” End: “+m.end());

Arrays.fill(marker,m.start(),m.end(),’^’);

}

// Show the object string with matches marked under it

System.out.println(str);

System.out.println(new String(marker));

}

}

This will produce the following output:

Pattern found at Start: 19 End: 22

Pattern found at Start: 23 End: 26

Pattern found at Start: 28 End: 31

Pattern found at Start: 34 End: 37

Pattern found at Start: 38 End: 41

Pattern found at Start: 43 End: 46

Pattern found at Start: 47 End: 50

Smith, where Jones had had ‘had’, had had ‘had had’.

^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

How It Works
You first define a string, regEx, containing the regular expression, and a string, str, that you’ll search:

String regEx = “had”;

String str = “Smith, where Jones had had ‘had’, had had ‘had had’.”;

695

A Collection of Useful Classes

You also create an array, marker, of type char[] with the same number of elements as str, that you’ll
use to indicate where the pattern is found in the string:

char[] marker = new char[str.length()];

You fill the elements of the marker array with spaces initially using the static fill() method from the
Arrays class discussed earlier:

Arrays.fill(marker,’ ‘);

Later you’ll replace some of the spaces in the array with ‘^’ to indicate where the pattern has been found
in the original string.

After compiling the regular expression regEx into a Pattern object, pattern, you create a Matcher
object, m, from pattern, which applies to the string str:

Pattern pattern = Pattern.compile(regEx);

Matcher m = pattern.matcher(str);

You then call the find() method for m in the while loop condition:

while(m.find()){

System.out.println(“Pattern found at Start: “+m.start()+” End: “+m.end());

Arrays.fill(marker, m.start(), m.end(), ‘^’);

}

This loop continues as long as the find() method returns true. On each iteration you output the index
values returned by the start() and end() methods, which reflect the index position where the first
character of the pattern was found, and the index position following the last character. You also insert
the ‘^’ character in the marker array at the index positions where the pattern was found — again using
the fill() method. The loop ends when the find() method returns false, implying that there are no
more occurrences of the pattern in the string.

When the loop ends you have found all occurrences of the pattern in the string, so you output the string
str with the contents of the marker array immediately below it on the next line. As long as the com-
mand-line output uses a fixed-width font, the ‘^’ characters will mark the positions where the pattern
appears in the string.

You’ll reuse this example as you delve into further options for regular expressions by plugging in differ-
ent definitions for regEx and the string that is searched, str. The output will be more economical if you
delete or comment out the statement in the while loop that outputs the start and end index positions.

Matching an Entire String
On some occasions you want to try to match a pattern against an entire string — in other words, you
want to establish that the complete string you are searching is a match for the pattern. Suppose you read
an input value into your program as a string. This might be from the keyboard or possibly through a
dialog box managing the entry data in graphical user interface for an application. You might want to be
sure that the input string is an integer, for example. If input should be of a particular form, you can use a
regular expression to determine whether it is correct or not.

696

Chapter 15

The matches() method for a Matcher object tries to match the entire input string with the pattern and
returns true only if there is a match. The following code fragment demonstrates how this works:

String input = null;

// Read into input from some source...

Pattern yes = Pattern.compile(“yes”);

Matcher m = pattern.matcher(input);

if(m.matches()) { // Check if input matches “yes”

System.out.println(“Input is yes.”);

} else {

System.out.println(“Input is not yes.”);

}

Of course, this illustration is trivial, but later you’ll see how you can define more sophisticated patterns
that can check for a range of possible input forms.

Defining Sets of Characters
A regular expression can be made up of ordinary characters, which are upper- and lowercase letters and
digits, plus sequences of meta-characters, which are characters that have a special meaning. The pattern
in the previous example was just the word “had”, but what if you wanted to search a string for occur-
rences of “hid” or “hod” as well as “had”, or even any three-letter word beginning with “h” and end-
ing with “d”?

You can deal with any of these possibilities with regular expressions. One option is to specify the middle
character as a wildcard by using a period; a period is one example of a meta-character. This meta-charac-
ter matches any character except end-of-line, so the regular expression “h.d”, represents any sequence
of three characters that starts with “h” and end with “d”. Try changing the definitions of regEx and str

in the previous example to:

String regEx = “h.d”;

String str = “Ted and Ned Hodge hid their hod and huddled in the hedge.”;

If you recompile and run the example again, the last two lines of output will be:

Ted and Ned Hodge hid their hod and huddled in the hedge.

^^^ ^^^ ^^^ ^^^

You can see that you didn’t find “Hod” in Hodge because of the capital “H”, but you found all the other
sequences beginning with “h” and ending with “d”.

Of course, the regular expression “h.d” would also have found “hzd” or “hNd” if they had been pre-
sent, which is not what you want. You can limit the possibilities by replacing the period with just the col-
lection of characters you are looking for between square brackets, like this:

String regEx = “h[aio]d”;

The [aio] sequence of meta-characters defines what is called a simple class of characters, consisting in
this case of “a”, “i”, or “o”. Here the term class is used in the sense of a set of characters, not a class that

697

A Collection of Useful Classes

defines a type. If you try this version of the regular expression in the previous example, the last two lines
of output will be:

Ted and Ned Hodge hid their hod and huddled in the hedge.

^^^ ^^^

The regular expression now matches all sequences that begin with “h” and end with “d” and have a
middle letter of “a” or “i” or “o”.

You can define character classes in a regular expression in a variety of ways. Here are some examples of
the more useful forms:

[aeiou] This is a simple class that any of the characters between the square brackets
will match — in this example, any vowel. You used this form in the code
fragment above to search for variations on “had”.

[^aeiou] This represents any character except those appearing to the right of the ^
character between the square brackets. Thus, here you have specified any
character that is not a vowel. Note this is any character, not any letter, so the
expression “h[^aeiou]d” will look for “h!d” or “h9d” as well as “hxd” or
“hWd”. Of course, it will reject “had” or “hid” or any other form with a
vowel as the middle letter.

[a-e] This defines an inclusive range — any of the letters “a” to “e” in this case.
You can also specify multiple ranges. For example:

[a-cs-zA-E] This corresponds to any of the characters from “a” to “c”, from “s” to “z”,
or from “A” to “E”.

If you want to specify that a position must contain a digit, you could use [0-
9]. To specify that a position can be a letter or a digit you could express it as
[a-zA-Z0-9].

You can use any of these in combination with ordinary characters to form a regular expression. For exam-
ple, suppose you want to search some text for any sequence beginning with “b”, “c”, or “d”, with “a” as
the middle letter, and ending with “d” or “t”. You could define the regular expression to do this as:

String regEx = “[b-d]a[dt]”;

This expression will match any occurrence of “bad”, “cad”, “dad”, “bat”, “cat”, or “dat”.

Logical Operators in Regular Expressions
You can use the && operator to combine classes that define sets of characters. This is particularly useful
when you use it combined with the negation operator, ^, that appears in the second row of the table in
the preceding section. For example, if you want to specify that any lowercase consonant is acceptable,
you could write the expression that will match this as:

“[b-df-hj-np-tv-z]”

698

Chapter 15

However, this can much more conveniently be expressed as the pattern:

“[a-z&&[^aeiou]]”

This produces the intersection (in other words, the characters common to both sets) of the set of charac-
ters “a” through “z” with the set that is not a lowercase vowel. To put it another way, the lowercase
vowels are subtracted from the set “a” through “z” so you are left with just the consonants.

The | operator is a logical OR that you use to specify alternatives. A regular expression to find “hid”,
“had”, or “hod” could be written as “hid|had|hod”. You can try this in the previous example by
changing the definition of regEx to:

String regEx = “hid|had|hod”;

Note that the | operation means either the whole expression to the left of the operator or the whole
expression to the right, not just the characters on either side as alternatives.

You could also use the | operator to define an expression to find sequences beginning with an uppercase
or lowercase “h”, followed by a vowel, and ending in “d”, like this:

String regEx = “[h|H][aeiou]d”;

The first pair of square brackets encloses the choice of “h” or “H”. The second pair of square brackets
determines that the next character is any vowel. The last character must always be “d”. With this as the
regular expression in the example, the “Hod” in Hodge will be found as well as the other variations.

Predefined Character Sets
You also have a number of predefined character classes that provide you with a shorthand notation for
commonly used sets of characters. Here are some that are particularly useful:

. This represents any character, as you have already seen.

\d This represents any digit and is therefore shorthand for [0-9].

\D This represents any character that is not a digit. It is therefore equivalent to [^0-9].

\s This represents any whitespace character.

\S This represents any non-whitespace character and is therefore equivalent to [^\s].

\w This represents a word character, which corresponds to an upper- or lowercase letter or a
digit or an underscore. It is therefore equivalent to [a-zA-Z_0-9].

\W This represents any character that is not a word character, so it is equivalent to [^\w].

Note that when you are including any of the sequences that start with a backslash in a regular expres-
sion, you need to keep in mind that Java treats a backslash as the beginning of an escape sequence.
Therefore, you must specify the backslash in the regular expression as \\. For example, to find a
sequence of three digits, the regular expression would be “\\d\\d\\d”. This is peculiar to Java because
of the significance of the backslash in Java strings, so it doesn’t necessarily apply to other environments
that support regular expressions, such as Perl.

699

A Collection of Useful Classes

Obviously, you may well want to include a period, or any of the other meta-characters, as part of the
character sequence you are looking for. To do this you can use an escape sequence starting with a back-
slash in the expression to define such characters. Since Java strings interpret a backslash as the start of a
Java escape sequence, the backslash itself has to be represented as \\, the same as when using the prede-
fined character sets that begin with a backslash. Thus, the regular expression to find the sequence
“had.” would be “had\\.”.

The earlier search you tried with the expression “h.d” found embedded sequences such as “hud” in the
word huddled. You could use the \s set that corresponds to any whitespace character to prevent this by
defining regEx like this:

String regEx = “\\sh.d\\s”;

This searches for a five-character sequence that starts and ends with any whitespace character. The out-
put from the example will now be:

Ted and Ned Hodge hid their hod and huddled in the hedge.

^^^^^ ^^^^^

You can see that the marker array shows the five-character sequences that were found. The embedded
sequences are now no longer included, as they don’t begin and end with a whitespace character.

To take another example, suppose you want to find hedge or Hodge as words in the sentence, bearing in
mind that there’s a period at the end. You could do this by defining the regular expression as:

String regEx = “\\s[h|H][e|o]dge[\\s|\\.]”;

The first character is defined as any whitespace by \\s. The next character is defined as either “h” or
“H” by [h|H]. This can be followed by either “e” or “o” specified by [e|o]. This is followed by plain-
text dge with either a whitespace character or a period at the end, specified by [\\s|\\.]. This doesn’t
cater for all possibilities. Sequences at the beginning of the string will not be found, for example, nor will
sequences followed by a comma. We’ll see how to deal with these next.

Matching Boundaries
So far you have been trying to find the occurrence of a pattern anywhere in a string. In many situations
you will want to be more specific. You may want to look for a pattern that appears at the beginning of a
line in a string but not anywhere else, or maybe just at the end of any line. As you saw in the previous
example, you may want to look for a word that is not embedded — you want to find the word “cat” but
not the “cat” in “cattle” or in “Popacatapetl”, for example. The previous example worked for the
string you were searching but would not produce the right result if the word you were looking for was
followed by a comma or appeared at the end of the text. However, you have other options for specifying
the pattern. You can use a number of special sequences in a regular expression when you want to match
a particular boundary. For example, these are especially useful:

700

Chapter 15

^ Specifies the beginning of a line. For example, to find the word Java at the beginning of
any line you could use the expression “^Java”.

$ Specifies the end of a line. For example, to find the word Java at the end of any line you
could use the expression “Java$”. Of course, if you were expecting a period at the end
of a line the expression would be “Java\\.$”.

\b Specifies a word boundary. To find words beginning with ‘h’ and ending with ‘d’ you
could use the expression “\\bh.d\\b”.

\B A non-word boundary — the complement of \b above.

\A Specifies the beginning of the string being searched. To find the word The at the very
beginning of the string being searched you could use the expression “\\AThe\\b”. The
\\b at the end of the regular expression is necessary to avoid finding Then or There at
the beginning of the input.

\z Specifies the end of the string being searched. To find the word hedge followed by a
period at the end of a string, you could use the expression “\\bhedge\\.\\z”.

\Z The end of input except for the final terminator. A final terminator will be a newline
character (“\n”) if Pattern.UNIX_LINES is set. Otherwise, it can also be a carriage
return (“\r”), a carriage return followed by a newline, a next-line character (“\u0085”),
a line separator (“\u2028”), or a paragraph separator (“\u2029”).

While you have moved quite a way from the simple search for a fixed substring offered by the String
class methods, you still can’t search for sequences that may vary in length. If you wanted to find all the
numerical values in a string, which might be sequences such as 1234 or 23.45 or 999.998, for example,
you don’t yet have the ability to do that. You can fix that now by taking a look at quantifiers in a regular
expression, and what they can do for you.

Using Quantifiers
A quantifier following a subsequence of a pattern determines the possibilities for how that subsequence
of a pattern can repeat. Let’s take an example. Suppose you want to find any numerical values in a
string. If you take the simplest case, we can say an integer is an arbitrary sequence of one or more digits.
The quantifier for one or more is the meta-character +. You have also seen that you can use \d as short-
hand for any digit (remembering, of course, that it becomes \\d in a Java String literal), so you could
express any sequence of digits as the regular expression:

“\\d+”

Of course, a number may also include a decimal point and may be optionally followed by further digits.
To indicate something can occur just once or not at all, as is the case with a decimal point, you can use
the quantifier ?. You can write the pattern for a sequence of digits followed by a decimal point as:

“\\d+\\.?”

701

A Collection of Useful Classes

To add the possibility of further digits, you can append \\d+ to what you have so far to produce the
expression:

“\\d+\\.?\\d+”

This is a bit untidy. You can rewrite this as an integral part followed by an optional fractional part by
putting parentheses around the bit for the fractional part and adding the ? operator:

“\\d+(\\.\\d+)?”

However, this isn’t quite right. You can have 2. as a valid numerical value, for example, so you want to
specify zero or more appearances of digits in the fractional part. The * quantifier expresses that, so
maybe you should use:

“\\d+(\\.\\d*)?”

You are still missing something, though. What about the value .25 or the value -3? The optional sign in
front of a number is easy, so let’s deal with that first. To express the possibility that - or + can appear,
you can use [-|+], and since this either appears or it doesn’t, you can extend it to [+|-]?. So to add the
possibility of a sign you can write the expression as:

“[+|-]?\\d+(\\.\\d*)?”

You have to be careful how you allow for numbers beginning with a decimal point. You can’t allow a
sign followed by a decimal point or just a decimal point by itself to be interpreted as a number, so you
can’t say a number starts with zero or more digits or that the leading digits are optional. You could
define a separate expression for numbers without leading digits like this:

“[+|-]?\\.\\d+”

Here then is an optional sign followed by a decimal point and at least one digit. With the other expres-
sion there is also an optional sign so you can combine these into a single expression to recognize either
form, like this:

“[+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)”

This regular expression identifies substrings with an optional plus or minus sign followed by either a
substring defined by “\\d+(\\.\\d*)?” or a substring defined by “\\.\\d+”. You might be tempted
to use square brackets instead of parentheses here, but this would be quite wrong as square brackets
define a set of characters, so any single character from the set is a match.

That was probably a bit more work than you anticipated, but it’s often the case that things that look sim-
ple at first sight can turn out to be a little tricky. Let’s try that out in an example.

Try It Out Finding Integers
This is similar to the code we have used in previous examples except that here we will just list each sub-
string that is found to correspond to the pattern:

702

Chapter 15

import java.util.regex.Pattern;

import java.util.regex.Matcher;

public class FindingIntegers {

public static void main(String args[]) {

String regEx = “[+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)”;

String str = “256 is the square of 16 and -2.5 squared is 6.25 “ +

“and -.243 is less than 0.1234.”;

Pattern pattern = Pattern.compile(regEx);

Matcher m = pattern.matcher(str);

int i = 0;

String subStr = null;

while(m.find()) {

System.out.println(m.group()); // Output the substring matched

}

}

}

This will produce the following output:

256

16

-2.5

6.25

.243

0.1234

How It Works
Well, you found all the numbers in the string, so our regular expression works well, doesn’t it? You can’t
do that with the methods in the String class. The only new code item here is the method, group(), that
you call in the while loop for the Matcher object, m. This method returns a reference to a String object
containing the subsequence corresponding to the last match of the entire pattern. Calling the group()
method for the Matcher object m is equivalent to the expression str.substring(m.start(),
m.end()).

Tokenizing a String
You saw back in Chapter 4 that you could tokenize a string using the split() method for a String
object. As I mentioned then, the split() method does this by applying a regular expression — in fact,
the first argument to the method is interpreted as a regular expression. This is because the expression
text.split(str, limit), where text is a String variable, is equivalent to the expression:

Pattern.compile(str).split(text, limit)

This means that you can apply all of the power of regular expressions to the identification of delimiters
in the string. To demonstrate that this is the case I’ll repeat the example from Chapter 4, but modify the
first argument to the split() method so only the words in the text are included in the set of tokens.

703

A Collection of Useful Classes

Try It Out Extracting the Words from a String
Here’s the code for the modified version of the example:

public class StringTokenizing {

public static void main(String[] args) {

String text = “To be or not to be, that is the question.”; // String to segment

String delimiters = “\\s+|,\\s*|\\.\\s*”;

// Analyze the string

String[] tokens = text.split(delimiters);

// Output the tokens

System.out.println(“Number of tokens: “ + tokens.length);

for(String token : tokens) {

System.out.println(token);

}

}

}

Now you should get the following output:

Number of tokens: 10

To

be

or

not

to

be

that

is

the

question

How It Works
The program produces 10 tokens in the output, which is the number of words in the text. The original
version in Chapter 4 treated a comma followed by a space as two separate tokens and produced an
empty token as a result. The substring “,\\s*” in the regular expression for the delimiters specifies that
a comma followed by zero or more whitespace characters should be treated as a single token. The
delimiters string is still relatively simplistic in that it does not include other delimiters that are likely
to be found in text in general, such as ? or !, and it does not allow for spaces preceding punctuation
characters. I’ll leave it to you to fix this.

704

Chapter 15

Search and Replace Operations
You can implement a search and replace operation very easily using regular expressions. Whenever you
call the find() method for a Matcher object, you can call the appendReplacement() method to
replace the subsequence that was matched. You create a revised version of the original string in a new
StringBuffer object that you supply to the method. You have two arguments to the
appendReplacement() method. The first is a reference to the StringBuffer object that is to contain
the new string, and the second is the replacement string for the matched text. You can see how this
works by considering a specific example.

Suppose you define a string to be searched as:

String joke = “My dog hasn’t got any nose.\n”

+”How does your dog smell then?\n”

+”My dog smells horrible.\n”;

You now want to replace each occurrence of “dog” in the string by “goat”. You first need a regular
expression to find “dog”:

String regEx = “dog”;

You can compile this into a pattern and create a Matcher object for the string joke:

Pattern doggone = Pattern.compile(regEx);

Matcher m = doggone.matcher(joke);

You are going to assemble a new version of joke in a StringBuffer object that you can create like this:

StringBuffer newJoke = new StringBuffer();

This is an empty StringBuffer object ready to receive the revised text. We can now search for and
replace instances of “dog” in joke by calling the find() method for m and calling
appendReplacement() each time it returns true:

while(m.find()) {

m.appendReplacement(newJoke, “goat”);

}

Each call of appendReplacement() copies characters from joke to newJoke starting at the character
where the previous find() operation started and ending at the character preceding the first character
matched: at m.start()-1, in other words. The method will then append the string specified by the sec-
ond argument to newJoke. This process is illustrated in Figure 15-4.

705

A Collection of Useful Classes

Figure 15-4

joke

ReplacementappendReplacement() operation
after first successful find()

Search start

copied

My dog hasn't got any nose.

How does your dog smell then?

My dog smells horrible.

newJoke

My goat

copied

joke

Replacement

appendReplacement() operation
after second successful find()

Search start

copied

My dog hasn't got any nose.

How does your dog smell then?

My dog smells horrible.

How does your goat

newJoke

My goat hasn't got any nose.

My goat

Replacement

joke

appendReplacement() operation
after third successful find()

Search start

copied

My dog hasn't got any nose.

How does your dog smell then?

My dog smells horrible.

How does your goat smell then?

newJoke

My goat hasn't got any nose.copied

706

Chapter 15

The find() method will return true three times, once for each occurrence of “dog” in joke. When the
three steps shown in the diagram have been completed, the find() method returns false on the next
loop iteration, terminating the loop. This leaves newJoke in the state shown in the last box in Figure
15-4. All we now need to complete newJoke is a way to copy the text from joke that comes after the last
subsequence that was found. The appendTail() method for the Matcher object does that:

m.appendTail(newJoke);

This will copy the text starting with the m.end() index position from the last successful match through
to the end of the string. Thus this statement copies the segment “ smells horrible.” from joke to
newJoke. We can put all that together and run it.

Try It Out Search and Replace
Here’s the code I have just discussed assembled into a complete program:

import java.util.regex.Pattern;

import java.util.regex.Matcher;

class SearchAndReplace {

public static void main(String args[]) {

String joke = “My dog hasn’t got any nose.\n”

+”How does your dog smell then?\n”

+”My dog smells horrible.\n”;

String regEx = “dog”;

Pattern doggone = Pattern.compile(regEx);

Matcher m = doggone.matcher(joke);

StringBuffer newJoke = new StringBuffer();

while(m.find()) {

m.appendReplacement(newJoke, “goat”);

}

m.appendTail(newJoke);

System.out.println(newJoke.toString());

}

}

When you compile and execute this you should get the following output:

My goat hasn’t got any nose.

How does your goat smell then?

My goat smells horrible.

How It Works
Each time the find() method returns true in the while loop condition, you call the
appendReplacement() method for the Matcher object m. This copies characters from joke to newJoke,
starting with the index position where the find() method started searching, and ending at the character
preceding the first character in the match, which will be at m.start()-1. The method then appends the
replacement string, “goat”, to the contents of newJoke.

707

A Collection of Useful Classes

Once the loop finishes, the appendTail() method copies characters from joke to newJoke, starting
with the character following the last match at m.end() through to the end of joke. Thus, you end up
with a new string similar to the original, but which has each instance of “dog” replaced by “goat”.

You can use the search and replace capability to solve some string manipulation problems very easily.
For example, if you want to make sure that any sequence of one or more whitespace characters is
replaced by a single space, you can define the regular expression as “\\s +” and the replacement string
as a single space “ “. To eliminate all spaces at the beginning of each line, you can use the expression
“^\\s+” and define the replacement string as empty, “”.

Using Capturing Groups
Earlier you used the group() method for a Matcher object to retrieve the subsequence matched by the
entire pattern defined by the regular expression. The entire pattern represents what is called a capturing
group because the Matcher object captures the subsequence corresponding to the pattern match.
Regular expressions can also define other capturing groups that correspond to parts of the pattern. Each
pair of parentheses in a regular expression defines a separate capturing group in addition to the group
that the whole expression defines. In the earlier example, you defined the regular expression by the
statement:

String regEx = “[+|-]?(\\d+(\\.\\d*)?)| (\\.\\d+)”;

This defines three capturing groups other than the whole expression: one for the subexpression
(\\d+(\\.\\d*)?), one for the subexpression (\\.\\d*), and one for the subexpression (\\.\\d+).
The Matcher object stores the subsequence that matches the pattern defined by each capturing group,
and what’s more, you can retrieve them.

To retrieve the text matching a particular capturing group, you need a way to identify the capturing
group that you are interested in. To this end, capturing groups are numbered. The capturing group for
the whole regular expression is always number 0. Counting their opening parentheses from the left in
the regular expression numbers the other groups. Thus, the first opening parenthesis from the left corre-
sponds to capturing group 1, the second opening parenthesis corresponds to capturing group 2, and so
on for as many opening parentheses as there are in the whole expression. Figure 15-5 illustrates how the
groups are numbered in an arbitrary regular expression.

As you see, it is easy to number the capturing groups as long as you can count left parentheses. Group 1
is the same as Group 0 because the whole regular expression is parenthesized. The other capturing
groups in sequence are defined by (B), (C(D)), (D), and (E).

To retrieve the text matching a particular capturing group after the find() method returns true, you
call the group() method for the Matcher object with the group number as the argument. The
groupCount() method for the Matcher object returns a value of type int that specifies the number of
capturing groups within the pattern — that is, excluding group 0, which corresponds to the whole pat-
tern. Therefore, you have all you need to access the text corresponding to any or all of the capturing
groups in a regular expression.

708

Chapter 15

Figure 15-5

Try It Out Capturing Groups
Let’s modify our earlier example to output the text matching each group:

import java.util.regex.Pattern;

import java.util.regex.Matcher;

public class TryCapturingGroups {

public static void main(String args[]) {

String regEx = “[+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)”;

String str = “256 is the square of 16 and -2.5 squared is 6.25 “ +

“and -.243 is less than 0.1234.”;

Pattern pattern = Pattern.compile(regEx);

Matcher m = pattern.matcher(str);

while(m.find()) {

for(int i = 0; i<=m.groupCount() ; i++) {

System.out.println(“Group “ + i + “: “ + m.group(i)); // Group i substring

}

}

}

}

This produces the following output:

Group 0: 256

Group 1: 256

Group 2: null

Group 3: null

Group 0: 16

(A (B) (C (D)) | (E))

Group 2 Group 4

Group 3

Group 1

Group 0

Group 5

709

A Collection of Useful Classes

Group 1: 16

Group 2: null

Group 3: null

Group 0: -2.5

Group 1: 2.5

Group 2: .5

Group 3: null

Group 0: 6.25

Group 1: 6.25

Group 2: .25

Group 3: null

Group 0: .243

Group 1: null

Group 2: null

Group 3: .243

Group 0: 0.1234

Group 1: 0.1234

Group 2: .1234

Group 3: null

How It Works
The regular expression here defines four capturing groups:

❑ Group 0: The whole expression.

❑ Group 1: The subexpression “(\\d+(\\.\\d*)?)”

❑ Group 2: The subexpression “(\\.\\d*)”

❑ Group 3: The subexpression “(\\.\\d+)”

After each successful call of the find() method for the Matcher object m, you output the text captured
by each group in turn by passing the index value for the group to the group() method. Note that
because you want to output group 0 as well as the other groups, you start the loop index from 0 and
allow it to equal the value returned by groupCount() so as to index over all the groups.

You can see from the output that group 1 corresponds to numbers beginning with a digit, and group 3
corresponds to numbers starting with a decimal point, so either one or the other of these is always null.
Group 2 corresponds to the subpattern within group 1 that matches the fractional part of a number that
begins with a digit, so the text for this can be non-null only when the text for group 1 is non-null and
the number has a decimal point.

Juggling Captured Text
Since you can get access to the text corresponding to each capturing group in a regular expression, you
can move such blocks of text around. The appendReplacement() method has special provision for rec-
ognizing references to capturing groups in the replacement text string. If $n, where n is an integer,
appears in the replacement string, it will be interpreted as the text corresponding to group n. You can
therefore replace the text matched to a complete pattern by any sequence of your choosing of the subse-
quences corresponding to the capturing groups in the pattern. That’s hard to describe in words, so let’s
demonstrate it with an example.

710

Chapter 15

Try It Out Rearranging Captured Group Text
I’m sure you remember that the Math.pow() method requires two arguments; the second argument is
the power to which the first argument must be raised. Thus, to calculate 163 you can write:

double result = Math.pow(16.0, 3.0);

Let’s suppose a weak programmer on your team has written a Java program in which the two argu-
ments have mistakenly been switched, so in trying to compute 163 the programmer has written:

double result = Math.pow(3.0, 16.0);

Of course, this computes 316, which is not quite the same thing. Let’s suppose further that this sort of
error is strewn throughout the source code and in every case the arguments are the wrong way round.
You would need a month of Sundays to go through manually and switch the argument values, so let’s
see if regular expressions can rescue the situation.

What you need to do is find each occurrence of Math.pow() and switch the arguments around. The
intention here is to understand how you can switch things around, so I’ll keep it simple and assume that
the argument values to Math.pow() are always a numerical value or a variable name.

The key to the whole problem is to devise a regular expression with capturing groups for the bits you
want to switch — the two arguments. Be warned: This is going to get a little messy, not difficult,
though — just messy.

You can define the first part of the regular expression that will find the sequence “Math.pow(“ at any
point, and where you want to allow an arbitrary number of whitespace characters, you can use the
sequence \\s*. You’ll recall that \\s in a Java string specifies the predefined character class \s, which is
whitespace. The * quantifier specifies zero or more of them. If you allow for whitespace between
Math.pow and the opening parenthesis for the arguments, and some more whitespace after the opening
parenthesis, the regular expression will be:

“(Math.pow)\\s*\\(\\s*”

You have to specify the opening parenthesis by “\\(“. An opening parenthesis is a meta-character, so
you have to write it as an escape sequence.

The opening parenthesis will be followed by the first argument, which I said could be a number or a
variable name. You created a regular expression to identify a number earlier:

“[+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)”

To keep things simple, you’ll assume that a variable name is just any sequence of letters, digits, or
underscores that begins with a letter or an underscore. This will avoid getting involved with qualified
names. You can match a variable name with the expression:

“[a-zA-Z_]\\w*”

711

A Collection of Useful Classes

You can therefore match either a variable name or a number with the pattern:

“(([a-zA-Z_]\\w*)|([+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)))”

This just ORs the two possibilities together and parenthesizes the whole thing so it will be a capturing
group.

A comma that may be surrounded by zero or more whitespace characters on either side will follow the
first argument. You can match that with the pattern:

\\s*,\\s*

The pattern to match the second argument will be exactly the same as the first:

“(([a-zA-Z_]\\w*)|([+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)))”

Finally, this must be followed by a closing parenthesis that may or may not be preceded by whitespace:

\\s*\\)

You can put all this together to define the entire regular expression as the value for a String variable:

String regEx = “(Math.pow)” // Math.pow

+ “\\s*\\(\\s*” // Opening (

+ “(([a-zA-Z_]\\w*)|([+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)))” // First argument

+ “\\s*,\\s*” // Comma

+ “(([a-zA-Z_]\\w*)|([+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)))” // Second argument

+ “\\s*\\)”; // Closing (

Here you assemble the string literal for the regular expression by concatenating six separate string literals.
Each of these corresponds to an easily identified part of the method call. If you count the left parentheses,
excluding the escaped parenthesis of course, you can also see that capturing group 1 corresponds with the
method name, group 2 is the first method argument, and group 8 is the second method argument.

You can put this in the following example:

import java.util.regex.Pattern;

import java.util.regex.Matcher;

public class RearrangeText {

public static void main(String args[]) {

String regEx = “(Math.pow)” // Math.pow

+ “\\s*\\(\\s*” // Opening (

+ “(([a-zA-Z_]\\w*)|([+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)))” // First argument

+ “\\s*,\\s*” // Comma

+ “(([a-zA-Z_]\\w*)|([+|-]?(\\d+(\\.\\d*)?)|(\\.\\d+)))” // Second argument

+ “\\s*\\)”; // Closing (

String oldCode =

“double result = Math.pow(3.0, 16.0);\n”

+ “double resultSquared = Math.pow(2 ,result);\n”

+ “double hypotenuse = Math.sqrt(Math.pow(2.0, 30.0)+Math.pow(2 , 40.0));\n”;

712

Chapter 15

Pattern pattern = Pattern.compile(regEx);

Matcher m = pattern.matcher(oldCode);

StringBuffer newCode = new StringBuffer();

while(m.find()) {

m.appendReplacement(newCode, “$1\\($8,$2\\)”);

}

m.appendTail(newCode);

System.out.println(“Original Code:\n”+oldCode.toString());

System.out.println(“New Code:\n”+newCode.toString());

}

}

You should get the following output:

Original Code:

double result = Math.pow(3.0, 16.0);

double resultSquared = Math.pow(2 ,result);

double hypotenuse = Math.sqrt(Math.pow(2.0, 30.0)+Math.pow(2 , 40.0));

New Code:

double result = Math.pow(16.0,3.0);

double resultSquared = Math.pow(result,2);

double hypotenuse = Math.sqrt(Math.pow(30.0,2.0)+Math.pow(40.0,2));

How It Works
You have defined the regular expression so that separate capturing groups identify the method name
and both arguments. As you saw earlier, the method name corresponds to group 1, the first argument to
group 2, and the second argument to group 8. You therefore define the replacement string to the
appendReplacement() method as “$1\\($8,$2\\)”. The effect of this is to replace the text for each
method call that is matched by the following, in sequence:

$1 The text matching capturing group 1, which will be the method name

\\(A left parenthesis

$8 The text matching capturing group 8, which will be the second argument

, A comma

$2 The text matching capturing group 2, which will be the first argument

\\) A right parenthesis

The call to appendTail() is necessary to ensure that any text left at the end of oldCode following the
last match for regEx gets copied to newCode.

In the process, you have eliminated any superfluous whitespace that was lying around in the original
text.

713

A Collection of Useful Classes

Using a Scanner
The java.util.Scanner class defines objects that use regular expressions to scan character input from
a variety of sources and present the input as a sequence of tokens of various primitive types or as
strings. For example, you can use a Scanner object to read data values of various types from a file or a
stream, including the standard stream System.in. Indeed, using a Scanner object would have saved
you the trouble of developing the FomattedInput class back in Chapter 8 — still, it was good practice,
wasn’t it?

The facilities provided by the Scanner class are quite extensive, so I won’t be able to go into all of it in
detail because of space limitations. I’ll just provide you with an idea of how the scanner mechanisms
you are likely to find most useful can be applied. Once you have a grasp of the basics, I’m sure you’ll
find the other facilities quite easy to use.

Creating Scanner Objects
You can create a Scanner object by passing an object encapsulating the source of the data to be scanned
to a Scanner constructor. You have five overloaded Scanner constructors that accept a single argument
of any of the following types:

InputStream File ReadableByteChannel Readable String

The Scanner object that is created will be able to read data from whichever source you supply as the
argument to the constructor. Readable is an interface implemented by objects of type such as
BufferedReader, CharBuffer, FileReader, InputStreamReader, and a number of other readers, so
you can create a Scanner object that will scan any of these. For input from an external source, such as an
InputStream or a File object, bytes will be converted into characters using the default charset in effect.
Where you want to specify a charset that is to be used for the conversion from bytes to characters, you
use constructors that accept a second argument of type String that specifies the charset name.

When you specify the argument to a constructor as type File, the constructor can throw an exception of
type FileNotFoundException, so you must call the method in a try block in this instance or specify
that your method making the call may throw an exception of type FileNotFoundException.

Of course, read operations for some sources may also result in an exception of type IOException being
thrown. If this occurs, the Scanner object interprets this as signaling that the end of input has been
reached. You can test whether an IOException has been thrown when reading from a source by calling
the ioException() method for the Scanner object; the method returns true if the source has thrown
an exception of type IOException..

Let’s take the obvious example of a source from which you might want to interpret data. To obtain a
Scanner object that will scan input from the keyboard, you could use the following statement:

java.util.Scanner keyboard = new java.util.Scanner(System.in);

Creating a Scanner object to read from a file is a little more laborious because of the exception that may
be thrown:

714

Chapter 15

java.util.Scanner fileScan = null;

try {

fileScan = new java.util.Scanner(new java.io.File(“TryScanner.java”));

} catch(java.io.FileNotFoundException e) {

e.printStackTrace();

System.exit(1);

}

This fragment will create a Scanner object that you can use to scan the file Scanner.java.

Getting Input from a Scanner
By default, a Scanner object reads tokens assuming they are delimited by whitespace, which corre-
sponds to any character for which the isWhitespace() method in the Character class returns true.
Reading a token therefore involves skipping over any delimiter characters until a non-delimiter charac-
ter is found, then attempting to interpret the sequence of non-delimiter characters in the way you have
requested. You can read tokens of primitive types from the scanner source using the following methods:

nextByte() Reads and returns the next token as type byte

nextShort() Reads and returns the next token as type short

nextInt() Reads and returns the next token as type int

nextLong() Reads and returns the next token as type long

nextFloat() Reads and returns the next token as type float

nextDouble() Reads and returns the next token as type double

nextBoolean() Reads and returns the next token as type boolean

The first four methods above for type byte and the integer types each have an overloaded version that
accepts an argument of type int specifying the radix to be used in the interpretation of the value. All of
these methods will throw an exception of type java.util.InputMismatchException if the input
does not match the regular expression for the input type being read or of type java.util.NoSuch
ElementException if the input is exhausted. Note that type NoSuchElementException is a superclass
of type InputMismatchException, so you must put a catch clause for the latter first if you intend to
catch both types of exceptions separately. The methods can also throw an exception of type
IllegalStateException if the scanner is closed.

If the input read does not match the token you are trying to read, the invalid input will be left in the
input buffer, so you have an opportunity to try an alternative way of matching it. Of course, if it is sim-
ply erroneous input, you will want to skip over it before continuing. In this case you can call the next()
method for the Scanner object, which will read the next token up to the next delimiter in the input and
return it as a String object.

The Scanner class also defines nextBigInteger() and nextBigDecimal() methods that read the
next token as a java.math.BigInteger object or a java.math.BigDecimal object, respectively. The

715

A Collection of Useful Classes

BigInteger class defines objects that encapsulate integers with an arbitrary number of digits and pro-
vides the methods you need to work with such values. The BigDecimal class does the same thing for
non-integral values.

You have enough knowledge to try out a scanner, so let’s do it.

Try It Out Using a Scanner
Here’s a simple example that just reads a variety of input from the standard input stream and displays
what was read:

import java.util.Scanner;

import java.util.InputMismatchException;

public class TryScanner {

public static void main(String[] args) {

Scanner kbScan = new Scanner(System.in); // Create the scanner

int selectRead = 1; // Selects the read operation

final int MAXTRIES = 3; // Maximum attempts at input

int tries = 0; // Number of input attempts

while(tries<MAXTRIES) {

try {

switch(selectRead) {

case 1:

System.out.print(“Enter an integer: “);

System.out.println(“You entered: “+ kbScan.nextLong());

++selectRead; // Select next read operation

tries = 0; // Reset count of tries

case 2:

System.out.print(“Enter a floating-point value: “);

System.out.println(“You entered: “+ kbScan.nextDouble());

++selectRead; // Select next read operation

tries = 0; // Reset count of tries

case 3:

System.out.print(“Enter a boolean value(true or false): “);

System.out.println(“You entered: “+ kbScan.nextBoolean());

}

break;

} catch(InputMismatchException e) {

String input = kbScan.next();

System.out.println(“\””+ input +”\” is not valid input.”);

if(tries<MAXTRIES) {

System.out.println(“Try again.”);

} else {

System.out.println(“ Terminating program.”);

System.exit(1);

}

}

}

}

}

716

Chapter 15

With my limited typing skills, I got the following output:

Enter an integer: 1$

“1$” is not valid input.

Try again.

Enter an integer: 14

You entered: 14

Enter a floating-point value: 2e1

You entered: 20.0

Enter a boolean value(true or false): tree

“tree” is not valid input.

Try again.

Enter a boolean value(true or false): true

You entered: true

How It Works
In this example you use a scanner to read values of three different types from the standard input stream.
The read operations take place in a loop to allow multiple attempts at correct input. Within the loop you
have a rare example of a switch statement that doesn’t require a break statement after each case. In this
case you want each case to fall through to the next. The selectRead variable that selects a switch case
provides the means by which you manage subsequent attempts at correct input, because it records the
case label currently in effect.

If an invalid input value is entered, an exception of type InputMismatchException will be thrown by the
Scanner method that is attempting to read a token of a particular type. In the catch block, you call the
next() method for the Scanner object to retrieve and thus skip over the input that was not recognized.
You then continue with the next while loop iteration to allow a further attempt at reading the token.

Testing for Tokens
The hasNext() method for a Scanner object will return true if another token is available from the
input source. You can use this in combination with the next() method to read a sequence of tokens of
any type from a source, delimited by whitespace. For example:

java.util.Scanner fileScan = null;

try {

fileScan = new java.util.Scanner(new java.io.File(“TryScanner.java”));

} catch(java.io.IOException e) {

e.printStackTrace();

System.exit(1);

}

String token = null;

while(fileScan.hasNext() {

token = fileScan.next();

// Do something with the token read...

}

Here you are just reading an arbitrary number of tokens at strings. In general, the next() method can
throw an exception of type NoSuchElementException, but this cannot happen here because you use
the hasNext() method to establish that there is another token to be read before you call the next()
method.

717

A Collection of Useful Classes

The Scanner object can do better than this. In addition to the hasNext() method that checks whether a
token of any kind is available, you have methods such as hasNextInt() and hasNextDouble() for
testing for the availability of any of the types that you can read with methods such as nextInt() and
nextDouble(). This enables you to code so that you can process tokens of various types, even when
you don’t know ahead of time the sequence in which they will be received. For example:

while(fileScan.hasNext() {

if(fileScan.hasNextInt()) {

// Process integer input...

} else if(fileScan.hasNextDouble()) {

// Process floating-point input...

} else if(fileScan.hasNextBoolean()) {

// Process boolean input...

}

}

The while loop will continue as long as there are tokens of any kind available from the fileScan scan-
ner. The if statements within the loop decide how the next token is to be processed, assuming it is one
of the ones that you are interested in. If you want to skip tokens that you don’t want to process within
the loop, you can just call the next() method for fileScan.

Defining Your Own Patterns for Tokens
The Scanner class provides a way for you to specify how a token should be recognized. You use one of
two overloaded versions of the next() method to do this. One version accepts an argument of type
Pattern that you produce by compiling a regular expression using the static compile() method for the
Pattern class in the way you saw earlier in this chapter. The other accepts an argument of type String
that specifies a regular expression that will identify the token. In both cases the token is returned as type
String.

There are also overloaded versions of the hasNext() method that accept an argument of type Pattern
or a reference to a String object containing a regular expression that identifies a token. You use these to
test for tokens of your own specification. You could see these in action in an example that scans a string
for a token specified by a simple pattern.

Try It Out Scanning a String
This example scans a string looking for occurrences of “had”:

import java.util.Scanner;

import java.util.regex.Pattern;

public class ScanString {

public static void main(String[] args) {

String str = “Smith , where Jones had had ‘had’, had had ‘had had’.”;

String regex = “had”;

System.out.println(“String is:\n”+str+”\nToken sought is: “+regex);

718

Chapter 15

Pattern had = Pattern.compile(regex);

Scanner strScan = new Scanner(str);

int hadCount = 0;

while(strScan.hasNext()) {

if(strScan.hasNext(had)) {

++hadCount;

System.out.println(“Token found!: “ + strScan.next(had));

} else {

System.out.println(“Token is : “ + strScan.next());

}

}

System.out.println(hadCount + “ instances of \”” + regex + “\” were found.”);

}

}

This program will produce the following output:

String is:

Smith , where Jones had had ‘had’, had had ‘had had’.

Token sought is: had

Token is : Smith

Token is : ,

Token is : where

Token is : Jones

Token found!: had

Token found!: had

Token is : ‘had’,

Token found!: had

Token found!: had

Token is : ‘had

Token is : had’.

4 instances of “had” were found.

How It Works
After defining the string to be scanned and the regular expression that defines the form of a token, you
compile the regular expression into a Pattern object. Passing a Pattern object to the hasNext()
method (or the next() method) will be much more efficient than passing the original regular expression
when you expect to be calling the method more than once. When you pass a String object containing a
regular expression to the hasNext() method, the method will need to compile it to a pattern before it
can use it. Thus if you compile the regular expression first and pass the Pattern object as the argument,
the compile operation will occur only once.

You scan the string, str, in the while loop. The loop continues as long as there is another token avail-
able from the string. Within the loop, you check for the presence of a token defined by regex by calling
the hasNext() method with the had pattern as the argument:

if(strScan.hasNext(had)) {

++hadCount;

System.out.println(“Token found!: “ + strScan.next(had));

} else {

System.out.println(“Token is : “ + strScan.next());

}

719

A Collection of Useful Classes

If the hasNext() method returns true, you increment hadCount and output the token returned by
next() with the argument as had. Of course, you could just as well have used the next() method with
no argument here. If the next token does not correspond to had, you read it anyway with the next()
method. Finally, you output the count of the number of times your token was found.

From the output you can see that only four instances of “had” were found. This is because the scanner
assumes the delimiter is one or more whitespace characters. If you don’t like this you can specify
another regular expression that the scanner should use for the delimiter:

strScan.useDelimiter(“\\s’|\\s*’?[.|,]\\s*|\\s”);

The useDelimiter() method expects an argument of type String that specifies a regular expression
for recognizing delimiters. In this case the expression implies a delimiter is a whitespace character fol-
lowed by a single quote, or zero or one whitespace characters followed by a comma or a period followed
by zero or more whitespace characters, or just a whitespace character. If you add this statement follow-
ing the creation of the Scanner object the program should find all the “had” tokens.

I once again want to stress that regular expressions are a very powerful capability that I only touched on
in this chapter. You now have a foundation of understanding regular expressions that you can follow into
a more in-depth exploration of them. If you want to explore regular expression in more depth, you could
try Java Regular Expressions: Taming the java.util.regex Engine by Merhan Habibi (Apress 2004).

Summary
The important elements that you’ve covered in this chapter are:

❑ The java.util.Arrays class provides static methods for sorting, searching, filling, and com-
paring arrays.

❑ Objects of type Random can generate pseudo-random numbers of type int, long, float, and
double. The integers are uniformly distributed across the range of the type int or long. The
floating-point numbers are between 0.0 and 1.0. You can also generate numbers of type double
with a Gaussian distribution with a mean of 0.0 and a standard deviation of 1.0 and random
boolean values.

❑ Classes derived from the Observable class can signal changes to classes that implement the
Observer interface. You define the Observer objects that are to be associated with an
Observable class object by calling the addObserver() method. This is primarily intended to
be used to implement the document/view architecture for applications in a GUI environment.

❑ You can create Date objects to represent a date and time that you specify in milliseconds since
January 1, 1970, 00:00:00 GMT or as the current date and time from your computer clock.

❑ You can use a DateFormat object to format the date and time for a Date object as a string. The
format will be determined by the style and the locale that you specify.

❑ A GregorianCalendar object represents a calendar set to an instant in time on a given date.

❑ A regular expression defines a pattern that is used for searching text.

720

Chapter 15

❑ In Java, a regular expression is compiled into a Pattern object that you can then use to obtain a
Matcher object that will scan a given string looking for the pattern.

❑ The appendReplacement() method for a Matcher object enables you to make substitutions for
patterns found in the input text.

❑ A capturing group in a regular expression records the text that matches a subpattern.

❑ By using capturing groups you can rearrange the sequence of substrings in a string matching a
pattern.

❑ A Scanner object uses a regular expression to segment data from a variety of sources into
tokens.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Define a static method to fill an array of type char[] with a given value passed as an argument
to the method.

2. For the adventurous gambler — use a stack and a Random object in a program to simulate a
game of Blackjack for one player using two decks of cards.

3. Write a program to display the sign of the Zodiac corresponding to a birth date entered through
the keyboard.

4. Write a program using regular expressions to remove spaces from the beginning and end of
each line in a file.

5. Write a program using a regular expression to reproduce a file with a sequential line number
starting at “0001” inserted at the beginning of each line in the original file. You can use a copy of
your Java source file as the input to test this.

6. Write a program using a regular expression to eliminate any line numbers that appear at the
beginning of lines in a file. You can use the output from the previous exercise as a test for your
program.

721

A Collection of Useful Classes

16
Threads

In this chapter you’ll investigate the facilities Java has that enable you to overlap the execution of
segments of a single program. As well as ensuring your programs run more efficiently, this capa-
bility is particularly useful when your program must, of necessity, do a number of things at the
same time: for example, a server program on a network that needs to communicate with multiple
clients. As you’ll see in Chapter 18, threads are also fundamental to any Java application that uses
a graphical user interface (GUI), so it’s essential that you understand how threads work.

In this chapter you’ll learn:

❑ What a thread is and how to create threads in your programs

❑ How to control interactions between threads

❑ What synchronization means and how to apply it in your code

❑ What deadlocks are and how to avoid them

❑ How to set thread priorities

❑ How to get information about the threads in your programs

Understanding Threads
Most programs of a reasonably large size will contain some code segments that are more or less
independent of one another and that may execute more efficiently if the code segments could be
overlapped in time. Threads provide a way to do this. If you have a machine with two or more
processors, then as many computations as you have processors can be executing concurrently. Of
course, if your computer has only one processor, you can’t execute more than one computation at
any instant, but you can still overlap input/output operations with processing.

Another reason for using threads is to allow processes in a program that need to run continuously,
such as a continuously running animation, to be overlapped with other activities in the same pro-
gram. Java applets in a web page are executed under the control of a single program — your
browser — and threads make it possible for multiple applets to be executing concurrently. In this

case the threads serve to segment the activities running under the control of the browser so that they
appear to run concurrently. If you have only one processor, this is an illusion created by your operating
system, since only one thread can actually be executing instructions at any given instant, but it’s a very
effective illusion. To produce animation, you typically put some code that draws a succession of still pic-
tures in a loop that runs indefinitely. The code to draw the picture generally runs under the control of a
timer so that it executes at a fixed rate — for example, 20 times per second. Of course, nothing else can
happen in the same thread while the loop is running. If you want to have another animation running, it
must be in a separate thread. Then the multitasking capability of your operating system can allow the
two threads to share the available processor time, thus allowing both animations to run.

Let’s get an idea of the principles behind how threads operate. Consider a very simple program that con-
sists of three activities:

❑ Reading a number of blocks of data from a file

❑ Performing some calculation on each block of data

❑ Writing the results of the calculation to another file

You could organize the program as a single sequence of activities. In this case the activities — read file,
process, write file — run in sequence, and the sequence is repeated for each block to be read and pro-
cessed. You could also organize the program so that reading a block from the file is one activity, perform-
ing the calculation is a second activity, and writing the results is a third activity. Both of these situations
are illustrated in Figure 16-1.

Figure 16-1

read block 1

thread 1

thread 1 thread 2 thread 3

Single Thread

Multiple Threads

Time

calculate 1 write 1

read block 1 calculate 1 write 1

read block 2 calculate 2 write 2

read block 3 calculate 3 write 3

read block 2 calculate 2 write 2

724

Chapter 16

Once a block of data has been read, the computation process can start, and as soon as the computation
has been completed, the results can be written out. With the program executing each step in sequence
(that is, as a single thread), as shown in the top half of Figure 16-1, the total time for execution is the sum
of the times for each of the individual activities. However, suppose you were able to execute each of the
activities independently, as illustrated in the lower half of Figure 16-1. In this case, reading the second
block of data can start as soon as the first block has been read, and in theory you can have all three activ-
ities executing concurrently. This is possible even though you have only one processor because the input
and output operations are likely to require relatively little processor time while they are executing, so the
processor can be doing other things while they are in progress. This can reduce the total execution time
for the program.

These three processes that run more or less independently of one another — one to read the file, another
to process the data, and a third to write the results — are called threads. Of course, the first example at
the top of Figure 16-1 has just one thread that does everything in sequence. Every Java program has at
least one thread. However, the three threads in the lower example in Figure 16-1 aren’t completely inde-
pendent of one another. After all, if they were, you might as well make them independent programs. You
have practical limitations, too — the potential for overlapping these threads is dependent on the capabili-
ties of your computer, and of your operating system. However, if you can get some overlap in the execu-
tion of the threads, the program is going to run faster. You’ll find no magic in using threads, though.
Your computer has only a finite capacity for executing instructions, and if you have many threads run-
ning, you may in fact increase the overall execution time because of the overhead implicit in managing
the switching of control between threads.

An important consideration when you have a single program running as multiple threads is that the
threads are unlikely to have identical execution times, and if one thread is dependent on another you
can’t afford to have one overtaking the other — otherwise, you’ll have chaos. Before you can start calcu-
lating in the example in the diagram, you need to be sure that the block of data that the calculation uses
has been read, and before you can write the output, you need to know that the calculation is complete.
This necessitates having some means for the threads to communicate with one another.

The way I have shown the threads executing in Figure 16-1 isn’t the only way of organizing the pro-
gram. You could have three threads, each of which reads the file, calculates the results, and writes the
output, as shown in Figure 16-2.

Figure 16-2

Multiple Threads

read block 1

thread 1

calculate 1 write 1 read block 4 calculate 4

thread 2

time

read block 2 calculate 2 write 2 read block 5

thread 3

read block 3 calculate 3 write 3

725

Threads

Now there’s a different sort of contention between the threads. They are all competing to read the file
and write the results, so there needs to be some way of preventing one thread from getting at the input
file while another thread is already reading from it. The same goes for the output file. There’s another
aspect of this arrangement that is different from the previous version. For example, if one thread, thread
1, reads a block, block 4, that needs a lot of time to compute the results, another thread, thread 2, could
conceivably read a following block, block 5, and calculate and write the results for block 5 before thread 1
has written the results for block 4. If you don’t want the results appearing in a different sequence from
the input, you should do something about this. However, before I delve into the intricacies of making
sure that the threads don’t get knotted, let’s first look at how you create a thread.

Creating Threads
Your program always has at least one thread: the one created when the program begins execution. In a
normal Java application program, this thread starts at the beginning of main(). With an applet, the
browser is the main thread. That means that when your program creates a thread, it is in addition to the
main thread of execution that created it. As you might have guessed, creating an additional thread
involves using an object of a class, and the class you use is java.lang.Thread. Each additional thread
that your program creates is represented by an object of the class Thread, or of a subclass of Thread. If
your program is to have three additional threads, you will need to create three such objects.

To start the execution of a thread, you call the start() method for the Thread object. The code that exe-
cutes in a new thread is always a method called run(), which is public, accepts no arguments, and
doesn’t return a value. Threads other than the main thread in a program always start in the run()
method for the object that represents the thread. A program that creates three threads is illustrated dia-
grammatically in Figure 16-3.

Figure 16-3

Program
A Console Program that Spawns Three Threads

All four threads can be
executing concurrently

 main(){

// Create thread1
// Start thread1

// Create thread2
// Start thread2

// Create thread3
// Start thread3
}

thread3

run(){

// Code for the
// thread...
}

thread2

run(){

// Code for the
// thread...
}

thread1

run(){

// Code for the
// thread...
}

726

Chapter 16

For a class representing a thread in your program to do anything, you must implement the run()
method, as the version defined in the Thread class does nothing. Your implementation of run() can call
any other methods you want. Figure 16-3 shows the main() method creating all three threads, but that
doesn’t have to be the case. Any thread can create more threads.

Now here comes the bite: You don’t call the run() method to start a thread, you call the start()
method for the object representing the thread, and that causes the run() method to be called. When you
want to stop the execution of a thread that is running, you signal to the Thread object that it should stop
itself, by setting a field that the thread checks at regular intervals, for example.

The reason for starting a thread in the way I have described is somewhat complex but basically it boils
down to this: threads are always owned and managed by the operating system, and a new thread can
be created and started only by the operating system. If you were to call the run() method yourself, it
would simply operate like any other method, running in the same thread as the program that calls it.

When you call the start() method for a Thread object, you are calling a native code method that
causes the operating system to initiate another thread from which the run() method for the Thread
object executes.

In any case, it is not important to understand exactly how this works. Just remember: Always start your
thread by calling the start() method. If you try to call the run() method directly yourself, then you
will not have created a new thread and your program will not work as you intended.

You can define a class that is to represent a thread in two ways.

❑ One way is to define your class as a subclass of Thread and provide a definition of the method
run(), which overrides the inherited method.

❑ The other possibility is to define your class as implementing the interface Runnable, which
declares the run() method, and then create a Thread object in your class when you need it.

You’ll look at and explore the advantages of each approach in a little more detail.

Try It Out Deriving a Subclass of Thread
You can see how deriving a subclass of Thread works by using an example. You’ll define a single class,
TryThread, which you’ll derive from Thread. As always, execution of the application starts in the
main() method. Here’s the code:

import java.io.IOException;

public class TryThread extends Thread {

public TryThread(String firstName, String secondName, long delay) {

this.firstName = firstName; // Store the first name

this.secondName = secondName; // Store the second name

aWhile = delay; // Store the delay

setDaemon(true); // Thread is daemon

}

public static void main(String[] args) {

// Create three threads

727

Threads

Thread first = new TryThread(“Hopalong “, “Cassidy “, 200L);

Thread second = new TryThread(“Marilyn “, “Monroe “, 300L);

Thread third = new TryThread(“Slim “, “Pickens “, 500L);

System.out.println(“Press Enter when you have had enough...\n”);

first.start(); // Start the first thread

second.start(); // Start the second thread

third.start(); // Start the third thread

try {

System.in.read(); // Wait until Enter key pressed

System.out.println(“Enter pressed...\n”);

} catch (IOException e) { // Handle IO exception

System.out.println(e); // Output the exception

}

System.out.println(“Ending main()”);

return;

}

// Method where thread execution will start

public void run() {

try {

while(true) { // Loop indefinitely...

System.out.print(firstName); // Output first name

sleep(aWhile); // Wait aWhile msec.

System.out.print(secondName + “\n”); // Output second name

}

} catch(InterruptedException e) { // Handle thread interruption

System.out.println(firstName + secondName + e); // Output the exception

}

}

private String firstName; // Store for first name

private String secondName; // Store for second name

private long aWhile; // Delay in milliseconds

}

If you compile and run the code, you’ll see something like this:

Press Enter when you have had enough...

Hopalong Marilyn Slim Cassidy

Hopalong Monroe

Marilyn Cassidy

Hopalong Pickens

Slim Monroe

Marilyn Cassidy

Hopalong Cassidy

Hopalong Monroe

Marilyn Pickens

Slim Cassidy

Hopalong Monroe

Marilyn Cassidy

Hopalong Cassidy

Hopalong Monroe

728

Chapter 16

Marilyn Pickens

Slim Cassidy

Hopalong Cassidy

Hopalong Monroe

Marilyn

Enter pressed...

Ending main()

How It Works
You have three instance variables in the TryThread class, and these are initialized in the constructor.
The two String variables hold first and second names, and the variable aWhile stores a time period in
milliseconds. The constructor for the class, TryThread(), will automatically call the default constructor,
Thread(), for the base class.

The class containing the main() method is derived from Thread and implements run(), so objects of
this class represent threads. The fact that each object of your class will have access to the method main()
is irrelevant — the objects are perfectly good threads. The method main() creates three such objects:
first, second, and third.

Daemon and User Threads
The call to setDaemon(), with the argument true in the TryThread constructor, makes the thread that
is created a daemon thread. A daemon thread is simply a background thread that is subordinate to the
thread that creates it, so when the thread that created the daemon thread ends, the daemon thread dies
with it. In this case, the method main() creates the daemon threads so that when main() returns, all the
threads it has created will also end. If you run the example a few times pressing Enter at random, you
should see that the daemon threads die after the main() method returns, because, from time to time,
you will get some output from one or other thread after the last output from main().

A thread that isn’t a daemon thread is called a user thread. The diagram in Figure 16-4 shows two dae-
mon threads and a user thread that are created by the main thread of a program.

Figure 16-4

Main Thread

user thread by default

Ends the main thread. All daemon
threads created in the main thread

will end at this point.

Daemon threads can be
continuous loops as they will be

destroyed automatically
when their creator ends.

A user thread must be
explicitly stopped or destroyed,
or its run method must return.

thread1.setDaemon(true);
thread1.start();
thread2.setDaemon(true);
thread2.start();
thread3.start();

return;

thread1

created as a
daemon thread

Starts a daemon thread.
thread1 will die automatically

when the main thread ends.

thread2

created as a
daemon thread

Starts a daemon thread.
thread2 will die automatically

when the main thread ends.

thread3

created as a
daemon thread

Starts a user thread.
thread3 can continue executing

after the main thread ends.

729

Threads

A user thread has a life of its own that is not dependent on the thread that creates it. It can continue exe-
cution after the thread that created it has ended. The default thread that contains main() is a user
thread, as shown in the diagram, but thread3 shown in the diagram could continue to execute after
main() has returned. Threads that run for a finite time are typically user threads, but there’s no reason
why a daemon thread can’t be finite. Threads that run indefinitely should usually be defined as daemon
threads simply because you need a means of stopping them. A hypothetical example might help you to
understand this, so let’s consider how a network server handling transactions of some kind might work
in principle.

A network server might be managed overall by a user thread that starts one or more daemon threads to
listen for requests. When the server starts up, the operator starts the management thread, and this thread
creates daemon threads to listen for requests. Each request that is recognized by one of these daemon
threads might be handled by another thread that is created by the listening thread, so that each request
will be handled independently. Where processing a transaction takes a finite time, and where it is impor-
tant that the requests are completed before the system shuts down, the thread to handle the request
might be created as a user thread to ensure that it runs to completion, even if the listening thread that
created it stops. Generally you would not want a program to be able to create an unlimited number of
threads because the more threads there are running, the greater the operating system overhead there will
be in managing the threads. For this reason, a program will often make use of a thread pool of a speci-
fied number of threads. When a new thread is required for a particular task, such as servicing a request,
one of the threads in the thread pool is allocated to the task. If all the threads in the pool have been allo-
cated, then a new thread cannot be started until one of the threads that is currently running terminates.
The class libraries provide help in the creation and management of thread pools through the
java.util.concurrent.ThreadPoolExecutor class. When the time comes to shut the system down,
the operator doesn’t have to worry about how many listening threads are running. When the main
thread is shut down, all the listening threads will also shut down because they are daemon threads. Any
outstanding threads dealing with specific transactions will then run to completion.

Note that you can call setDaemon() for a thread only before it starts; if you try to do so afterwards, the
method will throw an IllegalThreadStateException exception. Also, a thread that is itself created
by a daemon thread will be a daemon by default.

Creating Thread Objects
In the main() method you create three Thread variables that store three different objects of type
TryThread. As you can see, each object has an individual name pair as the first two arguments to its
constructor, and a different delay value passed as the third argument. All objects of the class TryThread
are daemon threads because you call setDaemon() with the argument true in the constructor. Since the
output can continue indefinitely, you display a message to explain how to stop it.

Once you’ve created a thread, it doesn’t start executing by itself. You need to set it going. As I said ear-
lier, you don’t call the run() method for the Thread object to do this, you call its start() method.
Thus, you start the execution of each of the threads represented by the objects first, second, and
third by calling the start() method that is inherited from Thread for each object. The start()
method starts the object’s run() method executing and then returns to the calling thread. Eventually, all
three threads are executing in parallel with the original application thread, main().

730

Chapter 16

Implementing the run() Method
The run() method contains the code for thread execution. The code in this case is a single, infinite
while loop that you have put in a try block because the sleep() method that is called in the loop can
throw the InterruptedException exception that is caught by the catch block. The code in the loop
outputs the first name, calls the method sleep() inherited from Thread, and then outputs the second
name. The sleep() method suspends execution of the thread for the number of milliseconds that you
specify in the argument. This gives any other threads that have previously been started a chance to exe-
cute. This allows the output from the three threads to become a little jumbled.

Each time a thread calls the method sleep(), one of the other waiting threads jumps in. You can see the
sequence in which the threads execute from the output. From the names in the output you can deduce
that they execute in the sequence first, second, third, first, first, second, second, first, first,
third, and so on. The actual sequence depends on your operating system scheduler, so this is likely to
vary from machine to machine. The execution of the read() method that is called in main() is blocked
until you press Enter, but all the while the other threads continue executing. The output stops when you
press Enter because this allows the main thread to continue and execute the return. Executing return
ends the thread for main(), and since the other threads are daemon threads, they also die when the
thread that created them dies, although as you may have seen, they can run on a little after the last out-
put from main().

Stopping a Thread
If you did not create the threads in the last example as daemon threads, they would continue executing
independently of main(). If you are prepared to terminate the program yourself (use Ctrl+C in a
Windows command-line session running Java), you can demonstrate this by commenting out the call to
setDaemon() in the constructor. Pressing Enter will end main(), but the other threads will continue
indefinitely.

A thread can signal another thread that it should stop executing by calling the interrupt() method for
that Thread object. This in itself doesn’t stop the thread; it just sets a flag in the thread that indicates an
interruption has been requested. This flag must be checked in the run() method to have any effect.
As it happens, the sleep() method checks whether the thread has been interrupted, and throws an
InterruptedException if it has been. You can see that in action by altering the previous example
a little.

Try It Out Interrupting a Thread
Make sure the call to the setDaemon() method is still commented out in the constructor and modify the
main()method as follows:

public static void main(String[] args) {

// Create three threads

Thread first = new TryThread(“Hopalong “, “Cassidy “, 200L);

Thread second = new TryThread(“Marilyn “, “Monroe “, 300L);

Thread third = new TryThread(“Slim “, “Pickens “, 500L);

System.out.println(“Press Enter when you have had enough...\n”);

first.start(); // Start the first thread

second.start(); // Start the second thread

731

Threads

third.start(); // Start the third thread

try {

System.in.read(); // Wait until Enter key pressed

System.out.println(“Enter pressed...\n”);

// Interrupt the threads

first.interrupt();

second.interrupt();

third.interrupt();

} catch (IOException e) { // Handle IO exception

System.out.println(e); // Output the exception

}

System.out.println(“Ending main()”);

return;

}

Now the program will produce output that is something like the following:

Press Enter when you have had enough...

Slim Hopalong Marilyn Cassidy

Hopalong Monroe

Marilyn Cassidy

Hopalong Pickens

Slim Cassidy

Hopalong Monroe

Marilyn

Enter pressed...

Ending main()

Marilyn Monroe java.lang.InterruptedException: sleep interrupted

Slim Pickens java.lang.InterruptedException: sleep interrupted

Hopalong Cassidy java.lang.InterruptedException: sleep interrupted

How It Works
Since the method main() calls the interrupt() method for each of the threads after you press the
Enter key, the sleep() method that is called in each thread registers the fact that the thread has been
interrupted and throws an InterruptedException. This is caught by the catch block in the run()
method and produces the new output that you see. Because the catch block is outside the while loop,
the run() method for each thread returns and each thread terminates.

You can check whether a thread has been interrupted by calling the isInterrupted() method for the
thread. This returns true if interrupt() has been called for the thread in question. Since this is an
instance method, you can use this in one thread to determine whether another thread has been inter-
rupted. For example, in main() you could write:

if(first.isInterrupted()) {

System.out.println(“First thread has been interrupted.”);

}

732

Chapter 16

Note that this determines only whether the interrupted flag has been set by a call to interrupt() for
the thread — it does not determine whether the thread is still running. A thread could have its interrupt
flag set and continue executing — it is not obliged to terminate because interrupt() is called. To test
whether a thread is still operating you can call its isAlive() method. This returns true if the thread
has not terminated.

The instance method isInterrupted() has no effect on the interrupt flag in the thread — if it was set, it
remains set. However, the static method interrupted() in the Thread class is different. It tests
whether the currently executing thread has been interrupted, and if it has, it clears the interrupted flag
in the current Thread object and returns true.

When an InterruptedException is thrown, the flag that registers the interrupt in the thread is cleared,
so a subsequent call to isInterrupted() or interrupted() will return false.

Connecting Threads
If in one thread you need to wait until another thread dies, you can call the join() method for the
thread that you expect isn’t long for this world. Calling the join() method with no arguments will halt
the current thread for as long as it takes the specified thread to die:

thread1.join(); // Suspend the current thread until thread1 dies

You can also pass a long value to the join() method to specify the number of milliseconds you’re pre-
pared to wait for the death of a thread:

thread1.join(1000); // Wait up to 1 second for thread1 to die

If this is not precise enough, you have a version of join() with two parameters. The first is a time in
milliseconds and the second is a time in nanoseconds. The current thread will wait for the duration spec-
ified by the sum of the arguments. Of course, whether or not you get nanosecond resolution will depend
on the capability of your hardware.

The join() method can throw an InterruptedException if the current thread is interrupted by
another thread, so you should put a call to join() in a try block and catch the exception.

Thread Scheduling
The scheduling of threads depends to some extent on your operating system, but each thread will cer-
tainly get a chance to execute while the others are “asleep,” that is, when they’ve called their sleep()
methods. If your operating system uses preemptive multitasking, the program will work without the
call to sleep() in the run() method (you should also remove the try and catch blocks if you remove
the sleep() call). However, if your operating system doesn’t schedule in this way, without the sleep()
call in run(), the first thread will hog the processor and continue indefinitely.

733

Threads

Figure 16-5 illustrates how four threads might share the processor over time by calling the sleep()
method to relinquish control.

Figure 16-5

Note that there’s another method, yield(), defined in the Thread class, that gives other threads a
chance to execute. You would use this when you just want to allow other threads a look-in if they are
waiting, but you don’t want to suspend execution of the current thread for a specific period of time.
When you call the sleep() method for a thread, the thread will not continue for at least the time you
have specified as an argument, even if no other threads are waiting. Calling yield(), on the other hand,
causes the current thread to resume immediately if no threads are waiting.

Implementing the Runnable Interface
As an alternative to defining a new subclass of Thread, you can implement the Runnable interface in a
class. You’ll find that this is generally much more convenient than deriving a class from Thread because
you can derive your class from a class other than Thread and it can still represent a thread. Because Java
allows only a single base class, if you derive your class from Thread, it can’t inherit functionality from
any other class. The Runnable interface declares only one method, run(), and this is the method that
will be executed when the thread is started.

Try It Out Using the Runnable Interface
To see how this works in practice, you can write another version of the previous example. I’ve called this
version of the program JumbleNames:

time

The shaded areas indicate when each thread is executing

thread1 thread2

thread1
sleep()

thread1
sleep()

thread2
sleep()

thread4
sleep()

thread3
sleep()

thread4thread3

734

Chapter 16

import java.io.IOException;

public class JumbleNames implements Runnable {

// Constructor

public JumbleNames(String firstName, String secondName, long delay) {

this.firstName = firstName; // Store the first name

this.secondName = secondName; // Store the second name

aWhile = delay; // Store the delay

}

// Method where thread execution will start

public void run() {

try {

while(true) { // Loop indefinitely...

System.out.print(firstName); // Output first name

Thread.sleep(aWhile); // Wait aWhile msec.

System.out.print(secondName+”\n”); // Output second name

}

} catch(InterruptedException e) { // Handle thread interruption

System.out.println(firstName + secondName + e); // Output the exception

}

}

public static void main(String[] args) {

// Create three threads

Thread first = new Thread(new JumbleNames(“Hopalong “, “Cassidy “, 200L));

Thread second = new Thread(new JumbleNames(“Marilyn “, “Monroe “, 300L));

Thread third = new Thread(new JumbleNames(“Slim “, “Pickens “, 500L));

// Set threads as daemon

first.setDaemon(true);

second.setDaemon(true);

third.setDaemon(true);

System.out.println(“Press Enter when you have had enough...\n”);

first.start(); // Start the first thread

second.start(); // Start the second thread

third.start(); // Start the third thread

try {

System.in.read(); // Wait until Enter key pressed

System.out.println(“Enter pressed...\n”);

} catch (IOException e) { // Handle IO exception

System.out.println(e); // Output the exception

}

System.out.println(“Ending main()”);

return;

}

private String firstName; // Store for first name

private String secondName; // Store for second name

private long aWhile; // Delay in milliseconds

}

735

Threads

How It Works
You have the same data members in this class as you had in the previous example. The constructor is
almost the same as previously, too. You can’t call setDaemon() in this class constructor because the class
isn’t derived from Thread. Instead, you need to do that in main() after you’ve created the objects that
represent the threads. The run() method implementation is also very similar. The class doesn’t have
sleep() as a member, but because it’s a public static member of the Thread class, you can call it in
the run() method by using the class name as the qualifier.

In the main() method you still create a Thread object for each thread of execution, but this time you use
a constructor that accepts an object of type Runnable as an argument. You pass an object of our class
JumbleNames to it. This is possible because the JumbleNames class implements Runnable.

Thread Names
Threads have a name, which in the case of the Thread constructor you’re using in the example will be a
default name composed of the string “Thread*” with a sequence number appended. If you want to
choose your own name for a thread, you can use a Thread constructor that accepts a String object spec-
ifying the name you want to assign to the thread. For example, you could have created the Thread
object first with the following statement:

Thread first = new Thread(new JumbleNames(“Hopalong “, “Cassidy “, 200L),

“firstThread”);

This assigns the name “firstThread” to the thread. Note that this name is used only when displaying
information about the thread. It has no relation to the identifier for the Thread object, and there’s noth-
ing, apart from common sense, to prevent several threads being given the same name.

You can obtain the name assigned to a thread by calling the getName() method for the Thread object.
The name of the thread is returned as a String object. You can also change the name of a thread by call-
ing the setName() method defined in the class Thread and passing a String object to it.

Once you’ve created the three Thread objects in the example, you call the setDaemon() method for
each of them. The rest of main() is the same as in the original version of the previous example, and you
should get similar output when you run this version of the program.

Managing Threads
In all the examples you’ve seen so far in this chapter, the threads are launched and then left to compete
for computer resources. Because all three threads compete in an uncontrolled way for the processor, the
output from the threads gets muddled. This isn’t normally a desirable feature in a program. In most
instances where you use threads, you will need to manage the way in which they execute so that they
don’t interfere with each other.

Of course, in our examples, the programs are deliberately constructed to release control of the processor
partway through outputting a name. While this is very artificial, similar situations can arise in practice,
particularly where threads are involved in a repetitive operation. It is important to appreciate that a
thread can be interrupted while a source statement is executing. For example, imagine that a bank teller

736

Chapter 16

is crediting a check to an account and at the same time the customer with that account is withdrawing
some cash through an ATM. This might happen in the following way:

❑ The bank teller checks the balance of the customer’s account, which is $500.

❑ The ATM asks for the account balance.

❑ The teller adds the value of the check, $100, to the account balance to give a figure of $600.

❑ The ATM takes $50 off the balance of $500, which gives a figure of $450, and spits out 5 $10 bills.

❑ The teller assigns the value of $600 to the account balance.

❑ The ATM assigns the value $450 to the account balance.

Here you can see the problem very well. Asking the account for its balance and assigning a new balance
to the account are two different operations. As long as this is the case, you can never guarantee that this
type of problem will not occur.

Where two or more threads share a common resource, such as a file or a block of memory, you’ll need to
take steps to ensure that one thread doesn’t modify a resource while that resource is still being used by
another thread. Having one thread update a record in a file while another thread is partway through
retrieving the same record is a recipe for disaster. One way of managing this sort of situation is to use
synchronization for the threads involved. I’ll be discussing the basic synchronization capabilities pro-
vided by the Java language in this chapter but note that the concurrency library provided as the
java.util.concurrent, java.util.concurrent.atomic, and java.util.concurrent.locks
packages contains classes that implement specialized thread management facilities.

Synchronization
The objective of synchronization is to ensure that when several threads want access to a single resource,
only one thread can access it at any given time. You can use synchronization to manage your threads of
execution in two ways:

❑ You can manage code at the method level — This involves synchronizing methods.

❑ You can manage code at the block level — This uses synchronizing blocks.

Let’s look at how you can use synchronized methods first.

Synchronized Methods
You can make a subset (or indeed all) of the methods for any class object mutually exclusive, so that only
one of the methods can execute at any given time. You make methods mutually exclusive by declaring
them in the class using the keyword synchronized. For example:

class MyClass {

synchronized public void method1() {

// Code for the method...

}

synchronized public void method2() {

// Code for the method...

737

Threads

}

public void method3() {

// Code for the method...

}

}

Now, only one of the synchronized methods in a class object can execute at any one time. Only when the
currently executing synchronized method for an object has ended can another synchronized method
start for the same object. The idea here is that each synchronized method has guaranteed exclusive
access to the object while it is executing, at least so far as the other synchronized methods for the class
object are concerned.

The synchronization process makes use of an internal lock that every object has associated with it. The
lock is a kind of flag that is set by a process, referred to as locking or a lock action, when a synchronized
method starts execution. Each synchronized method for an object checks to see whether the lock has
been set by another method. If it has, it will not start execution until the lock has been reset by an unlock
action. Thus, only one synchronized method can be executing at one time, because that method will
have set the lock that prevents any other synchronized method from starting.

Of the three methods in myClass, two are declared as synchronized, so for any object of the class, only
one of these methods can execute at one time. The method that isn’t declared as synchronized,
method3(), can always be executed by a thread, regardless of whether a synchronized method is execut-
ing in some other thread.

It’s important to keep clear in your mind the distinction between an object that has instance methods
that you declared as synchronized in the class definition and the threads of execution that might use
them. A hypothetical relationship between three threads and two objects of the class myClass is illus-
trated in Figure 16-6.

The numbers on the arrows in the figure indicate the sequence of events. No! indicates that the thread
waits until the method is unlocked so it can execute it. While method1() in obj2 is executing,
method2() for the same object can’t be executed. The synchronization of these two instance methods in
an object provides a degree of protection for the object, in that only one synchronized method can mess
with the data in the object at any given time.

Note that there’s no constraint here on simultaneously executing synchronized
methods for two different objects of the same class. It’s only concurrent access to any
one object that is controlled.

738

Chapter 16

Figure 16-6

However, each object is independent of any other object when it comes to synchronized instance meth-
ods. When a thread executes a synchronized method for an object, it is assured exclusive access to the
object insofar as the synchronized methods in that object are concerned. Another thread, though, can still
call the same method for a different object. While method1() is being executed for obj1, this doesn’t
prevent method1() for obj2 being executed by some other thread. Also, if there’s a method in an object
that has not been declared as synchronized—method3() in obj1, for example — any thread can call
that at any time, regardless of the state of any synchronized methods in the object.

If you apply synchronization to static methods in a class, only one of those static methods in the
class can be executing at any point in time; this is per-class synchronization, and the class lock is inde-
pendent of any locks for objects of the class.

An important principle that you need to understand is that the only method that is necessarily part of a
thread in a class object that represents a thread is the run() method. Other methods for the same class
object are only part of the thread if they are called directly or indirectly by the run() method. All the
methods that are called directly or indirectly from the run() method for an object are all part of the
same thread, but they clearly don’t have to be methods for the same Thread object. Indeed, they can be
methods that belong to any other objects, including other Thread objects that have their own run()
methods.

1

OK.
method1()

not busy

OK.
method2()

not busy

Always
OK.

Always
OK.

No!
Not while method2()
for obj1 is executing

No!
Not while method1()
for obj2 is executing

2

3
4

6 5

thread1

run(){

obj1.method2();

}

thread2

run(){

obj1.method3();
obj1.method1();
obj2.method1();
}

thread3

run(){

obj2.method3();
obj2.method2();

}

obj1

synchronized
 method1()

synchronized
 method2()

method3()

obj2

synchronized
 method1()

synchronized
 method2()

method3()

739

Threads

Using Synchronized Methods
To see how synchronization can be applied in practice, you’ll construct a program that provides a simple
model of a bank. This particular bank is a very young business with only one customer account initially,
but you’ll have two clerks, each working flat out to process transactions for the account, one handling
debits and the other handling credits. The objects in our program are illustrated in Figure 16-7.

Figure 16-7

The bank in the model is actually a computer that performs operations on the account, and the account
is stored separately. Each clerk can communicate directly with the bank. You’ll be defining four classes
that you will use in the program to model banking operations:

❑ A Bank class to represent the bank computer

❑ An Account class to represent the account at the bank

❑ A Transaction class to represent a transaction on the account — a debit or a credit, for example

❑ A Clerk class to represent a bank clerk

You’ll also define a class containing the method main() that will start the process off and determine
how it all works.

As you develop the code, you won’t necessarily get it right the first time, but you
will improve as you find out more about how to program using threads. This will
expose some of the sorts of errors and complications that can arise when you’re pro-
gramming using threads.

theAccount

theBank clerk1

clerk2

Credit operations

Debit operations

Computer operations
are overlapped

Credits

Debits

740

Chapter 16

Try It Out Defining a Bank Class
The bank computer is the agent that will perform the operations on an account so you’ll start with that.
You can define the Bank class that will represent the bank computer as follows:

// Define the bank

class Bank {

// Perform a transaction

public void doTransaction(Transaction transaction) {

int balance = transaction.getAccount().getBalance(); // Get current balance

switch(transaction.getTransactionType()) {

case Transaction.CREDIT:

// Credits require a lot of checks...

try {

Thread.sleep(100);

} catch(InterruptedException e) {

System.out.println(e);

}

balance += transaction.getAmount(); // Increment the balance

break;

case Transaction.DEBIT:

// Debits require even more checks...

try {

Thread.sleep(150);

} catch(InterruptedException e) {

System.out.println(e);

}

balance -= transaction.getAmount(); // Decrement the balance

break;

default: // We should never get here

System.out.println(“Invalid transaction”);

System.exit(1);

}

transaction.getAccount().setBalance(balance); // Restore the account balance

}

}

How It Works
The Bank class is very simple. It keeps no records of anything locally as the accounts will be identified
separately, and it has only one method that carries out a transaction. The Transaction object provides
all the information about what the transaction is and to which account it applies. You have provided
only for debit and credit operations on an account, but the switch could easily be extended to accommo-
date other types of transactions. Both of the transactions supported involve some delay while the stan-
dard nameless checks and verifications that all banks have are carried out. The delay is simulated by
calling the sleep() method belonging to the Thread class.

741

Threads

Of course, during this time, other things in other threads may be going on. There are no instance vari-
ables to initialize in a Bank object, so you don’t need a constructor. Since the Bank object works using a
Transaction object, let’s define the class for that next.

Try It Out Defining a Transaction on an Account
The Transaction class could represent any transaction on an account, but we are limiting ourselves to
debits and credits. You can define the class as follows:

class Transaction {

// Transaction types

public static final int DEBIT = 0;

public static final int CREDIT = 1;

public static String[] types = {“Debit”,”Credit”};

// Constructor

public Transaction(Account account, int transactionType, int amount) {

this.account = account;

this.transactionType = transactionType;

this.amount = amount;

}

public Account getAccount() {

return account;

}

public int getTransactionType() {

return transactionType;

}

public int getAmount() {

return amount;

}

public String toString() {

return types[transactionType] + “ A//C: “ + “: $” + amount;

}

private Account account;

private int amount;

private int transactionType;

}

How It Works
The type of transaction is specified by the transactionType field, which must be one of the values
defined for transaction types. You should build in checks in the constructor to ensure that only valid
transactions are created, but we’ll forego this to keep the code volume down, and you certainly know
how to do that sort of thing by now. A transaction records the amount for the transaction and a reference
to the account to which it applies, so a Transaction object specifies a complete transaction. The meth-
ods are very straightforward, just accessor methods for the data members that are used by the Bank
object, plus the toString() method in case you need it.

742

Chapter 16

Try It Out Defining a Bank Account
You can define an account as follows:

// Defines a customer account

public class Account {

// Constructor

public Account(int accountNumber, int balance) {

this.accountNumber = accountNumber; // Set the account number

this.balance = balance; // Set the initial balance

}

// Return the current balance

public int getBalance() {

return balance;

}

// Set the current balance

public void setBalance(int balance) {

this.balance = balance;

}

public int getAccountNumber() {

return accountNumber;

}

public String toString() {

return “A//C No. “+accountNumber+” : $”+balance;

}

private int balance; // The current account balance

private int accountNumber; // Identifies this account

}

How It Works
The Account class is also very simple. It just maintains a record of the amount in the account as a bal-
ance and provides methods for retrieving and setting the current balance. Operations on the account are
performed externally by the Bank object. You have a bit more than you need in the Account class at the
moment, but the methods you don’t use in the current example may be useful later.

Try It Out Defining a Bank Clerk
A clerk is a slightly more complicated animal. He or she retains information about the bank and details
of the current transaction, and is responsible for initiating debits and credits on an account by communi-
cation with the central bank. Each clerk will work independently of the others so they will each be a sep-
arate thread:

public class Clerk implements Runnable {

// Constructor

public Clerk(Bank theBank) {

this.theBank = theBank; // Who the clerk works for

inTray = null; // No transaction initially

}

743

Threads

// Receive a transaction

public void doTransaction(Transaction transaction) {

inTray = transaction;

}

// The working clerk...

public void run() {

while(true) {

while(inTray == null) { // No transaction waiting?

try {

Thread.sleep(150); // Then take a break...

} catch(InterruptedException e) {

System.out.println(e);

}

}

theBank.doTransaction(inTray);

inTray = null; // In-tray is empty

}

}

// Busy check

public boolean isBusy() {

return inTray != null; // A full in-tray means busy!

}

private Bank theBank; // The employer - an electronic marvel

private Transaction inTray; // The in-tray holding a transaction

}

How It Works
A Clerk object is a thread since it implements the Runnable interface. Each clerk has an in-tray, capable
of holding one transaction, and while the in-tray is not null, the clerk is clearly busy. A clerk needs to be
aware of the Bank object that is employing him or her, so a reference is stored in theBank when a Clerk
object is created. A transaction is placed in the in-tray for a clerk by calling his or her doTransaction()
method. You can check whether a clerk is busy by calling the isBusy() member, which will return true
if a transaction is still in progress.

The real work is actually done in the run() method. If the in-tray is empty, indicated by a null value in
inTray, then there’s nothing to do, so after sleeping a while, the loop goes around again for another
look at the in-tray. When a transaction has been recorded, the method in theBank object is called to
carry it out, and the inTray is reset to null.

All you need now is the class to drive our model world, which you can call BankOperation. This class
requires only the method main(), but there are quite a lot of things to do in this method so you’ll put it
together piece by piece.

744

Chapter 16

Try It Out Defining the Operation of the Bank
Apart from setting everything up, the main() method has to originate transactions on the accounts and
pass them on to the clerks to be expedited. You’ll start with just one account and a couple of clerks.
Here’s the basic structure:

import java.util.Random;

public class BankOperation {

public static void main(String[] args) {

int initialBalance = 500; // The initial account balance

int totalCredits = 0; // Total credits on the account

int totalDebits =0; // Total debits on the account

int transactionCount = 20; // Number of debits and credits

// Create the account, the bank, and the clerks...

// Create the threads for the clerks as daemon, and start them off

// Generate the transactions of each type and pass to the clerks

// Wait until both clerks are done

// Now output the results

}

}

The import for the Random class is there because you’ll need it for code you’ll add a little later. To create
the Bank object, the clerks, and the account, you need to add the following code:

// Create the account, the bank, and the clerks...

Bank theBank = new Bank(); // Create a bank

Clerk clerk1 = new Clerk(theBank); // Create the first clerk

Clerk clerk2 = new Clerk(theBank); // Create the second clerk

Account account = new Account(1, initialBalance); // Create an account

The next step is to add the code to create the threads for the clerks and start them going:

// Create the threads for the clerks as daemon, and start them off

Thread clerk1Thread = new Thread(clerk1);

Thread clerk2Thread = new Thread(clerk2);

clerk1Thread.setDaemon(true); // Set first as daemon

clerk2Thread.setDaemon(true); // Set second as daemon

clerk1Thread.start(); // Start the first

clerk2Thread.start(); // Start the second

The code to generate the transactions looks like a lot but is quite repetitive:

// Generate transactions of each type and pass to the clerks

Random rand = new Random(); // Random number generator

Transaction transaction; // Stores a transaction

int amount = 0; // stores an amount of money

for(int i = 1; i <= transactionCount; i++) {

745

Threads

amount = 50 + rand.nextInt(26); // Generate amount of $50 to $75

transaction = new Transaction(account, // Account

Transaction.CREDIT,// Credit transaction

amount); // of amount

totalCredits += amount; // Keep total credit tally

// Wait until the first clerk is free

while(clerk1.isBusy()) {

try {

Thread.sleep(25); // Busy so try later

} catch(InterruptedException e) {

System.out.println(e);

}

}

clerk1.doTransaction(transaction); // Now do the credit

amount = 30 + rand.nextInt(31); // Generate amount of $30 to $60

transaction = new Transaction(account, // Account

Transaction.DEBIT, // Debit transaction

amount); // of amount

totalDebits += amount; // Keep total debit tally

// Wait until the second clerk is free

while(clerk2.isBusy()) {

try {

Thread.sleep(25); // Busy so try later

} catch(InterruptedException e) {

System.out.println(e);

}

}

clerk2.doTransaction(transaction); // Now do the debit

}

Once all the transactions have been processed, you can output the results. However, the clerks could still
be busy after you exit from the loop, so you need to wait for both of them to be free before outputting
the results. You can do this with a while loop:

// Wait until both clerks are done

while(clerk1.isBusy() || clerk2.isBusy()) {

try {

Thread.sleep(25);

} catch(InterruptedException e) {

System.out.println(e);

}

}

Lastly, you output the results:

// Now output the results

System.out.println(

“Original balance : $” + initialBalance+”\n” +

“Total credits : $” + totalCredits+”\n” +

746

Chapter 16

“Total debits : $” + totalDebits+”\n” +

“Final balance : $” + account.getBalance() + “\n” +

“Should be : $” + (initialBalance + totalCredits - totalDebits));

How It Works
The variables in the main() method track the total debits and credits, and record the initial account bal-
ance. They are there to help you figure out what has happened after the transactions have been pro-
cessed. The number of times you debit and then credit the account is stored in transactionCount, so
the total number of transactions will be twice this value. You have added five further blocks of code to
perform the functions indicated by the comments, so let’s now go through each of them in turn.

The Account object is created with the account number as 1 and with the initial balance stored in
initialBalance. You pass the bank object, theBank, to the constructor for each of the Clerk objects,
so that they can record it.

The Thread constructor requires an object of type Runnable, so you can just pass the Clerk objects in
the argument. There’s no problem in doing this because the Clerk class implements the Runnable inter-
face. You can always implicitly cast an object to a type that is any superclass of the object or any interface
type that the object class implements.

All the transactions are generated in the for loop. The handling of debits is essentially the same as the
handling of credits, so I’ll go through the code only for the latter in detail. A random amount between $50
and $75 is generated for a credit transaction by using the nextInt() method for the rand object of type
Random that you create. You’ll recall that nextInt() returns an int value in the range 0 to one less than
the value of the argument, so by passing 26 to the method, you get a value between 0 and 25 returned.
You add 50 to this and, presto, you have a value between 50 and 75. You then use this amount to create a
Transaction object that represents a credit for the account. To keep a check on the work done by the
clerks, you add this credit to the total of all the credits generated, which is stored in the variable
totalCredits. This will allow you to verify whether or not the account has been updated properly.

Before you pass the transaction to clerk1, you must make sure that he or she isn’t busy. Otherwise, you
would overwrite the clerk’s in-tray. The while loop does this. As long as the isBusy() method returns
true, you continue to call the sleep() method for a 25 millisecond delay, before you go round and
check again. When isBusy() returns false, you call the doTransaction() method for the clerk, with
the reference to the transaction object as the argument. The for loop will run for 20 iterations, so
you’ll generate 20 random transactions of each type.

The third while loop works in the same way as the previous check for a busy clerk — the loop continues
if either of the clerks is busy.

Lastly, you output the original account balance, the totals of credits and debits, and the final balance,
plus what it should be for comparison. That’s all you need in the method main(), so you’re ready to
give it a whirl. Remember that all four classes need to be in the same directory.

Running the Example
Now, if you run the example, the final balance will be wrong. You should get results something like the
following:

Original balance : $500

Total credits : $1252

747

Threads

Total debits : $921

Final balance : $89

Should be : $831

Of course, your results won’t be the same as this, but they should be just as wrong. The customer will
not be happy. His account balance is seriously off — in the bank’s favor, of course, as always. So how has
this come about?

The problem is that both clerks are operating on the same account at the same time. Both clerks call the
doTransaction() method for the Bank object, so this method is executed by both clerk threads.
Separate calls on the same method are overlapping.

Try It Out Synchronizing Methods
One way you can fix this is by simply declaring the method that operates on an account as synchronized.
This will prevent one clerk getting at the method for an account while it is still in progress with the other
clerk. To implement this you should amend the Bank class definition as follows:

// Define the bank

class Bank {

// Perform a transaction

synchronized public void doTransaction(Transaction transaction) {

// Code exactly as before...

}

}

How It Works
Declaring this method as synchronized will prevent a call to it from being executed while another is
still in operation. If you run the example again with this change, the result will be something like:

Original balance : $500

Total credits : $1201

Total debits : $931

Final balance : $770

Should be : $770

The amounts may be different because the transaction amounts are random, but your final balance
should be the same as adding the credits to the original balance and subtracting the debits.

As you saw earlier, when you declare methods in a class as synchronized, it prevents concurrent exe-
cution of those methods within a single object, including concurrent execution of the same method. It is
important not to let the fact that there is only one copy of a particular method confuse you. A given
method can be potentially executing in any number of threads — as many threads as there are in the pro-
gram in fact. If it were not synchronized, the doTransaction() method could be executed concurrently
by any number of clerks.

Although this fixes the problem you had in that the account balance is now correct, the bank is still
amazingly inefficient. Each clerk is kicking his or her heels while another clerk is carrying out a transac-
tion. At any given time a maximum of one clerk is working. On this basis the bank could fire them all
bar one and get the same throughput. You can do better, as you’ll see.

748

Chapter 16

Synchronizing Statement Blocks
In addition to being able to synchronize methods on a class object, you can also specify a statement or a
block of code in your program as synchronized. This is more powerful, since you specify which partic-
ular object is to benefit from the synchronization of the statement or code block, not just the object that
contains the code as in the case of a synchronized method. Here you can set a lock on any object for a
given statement block. When the block that is synchronized on the given object is executing, no other
code block or method that is synchronized on the same object can execute. To synchronize a statement,
you just write:

synchronized(theObject)

statement; // Synchronized with respect to theObject

No other statements or statement blocks in the program that are synchronized on the object theObject
can execute while this statement is executing. Naturally, this applies even when the statement is a call to
a method, which may in turn call other methods. The statement here could equally well be a block of
code between braces. This is powerful stuff. Now you can lock a particular object while the code block
that is working is running.

To see precisely how you can use this in practice, let’s create a modification of the last example. Let’s up
the sophistication of our banking operation to support multiple accounts. To extend our example to han-
dle more than one account, you just need to make some changes to main(). You’ll add one extra account
to keep the output modest, but you’ll modify the code to handle any number of accounts.

Try It Out Handling Multiple Accounts
You can modify the code in main() that creates the account and sets the initial balance to create multiple
accounts as follows:

public class BankOperation {

public static void main(String[] args) {

int[] initialBalance = {500, 800}; // The initial account balances

int[] totalCredits = new int[initialBalance.length]; // Two different cr totals

int[] totalDebits = new int[initialBalance.length]; // Two different db totals

int transactionCount = 20; // Number of debits and of credits

// Create the bank and the clerks...

Bank theBank = new Bank(); // Create a bank

Clerk clerk1 = new Clerk(theBank); // Create the first clerk

Clerk clerk2 = new Clerk(theBank); // Create the second clerk

// Create the accounts, and initialize total credits and debits

Account[] accounts = new Account[initialBalance.length];

for(int i = 0; i < initialBalance.length; i++) {

accounts[i] = new Account(i+1, initialBalance[i]); // Create accounts

totalCredits[i] = totalDebits[i] = 0;

}

// Create the threads for the clerks as daemon, and start them off

// Create transactions randomly distributed between the accounts...

749

Threads

// Wait until both clerks are done

// Now output the results...

}

}

You now create an array of accounts in a loop, the number of accounts being determined by the number
of initial balances in the initialBalance array. Account numbers are assigned successively starting
from 1. The code for creating the bank and the clerks and for creating the threads and starting them is
exactly the same as before. The shaded comments that follow the code indicate the other segments of
code in main() that you need to modify.

The next piece you need to change is the creation and processing of the transactions:

// Create transactions randomly distributed between the accounts

Random rand = new Random();

Transaction transaction; // Stores a transaction

int amount = 0; // Stores an amount of money

int select = 0; // Selects an account

for(int i = 1; i <= transactionCount; i++) {

// Choose an account at random for credit operation

select = rand.nextInt(accounts.length);

amount = 50 + rand.nextInt(26); // Generate amount of $50 to $75

transaction = new Transaction(accounts[select], // Account

Transaction.CREDIT, // Credit transaction

amount); // of amount

totalCredits[select] += amount; // Keep total credit tally

// Wait until the first clerk is free

while(clerk1.isBusy()) {

try {

Thread.sleep(25); // Busy so try later

} catch(InterruptedException e) {

System.out.println(e);

}

}

clerk1.doTransaction(transaction); // Now do the credit

// choose an account at random for debit operation

select = rand.nextInt(accounts.length);

amount = 30 + rand.nextInt(31); // Generate amount of $30 to $60

transaction = new Transaction(accounts[select], // Account

Transaction.DEBIT, // Debit transaction

amount); // of amount

totalDebits[select] += amount; // Keep total debit tally

// Wait until the second clerk is free

while(clerk2.isBusy()) {

try {

Thread.sleep(25); // Busy so try later

} catch(InterruptedException e) {

System.out.println(e);

}

}

clerk2.doTransaction(transaction); // Now do the debit

}

750

Chapter 16

The last modification you must make to the method main() is for outputting the results. You now do
this in a loop, as you have to process more than one account:

// Now output the results

for(int i = 0; i < accounts.length; i++) {

System.out.println(“Account Number:”+accounts[i].getAccountNumber()+”\n”+

“Original balance : $” + initialBalance[i] + “\n” +

“Total credits : $” + totalCredits[i] + “\n” +

“Total debits : $” + totalDebits[i] + “\n” +

“Final balance : $” + accounts[i].getBalance() + “\n” +

“Should be : $” + (initialBalance[i]

+ totalCredits[i]

- totalDebits[i]) + “\n”);

}

This is much the same as before except that you now extract values from the arrays you have created. If
you run this version it will, of course, work perfectly. A typical set of results is:

Account Number:1

Original balance : $500

Total credits : $659

Total debits : $614

Final balance : $545

Should be : $545

Account Number:2

Original balance : $800

Total credits : $607

Total debits : $306

Final balance : $1101

Should be : $1101

How It Works
You now allocate arrays for the initial account balances, the totals of credits and debits for each account,
and the totals for the accounts themselves. The number of initializing values in the initialBalance[]
array will determine the number of elements in each of the arrays. In the for loop, you create each of the
accounts with the appropriate initial balance and initialize the totalCredits[] and totalDebits[]

arrays to zero.

In the modified transactions loop, you select the account from the array for both the debit and the credit
transactions by generating a random index value that you store in the variable select. The index
select is also used to keep a tally of the total of the transactions of each type.

This is all well and good, but by declaring the methods in the class Bank as synchronized, you’re limit-
ing the program quite significantly. No operation of any kind can be carried out while any other opera-
tion is in progress. This is unnecessarily restrictive since there’s no reason to prevent a transaction on
one account while a transaction for a different account is in progress. What you really want to do is con-
strain the program to prevent overlapping of operations on the same account, and this is where declar-
ing blocks of code to be synchronized on a particular object can help.

751

Threads

Let’s consider the methods in the class Bank once more. What you really want is the code in the
doTransaction() method to be synchronized so that simultaneous processing of the same account is
prevented, not so that processing of different accounts is inhibited. What you need to do is synchronize
the processing code for a transaction on the Account object that is involved.

Try It Out Applying Synchronized Statement Blocks
You can do this with the following changes:

class Bank {

// Perform a transaction

public void doTransaction(Transaction transaction) {

switch(transaction.getTransactionType()) {

case Transaction.CREDIT:

synchronized(transaction.getAccount()) {

// Get current balance

int balance = transaction.getAccount().getBalance();

// Credits require require a lot of checks...

try {

Thread.sleep(100);

} catch(InterruptedException e) {

System.out.println(e);

}

balance += transaction.getAmount(); // Increment the balance

transaction.getAccount().setBalance(balance); // Restore account balance

break;

}

case Transaction.DEBIT:

synchronized(transaction.getAccount()) {

// Get current balance

int balance = transaction.getAccount().getBalance();

// Debits require even more checks...

try {

Thread.sleep(150);

} catch(InterruptedException e) {

System.out.println(e);

}

balance -= transaction.getAmount(); // Increment the balance...

transaction.getAccount().setBalance(balance);// Restore account balance

break;

}

default: // We should never get here

System.out.println(“Invalid transaction”);

System.exit(1);

}

}

}

752

Chapter 16

How It Works
The expression in parentheses following the keyword synchronized specifies the object for which the
synchronization applies. Once one synchronized code block is entered with a given account object, no
other code block or method can be entered that has been synchronized on the same object. For example,
if the block performing credits is executing with a reference to the object accounts[1] returned by the
getAccount() method for the transaction, the execution of the block carrying out debits cannot be exe-
cuted for the same object, but it could be executed for a different account.

The object in a synchronized code block acts rather like a baton in a relay race that serves to synchronize
the runners in the team. Only the runner with the baton is allowed to run. The next runner in the team
can run only once they get hold of the baton. Of course, in any race you have several different batons
so you can have several sets of runners. In the same way, you can specify several different sets of
synchronized code blocks in a class, each controlled by a different object. It is important to realize
that code blocks that are synchronized with respect to a particular object don’t have to be in the same
class. They can be anywhere in your program where the appropriate object can be specified.

Note how you had to move the code to access and restore the account balance inside both synchronized
blocks. If you hadn’t done this, accessing or restoring the account balance could occur while a synchro-
nized block was executing. This could obviously cause confusion since a balance could be restored by a
debit transaction after the balance had been retrieved for a credit transaction. This would cause the effect
of the debit to be wiped out.

If you want to verify that we really are overlapping these operations in this example, you can add out-
put statements to the beginning and end of each method in the class Bank. Outputting the type of opera-
tion, the amount, and whether it is the start or end of the transaction will be sufficient to identify them.
For example, you could modify the doTransaction() method in the Bank class to:

// Perform a transaction

public void doTransaction(Transaction transaction) {

switch(transaction.getTransactionType()) {

case Transaction.CREDIT:

synchronized(transaction.getAccount()) {

System.out.println(“Start credit of “ +

transaction.getAccount() + “ amount: “ +

transaction.getAmount());

// code to process credit...

System.out.println(“ End credit of “ +

transaction.getAccount() + “ amount: “ +

transaction.getAmount());

break;

}

case Transaction.DEBIT:

synchronized(transaction.getAccount()) {

System.out.println(“Start debit of “ +

transaction.getAccount() + “ amount: “ +

transaction.getAmount());

// code to process debit...

753

Threads

System.out.println(“ End debit of “ +

transaction.getAccount() + “ amount: “ +

transaction.getAmount());

break;

}

default: // We should never get here

System.out.println(“Invalid transaction”);

System.exit(1);

}

}

This will produce quite a lot of output, but you can always comment it out when you don’t need it. You
should be able to see how a transaction for an account that is currently being worked on is always
delayed until the previous operation on the account is completed. You will also see from the output that
operations on different accounts do overlap. Here’s a sample of what I got:

Start credit of A//C No. 2 : $800 amount: 74

End credit of A//C No. 2 : $874 amount: 74

Start debit of A//C No. 2 : $874 amount: 52

Start credit of A//C No. 1 : $500 amount: 51

End debit of A//C No. 2 : $822 amount: 52

End credit of A//C No. 1 : $551 amount: 51

Start debit of A//C No. 2 : $822 amount: 38

End debit of A//C No. 2 : $784 amount: 38

Start credit of A//C No. 2 : $784 amount: 74

End credit of A//C No. 2 : $858 amount: 74

Start debit of A//C No. 1 : $551 amount: 58

Start credit of A//C No. 2 : $858 amount: 53

End debit of A//C No. 1 : $493 amount: 58

...

You can see from the third and fourth lines here that a credit for account 1 starts before the preceding
debit for account 2 is complete, so the operations are overlapped. If you want to force overlapping debits
and credits on the same account, you can comment out the calculation of the value for select for the
debit operation in the for loop in main(). This modification is shown shaded:

// Generate a random account index for debit operation

// select = rand.nextInt(accounts.length);

totalDebits[select] += amount; // Keep total debit tally

This will make the debit transaction apply to the same account as the previous credit, so the transactions
will always be contending for the same account.

Of course, this is not the only way of getting the operations to overlap. Another approach would be to
equip accounts with methods to handle their own credit and debit transactions and declare these as syn-
chronized methods.

While testing that you have synchronization right is relatively easy in our example, in general it is
extremely difficult to be sure you have adequately tested a program that uses threads. Getting the design
right first is essential, and you really have no substitute for careful design in programs that have multi-
ple threads (or indeed any real-time program that has interrupt handlers). You can never be sure that a
real-world program is 100 percent correct, only that it works correctly most of the time!

754

Chapter 16

Deadlocks
Since you can synchronize code blocks for a particular object virtually anywhere in your program,
there’s potential for a particularly nasty kind of bug called a deadlock. This involves a mutual interde-
pendence between two threads. One way this arises is when one thread executes some code synchro-
nized on a given object, theObject, say, and then needs to execute another method that contains code
synchronized on another object, theOtherObject, say. Before this occurs, though, a second thread exe-
cutes some code synchronized to theOtherObject and needs to execute a method containing code syn-
chronized to the first object, theObject. This situation is illustrated in Figure 16-8.

Figure 16-8

The sequence of events is as follows:

❑ thread1 starts first and synchronizes on theObject. This prevents any methods for
theObject being called by any other thread.

❑ thread1 then calls sleep() so thread2 can start.

❑ thread2 starts and synchronizes on theOtherObject. This prevents any methods for
theOtherObject being called by any other thread.

❑ thread2 then calls sleep(), allowing thread1 another go.

❑ thread1 wakes up and tries to call method2() for theOtherObject, but it can’t until the code
block in thread2 that is synchronized on theOtherObject completes execution.

❑ thread2 gets another go because thread1 can’t proceed and tries to call method1() for
theObject. This can’t proceed until the code block in thread1 that is synchronized on
theObject completes execution.

Neither thread has any possibility of continuing — they are deadlocked. Finding and fixing this sort of
problem can be very difficult, particularly if your program is complicated and has other threads that will
continue to execute.

This gives thread2
a chance to start

thread1 gets
control back

thread2 has control
of theOtherObject

thread2 can't
continue until thread1
releases theObject

thread1 can't
continue until thread2

releases theOtherObject
so thread2 gets control back

thread1
has control

of theObject

1

2

4

6
5

3

thread1

run(){

 synchronized(theObject){

 sleep(1000);

 theOtherObject.method2();

 }
}

theObject

method1()

theOtherObject

method2()

thread2

run(){

 synchronized(theOtherObject){

 sleep(1000);

 theObject.method1();

 }
}

755

Threads

You can create a trivial deadlock in the last example by making the for loop in main() synchronized on
one of the accounts. For example:

synchronized(accounts[1]) {

for(int i = 1; i <= transactionCount; i++) {

// code for generating transactions etc...

}

}

A deadlock occurs as soon as a transaction for accounts[1] arises because the doTransaction()
method in the theBank object that is called by a Clerk object to handle the transaction will be synchro-
nized to the same object and can’t execute until the loop ends. Of course, the loop can’t continue until
the method in the theBank object terminates, so the program hangs.

In general, ensuring that your program has no potential deadlocks is extremely difficult. If you intend to
do a significant amount of programming using threads, you will need to study the subject in much more
depth than we can deal with here. A good book on the subject is Concurrent Programming in Java: Design
Principles and Patterns by Doug Lea (Addison-Wesley, 1996).

Communicating between Threads
You’ve seen how you can lock methods or code blocks using synchronization to avoid the problems that
uncontrolled thread execution can cause. While this gives you a degree of control, you’re still introduc-
ing inefficiencies into the program. In the last example, on several occasions you used a loop to wait for
a clerk thread to complete an operation before the current thread could sensibly continue. For example,
you couldn’t pass a transaction to a Clerk object while that object was still busy with the previous trans-
action. The solution to this was to use a while loop to test the busy status of the Clerk object from time
to time and call the sleep() method in between. But there’s a much better way.

The Object class defines the methods wait(), notify(), and notifyAll(), which you can use
to provide a more efficient way of dealing with this kind of situation. Since all classes are derived
from Object, all classes inherit these methods. You can call these methods only from within a
synchronized method, or from within a synchronized code block; an exception of type
IllegalMonitorStateException will be thrown if you call them from somewhere else.
The functions that these methods perform are:

Method Description

wait() There are three overloaded versions of this method.

This version suspends the current thread until the notify() or
notifyAll() method is called for the object to which the wait()
method belongs. Note that when any version of wait() is called, the
thread releases the synchronization lock it has on the object, so any
other method or code block synchronized on the same object can exe-
cute. As well as enabling notify() or notifyAll() to be called by
another thread, this also allows another thread to call wait() for the
same object.

756

Chapter 16

Method Description

Since all versions of the wait() method can throw an Interrupted
Exception, you must call it in a try block with a catch block for
this exception, or at least indicate that the method calling it throws
this exception.

wait(long timeout) This version suspends the current thread until the number of mil-
liseconds specified by the argument has expired, or until the
notify() or notifyAll() method for the object to which the
wait() method belongs is called, if that occurs sooner.

wait(long timeout, This version works in the same way as the previous version, except
int nanos) the time interval is specified by two arguments, the first in millisec-

onds and the second in nanoseconds.

notify() This restarts a thread that has called the wait() method for the
object to which the notify() method belongs. If several threads
have called wait() for the object, you have no control over which
thread is notified, in which case it is better to use notifyAll(). If no
threads are waiting, the method does nothing.

notifyAll() This restarts all threads that have called wait() for the object to
which the notifyAll() method belongs.

The basic idea of the wait() and notify() methods is that they provide a way for methods or code
blocks that are synchronized on a particular object to communicate. One block can call wait() to sus-
pend its operation until some other method or code block synchronized on the same object changes it in
some way, and calls notify() to signal that the change is complete. A thread will typically call wait()
because some particular property of the object it is synchronized on is not set, or some condition is not
fulfilled, and this is dependent on action by another thread. Perhaps the simplest situation is where a
resource is busy because it is being modified by another thread, but you are by no means limited to that.

The major difference between calling sleep() and calling wait() is that wait() releases any objects on
which the current thread has a lock, whereas sleep() does not. It is essential that wait() should work
this way; otherwise, there would be no way for another thread to change things so that the condition
required by the current thread is met.

Thus, the typical use of wait() is as follows:

synchronized(anObject) {

while(condition-not-met)

anObject.wait();

// Condition is met so continue...

}

Here the thread will suspend operation when the wait() method is called until some other thread syn-
chronized on the same object calls notify() (or more typically notifyAll()). This allows the while
loop to continue and check the condition again. Of course, it may still not be met, in which case the
wait() method will be called again so another thread can operate on anObject. You can see from this
that wait() is not just for getting access to an object. It is intended to allow other threads access until
some condition has been met. You could even arrange that a thread would not continue until a given

757

Threads

number of other threads had called notify() on the object to ensure that a minimum number of opera-
tions had been carried out.

It is generally better to use notifyAll() rather than notify() when you have more than two threads
synchronized on an object. If you call notify() when two or more other threads are suspended having
called wait(), only one of the threads will be started, but you have no control over which it is. This cre-
ates the possibility that the thread that is started calls wait() again because the condition it requires is
not fulfilled. This will leave all the threads waiting for each other, with no possibility of continuing.

Although the action of each of these methods is quite simple, applying them can become very complex.
You have the potential for multiple threads to be interacting through several objects with synchronized
methods and code blocks. You’ll just explore the basics by seeing how you can use wait() and
notifyAll() to get rid of a couple of the while loops you had in the last example.

Using wait() and notifyAll() in the Bank Program
In the for loop in main() that generates the transactions and passes them to the Clerk objects, you
have two while loops that call the isBusy() method for a Clerk object. These were needed so that you
didn’t pass a transaction to a clerk while the clerk was still busy. By altering the Clerk class so that it can
use wait()and notifyAll(), you can eliminate the need for these.

Try It Out Slimming Down the Transactions Loop
You want to make the doTransaction() method in the Clerk class conscious of the state of the inTray
for the current object. If it is not null, you want the method to wait until it becomes so. To use wait()
you must synchronize the block or method on an object — in this case the Clerk object since inTray is
what you are interested in. You can do this by making the method synchronized:

public class Clerk implements Runnable {

// Constructor

public Clerk(Bank theBank) {

this.theBank = theBank; // Who the clerk works for

inTray = null; // No transaction initially

}

// Receive a transaction

synchronized public void doTransaction(Transaction transaction) {

while(inTray != null) {

try {

wait();

} catch(InterruptedException e) {

System.out.println(e);

}

}

inTray = transaction;

notifyAll();

}

// Rest of the methods in the class as before...

private Bank theBank; // The employer - an electronic marvel

private Transaction inTray; // The in-tray holding a transaction

}

758

Chapter 16

When inTray is null, the transaction is stored, and the notifyAll() method is called to notify other
threads waiting on a change to this Clerk object. If inTray is not null, this method waits until some
other thread calls notifyAll() to signal a change to the Clerk object. You now need to consider where
the inTray field is going to be modified elsewhere. The answer is in the run() method for the Clerk
class, of course, so you need to change that, too:

public class Clerk implements Runnable {

synchronized public void run() {

while(true) {

while(inTray == null) // No transaction waiting?

try {

wait(); // Then take a break until there is

} catch(InterruptedException e) {

System.out.println(e);

}

theBank.doTransaction(inTray);

inTray = null; // In-tray is empty

notifyAll(); // Notify other threads locked on this clerk

}

}

// Rest of the class as before...

}

Just to make it clear which methods are in what threads, the situation in the program is illustrated in
Figure 16-9.

Figure 16-9

an
account

synchronized on

synchronized onsynchronized on

no
tif

y

notify

theBank.doTransaction()

Credit operation:

Debit operation:

clerk1.run()

clerk1Thread

theBank.doTransaction()

clerk2.run()

clerk2Thread

Credit operation:

Debit operation:

clerk1.doTransaction()

clerk2.doTransaction()

main()

main thread

clerk2

an
account

synchronized on

clerk2

759

Threads

Here the run() method is synchronized on the Clerk object that contains it, and the method waits if
inTray is null. Eventually the doTransaction() method for the current object should store a transac-
tion in inTray and then notify the thread that is waiting that it should continue.

It may seem odd having two methods in the same object synchronized on one and the same object that
owns them, but remember that the run() and doTransaction() methods for a particular Clerk object
are in separate threads.

The transaction processing method for the bank can be in both of the clerk threads, whereas the methods
that hand over a transaction to a clerk are in the main thread. Figure 16-9 also shows which code is syn-
chronized on what objects.

You can now modify the code in the for loop in main() to pass the transactions directly to the clerks.
Except for deleting the two while loops that wait until the clerks are free, the code is exactly as before:

// Create transactions randomly distributed between the accounts

for(int i = 1; i <= transactionCount; i++) {

// Generate a random account index for credit operation

select = rand.nextInt(accounts.length);

amount = 50 + rand.nextInt(26); // Generate amount of $50 to $75

transaction = new Transaction(accounts[select], // Account

Transaction.CREDIT, // Credit transaction

amount); // of amount

totalCredits[select] += amount; // Keep total credit tally

clerk1.doTransaction(transaction); // Now do the credit

// Generate a random account index for debit operation

select = rand.nextInt(accounts.length);

amount = 30 + rand.nextInt(31); // Generate amount of $30 to $60

transaction = new Transaction(accounts[select], // Account

Transaction.DEBIT, // Debit transaction

amount); // of amount

totalDebits[select] += amount; // Keep total debit tally

clerk2.doTransaction(transaction); // Now do the debit

}

Only the loop blocks that were waiting until a clerk became free have been deleted. This makes the code
a lot shorter.

With a small change to the isBusy() method in the Clerk class, you can also eliminate the need for the
while loop before we output the results in main():

synchronized public void isBusy() {

while(inTray != null) { // Is this object busy?

try {

wait(); // Yes, so wait for notify call

} catch(InterruptedException e) {

System.out.println(e);

}

760

Chapter 16

return; // It is free now

}

}

Now the isBusy() method will return only when the clerk object has no transaction waiting or in
progress, so no return value is necessary. The while loop in main() before the final output statements
can be replaced by the following:

// Wait until both clerks are done

clerk1.isBusy();

clerk2.isBusy();

How It Works
The doTransaction() method for a Clerk object calls the wait() method if the inTray field contains
a reference to a transaction object, as this means the Clerk object is still processing a credit or a debit.
This will result in the current thread (which is the main thread) being suspended until the notifyAll()
method is called by this object’s run() method to indicate a change to the clerk.

Because the run() method is also synchronized on the Clerk object, it can also call wait() in this case,
if the inTray contains null, since this indicates that there is no transaction waiting for the clerk to expe-
dite. A call to the doTransaction() method for the Clerk object will result in a transaction being
stored in inTray, and the notifyAll() call will wake up the run() method to continue execution.

Because you’ve declared the isBusy() method as synchronized, you can call the wait() method to
suspend the current thread if transactions are still being processed. Since the method doesn’t return until
the outstanding transaction is complete, there’s no need for a boolean return value.

Thread Priorities
All threads have a priority that determines which thread is executed when several threads are waiting
for their turn. This makes it possible to give one thread more access to processor resources than another.
Let’s consider an elementary example of how this could be used. Suppose you have one thread in a pro-
gram that requires all the processor resources — some solid long-running calculation — and some other
threads that require relatively few resources. By making the thread that requires all the resources a low-
priority thread, you ensure that the other threads are executed promptly, while the processor bound
thread can make use of the processor cycles that are left over after the others have had their turn.

The possible values for thread priority are defined in static data members of the class Thread. These
members are of type int and are declared as final. The maximum thread priority is defined by the mem-
ber MAX_PRIORITY, which has the value 10. The minimum priority is MIN_PRIORITY, defined as 1. The
value of the default priority that is assigned to the main thread in a program is NORM_PRIORITY, which is
set to 5. When you create a thread, its priority will be the same as that of the thread that created it.

You can modify the priority of a thread by calling the setPriority() method for the Thread object.
This method accepts an argument of type int that defines the new priority for the thread. An
IllegalArgumentException will be thrown if you specify a priority that is less than MIN_PRIORITY or
greater than MAX_PRIORITY.

761

Threads

If you’re going to be messing about with the priorities of the threads in your program, you need to be
able to find out the current priority for a thread. You can do this by calling the getPriority() method
for the Thread object. This will return the current priority for the thread as a value of type int.

You need to keep in mind that the actual execution priority of a thread that you set by calling
setPriority() depends on the mapping between Java thread priorities and the native operating sys-
tem priorities. The thread scheduling algorithm that your operating system uses also affects how your
Java threads execute and what proportion of the processor time they are allocated.

Using Thread Priorities
In the last example, you could set priorities for the threads by adding statements to main():

clerk1Thread.setPriority(Thread.MIN_PRIORITY); // Credits are a low priority

clerk2Thread.setPriority(Thread.MAX_PRIORITY); // Debits are a high priority

You can put these statements following the call to the start() method for each of the Thread objects
for the clerks. However, this can’t have much effect in our program as it stands because one clerk can’t
get ahead of the other. This is because each clerk queues only one transaction, and they are allocated
alternately to each clerk.

In the interests of learning more about how thread priorities affect the execution of your program, let’s
change the example once more to enable a Clerk object to queue transactions. You can do this quite eas-
ily using a LinkedList<Transaction> object, which I discussed in Chapter 14. There are a couple of
points to be aware of, though.

The first point is that out of the collection classes I discussed in Chapter 14, only the Vector<> class is
thread-safe — that is, safe for modification by more than one thread. For the others you must either
access them only by methods and code blocks that are synchronized on the collection object or wrap the
collection class in a thread-safe wrapper. Let’s change the example to incorporate the latter.

The second point is that whether thread priorities have any effect depends on your operating system. If
it doesn’t support thread priorities, then setting thread priorities in your Java code will have no effect.
Let’s run it anyway to see how it works.

Try It Out Setting Thread Priorities
You can extend the Clerk class to handle a number of Transaction objects by giving the in-tray the
capacity to store several transactions in a list, but not too many — you don’t want to overwork the clerks.

The java.util.Collections class provides methods for creating synchronized sets, lists, and maps
from unsynchronized objects. The static synchronizedList() method is a paramteterized method in
the Collections class that accepts an argument of type List<T> and returns a reference of type
List<T> to a collection class object that is synchronized. The Collections class defines other static meth-
ods that do the same for maps and sets. You can therefore define the inTray object as a linked list and
then use the synchronizedList() to make a synchronized list for storing transactions:

762

Chapter 16

import java.util.List;

import java.util.Collections;

import java.util.LinkedList;

public class Clerk implements Runnable {

// Constructor

public Clerk(Bank theBank) {

this.theBank = theBank; // Who the clerk works for

//inTray = null; // Commented out: don’t need this now

}

// Plus the rest of the methods in the class...

private Bank theBank;

private List<Transaction> inTray = // The in-tray holding transactions

Collections.synchronizedList(new LinkedList<Transaction>());

private int maxTransactions = 8; // Maximum transactions in the in-tray

}

Note that the statement that originally set inTray to null has been deleted from the constructor. Now
that you are working with a list, you must change the doTransaction() method in the Clerk class to
store the transaction in the list as long as the tray is not full. This means that because you allow a maxi-
mum of maxTransactions to be queued, a transaction can be added to the in-tray only when there are
less than maxTransactions in the list. Here’s the revised code to do this:

synchronized public void doTransaction(Transaction transaction) {

while(inTray.size() >= maxTransactions) {

try {

wait();

} catch(InterruptedException e) {

System.out.println(e);

}

inTray.add(transaction); // Add transaction to the list

notifyAll();

}

}

The size() method for the list returns the number of objects it contains so checking this is trivial. You
use the add() method to add a new Transaction object to the end of the list.

The run() method for a clerk retrieves objects from the in-tray, so you must update that to deal with a
list:

synchronized public void run() {

while(true) {

while(inTray.size() == 0) { // No transaction waiting?

try {

wait(); // Then take a break until there is

} catch(InterruptedException e) {

System.out.println(e);

763

Threads

}

}

theBank.doTransaction(inTray.remove(0));

notifyAll(); // Notify other threads locked on this clerk

}

}

The remove() method in the List<> interface that you are using here removes the object at the index
position in the list specified by the argument and returns a reference to it. Because you use 0 as the
index, you retrieve the first object in the list to pass to the doTransaction() method for the Bank
object.

As you now use a list to store transactions, the isBusy() method for a Clerk object also needs to be
changed:

synchronized public void isBusy() {

while(inTray.size() != 0) { // Is this object busy?

try {

wait(); // Yes, so wait for notify call

} catch(InterruptedException e) {

System.out.println(e);

}

}

return; // It is free now

}

Now the clerk is not busy if there are no transactions in the inTray list. Hence, you test the value
returned by size().

That’s all you need to buffer transactions in the in-tray of each clerk. If you reactivate the output state-
ments that you added to the method in the Bank class, you’ll be able to see how the processing of trans-
actions proceeds.

With the priorities set by the calls to setPriority() you saw earlier, the processing of credits should
run ahead of the processing of debits, although the fact that the time to process a debit is longer than the
time for a credit will also have a significant effect. To make the thread priority the determining factor, set
the times in the calls to the sleep() method in the Bank class to the same value. You could then try
changing the values for priorities around to see what happens to the sequence in which transactions are
processed. Of course, if your operating system does not support priority scheduling, then it won’t have
any effect anyway.

How It Works
You’ve made the inTray object a synchronized List<Transaction> object, by passing a
LinkedList<Transaction> object to the static synchronizedList() method in the Collections
class. This method returns a thread-safe List<> based on the original LinkedList<> object. You use the
thread-safe List<Transaction> object to store up to maxTransactions transactions — eight in this
case. The doTransaction() method for a Clerk object ensures that a transaction is added to the list
only if fewer than eight transactions are queued.

764

Chapter 16

The doTransaction() method for the Bank object always obtains the first object in the list, so the trans-
actions will be processed in the sequence in which they were added to the list.

If your operating system supports priority scheduling, altering the thread priority values will change the
pattern of servicing of the transactions.

Summary
In this chapter you’ve learned about threads and the basics of how you can create and manage them.
You’ll be using threads from time to time in examples later in this book, so be sure you don’t move on
from here without being comfortable with the basic ideas of how you create and start a thread.

The essential points that I have covered in this chapter are:

❑ Threads are subtasks in a program that can be in execution concurrently.

❑ A thread is represented by an object of the class Thread. Execution of a thread begins with the
execution of the run() method defined in the class Thread.

❑ You define the code to be executed in a thread by implementing the run() method in a class
derived from Thread, or in a class that implements the interface Runnable.

❑ A thread specified as daemon will cease execution when the thread that created it ends.

❑ A thread that isn’t a daemon thread is called a user thread. A user thread will not be terminated
automatically when the thread that created it ends.

❑ You start execution of a thread by calling the start() method for its Thread object. If you need
to halt a thread before normal completion, you can stop execution of a thread by calling the
interrupt() method for its Thread object.

❑ Methods can be declared as synchronized. Only one synchronized instance method for an
object can execute at any given time. Only one synchronized static method for a class can
execute at one time.

❑ A code block can be declared as synchronized on an object. Only one synchronized code block
for an object can execute at any given time.

❑ In a synchronized method or code block, you can call the wait() method inherited from the
class Object to halt execution of a thread. Execution of the waiting thread will continue when
the notify() or notifyAll() method inherited from Object is called by a thread synchro-
nized on the same object.

❑ The notify() or notifyAll() method can be called only from a method or code block that is
synchronized to the same object as the method or block that contains the wait() method that
halted the thread.

❑ A deadlock is a situation in which two threads are both waiting for the other to complete some
action. Deadlocks can occur in subtle ways in multi-threaded applications, which makes such
applications difficult to debug.

❑ You can modify the relative priority of a thread by calling its setPriority() method. This has
an effect on execution only in environments that support priority scheduling.

765

Threads

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Modify the last example in the chapter so that each transaction is a debit or a credit at random.

2. Modify the result of the previous exercise to incorporate an array of clerks, each running in their
own thread and each able to handle both debits and credits.

3. Extend the result of the previous exercise to incorporate two supervisors for two teams of clerks,
where the supervisors each run in their own thread. The supervisor threads should originate
transactions and pass them to the clerks they supervise.

766

Chapter 16

17
Creating Windows

Until now, the programs you have been creating have perhaps not been what you may instinc-
tively think of as a useful program. You can’t expect a user to be prepared to enter all the input
and get all the output on the command line. A more practical program would be window-based,
with one or more windows that provide the interface between the user and the application. These
windows, and the environment that the user interacts with, are known as the graphical user
interface (GUI).

In this chapter you’ll investigate how to create a window for a Java application, and you’ll take a
first look at some of the components you can assemble to create a graphical user interface in Java.

You will learn:

❑ How you create and display a resizable window

❑ What components and containers are

❑ How you can add components to a window

❑ How you can control the layout of components

❑ How you create a menu bar and menus for a window

❑ What a menu shortcut is and how you can add a shortcut for a menu item

❑ What the restrictions on the capabilities of an applet are

❑ How to convert an application into an applet

Graphical User Interfaces in Java
There is a vast amount of functionality in the Java class libraries devoted to supporting graphical
user interface (GUI) creation and management, far more than it is feasible to cover in a single
book — even if it is big. Just the JFrame class, which you’ll begin to explore in a moment, contains
more than 200 methods when you include those inherited from superclasses! I will therefore have
to be selective in what I go into in detail, in terms of both the specific classes I discuss and their

methods. However, I will cover the basic operations that you need to understand to create your own
applications and applets. With a good grasp of the basics, you should be able to explore other areas of
the Java class library beyond those discussed without too much difficulty.

The fundamental elements that you need to create a GUI reside in two packages, java.awt and
javax.swing. The java.awt package was the primary repository for classes you would use to create a
GUI way back in Java 1.1 —awt being an abbreviation for Abstract Windowing Toolkit — but many of
the classes this package defines have been superseded in Java 2 by javax.swing. Note that I said many
of the classes, not all. Most of the classes in the javax.swing package define GUI elements, referred to
as Swing components, that provide much-improved alternatives to components defined by classes in
java.awt. You’ll be looking into the JButton class in the Swing set that defines a button, rather than
the Button class in java.awt. However, the Swing component classes are generally derived from, and
depend on, fundamental classes that are defined within the java.awt package, so you can’t afford to
ignore these.

The Swing classes are part of a more general set of GUI programming capabilities that are collectively
referred to as the Java Foundation Classes, or JFC for short. JFC covers not only the Swing component
classes, such as those defining buttons and menus, but also classes for 2D drawing from the
java.awt.geom package and classes that support drag-and-drop capability in the java.awt.dnd pack-
age. The JFC also includes an application program interface (API) defined in the javax.accessibility
package that allows applications to be implemented that provide for users with disabilities.

The Swing component classes are more flexible than the component classes defined in the java.awt
package because they are implemented entirely in Java. The java.awt components depend on native
code to a great extent and are, therefore, restricted to a “lowest common denominator” set of interface
capabilities. Because Swing components are pure Java, they are not restricted by the characteristics of the
platform on which they run. Apart from the added functionality and flexibility of the Swing compo-
nents, they also provide a feature called pluggable look-and-feel that makes it possible to change the
appearance of a component. You can programmatically select the look-and-feel of a component from
those implemented as standard, or you can create your own look-and-feel for components if you wish.
The pluggable look-and-feel of the Swing components has been facilitated by designing the classes in a
particular way, called the Model-View-Controller architecture.

Model-View-Controller (MVC) Architecture
The design of the Swing component classes is loosely based on something called the Model-View-
Controller architecture, or MVC. This is not of particular consequence in the context of applying the
Swing classes, but it’s important to be aware of it if you want to modify the pluggable look-and-feel of a
component. MVC is not new and did not originate with Java. In fact, the idea of MVC emerged some
time ago within the context of the SmallTalk programming language. MVC is an idealized way of mod-
eling a component as three separate parts:

❑ The model that stores the data that defines the component

❑ The view that creates the visual representation of the component from the data in the model

❑ The controller that deals with user interaction with the component and modifies the model
and/or the view in response to a user action as necessary

Figure 17-1 illustrates the relationships between the model, the view, and the controller.

768

Chapter 17

Figure 17-1

In object-oriented terms, each of the three logical parts for a component — the model, the view, and the
controller — is ideally represented by a different class type. In practice this turns out to be difficult
because of the dependencies between the view and the controller. Since the user interacts with the physi-
cal representation of the component, the controller operation is highly dependent on the implementation
of the view. For this reason, the view and controller are typically represented by a single composite
object that corresponds to a view with an integrated controller. In this case the MVC concept degenerates
into the document/view architecture that I introduced when I discussed the Observable class and
Observer interface. Sun calls it the Separable Model architecture, and this is illustrated in Figure 17-2.

Figure 17-2

UI Manager
(feeds look-and-feel to component)

Model
(Component Data)

View
(The look of the component)

Controller
(deals with events making

changes to the model or view)

UI Delegate

Separable Model Architecture

Component

model

acts on

acts onacts on

viewcontroller

769

Creating Windows

The Swing components provide for a pluggable look-and-feel by making the visual appearance of a
component and the interface to the user the responsibility of an independent object called the UI dele-
gate. This is the view+controller part of the MVC model. Thus, a different UI delegate can provide a
component with a new look-and-feel.

The details of how you modify the look-and-feel of a component is beyond the scope of this book, but I’ll
introduce how you can set one of the standard look-and-feels that are distributed with the Java
Development Kit (JDK). It is as well to be aware of the MVC architecture on which the Swing compo-
nents are based since it appears quite often in the literature around Java, and you may want to change
the look-and-feel of a component at some time.

Creating a Window
A basic window in Java is represented by an object of the Window class, which is defined in the
java.awt package. Objects of the Window class are hardly ever used directly since borders and a title bar
are fairly basic prerequisites for a typical application window, and this class provides neither. The library
class JFrame that is defined in the javax.swing package is a much more useful class for creating a win-
dow since, in addition to a title bar and a border, it provides a wealth of other facilities. Its superclasses
are shown in Figure 17-3.

Figure 17-3

Object

Component

Container

Frame

JFrame

Window

java.lang

javax.swing

java.awt

Defines a component, which is an entity that can
be displayed such as a button or a scrollbar.

Defines a component that can contain other
components.

Defines a window with a title bar and border

Defines a frame, which is a window with
extended capabilities.

Defines a basic window with no title bar or
border.

770

Chapter 17

The Component class is the grandmother of all component classes — it defines the basic properties and
methods shared by all components. You’ll see later that all the Swing components have the Component
class as a base. The Container class adds the capability for a Component object to contain other compo-
nents, which is a frequent requirement. Since JFrame has Container as a superclass, a JFrame object
can contain other components. Beyond the obvious need for a window to be able to contain the compo-
nents that represent the GUI, a menu bar should contain menus, for example, which in turn will contain
menu items; a toolbar will obviously contain toolbar buttons; and there are many other examples. For
this reason the Container class is also a base for all the classes that define Swing components.

The Window class adds methods to the Container class that are specific to a window, such as the capa-
bility to handle events arising from user interaction with the window. The Frame class is the original
class in java.awt that provided a proper window, with a title bar and a border, with which everyone is
familiar. The JFrame class adds functionality to the Frame class to support much more sophisticated
facilities for drawing and displaying other components. You can deduce from the hierarchy in the dia-
gram how a JFrame object can easily end up with its 200+ methods, as it has five superclasses from
which it inherits members. You aren’t going to trawl through all these classes and methods. You’ll just
look into the ones you need in context as you go along, and then see how they are applied in some
examples. This will teach you the most important methods in this class.

You can display an application window simply by creating an object of type JFrame, calling a method
for the object to set the size of the window, and then calling a method to display the window. Let’s try
that right away.

Try It Out Framing a Window
Here’s the code:

import javax.swing.JFrame;

public class TryWindow {

// The window object

static JFrame aWindow = new JFrame(“This is the Window Title”);

public static void main(String[] args) {

int windowWidth = 400; // Window width in pixels

int windowHeight = 150; // Window height in pixels

aWindow.setBounds(50, 100, // Set position

windowWidth, windowHeight); // and size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

aWindow.setVisible(true); // Display the window

}

}

Under Microsoft Windows, the program will display the window shown in Figure 17-4.

Figure 17-4
771

Creating Windows

This is the default look-and-feel on my system, and it may well be the same on yours. It corresponds to
the Java cross-platform look-and-feel that is distributed with the JDK. Each look-and-feel is defined by a
class, and on my system the following look-and-feel classes are installed:

javax.swing.plaf.metal.MetalLookAndFeel

com.sun.java.swing.plaf.motif.MotifLookAndFeel

com.sun.java.swing.plaf.windows.WindowsLookAndFeel

com.sun.java.swing.plaf.windows.WindowsClassicLookAndFeel

The first class corresponds to the Java look-and-feel, which used to be known as the Metal look-and-feel.
It is intended to provide a uniform cross-platform look-and-feel, and you can use it on any platform that
supports the JFC. The second class defines the Motif look-and-feel that is for use on Unix systems. The
last two classes can be used only with Microsoft Windows.

The UIManager class that is defined in the javax.swing package deals with setting the look-and-feel of
a Java application. You could list the names of the look-and-feel classes that are installed with the JDK
on your system on the command line by adding the following code to main() in the example:

UIManager.LookAndFeelInfo[] looks = UIManager.getInstalledLookAndFeels();

for(UIManager.LookAndFeelInfo look : looks) {

System.out.println(look.getClassName());

}

For this to work, you need the following import statement in the source file:

import javax.swing.UIManager;

You can set a look-and-feel by passing the fully qualified name of one of your look-and-feel classes to the
static setLookAndFeel() method that is defined in the UIManager class. This method can throw an
exception of ClassNotFoundException if the look-and-feel class cannot be found, plus other excep-
tions, so you should put the method call in a try block and arrange to catch the exception. For example:

try {

UIManager.setLookAndFeel(“com.sun.java.swing.plaf.motif.MotifLookAndFeel”);

} catch(Exception e) {

System.err.println(“Look and feel not set.”);

}

The class name for the cross-platform look-and-feel is returned by the static getCrossPlatformLookAnd
FeelClassName() method in the UIManager class, so you can set this explicitly using the following code:

try {

UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeel());

} catch(Exception e) {

System.err.println(“Look and feel not set.”);

}

Alternatively, you can make your application adopt the look-and-feel for the platform on which it is run-
ning by calling the static getSystemLookAndFeel() method in the UIManager class and passing the
class name that it returns to the setLookAndFeel() method.

The window for the example is fully operational. You could try resizing the window for the example by
dragging a border or a corner with the mouse. You can also try minimizing the window by clicking on

772

Chapter 17

the icons to the right of the title bar. Everything should work okay so you are getting quite a lot for so
few lines of code. You can close the application by clicking on the X icon.

How It Works
The import statement adds JFrame in the package javax.swing to the program. From now on most of
your programs will be using the components defined in this package. The object of type JFrame is cre-
ated and stored as the initial value for the static data member of the class TryWindow, so it will be cre-
ated automatically when the TryWindow class is loaded. The argument to the constructor defines the
title to be displayed in the application window.

The main() method calls three methods for the aWindow object. The method setBounds() defines the
size and position of the window; the first pair of arguments correspond to the x and y coordinates of the
top-left corner of the application window relative to the top-left corner of the display screen, and the sec-
ond pair of arguments specify the width and height of the window in pixels. The screen coordinate sys-
tem has the origin point, (0, 0), at the top-left corner of the screen, with the positive x-axis running left to
right and the positive y-axis from top to bottom. The positive y-axis in screen coordinates is therefore in
the opposite direction to that of the usual Cartesian coordinate system. The coordinate system for screen
coordinates is illustrated in Figure 17-5.

Figure 17-5

X Axis

Screen Coordinates

50,100

Measured in Pixels

Y Axis

This example will terminate okay if you have entered the code correctly; however,
errors could prevent this. If an application doesn’t terminate properly for any reason,
you will have to get the operating system to end the task. Under MS Windows XP,
pressing Ctrl+Alt+Del will bring up the Task Manager window from which you can
terminate the application.

773

Creating Windows

You have specified the top-left corner of the application window at position (50, 100) on the screen,
which will be 50 pixels to the right and 100 pixels down. Since the window will be 400 pixels wide and
150 pixels high, the bottom-right corner will be at position (450, 250). The actual physical width and
height of the window, as well as its position relative to the edge of the screen, will depend on the size of
your screen and the display resolution. For a given screen size, the higher the display resolution, the
smaller the window will be and the closer it will be to the top left-hand corner, simply because the pixels
on the screen will be closer together. You’ll see how you can get around this potential problem later in
this chapter.

The setDefaultCloseOperation() method for the JFrame object determines what happens when
you close the window by either clicking on the X icon or selecting Close from the menu that is displayed
when you click on the Java icon in the top-left corner of the window. There are four possible argument
values you can use here. The constant you have used at the argument to the method is EXIT_ON_CLOSE,
which is defined in the JFrame class. The effect of this is to close the window, dispose of the window
resources and those of any components it contains, and finally to terminate the application. There are
three other argument values you could use with the setDefaultCloseOperation() method that are
defined in the WindowConstants interface. These values are:

Argument Description

DISPOSE_ON_CLOSE This causes the frame and any components it contains to be
destroyed but doesn’t terminate the application.

DO_NOTHING_ON_CLOSE This makes the close operation for the frame window ineffective.

HIDE_ON_CLOSE This just hides the window by calling its setVisible() method
with an argument of false. This is the default action if you don’t
call the setDefaultCloseOperation() method with a different
argument value. When a window is hidden, you can always dis-
play the window again later by calling setVisible() with an
argument of true.

Of course, you may want to take some action beyond the options I have discussed here when the user
chooses to close the window. If the program involves entering a lot of data for instance, you may want to
ensure that the user is prompted to save the data before the program ends. This involves handling an
event associated with the Close menu item or the Close button, and you will be investigating this in the
next chapter.

The setVisible() method with the argument set to true displays the application window on top of
any other windows that are currently visible on the screen. If you wanted to hide a window at some
point during the execution of an application, you would call setVisible() with the argument set to
false.

It’s a very nice window, but not overly useful. All you can do with it is move, resize, and reshape it. You
can drag the borders and maximize and minimize it. The Close icon works because you elected to dis-
pose of the window and exit the program when the close operation is selected by setting the appropri-
ate option through the setDefaultCloseOperation() method. If you omitted this method call, you
would get the default action whereby the window would close, but the program would not terminate.

774

Chapter 17

The setBounds() and setVisible() methods are members of the JFrame class inherited from the
Component class, so these are available for any component. However, you don’t normally set the size
and position of other components, as you’ll see. The setDefaultCloseOperation() method is defined
in the JFrame class so this method only applies to JFrame window objects.

Before you expand the JFrame example, you need to look a little deeper into the makeup of the compo-
nent classes.

Components and Containers
A component represents a graphical entity of one kind or another that can be displayed on the screen. A
component is any object of a class that is a subclass of Component. As you have seen, a JFrame window
is a component, but there are many others. Before getting into specifics, let’s first get a feel for the gen-
eral relationship between the groups of classes that represent components. Part of the class hierarchy
with Component as a base is shown in Figure 17-6. The arrows in the diagram point toward the super-
class.

Figure 17-6

This shows some of the subclasses of Component— the ones that are important to you at the moment. I
discussed the chain through to JFrame earlier, but the other branches are new. The classes that you’ll be
using directly are all the most commonly derived classes.

Component
(abstract class)

Container
(abstract class)

Window
(no borders or title bar)

Frame
(old frame class)

Panel
(old concrete container)

Applet
(old applet class)

JFrame JDialog JWindow
(no borders or title bar)

JComponent
(base for Swing components)

Classes defining specific
Swing components

Dialog
(old dialog class)

JApplet

Base class for
application windows Base class for dialogs

Base class
for applets

775

Creating Windows

Let’s summarize how you would typically use the key classes in this hierarchy:

Class Use

JFrame This is used as the basic Java application window. An object of this class has a
title bar and provision for adding a menu. You can also add other components
to it. You will usually subclass this class to create a window class specific to
your application. You’ll then be able to add GUI components or draw in this
window if required, as you’ll see.

JWindow An object of this class type is a window with no title bar or window manage-
ment icons. One typical use for a JWindow object is for a subsidiary application
window that is displayed on a secondary display where two or more displays
are attached to a system.

JDialog You use this class to define a dialog window that is used for entering data into a
program in various ways. You usually code the creation of a dialog in response
to some menu item or button being selected.

JApplet This is the base class for a Java 2 applet — which is a program designed to run
embedded in a web page. All your Java 2 applets will have this class as a base.
You can draw in a JApplet and also add menus and other components.

JComponent The subclasses of JComponent define a range of standard components such as
menus, buttons, checkboxes, and so on. You’ll use these classes to create the
GUI for your application or applet.

All the classes derived from Container can contain other objects of any of the classes derived from
Component and are referred to generically as containers. Since the Container class is a subclass of the
Component class, every container object is a Component, too, so a container can contain other containers.
The exception is the Window class and its subclasses, as objects of type Window (or of a subclass type)
can’t be contained in another container. If you try to do this, an exception will be thrown. The
JComponent class is the base for all the Swing components used in a window as part of the GUI, and
because this class is derived from Container, all of the Swing components are also containers.

As you can see, the JApplet class, which is a base class for all Swing applets, is derived from
Component via the Container class. An applet will, therefore, also inherit the methods from the
Container and Component classes. It also inherits methods from the old Applet class, which it extends
and improves upon. Note that the JApplet, JFrame, and JDialog classes and the JComponent class
and its subclasses are all in the package javax.swing. The Applet class is in java.applet, and all the
others are in java.awt. The package java.applet is tiny — it contains only the one class plus three
related interfaces, but you won’t need to use it directly. You will always be using the JApplet class to
define an applet, as it’s significantly better than Applet.

Window and Frame Components
The basic difference between a JFrame object and a Window object is that a JFrame object represents the
main window for an application, whereas a Window object does not — you always need a JFrame object
before you can create a Window object.

776

Chapter 17

Since the JDialog class is derived directly from the Window class, you can create a JDialog object in an
application only in the context of a JFrame object. Apart from the default constructor, the constructors
for the JDialog class generally require a JFrame object to be passed as an argument. This JFrame object
is referred to as the parent of the JDialog object. A JFrame object has a border, is resizable, and has the
ability to hold a built-in menu bar. Since a JFrame object is the top-level window in an application, its
size and location are defined relative to the screen. A JDialog object with a JFrame object as a parent
will be located relative to its parent.

As I said, the JApplet, JFrame, and JDialog classes are all containers because they have Container as
a base class and therefore, in principle, can contain any kind of component. They are also all components
themselves since they are derived ultimately from the Component class. However, things are not quite as
simple as that. You don’t add the components for your application or applet GUI directly to the JFrame
or JApplet object for your program. Let’s look at how it actually works in practice.

Window Panes
When you want to add GUI components or draw in a window displayed from a JFrame object, you add
the components to, or draw on, a window pane that is managed by the JFrame object. The same goes
for an applet. Broadly speaking, window panes are container objects that represent an area of a window,
and they come in several different types.

You’ll use a window pane called the content pane most of the time, but there are others. The relationship
between the contentPane object, other window panes, and the application window itself is shown in
Figure 17-7.

Figure 17-7

The area of the window below the title bar
corresponds to a JRootPane object.

JFrame window

layeredPane object of type JLayeredPane

optional menubar

contentPane object of type JInternalPane

The contentPane is where you normally add components
other than a menubar to a window. A reference to

contentPane is returned when you call the
getContentPane() method for the JFrame object.

777

Creating Windows

As you see, the area below the title bar in a JFrame window corresponds to a JRootPane object. This
contains another pane, the layeredPane object in the illustration, which is of type JLayeredPane. This
pane corresponds to the whole of the area occupied by the JRootPane object in the window and man-
ages the menu bar if the window has one. The area in the layeredPane below the menu bar corre-
sponds to the contentPane object, and it’s here that you typically add GUI components. You also
display text or do any drawing in the area covered by the content pane.

The layeredPane object has special properties for advanced applications that permit groups of compo-
nents to be managed in separate layers that overlay one another within the pane. With this capability
you can control how components are displayed relative to one another, because the layers are displayed
in a particular order from back to front. The components in a layer at the front will appear on the screen
in front of those in a layer that is towards the back.

There is also an additional pane not shown in Figure 17-7. This is the glassPane object, which also cor-
responds to the complete JRootPane area. The contents of the glassPane object displays on top of all
the other panes, so this is used to display components that you always want to display on top of any-
thing else displayed in the window — such as drop-down menus. You can also use the glassPane object
to display graphics that need to be updated relatively frequently — such as when you create an anima-
tion. When part of what is displayed is to be animated, a static background can be displayed indepen-
dently via the contentPane. Since this doesn’t need to be reprocessed each time the animated objects
need to be redrawn, the whole process can be much more efficient.

The JFrame class defines methods to provide you with a reference to any of the panes:

Method Description

getRootPane() Returns the root pane as type JRootPane.

getLayeredPane() Returns the layered pane as type JLayeredPane.

getContentPane() Returns the content pane as type Container. This is the method you
will use most frequently, since you normally add components to the
content pane.

getGlassPane() Returns the glass pane as type Component.

All the classes discussed here that represent panes are themselves Swing components, defined in the
javax.swing package. A JApplet object has the same arrangement of panes as a JFrame object, so
adding components to an applet, or drawing on it, works in exactly the same way. An applet defined as
a JApplet object can also have a menu bar just like an application window.

All the panes, as well as the menu bar, are components, so before I start delving into how to add a menu
bar or other components to a window, let’s unearth a little more about the makeup of components in
general.

778

Chapter 17

Basics of Components
You need to understand several basic concepts common to all components before you can apply them
properly. They also have applications in many different contexts. While this may seem like something of
a catalog of classes and methods, without much in the way of practical application, please stay with it.
You’ll be using most of these capabilities in a practical context later. To understand the fundamental
things you can do with Swing components, you’ll be examining what functionality the Swing compo-
nents inherit from the Component and Container classes.

When a component is contained within another component, the outer object is referred to as the parent.
You can obtain a reference to the parent object of any given component by calling its getParent()
method. This method is inherited from the Component class, and it returns the parent as type
Container, since only a subclass of Container can hold other components. If there is no parent, as is
the case with a JFrame component, this method will return null.

Component Attributes
The Component class defines attributes, which record the following information about an object:

❑ The position is stored as (x, y) coordinates. This fixes where the object is in relation to its con-
tainer in the coordinate system of the container object.

❑ The name of the component is stored as a String object.

❑ The size is recorded as values for the width and the height of the object.

❑ The foreground color and background color that apply to the object. These color values are
used when the object is displayed.

❑ The font used by the object when text is displayed.

❑ The cursor for the object — this defines the appearance of the cursor when it is over the object.

❑ Whether the object is enabled or not — when a component is enabled, its enabled state is true,
and it has a normal appearance. When a component is disabled it is grayed out. Note that a dis-
abled component can still originate events.

❑ Whether the object is visible on the screen or not — if an object is not marked as visible, it is not
drawn on the screen.

❑ Whether the object is valid or not — if an object is not valid, the layout of the entities that make
up the object has not been determined. This is the case before an object is made visible. You can
make a Container object invalid by changing its contents. It will then need to be validated
before it is displayed correctly.

You can only modify the characteristics of a Component object by calling its methods or affecting it indi-
rectly in some way since none of the data members that store its characteristics are directly accessible —
they are all private. For example, you can change the name of a Component object myWindow with the
statement:

myWindow.setName(“The Name”);

779

Creating Windows

If you subsequently want to retrieve the name of an object, you can use the getName() method, which
returns the name as a String object. For example:

String theName = myWindow.getName();

The isVisible(), isEnabled(), and isValid() methods return true if the object is visible, enabled,
and valid, respectively. You can set an object as visible or enabled by passing the value true as an argu-
ment to the methods setVisible() and setEnabled(), respectively.

A common misconception with Swing components is that calling setEnabled(false) will inhibit
events such as mouse clicks from a component. This is not the case. All it does is to set the internal
enabled status for the component to false, causing the component to be grayed out. To prevent events
from a disabled component having an effect, you must call isEnabled() for the component in your
event handling code to determine whether the component is enabled or not. You can then choose to do
nothing when the isEnabled() method returns false.

Let’s see how you can change the size and position of a Component object.

The Size and Position of a Component
Position is defined by x and y coordinates of type int, or by an object of type java.awt.Point. A
Point object has two public data members, x and y, corresponding to the x and y coordinate values. Size
is defined by width and height, also values of type int, or by an object of type java.awt.Dimension.
The Dimension class has two public members of type int, namely width and height. The size and
position of a component are often specified together by an object of type java.awt.Rectangle. A
Rectangle object has public data members, x and y, defining the top-left corner of the rectangle, with
width and height members defining its size. All these data members are of type int.

Components have a “preferred” size defined by a java.awt.Dimension object encapsulating values
for the width and the height. The preferred size will vary depending on the particular object. For
example, the preferred size of a JButton object that defines a button is the size that accommodates the
label for the button. Note that the size of a component is managed automatically when it has a parent
component. I’ll explain how this works later in this chapter. A component also has a minimum size and a
maximum size. The size of the component will lie within the range from the minimum to the maximum,
and if the space available to it is less than the minimum size, the component will not be displayed. You
can set the preferred size for a component as well as the minimum and maximum size. This provides a
way for you to influence the size of a component when it is displayed.

The methods defined in the Component class that retrieve the size and position are:

Method Description

Rectangle getBounds() Returns the position and size of the object as an
object of type Rectangle.

Rectangle getBounds(Rectangle rect) Stores the position and size in the Rectangle
object that you pass as the argument and returns
a reference to rect. This version of the method
enables you to reuse an existing Rectangle
object to store the bounds. If rect is null, a new
Rectangle object will be created by the method.

780

Chapter 17

Method Description

Dimension getSize() Returns the current size of the Component
object as a Dimension object.

Dimension getSize(Dimension dim) Stores the current size in dim and returns a ref-
erence to dim. This enables you to reuse an
existing Dimension object.

Point getLocation() Returns the position of the Component object as
an object of type Point.

Point getLocation(Point p) Stores the coordinates of the current position of
the component in the argument, p, and returns a
reference to p. This enables you to reuse an
existing Point object to store the position.

You can also change the size and/or position of a component by using the following methods:

Method Description

void setBounds(int x, int y, Sets the position of the Component object to the
int width, coordinates (x, y) and the width and height of
int height) the object to the values defined by the third and

fourth arguments

void setBounds(Rectangle rect) Sets the position and size of the Component
object to be that of the Rectangle argument
rect

void setSize(Dimension d) Sets the width and height of the Component
object to the values stored in the members of the
object d

setLocation(int x, int y) Sets the position of the component to the point
defined by (x, y)

setLocation(Point p) Sets the position of the component to the
point p

You can also set the parameters that determine the range of variation in size that is possible for a compo-
nent with the following methods:

Method Description

void setMinimumSize(Dimension d) Sets the minimum size of the Component object
to the dimensions specified by the argument d.
A null argument will restore the default mini-
mum size for the component.

Table continued on following page

781

Creating Windows

Method Description

void setMaximumSize(Dimension d) Sets the maximum size of the Component object
to the dimensions specified by the argument d.
A null argument will restore the default maxi-
mum size for the component.

void setPreferredSize(Dimension d) Sets the preferred size of the Component object
to the dimensions specified by the argument d.
A null argument will restore the default pre-
ferred size for the component.

Another important method defined in the Component class is getToolkit(). This returns an object of
type Toolkit that contains information about the environment in which your application is running,
including the screen size in pixels. You can use the getToolkit() method to help set the size and posi-
tion of a window on the screen. You can modify the previous example to demonstrate this.

Try It Out Sizing Windows with Toolkit
You’ll use the Toolkit object to display the window in the center of the screen, with the width and
height set as half of the screen width and height:

import javax.swing.JFrame;

import java.awt.Toolkit;

import java.awt.Dimension;

public class TryWindow2 {

// The window object

static JFrame aWindow = new JFrame(“This is the Window Title”);

public static void main(String[] args) {

Toolkit theKit = aWindow.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

aWindow.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

aWindow.setVisible(true); // Display the window

}

}

If you try this example, you should see the application window centered on your display with a width
and height of half that of the screen.

How It Works
You obtain the Toolkit object, theKit, by calling the getToolkit() method for the JFrame object,
aWindow. This object represents the environment on your computer so it encapsulates all the properties
and capabilities of that environment as far as Java is concerned, including the screen resolution and size.

782

Chapter 17

The getScreenSize() method that is a member of the Toolkit object returns an object of type
Dimension containing data members width and height. These hold the number of pixels for the width
and height of your display. You use these values to set the coordinates for the position of the window
and the width and height of the window through the setBounds() method.

This is not the only way of centering a window. A java.awt.GraphicsEnvironment object contains
information about the graphics devices attached to a system, including the display — or displays in sys-
tems with more than one. You can obtain a reference to a GraphicsEnvironment object that encapsu-
lates information about the graphics devices on the local machine by calling the static
getLocalGraphicsEnvironment() method in the GraphicsEnvironment class, like this:

GraphicsEnvironment localGE = GraphicsEnvironment.getLocalGraphicsEnvironment();

You can now call this object’s getCenterPoint() method to obtain a Point object containing the coor-
dinates of the center of the screen:

Point center = localGE.getCenterPoint();

You could try this with a variation on the original version of the example.

Try It Out Centering a Window
Here’s the code:

import javax.swing.JFrame;

import java.awt.Point;

import java.awt.GraphicsEnvironment;

public class TryWindow3 {

// The window object

static JFrame aWindow = new JFrame(“This is the Window Title”);

public static void main(String[] args) {

Point center =

GraphicsEnvironment.getLocalGraphicsEnvironment().getCenterPoint();

int windowWidth = 400;

int windowHeight = 150;

// set position and size

aWindow.setBounds(center.x-windowWidth/2, center.y-windowHeight/2,

windowWidth, windowHeight);

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

aWindow.setVisible(true); // Display the window

}

}

When you execute this, you should see the window displayed centered on your screen.

Note that you can’t create a Toolkit object directly since Toolkit is an abstract
class. There is only one Toolkit object in an application — the one that you get a
reference for when you call getToolKit() for a component.

783

Creating Windows

How It Works
This uses the coordinates of the point returned by the getCenterPoint() method to position the win-
dow. You calculate the position for the top-left corner of the application window by subtracting half the
window width and half the height from the x and y coordinates of the screen center point, respectively.
This causes the window to be centered on the screen.

Points and Rectangles
Before continuing with the Component class methods, let’s digress briefly into more detail concerning
the Point and Rectangle classes, as they are going to come up quite often. As you’ve seen, both these
classes are defined in java.awt. You will find many of the methods provided by the Point and
Rectangle classes very useful when drawing in a window. Entities displayed in a window will typi-
cally have Rectangle objects associated with them that define the areas within the window that they
occupy. Point objects are used in the definition of other geometric entities such as lines and circles, and
to specify their position in a window.

Note that neither Point nor Rectangle objects have any built-in representation on the screen. They
aren’t components; they are abstract geometric entities. If you want to display a rectangle you have to
draw it. You’ll see how to do this in Chapter 19 when you’ll meet other classes that define geometric
shapes that can be displayed.

Point Objects
As I said, the Point class defines a point by two public data members of type int, x and y. Let’s look
at the methods that the class provides.

Try It Out Playing with Point Objects
Try the following code:

import java.awt.Point;

public class PlayingPoints {

public static void main(String[] args) {

Point aPoint = new Point(); // Initialize to 0,0

Point bPoint = new Point(50,25);

Point cPoint = new Point(bPoint);

System.out.println(“aPoint is located at: “ + aPoint);

aPoint.move(100,50); // Change to position 100,50

bPoint.x = 110;

bPoint.y = 70;

aPoint.translate(10,20); // Move by 10 in x and 20 in y

System.out.println(“aPoint is now at: “ + aPoint);

if(aPoint.equals(bPoint))

System.out.println(“aPoint and bPoint are at the same location.”);

}

}

784

Chapter 17

If you run the program, you should see the following output produced:

aPoint is located at: java.awt.Point[x=0,y=0]

aPoint is now at: java.awt.Point[x=110,y=70]

aPoint and bPoint are at the same location.

How It Works
You apply the three constructors that the Point class provides in the first few lines. You then manipulate
the Point objects you’ve instantiated.

You change a Point object to a new position with the move() method. Alternatively, you can use the
setLocation() method to set the values of the x and y members. The setLocation() method
behaves exactly the same as the move() method. It’s included in the Point class for compatibility with
the setLocation() method for a component. For the same reason, there’s also a getLocation()
method in the Point class that returns a copy of the current Point object. As the example shows, you
can translate a Point object by specified distances in the x and y directions using the translate()
method.

Lastly, you compare two Point objects using the equals() method. This compares the x and y coordi-
nates of the two Point objects and returns true if both are equal. The final output statement is executed
because the Point objects are equal.

Note that this is not the only class that represents points. You will see other classes that define points in
Chapter 19 when I discuss how you draw in a window.

Rectangle Objects
As I mentioned earlier, the Rectangle class defines four public data members, all of type int. The
position of a Rectangle object is defined by the members x and y, and its size is defined by the mem-
bers width and height. As they are all public class members, you can retrieve or modify any of these
directly, but your code will be a little more readable if you use the methods provided.

There are no less than seven constructors that you can use:

Constructor Description

Rectangle() Creates a rectangle at (0, 0) with
zero width and height

Rectangle(int x, int y, int width, int height) Creates a rectangle at (x, y) with
the specified width and height

Rectangle(int width, int height) Creates a rectangle at (0, 0) with the
specified width and height

Rectangle(Point p, Dimension d) Creates a rectangle at point p with
the width and height specified by d

Rectangle(Point p) Creates a rectangle at point p with
zero width and height

Table continued on following page

785

Creating Windows

Constructor Description

Rectangle(Dimension d) Creates a rectangle at (0, 0) with the
width and height specified by d

Rectangle(Rectangle r) Creates a rectangle with the same
position and dimensions as r

You can retrieve or modify the position of a Rectangle object using the method getLocation(), which
returns a Point object, and setLocation(), which comes in two versions, one of which requires x and
y coordinates of the new position as arguments and the other of which requires a Point object. You can
also apply the translate() method to a Rectangle object, in the same way as the Point object.

To retrieve or modify the size of a Rectangle object, you use the methods getSize(), which returns a
Dimension object, and setSize(), which requires either a Dimension object specifying the new size as
an argument or two arguments corresponding to the new width and height values as type int.

You can also use several methods to combine Rectangle objects, and to extend a Rectangle object to
enclose a point. The effects of each of these methods are shown in Figure 17-8.

Figure 17-8

r1.intersection(r2) r1.union(r2) r1.add(r2)
new r1

r1

r2

r1

r2

v

rect

rect

rect.growth(h, v) rect.add(p)
or

rect.add(x, y)

h

new rect new rect

Point P
 x, y

r1

r2

786

Chapter 17

The rectangle that results from each operation is shown with dashed line boundaries. The details of the
operations provided by the methods illustrated in Figure 17-8 are as follows:

Method Description

Rectangle intersection(Rectangle r) Returns a Rectangle object that is the intersec-
tion of the current object and the argument. If the
two rectangles do not intersect, the Rectangle
object returned is at position (0, 0), and the width
and height members are zero, so the rectangle is
empty.

Rectangle union(Rectangle r) Returns the smallest Rectangle object enclosing
both the current Rectangle object and the
Rectangle object r, passed as an argument.

void add(Rectangle r) Expands the current Rectangle object to enclose
the argument Rectangle.

void add(Point p) Expands the current Rectangle object to enclose
the Point object p. The result will be the smallest
rectangle that encloses the original rectangle and
the point.

void add(int x, int y) Expands the current Rectangle object to enclose
the point at (x, y).

void grow(int h, int v) Enlarges the current Rectangle object by mov-
ing the boundary out from the center by h hori-
zontally and v vertically.

You can also test and compare Rectangle objects in various ways with the following methods:

Method Description

boolean isEmpty() Returns true if the width and height members
of the current Rectangle object are zero, and
false otherwise.

boolean equals(Object rect) Returns true if the Rectangle object passed as
an argument is equal to the current Rectangle
object, and false otherwise.

The two rectangles will be equal if they are at the
same position and have the same width and
height. If the argument is not a Rectangle object,
false is returned.

boolean intersects(Rectangle rect) Returns true if the current Rectangle object
intersects the Rectangle object passed as an
argument, and false otherwise.

Table continued on following page

787

Creating Windows

Method Description

boolean contains(Point p) Returns true if the current Rectangle object
encloses the Point argument p, and false
otherwise.

boolean contains(int x, int y) Returns true if the current Rectangle object
encloses the point (x, y), and false otherwise.

All of these methods will be useful when you are dealing with the contents of a Java window. You will
then be dealing with points and rectangles describing the contents drawn in the window. For example,
you might want to enable the user of your program to select some geometric shape from among those
displayed on the screen, to work with it. You could use the contains() method to check whether the
point corresponding to the current mouse cursor position is within any of the Rectangle objects that
enclose each of the circles, lines, or whatever is displayed in the window. This would enable you to
decide which of the objects displayed on the screen the user wants to choose.

You’ll meet some other classes defining rectangles when you start drawing in a window in Chapter 19.

Visual Characteristics of a Component
Two things determine the visual appearance of a component: the representation of the component cre-
ated by the Java code in the component class that is executed when the component is displayed and
whatever you draw on the component. You can draw on a Component object by implementing its
paint() method. You used this method in Chapter 1 to output the text for our applet. The paint()
method is called automatically when the component needs to be drawn.

The need to draw a component can arise quite often for a variety of reasons — for example, your pro-
gram may request that the area that the component occupies should be redrawn, or the user may resize
the window containing the component. Your implementation of this method must include code to gener-
ate whatever you want drawn within the Component object. Note that the component itself — the
JButton or JFrame or whatever — will be drawn for you. You only need to override the paint()
method for anything additional that you want to draw on it. You’ll be overriding the paint() method
in Chapter 19 to draw in a window, so I’ll leave further discussion of it until then.

You can alter some aspects of the appearance of the basic component by calling methods for the object.
The following methods have an effect on the appearance of a Component object:

Method Description

void setBackground(Color aColor) Sets the background color to aColor. The back-
ground color is the color used for the basic com-
ponent.

Color getBackground() Retrieves the current background color.

void setForeground(Color bColor) Sets the foreground color to bColor. The fore-
ground color is the color used for anything
appearing on the basic component, such as the
label on a button, for example.

788

Chapter 17

Method Description

Color getForeground() Retrieves the current foreground color

void setCursor(Cursor aCursor) Sets the cursor for the component to aCursor.
This sets the appearance of the cursor within the
area occupied by the Component object.

void setFont(Font aFont) Sets the font for the Component object.

Font getFont() Returns the Font object used by the component.

To be able to make use of these properly, you need to understand what Color objects are, and you need
to know how to create Cursor and Font objects.

Defining Color
A screen color is represented by an object of class Color. You define a color value as a combination of
the three primary colors: red, green, and blue. They are usually expressed in that sequence, and are often
referred to as RGB values. There are other ways of specifying colors in Java, but I’ll discuss only RGB.
You can specify the intensity of each primary color to be a value between 0 and 255. If the intensities of
all three are 0, you have the color black, and if all three are set to 255 you have white. If only one inten-
sity value is positive and the others are zero, you will have a pure primary color; for example, (0, 200, 0)
will be a shade of green. You could define variables corresponding to these colors with the following
statements:

Color myBlack = new Color(0,0,0); // Color black

Color myWhite = new Color(255,255,255); // Color white

Color myGreen = new Color(0,200,0); // A shade of green

The three arguments to the constructor correspond to the intensities of the red, green, and blue compo-
nents of the color, respectively. The Color class defines a number of standard color constants as public
final static variables, whose RGB values are given in parentheses:

WHITE (255, 255, 255) RED (255, 0, 0)

PINK (255, 175, 175) LIGHT_GRAY (192, 192, 192)

ORANGE (255, 200, 0) MAGENTA (255, 0, 255)

GRAY (128, 128, 128) YELLOW (255, 255, 0)

CYAN (0, 255, 255) DARK_GRAY (64, 64, 64)

GREEN (0, 255, 0) BLUE (0, 0, 255)

BLACK (0, 0, 0,)

So if you want the window in the previous example to have a pink background, you could add the
statement:

aWindow.setBackground(Color.PINK);

789

Creating Windows

When you have created a Color object, you can brighten or darken the color it represents by calling its
brighter() or darker() methods, which increase or decrease the intensity of the color components by
a predefined factor:

thisColor.brighter(); // Brighten the color

thatColor.darker(); // Darken the color

The intensities of the component colors will always remain between 0 and 255. When you call brighter
and a color component is already at 255, it will remain at that value. The other component intensities
will be increased if they are less than 255. In a similar way, the darker() method will not change a com-
ponent intensity if it is zero. The factor used for darkening a color component is 0.7. To brighten a color
component, the intensity is increased by 1/0.7.

A fundamental point to remember here is that you can obtain only the colors available within the com-
puter and the operating system environment on which your Java program is running. If you have a lim-
ited range of colors, the brighter() and darker() methods may appear to have no effect. Although
you can create Color objects that are supposed to represent all kinds of colors, if your computer sup-
ports only 16 colors you will always end up with one of your 16. If your machine supports 24-bit color
and this is supported in your system environment, then everything should be fine and dandy.

You can obtain any of the component intensities by calling getRed(), getGreen(), or getBlue() for a
Color object. A color can also be obtained as a value of type int that is a composite of the red, green,
and blue components of the color represented by a Color object using the getRGB() method. You can
also create a Color object from a single RGB value of type int.

To compare two Color objects you can use the equals() method. For example, to compare two color
objects colorA and colorB, you could write:

if(colorA.equals(colorB)) {

// Do something...

}

The equals() method will return true if all three components of the two Color objects are equal.
Don’t use the == operator to compare Color objects. If you do, you are just determining whether the two
Color object references refer to the same object. Applying the == operator to two different Color objects
that represent the same color will result in false.

You could also use the getRGB() method for a Color object when you are comparing colors:

if(colorA.getRGB() == colorB.getRGB()) {

// Do something....

}

This compares the two integer RGB values for equality, so here the == operator produces the correct
result.

Note that the Color class also supports transparency of colors by storing an alpha compositing value
in the range 0.0 to 1.0, where 0.0 is completely transparent and 1.0 is completely opaque.

790

Chapter 17

System Colors
The java.awt package defines the class SystemColor as a subclass of the Color class. The
SystemColor class encapsulates the standard colors that the native operating system uses for display-
ing various components. The class contains definitions for 24 public final static variables of type
SystemColor that specify the standard system colors used by the operating system for a range of GUI
components. For example, the system colors for a window are referenced by:

window Defines the background color for a window

window_text Defines the text color for a window

window_border Defines the border color for a window

You can find the others covering colors used for menus, captions, controls, and so on, if you need them,
by looking at the documentation for the SystemColor class.

If you want to compare a SystemColor value with a Color object you have created, then you must use
the getRGB() method in the comparison. This is because the SystemColor class stores the colors inter-
nally in a way that makes use of the fields it inherits from the Color class differently from a normal
Color object. For example, to see whether colorA corresponds to the system background color for a
window, you could write:

if(colorA.getRGB() == SystemColor.window.getRGB()) {

// colorA is the window background color...

}

Of course, because SystemColor is a subclass of the Color class, it inherits all the members of that class,
including all the color constants that you saw in the previous section.

Creating Cursors
An object of the java.awt.Cursor class encapsulates a bitmap representation of the mouse cursor. The
Cursor class contains a range of final static constants that specify standard cursor types. You use
these to select or create a particular cursor. The standard cursor types are:

DEFAULT_CURSOR N_RESIZE_CURSOR NE_RESIZE_CURSOR

CROSSHAIR_CURSOR S_RESIZE_CURSOR NW_RESIZE_CURSOR

WAIT_CURSOR E_RESIZE_CURSOR SE_RESIZE_CURSOR

TEXT_CURSOR W_RESIZE_CURSOR SW_RESIZE_CURSOR

HAND_CURSOR MOVE_CURSOR

The resize cursors are the ones you see when resizing a window by dragging its boundaries. Note that
these are not like the Color constants, which are Color objects — these constants are of type int, not
type Cursor, and are intended to be used as arguments to a constructor.

To create a Cursor object representing a text cursor you could write:

Cursor myCursor = new Cursor(Cursor.TEXT_CURSOR);

791

Creating Windows

Alternatively, you can retrieve a cursor of the predefined type using a static class method:

Cursor myCursor = Cursor.getPredefinedCursor(Cursor.TEXT_CURSOR);

This method is particularly useful when you don’t want to store the Cursor object, but just want to pass
it to a method, such as setCursor() for a Component object.

If you want to see what the standard cursors look like, you could add a cursor to the previous example,
along with the pink background:

Try It Out Color and Cursors
You can change the background color of the content pane for the application window and try out a dif-
ferent cursor. Make the following changes to TryWindow2.java, which is the example you created ear-
lier that utilizes the toolkit:

import javax.swing.JFrame;

import java.awt.Toolkit;

import java.awt.Dimension;

import java.awt.Color;

import java.awt.Cursor;

public class TryWindow4 {

// The window object

static JFrame aWindow = new JFrame(“This is the Window Title”);

public static void main(String[] args)

{

Toolkit theKit = aWindow.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

aWindow.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

aWindow.setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));

aWindow.getContentPane().setBackground(Color.PINK);

aWindow.setVisible(true); // Display the window

}

}

You can try all the cursors by plugging in each of the standard cursor names in turn. You could also try
out a few variations on the background color.

Selecting Fonts
An object of type Font represents a font. The Font class is actually quite complicated, so I’ll only scratch
the surface of the class enough for your needs here. The Font class differentiates between a character —
the letter uppercase Q, say — and a glyph, which is the shape defining its appearance when it is dis-
played or printed. In general, a given character in one font will have a different glyph in a different font.
For fonts corresponding to many languages — German, French, or Finnish, for example — a character
may involve more than one glyph to display it. This is typically the case for characters that involve

792

Chapter 17

diacritic marks, which are additional graphics attached to a character. The letter ä, for example, com-
bines the normal letter a with an umlaut, the two dots over it, so it may be represented by two glyphs,
one for the appearance of the letter and the other for the appearance of the umlaut. A Font object con-
tains a table that maps the Unicode value for each character to the glyph code or codes that create the
visual representation of the character.

To create a Font object you must supply the font name, the style of the font, and the point size. For
example, consider the following statement:

Font myFont = new Font(“Serif”, Font.ITALIC, 12);

This defines a 12-point Times Roman italic font. The other options you could use for the style are PLAIN
and BOLD. The name you have given to the font here, “Serif”, is a logical font name. Other logical font
names you could have used are “Dialog”, “DialogInput”, “Monospaced”, or “SansSerif”. Instead
of a logical font name, you can supply a physical font face name — the name of a particular font, such as
“Times New Roman” or “Palatino”. Swing components work with either logical fonts or physical
fonts, whereas AWT components can use only logical fonts. Logical fonts have the advantage that they
will work on any platform, so you can use a logical font without needing to verify its availability.
However, the appearance of a logical font may vary from one platform to another. Using physical fonts
provides a lot more flexibility, but the font you are using must be available on the platform on which
your code is executing.

It is important to keep in mind that fonts are for presenting characters visually, on the screen or on a
printer, for example. Although Java has a built-in capability to represent characters by Unicode codes, it
doesn’t have any fonts because it doesn’t display or print characters itself. The responsibility for this
rests entirely with your operating system. Although your Java programs can store strings of Japanese or
Tibetan characters, if your operating system doesn’t have fonts for these characters you can’t display or
print them. Therefore, to display or print text in the way that you want, you need to know what font face
names are available in the system on which your code is running. I will come back to this in a moment.

You can specify combined font styles by ORing or adding them together because each style is a single-bit
integer. If you want myFont to be BOLD and ITALIC you would have written the statement as follows:

Font myFont = new Font(“Serif”, Font.ITALIC + Font.BOLD, 12);

You retrieve the style and size of an existing Font object by calling its methods getStyle() and
getSize(), both of which return a value of type int. You can also check the individual font style for a
Font object with the methods isPlain(), isBold(), and isItalic(). Each of these methods returns a
boolean value indicating whether the Font object has that style.

Before you create a font using a particular font face name, you need to know whether the font is avail-
able on the system where your code is executing. For this you need to use a method, getAllFonts(), in
the GraphicsEnvironment class defined in the java.awt package. You met this class earlier when you
were centering a window. You could obtain an array of the fonts available as follows:

GraphicsEnvironment e = GraphicsEnvironment.getLocalGraphicsEnvironment();

Font[] fonts = e.getAllFonts(); // Get the fonts

You get a reference to the GraphicsEnvironment object for the current machine by calling the static
method getLocalGraphicsEnvironment(). You then use the reference that is returned to call its

793

Creating Windows

getAllFonts() method. The getAllFonts() method returns an array of Font objects consisting of
those available on the current system. You can then check this list for the font you want to use. Each of
the Font instances in the array will be of a 1-point size, and since 1 point is approximately 1/72 of an
inch, or 0.353 mm, you will typically want to change this unless your screen and eyesight are really
exceptional. To change the size and/or style of a font, you call its deriveFont() method. This method
comes in three versions, each of which returns a new Font object with the specified size and/or style:

deriveFont() Method Description

deriveFont(int Style) Creates a new Font object with the style specified — one of
PLAIN, BOLD, ITALIC, or BOLD+ITALIC

deriveFont(float size) Creates a new Font object with the size specified

deriveFont(int Style, Creates a new Font object with the style and size specified
float size)

To use the last font from the array of Font objects to create an equivalent 12-point font you could write:

Font newFont = fonts[fonts.length-1].deriveFont(12.0f);

If you look in the documentation for the Font class, you will see that there is a fourth version of
deriveFont() that involves an object of type java.awt.geom.AffineTransform, but I’ll defer dis-
cussion of AffineTransform objects until Chapter 20.

Getting a Font object for every font in the system can be a time-consuming process if you have many
fonts installed. A much faster alternative is to get the font names and then use one of these to create the
Font object that you require. You can get the face names for all the fonts in a system like this:

GraphicsEnvironment e = GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontnames = e.getAvailableFontFamilyNames();

The array fontnames will contain the names of all the font faces available, and you can use one or more
of these to create the Font objects you need.

Try It Out Getting the List of Fonts
This program will output your screen’s size and resolution, as well as the list of font family names
installed on your machine:

import java.awt.Toolkit;

import java.awt.GraphicsEnvironment;

import java.awt.Font;

import java.awt.Dimension;

public class FontInfo {

public static void main(String[] args) {

Toolkit theKit = Toolkit.getDefaultToolkit();

System.out.println(“\nScreen Resolution: “

+ theKit.getScreenResolution() + “ dots per inch”);

794

Chapter 17

Dimension screenDim = theKit.getScreenSize();

System.out.println(“Screen Size: “

+ screenDim.width + “ by “

+ screenDim.height + “ pixels”);

GraphicsEnvironment e = GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontnames = e.getAvailableFontFamilyNames();

System.out.println(“\nFonts available on this platform: “);

int count = 0;

for (String fontname : fontnames) {

System.out.printf(“%-30s”, fontname);

if(++count % 3 == 0) {

System.out.println();

}

}

return;

}

}

On my system I get the following output:

Screen Resolution: 96 dots per inch

Screen Size: 1024 by 768 pixels

18thCentury Alien Encounters Almonte Snow

Arial Arial Black Arial Narrow

Arial Unicode MS Asimov Baby Kruffy

Balloonist Batang BN Jinx

BN Machine Bobcat Book Antiqua

Bookman Old Style Candles Century

Century Gothic Chinyen Comic Sans MS

Courier New Cracked Johnnie Creepygirl

Dialog DialogInput Digifit

. . . plus many more font names.

How It Works
You first get a Toolkit object by calling the static method getDefaultToolkit()— this is the key to
the other information. The getScreenResolution() method returns the number of pixels per inch as a
value of type int. The getScreenSize() method returns a Dimension object that specifies the width
and height of the screen in pixels.

You use the getAvailableFontFamilyNames() method discussed previously to get a String array
containing the names of the fonts, which you output to the command line.

Font Metrics
Every component has a getFontMetrics() method that you can use to retrieve font metrics — the
wealth of dimensional data about a font. You pass a Font object as an argument to the method, and it
returns an object of type FontMetrics that you can use to obtain data relating to the particular font. For

795

Creating Windows

example, if aWindow is a Frame object and myFont is a Font object, you could obtain a FontMetrics
object corresponding to the font with the following statement:

FontMetrics metrics = aWindow.getFontMetrics(myFont);

You could use the getFont() method for a component to explore the characteristics of the font that the
component contains. For example:

FontMetrics metrics = aWindow.getFontMetrics(aWindow.getFont());

You can now call any of the following FontMetrics methods for the object to get at the basic dimen-
sions of the font:

Method Description

int getAscent() Returns the ascent of the font, which is the distance from the baseline
to the top of the majority of the characters in the font. The baseline is
the line on which the characters rest. Depending on the font, some
characters can extend beyond the ascent.

int getMaxAscent() Returns the maximum ascent for the font. No character will exceed
this ascent.

int getDescent() Returns the descent of the font, which is the distance from the base-
line to the bottom of most of the font characters that extend below
the baseline. Depending on the font, some characters may extend
beyond the descent for the font.

int getMaxDescent() Returns the maximum descent of the characters in the font. No char-
acter will exceed this descent.

int getLeading() Returns the leading for the font, which is the line spacing for the font
— that is the spacing between the bottom of one line of text and the
top of the next. The term originated when type was actually made of
lead, and there was a strip of lead between one line of type and the
next when a page was typeset.

int getHeight() Returns the height of the font, which is defined as the sum of the
ascent, the descent, and the leading.

Figure 17-9 shows how the dimensions relate to the font.

The advance width for a character is the distance from the reference point of the character to the refer-
ence point of the next character. The reference point for a character is on the baseline at the left edge of
the character. Each character will have its own advance width, which you can obtain by calling a
FontMetrics method charWidth(). For example, to obtain the advance width for the character ‘X’,
the following statement could be used:

int widthX = metrics.charWidth(‘X’);

796

Chapter 17

Figure 17-9

You can also obtain the advance widths for all the characters in the font as an array of type int with the
method getWidths():

int[] widths = metrics.getWidths();

The numerical value for the character is used to index the array, so you can get the advance width for the
character ‘X’ with the expression widths[‘X’]. If you just want the maximum advance width for the
characters in the font, you can call the method getMaxAdvance(). Lastly, you can get the total advance
width for a String object by passing the object to the method stringWidth(). The advance width is
returned as a value of type int. It’s important to appreciate that the advance width for a string is not
necessarily the sum of the widths of the characters that it contains.

Although you now know a great deal about how to create and manipulate fonts, you haven’t actually
created and used one. You’ll remedy this after you have a feel for what Swing components can do and
have learned a little about using containers.

Swing Components
Swing components all have the JComponent class as a base, which itself extends the Component class to
add the following capability:

❑ Supports pluggable look-and-feel for components, allowing you to change the look-and-feel
programmatically, or implement your own look-and-feel for all components displayed.

❑ Support for tooltips — a tooltip being a message describing the purpose of a component when
the mouse cursor lingers over it. Tooltips are defined by the JTooltip class.

❑ Support for automatic scrolling in a list, a table, or a tree when a component is dragged with the
mouse.

❑ Special debugging support for graphics, providing component rendering in slow motion so you
can see what is happening.

❑ Component classes can be easily extended to create your own custom components.

advance width

baseline great
graphic

Font Metrics

leading

height height

descent

797

Creating Windows

All the Swing component classes are defined in the javax.swing package and have class names that
begin with J. There are quite a few Swing components, so I’ll give you an overview of what’s available
and how the classes relate to one another and then go into the detail of particular components when you
use them in examples.

Buttons
The Swing button classes in the javax.swing package define various kinds of buttons operated by
clicking with a mouse. The button classes have the AbstractButton class as a base, as shown in
Figure 17-10.

Figure 17-10

The JButton class defines a regular pushbutton that you would use as a dialog button — OK and Cancel
buttons, for example — or in a toolbar, where the buttons might provide alternatives to using menu items.

Figure 17-11

Figure 17-11 is an example of a JButton object as it might be used in a dialog. This component is not the
default appearance of a button but has a border of type BevelBorder added to it.

The JToolBar class is used in conjunction with the JButton class to create a toolbar containing buttons.
A toolbar is dockable without any additional programming effort on your part, as you’ll see.

JComponent

AbstractButton

JButtonJToggleButton

JRadioButtonJCheckBox

798

Chapter 17

The JToggleButton class defines a two-state button, pressed or not, and two more specialized versions
are defined by JCheckBox and JRadioButton. Radio buttons defined as JRadioButton objects gener-
ally operate in a group so that only one button can be in the pressed state at any one time. This grouping
is established by adding the JRadioButton object to a ButtonGroup object that takes care of the state of
the buttons in the group.

Figure 17-12

A JCheckBox object is a button with a square checkbox to the left (see Figure 17-12). Clicking on the
checkbox changes its state from checked to unchecked or vice versa.

All the buttons can be displayed with a text label, an icon, or both.

Menus
The Swing components include support for pop-up or context menus as well as menu bars. The classes
defining elements of a menu are shown in Figure 17-13.

Figure 17-13

The JMenuBar class defines a menu bar usually found at the top of an application window. A JMenu

object represents a top-level menu item on a menu bar that drops down a list of menu items when it is
clicked. The items in a menu are defined by the JMenuItem class. The JPopupMenu class defines a con-
text menu that is typically implemented to appear at the current cursor position when the right mouse
button is clicked. A JCheckBoxMenuItem component is a menu item with a checkbox that is ticked
when the item is selected. The JRadioButtonMenuItem class defines a menu item that is part of
a group where only one item can be selected at any time. The group is created by adding
JRadioButtonMenuItem objects to a ButtonGroup object. You’ll be implementing a menu in an appli-
cation and an applet later in this chapter.

JComponent

AbstractButtonJMenuBar JPopupMenu

JRadioButtonMenuItem JCheckBoxMenuItem

JMenuItem

JMenu

799

Creating Windows

Text Components
The capability of the Swing text components is very wide indeed. The classes in the javax.swing pack-
ages that represent text components are shown in Figure 17-14. Like all Swing components, they have
the JComponent class as a base.

Figure 17-14

The most elementary text component is a JLabel object, as shown in Figure 17-15. A
JLabel component is passive and does not react to input events so you can’t edit it.

A JTextField component looks similar to a label in that it displays a single line of text, but in this case
it is editable. An example is shown in Figure 17-16.

A JFormattedTextField component is a JTextField component that can control
and format the data that is displayed or entered. It can supply automatic formatting in
many instances. In Figure 17-16, it has automatically displayed a Date object as a date.

The JTextArea class defines a component that allows editing of multiline
text, as shown in Figure 17-17. A JTextArea component does not support
scrolling directly, but it’s easy to add scrollbars by placing the JTextArea
component in a JScrollPane container.

Figure 17-17

The JEditorPane and JTextPane components are a different order of complexity from the others and
enable you to implement sophisticated editing facilities relatively easily. The JEditorPane supports
editing of plaintext, text in HTML, and RTF (Rich Text Format). The JTextPane class extends
JEditorPane and enables you to embed images or other components within the text managed by the
component.

Other Swing Components
Other Swing components you will use regularly include the JPanel component. The JPanel class
defines something like a physical panel that you can use as a container to group a set of components. For

JComponent

JTextComponent

JTextField

JEditorPane

JTextPane

JLabel

JTextArea

JFormattedTextField

800

Chapter 17

Figure 17-15

Figure 17-16

example, you might use two JPanel objects to support two separate groups of JButton components in
the content pane of an application window.

The JList and JTable components are also very useful. A JList component that
implements a list of items is shown in Figure 17-18 with a line border around it.

Figure 17-18

Figure 17-19 shows a JTable component
that implements a table of items from
which you can select a row, a column, or a
single element.

Figure 17-19

A JTable component automatically takes care of reordering the columns when a column is dragged to a
new position using the mouse.

In principle, any component can have a border added, and the javax.swing.borders package con-
tains eight classes that represent different kinds of borders you can use for a component. However, you
can also place a component to which you want to add a border in a JPanel container, and add the bor-
der to the JPanel object. You’ll be using JPanel containers quite a lot throughout the rest of the book.

I have not introduced all the Swing component classes by any means, and you’ll be meeting a few more
as you progress through the rest of the chapters.

Using Containers
A container is any component of a type that has the Container class as a base; so all the Swing compo-
nents are containers. The Container class is the direct base class for the Window class, and it provides
the capability for a window to contain other components. Since the Container class is an abstract
class, you cannot create instances of Container. Instead, it’s objects of the subclasses such as Window,
JFrame, or JDialog that inherit the capability to contain other components.

The components within a container are displayed within the area occupied by the container on the dis-
play screen. A dialog box, for example, might contain a JList object offering some options; JCheckbox
objects offering other options and JButton objects representing buttons enabling the user to end the dia-
log or enter the selections — all these components would appear within the boundaries of the dialog box.
Of course, for the contained components to be visible, the container must itself be displayed, as the con-
tainer effectively “owns” its components. The container also controls how its embedded components are
laid out by means of an object called a layout manager.

Note that a container cannot contain an object of the class Window, or an object of
any of the classes derived from Window. An object of any other class that is derived
from Component can be added to a container.

801

Creating Windows

Before I introduce you to what a layout manager is and how the layout of the components in a container
is determined, let’s consider the basic methods that the Container class defines that are available to all
containers.

You can find out about the components in a Container object by using the following methods that are
defined in the Container class:

Method Description

int getComponentCount() Returns a count of the number of components con-
tained by the current component.

Component getComponent(int index) Returns the component identified by the index
value. The index value is an array index so it must
be between 0 and one less than the number of com-
ponents contained; otherwise, an ArrayIndex
OutOfBoundsException will be thrown.

Component[] getComponents() Returns an array of all the components in the cur-
rent container.

You can also obtain a reference to a component that contains a given point within the area occupied by
the container by calling the getComponentAt() method, with the x and y coordinates of the point as
arguments. If more than one component contains the point, a reference to the component closest to
index 0 in the container will be returned.

If you have a Container object, content, perhaps the content pane of a JFrame window, you could
iterate through the components in the Container with the following statements:

Component component = null; // Stores a Component

int numComponents = content.getComponentCount(); // Get the count

for(int i = 0; i < numComponents; i++) {

component = content.getComponent(i); // Get each component

// Do something with component...

}

This retrieves the components in content one at a time in the for loop. Alternatively, you could retrieve
them from the container all at once:

Component[] theComponents = content.getComponents(); // Get all components

for(Component component : theComponents) {

// Do something with component...

}

Adding Components to a Container
The components that you add to a container are recorded in an array within the Container object. The
array is increased in size when necessary to accommodate as many components as are present. To add a

802

Chapter 17

component to a container, you use the add() method. The Container class defines the following four
overloaded versions of the add() method:

add() Method Description

Component add(Component c) Adds the component c to the end of the list of
components stored in the container. The return
value is c.

Component add(Component c, Adds the component c to the list of components
int index) in the container at the position specified by

index. If index is -1, the component is added
to the end of the list. If the value of index is not
-1, it must be less than the number of compo-
nents in the container and greater than or equal
to 0. The return value is c.

void add(Component c, Adds the component c to the end of the list of
Object constraints) components stored in the container. The posi-

tion of the component relative to the container
is subject to the constraints defined by the sec-
ond parameter. You’ll learn about constraints in
the next section.

void add(Component c, Adds the component c to the list of components
Object constraints, in the container at the position specified by
int index) index and the position subject to

constraints. If index is -1, the component is
added to the end of the list. If the value of
index is not -1, it must be less than the number
of components in the container and greater than
or equal to 0.

Note that adding a component does not displace any components already in the container. When you
add a component at a given position, other components are moved in the sequence to make room for the
new one. However, a component can be in only one container at a time. Adding a component to a con-
tainer that is already in another container will remove it from the original container.

Before you can try adding components to a container, you need to understand the constraints that appear
in some of the add() methods and look at how the layout of components in a container is controlled.

Container Layout Managers
As I said earlier, an object called a layout manager determines the way that components are arranged in
a container. All containers will have a default layout manager, but you can choose a different layout
manager when necessary. Many layout manager classes are provided in the java.awt and
javax.swing packages, so I’ll introduce those that you are most likely to need. It is also possible to cre-
ate your own layout manager classes, but creating layout managers is beyond the scope of this book. The

803

Creating Windows

layout manager for a container determines the position and size of all the components in the container,
so you should not generally change the size and position of such components yourself; just let the layout
manager take care of it.

Since the classes that define layout managers all implement the LayoutManager interface, you can use a
variable of type LayoutManager to store any of them if necessary. I’ll introduce six layout manager
classes in a little more detail. The names of these classes and the basic arrangements that they provide
are as follows:

Layout Manager Description

FlowLayout Places components in successive rows in a container, fitting as many on
each row as possible and starting on the next row as soon as a row is full.
This works in much the same way as your text processor places words on a
line. Its primary use is for arranging buttons, although you can use it with
other components. It is the default layout manager for JPanel objects.

BorderLayout Places components against any of the four borders of the container and in
the center. The component in the center fills the available space. This layout
manager is the default for the contentPane in a JFrame, JDialog, or
JApplet object.

CardLayout Places components in a container one on top of the other — like a deck of
cards. Only the “top” component is visible at any one time.

GridLayout Places components in the container in a rectangular grid with the number
of rows and columns that you specify.

GridBagLayout This also places the components into an arrangement of rows and columns,
but the rows and columns can vary in length. This is a complicated layout
manager with a lot of flexibility in how you control where components are
placed in a container.

BoxLayout This arranges components either in a row or in a column. In either case the
components are clipped to fit if necessary, rather than wrapping to the next
row or column. The BoxLayout manager is the default for the Box con-
tainer class.

SpringLayout Allows components to have their position defined by “springs” or “struts”
fixed to an edge of the container or another component in the container.

The BoxLayout, SpringLayout, and Box classes are defined in the javax.swing package. The other
layout manager classes in the list above are defined in java.awt.

One question you might ask is why do you need layout managers at all? Why can’t you just place com-
ponents at some given position in a container? The basic reason is to ensure that the GUI elements for
your Java program are displayed properly in every possible Java environment. Layout managers auto-
matically adjust the size and positions of components to fit within the space available. If you fix the size
and position of each of the components, they could run into one another and overlap if the screen area
available to your program is reduced.

804

Chapter 17

To set the layout manager for a Container object, you can call its setLayout() method. For example,
you could change the layout manager for the Container object aWindow of type JFrame from its
default BorderLayout layout manager to flow layout with the following statements:

FlowLayout flow = new FlowLayout();

aWindow.getContentPane().setLayout(flow);

Remember that components that you want to display in the client area of a JFrame object should be
added to its content pane. The same goes for JDialog and JApplet objects. In fact, if you use the add()
method for a JFrame , JDialog, or JApplet object to add a component, it will be redirected to the con-
tent pane, so everything will be as it should be. This convenience facility is there for consistency with
similar AWT components. However, for some other operations — setting the background color, for
example — you must call the method belonging to the content pane object for things to turn out as you
expect. For this reason I think it’s better to explicitly perform all operations on the content pane rather
than rely on redirection by the parent frame object. That way you won’t forget that it’s the content pane
you are working with.

With some containers you can set the layout manager in the constructor for that container, as you’ll see
in later examples. Let’s look at how the layout managers work, and some examples of how you might
use them in practice.

The Flow Layout Manager
The flow layout manager places components in a row, and when the row is full, it automatically spills
components onto the next row. The default positioning of the row of components is centered in the con-
tainer, and the default orientation is from left to right. You have five possible row-positioning options
that you specify by constants of type int that are defined in the FlowLayout class. These are LEFT,
RIGHT, CENTER, LEADING, and TRAILING. LEADING and TRAILING specify the edge of the component to
which the row should be justified. The effects of the first three on the alignment of a row of components
are what you would expect. The CENTER option is the default. By default, components in a row are sepa-
rated by a five-unit gap and successive rows are separated by the same distance.

The flow layout manager is very easy to use, so let’s jump straight in and see it working in an example.

Try It Out Using a Flow Layout Manager
As I said earlier, this layout manager is used primarily to arrange a few components whose relative posi-
tion is unimportant. Let’s implement a TryFlowLayout program based on the TryWindow example:

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.Toolkit;

import java.awt.Dimension;

import java.awt.Container;

import java.awt.FlowLayout;

public class TryFlowLayout {

// The window object

static JFrame aWindow = new JFrame(“This is a Flow Layout”);

805

Creating Windows

public static void main(String[] args) {

Toolkit theKit = aWindow.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

aWindow.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

FlowLayout flow = new FlowLayout(); // Create a layout manager

Container content = aWindow.getContentPane(); // Get the content pane

content.setLayout(flow); // Set the container layout mgr

// Now add six button components

for(int i = 1; i <= 6; i++)

content.add(new JButton(“Press “ + i)); // Add a Button to content pane

aWindow.setVisible(true); // Display the window

}

}

The new or modified code compared to the TryWindow example is highlighted.

How It Works
The new code is quite simple. You create a FlowLayout object and make this the layout manager for
aWindow by calling setLayout(). You then add six JButton components of a default size to aWindow
in the loop.

If you compile and run the program, you should get a window similar to the one shown in Figure 17-20:

Figure 17-20

806

Chapter 17

The Button objects are positioned by the layout manager flow. As you can see, they have been added to
the first row in the window, and the row is centered. You can confirm that the row is centered and see
how the layout manger automatically spills the components onto the next row once a row is full by
reducing the size of the window by dragging the window boundaries. The result on my computer is
shown in Figure 17-21.

Figure 17-21

Here the second row is clearly centered. Each button component has been set to its preferred size, which
comfortably accommodates the text for the label. The centering is determined by the alignment con-
straint for the layout manager, which defaults to CENTER.

It can also be set to RIGHT or LEFT by using a different constructor. For example, you could have created
the layout manager with the statement:

FlowLayout flow = new FlowLayout(FlowLayout.LEFT);

The flow layout manager then left aligns each row of components in the container. If you run the program
with this definition and resize the window, you should be able to make it will look like Figure 17-22.

Figure 17-22

Now the buttons are clearly left aligned. I have reduced the width of the window so two of the buttons
have spilled from the first row to the second because there is insufficient space across the width of the
window to accommodate them all.

Changing the Gap
The flow layout manager in the previous examples applies a default gap of 5 pixels between compo-
nents in a row, and between one row and the next. You can choose values for the horizontal and vertical
gaps by using yet another FlowLayout constructor. You can set the horizontal gap to 20 pixels and the
vertical gap to 30 pixels in the last example with the statement:

FlowLayout flow = new FlowLayout(FlowLayout.LEFT, 20, 30);

807

Creating Windows

If you rerun the program with this definition of the layout manager, you should see a window with the
buttons arranged as in Figure 17-23.

Figure 17-23

You can also set the gaps between components and rows explicitly by calling the setHgap() or the
setVgap() method. To set the horizontal gap to 35 pixels, you would write:

flow.setHgap(35); // Set the horizontal gap

Don’t be misled by this. You can’t get differential spacing between components by setting the gap before
adding each component to a container. The last values for the gaps between components that you set for
a layout manager will apply to all the components in a container. This is because the layout is recalcu-
lated dynamically each time the container is displayed. Of course, many different events may necessitate
a container being redisplayed while an application is running. The methods getHgap() and getVgap()

will return the current setting for the horizontal or vertical gap as a value of type int.

The initial size at which the application window is displayed is determined by the values you pass to the
setBounds() method for the JFrame object. If you want the window to assume a size that just accom-
modates the components it contains, you can call the pack() method for the JFrame object. Add the fol-
lowing line immediately before the call to setVisible():

aWindow.pack();

If you recompile and run the example again, the application window should fit the components and
appear as shown in Figure 17-24.

808

Chapter 17

Figure 17-24

As I’ve said, you add components to an applet created as a JApplet object in the same way as for a
JFrame application window. You can verify this by adding some buttons to an example of an applet.
You can try out a Font object and add a border to the buttons to brighten them up a bit at the same time.

Try It Out Adding Buttons to an Applet
You can define the class for an applet displaying buttons as follows:

import javax.swing.JButton;

import javax.swing.JApplet;

import java.awt.Font;

import java.awt.Container;

import java.awt.FlowLayout;

import javax.swing.border.BevelBorder;

public class TryApplet extends JApplet {

public void init() {

Container content = getContentPane(); // Get content pane

content.setLayout(new FlowLayout(FlowLayout.RIGHT)); // Set layout

JButton button; // Stores a button

Font[] fonts = { new Font(“Serif”, Font.ITALIC, 10), // Two fonts

new Font(“Dialog”, Font.PLAIN, 14)

};

BevelBorder edge = new BevelBorder(BevelBorder.RAISED); // Bevelled border

// Add the buttons using alternate fonts

for(int i = 1; i <= 6; i++) {

content.add(button = new JButton(“Press “ + i)); // Add the button

button.setFont(fonts[i%2]); // One of our own fonts

button.setBorder(edge); // Set the button border

}

}

}

Of course, to run the applet you will need an .html file containing the following:

<APPLET CODE=”TryApplet.class” WIDTH=300 HEIGHT=200>

</APPLET>

809

Creating Windows

This specifies the width and height of the applet — you can use your own values here if you wish. You
can save the file as TryApplet.htm.

Once you have compiled the applet source code using javac, you can execute it with the
appletviewer program by entering the following command from the folder containing the .htm file
and the .class file:

appletviewer TryApplet.htm

You should see the Applet Viewer window displaying the applet as in Figure 17-25.

Figure 17-25

The arrangement of the buttons is now right-justified in the flow layout. You have the button labels
alternating between the two fonts that you created. The buttons also look more like buttons with a
beveled edge.

How It Works
As you saw in Chapter 1, an applet is executed rather differently from a Java program, and it is not
really an independent program at all. The browser (or appletviewer in this case) initiates and controls
the execution of the applet. An applet does not require a main() method. To execute the applet, the
browser first creates an instance of our applet class, TryApplet, and then calls the init() method for it.
This method is inherited from the Applet class (the base for JApplet) and you typically override this
method to provide your own initialization.

Before creating the buttons, you create a BevelBorder object that you’ll use to specify the border for
each button. In the loop that adds the buttons to the content pane for the applet, you select one or other
of the Font objects you have created, depending on whether the loop index is even or odd and then set
edge as the border by calling the setBorder() member. This would be the same for any component.
Note how the size of each button is automatically adjusted to accommodate the button label. Of course,
the fonts in the example are both logical fonts, so they’ll be available on every system. If you want to try
physical fonts, choose two from those that you have installed on your system.

The buttons look much better with raised edges. If you wanted them to appear sunken, you would spec-
ify BevelBorder.LOWERED as the constructor argument. You might like to try out a SoftBevelBorder,

810

Chapter 17

too. All you need to do is use the class name, SoftBevelBorder, when creating the border. Don’t forget
the import statement for the class name; the border classes are defined in the javax.swing.border
package.

Using a Border Layout Manager
The border layout manager is intended to place up to five components in a container. With this layout
manager you can place components on any of the four borders of the container and in the center. Only
one component can be at each position. If you add a component at a position that is already occupied,
the previous component will be displaced. A border is selected by specifying a constraint that can be
NORTH, SOUTH, EAST, WEST, or CENTER. These are all final static constants defined in the
BorderLayout class.

You can’t specify the constraints in the BorderLayout constructor since a different constraint has to be
applied to each component. You specify the position of each component in a container when you add it
using the add() method. You can modify the earlier application example to add five buttons to the con-
tent pane of the application window in a border layout:

Try It Out Testing the BorderLayout Manager
Make the following changes to TryFlowLayout.java to try out the border layout manager and exercise
another border class:

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.Toolkit;

import java.awt.Dimension;

import java.awt.Container;

import java.awt.BorderLayout;

import javax.swing.border.EtchedBorder;

public class TryBorderLayout {

// The window object

static JFrame aWindow = new JFrame(“This is a Border Layout”);

public static void main(String[] args) {

Toolkit theKit = aWindow.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

aWindow.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

BorderLayout border = new BorderLayout(); // Create a layout manager

Container content = aWindow.getContentPane(); // Get the content pane

content.setLayout(border); // Set the container layout mgr

EtchedBorder edge = new EtchedBorder(EtchedBorder.RAISED); // Button border

// Now add five JButton components and set their borders

JButton button;

811

Creating Windows

content.add(button = new JButton(“EAST”), BorderLayout.EAST);

button.setBorder(edge);

content.add(button = new JButton(“WEST”), BorderLayout.WEST);

button.setBorder(edge);

content.add(button = new JButton(“NORTH”), BorderLayout.NORTH);

button.setBorder(edge);

content.add(button = new JButton(“SOUTH”), BorderLayout.SOUTH);

button.setBorder(edge);

content.add(button = new JButton(“CENTER”), BorderLayout.CENTER);

button.setBorder(edge);

aWindow.setVisible(true); // Display the window

}

}

If you compile and execute the example, you’ll see the window shown in Figure 17-26.

Figure 17-26

You can see here how a raised EtchedBorder edge to the buttons looks.

How It Works
Components laid out with a border layout manager are extended to fill the space available in the con-
tainer. The “NORTH” and “SOUTH” buttons are the full width of the window and the “EAST” and “WEST”

buttons occupy the height remaining unoccupied once the “NORTH” and “SOUTH” buttons are in place. It
always works like this, regardless of the sequence in which you add the buttons — the “NORTH” and
“SOUTH” components occupy the full width of the container and the “CENTER” component takes up the
remaining space. If there are no “NORTH” and “SOUTH” components, the “EAST” and “WEST” compo-
nents will extend to the full height of the container.

812

Chapter 17

The width of the “EAST” and “WEST” buttons is determined by the space required to display the button
labels. Similarly, the “NORTH” and “SOUTH” buttons are determined by the height of the characters in the
labels.

You can alter the spacing between components by passing arguments to the BorderLayout constructor —
the default gaps are zero. For example, you could set the horizontal gap to 20 pixels and the vertical gap
to 30 pixels with the following statement:

content.setLayout(new BorderLayout(20, 30));

Like the flow layout manager, you can also set the gaps individually by calling the methods setHgap()
and setVgap() for the BorderLayout object. For example:

BorderLayout border = new BorderLayout(); // Construct the object

content.setLayout(border); // Set the layout

border.setHgap(20); // Set horizontal gap

This sets the horizontal gap between the components to 20 pixels and leaves the vertical gap at the
default value of zero. You can also retrieve the current values for the gaps with the getHgap() and
getVgap() methods.

Using a Card Layout Manager
The card layout manager generates a stack of components, one on top of the other. The first component
that you add to the container will be at the top of the stack, and therefore visible, and the last one will be
at the bottom. You can create a CardLayout object with the default constructor, CardLayout(), or you
can specify horizontal and vertical gaps as arguments to the constructor. The gaps in this case are between
the edge of the component and the boundary of the container. You can see how this works in an applet:

Try It Out Dealing Components
Because of the way a card layout works, you need a way to interact with the applet to switch from one
component to the next. You’ll implement this by enabling mouse events to be processed, but I won’t
explain the code that does this in detail here. I’ll leave that to the next chapter.

Try the following code:

import javax.swing.JApplet;

import javax.swing.JButton;

import java.awt.Container;

import java.awt.CardLayout;

import java.awt.event.ActionEvent; // Classes to handle events

import java.awt.event.ActionListener;

public class TryCardLayout extends JApplet implements ActionListener {

CardLayout card = new CardLayout(50,50); // Create layout

public void init() {

Container content = getContentPane();

content.setLayout(card); // Set card as the layout mgr

813

Creating Windows

JButton button; // Stores a button

for(int i = 1; i <= 6; i++) {

content.add(button = new JButton(“ Press “ + i), “Card” + i); // Add a button

button.addActionListener(this); // Add listener for button

}

}

// Handle button events

public void actionPerformed(ActionEvent e) {

card.next(getContentPane()); // Switch to the next card

}

}

You’ll need an HTML file to execute the applet containing the following:

<APPLET CODE=”TryCardLayout.class” WIDTH=300 HEIGHT=200>

</APPLET>

If you run the program using appletviewer, the applet should be as shown in Figure 17-27. Click on
the button — and the next button will be displayed.

Figure 17-27

How It Works
You create the CardLayout object, card, with horizontal and vertical gaps of 50 pixels. In the init()
method for the applet, you set card as the layout manager and add six buttons to the content pane. Note
that you have two arguments to the add() method, the first being the reference to the component you
are adding to the container. Using card layout requires that you identify each component by an object of
some class type and you supply this via the second argument to the add() method — the method
parameter is of type Object. In this example, you pass a String object as the second argument to the
add() method because you are using an arbitrary string to identify each component consisting of the
string “Card” with the sequence number of the button appended to it.

814

Chapter 17

Within the loop you call the addActionListener() method for each button to identify the applet object
as the object that will handle events generated for the button (such as clicking on it with the mouse).
When you click on a button, the actionPerformed() method for the applet object will be called. This
just calls the next() method for the layout object to move the next component in sequence to the top.
You’ll be looking at event handling in more detail in the next chapter.

The argument to the next() method identifies the container as the TryCardLayout object that is cre-
ated when the applet starts. The CardLayout class has other methods that you can use for selecting
from the stack of components:

Method Description

void previous(Container parent) Selects the previous component in the
container parent.

void first(Container parent) Selects the first component in the
container parent.

void last(Container parent) Selects the last component in the
container parent.

void show(Container parent, String name) Selects the component in the container
parent associated with the String object
name. This must be one of the String
objects specified when you called the
add() method to add components.

Using the next() or previous() methods, you can cycle through the components repeatedly, since the
next component after the last is the first, and the component before the first is the last.

The String object that you supplied when adding a button to the container identifies the button and
can be used to switch to any of them. For example, you could switch to the button associated with
“Card4” before the applet is displayed by adding the following statement after the loop that adds the
buttons:

card.show(content, “Card4”); // Switch to button “Card4”

This calls the show() method for the layout manager. The first argument is the container and the second
argument is the object identifying the component to be at the top, and therefore the one that is visible
when the window is displayed.

Using a Grid Layout Manager
A grid layout manager arranges components in a rectangular grid within the container. You have three
constructors for creating GridLayout objects:

815

Creating Windows

Constructor Description

GridLayout() Creates a grid layout manager that will arrange com-
ponents in a single row (that is, a single column per
component) with no gaps between components

GridLayout(int rows, Creates a grid layout manager that arranges
int cols) components in a grid with rows number of rows and

cols number of columns, and with no gaps between
components

GridLayout(int rows, Creates a grid layout manager that arranges
int cols, components in a grid with rows number of rows and
int hgap, cols number of columns, and with horizontal and
int vgap) vertical gaps between components of hgap and vgap

pixels, respectively

In the second and third constructors shown in the preceding table, you can specify the number of rows
or the number of columns as zero (but not both). If you specify the number of rows as zero, the layout
manager will provide as many rows in the grid as are necessary to accommodate the number of compo-
nents you add to the container. Similarly, setting the number of columns as zero indicates an arbitrary
number of columns. If you fix both the rows and the columns, and add more components to the con-
tainer than the grid will accommodate, the number of columns will be increased appropriately.

You can try out a grid layout manager in a variation of a previous example.

Try It Out Gridlocking Buttons
Here’s the code to demonstrate a GridLayout layout manager in action:

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.border.EtchedBorder;

import java.awt.Toolkit;

import java.awt.Dimension;

import java.awt.GridLayout;

import java.awt.Container;

public class TryGridLayout {

// The window object

static JFrame aWindow = new JFrame(“This is a Grid Layout”);

public static void main(String[] args) {

Toolkit theKit = aWindow.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

aWindow.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

816

Chapter 17

GridLayout grid = new GridLayout(3,4,30,20); // Create a layout manager

Container content = aWindow.getContentPane(); // Get the content pane

content.setLayout(grid); // Set the container layout mgr

EtchedBorder edge = new EtchedBorder(EtchedBorder.RAISED); // Button border

// Now add ten Button components

JButton button = null; // Stores a button

for(int i = 1; i <= 10; i++) {

content.add(button = new JButton(“ Press “ + i)); // Add a Button

button.setBorder(edge); // Set the border

}

aWindow.pack(); // Size for components

aWindow.setVisible(true); // Display the window

}

}

When you run this example, the application window will appear as shown in Figure 17-28.

Figure 17-28

How It Works
You create a grid layout manager, grid, for three rows and four columns, and with horizontal and verti-
cal gaps between components of 30 and 20 pixels, respectively. You set grid as the layout manager for
the content pane of the application window. You add ten buttons, each with a raised etched border, in
the for loop. The layout manager causes the buttons to be arranged in a rectangular grid arrangement,
with gaps of 30 units between buttons in a row and a gap of 20 units between rows.

Using a BoxLayout Manager
The javax.swing.BoxLayout class defines a layout manager that arranges components in either a sin-
gle row or a single column. You specify whether you want a row-wise or a columnar arrangement when
creating the BoxLayout object. The BoxLayout constructor requires two arguments. The first is a refer-
ence to the container to which the layout manager applies, and the second is a constant value that can be
either BoxLayout.X_AXIS for a row-wise arrangement or BoxLayout.Y_AXIS for a column-wise
arrangement.

Components are added from left to right in a row, or from top to bottom in a column. Components in a
given row or column do not spill onto the next row or column when the row is full. When more com-
ponets have been added to a row or column than can be accommodated within the space available, the
layout manager will reduce the size of the components or even clip them if necessary and keep them all
in a single row or column. With a row of components, the box layout manager will try to make all the
components the same height and try to set a column of components to the same width.

817

Creating Windows

The javax.swing.Box container class is particularly convenient when you need to use a box layout
since it has a BoxLayout manager built in. It also has some additional facilities that provide more flexi-
bility in the arrangement of components than is provided by other containers, such as JPanel objects.
The Box constructor accepts a single argument that specifies the orientation as either
BoxLayout.X_AXIS or BoxLayout.Y_AXIS. The class also has two static methods,
createHorizontalBox() and createVerticalBox(), that each return a reference to a Box container
with the orientation implied.

As I said earlier, a container can contain another container, so you can easily place one Box container
inside another to get any arrangement of rows and columns that you want. Let’s try that out.

Try It Out Boxes Containing Boxes
In this example you’ll create an application that has a window containing a column of radio buttons on
the left, a column of checkboxes on the right, and a row of buttons across the bottom. Here’s the code:

import java.awt.Toolkit;

import java.awt.Dimension;

import java.awt.Container;

import java.awt.BorderLayout;

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.BoxLayout;

import javax.swing.Box;

import javax.swing.ButtonGroup;

import javax.swing.JRadioButton;

import javax.swing.JCheckBox;

import javax.swing.JPanel;

import javax.swing.BorderFactory;

import javax.swing.border.Border;

public class TryBoxLayout {

// The window object

static JFrame aWindow = new JFrame(“This is a Box Layout”);

public static void main(String[] args) {

Toolkit theKit = aWindow.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

aWindow.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Create left column of radio buttons

Box left = Box.createVerticalBox();

ButtonGroup radioGroup = new ButtonGroup(); // Create button group

JRadioButton rbutton; // Stores a button

radioGroup.add(rbutton = new JRadioButton(“Red”)); // Add to group

left.add(rbutton); // Add to Box

radioGroup.add(rbutton = new JRadioButton(“Green”));

left.add(rbutton);

radioGroup.add(rbutton = new JRadioButton(“Blue”));

818

Chapter 17

left.add(rbutton);

radioGroup.add(rbutton = new JRadioButton(“Yellow”));

left.add(rbutton);

// Create right columns of checkboxes

Box right = Box.createVerticalBox();

right.add(new JCheckBox(“Dashed”));

right.add(new JCheckBox(“Thick”));

right.add(new JCheckBox(“Rounded”));

// Create top row to hold left and right

Box top = Box.createHorizontalBox();

top.add(left);

top.add(right);

// Create bottom row of buttons

JPanel bottomPanel = new JPanel();

Border edge = BorderFactory.createRaisedBevelBorder(); // Button border

JButton button;

Dimension size = new Dimension(80,20);

bottomPanel.add(button = new JButton(“Defaults”));

button.setBorder(edge);

button.setPreferredSize(size);

bottomPanel.add(button = new JButton(“OK”));

button.setBorder(edge);

button.setPreferredSize(size);

bottomPanel.add(button = new JButton(“Cancel”));

button.setBorder(edge);

button.setPreferredSize(size);

// Add top and bottom panel to content pane

Container content = aWindow.getContentPane(); // Get content pane

content.setLayout(new BorderLayout()); // Set border layout manager

content.add(top, BorderLayout.CENTER);

content.add(bottomPanel, BorderLayout.SOUTH);

aWindow.pack();

aWindow.setVisible(true); // Display the window

}

}

When you run this example and try out the radio buttons and checkboxes, it should produce a window
something like the one shown in Figure 17-29.

Figure 17-29

It’s not an ideal arrangement, but you’ll improve on it.

819

Creating Windows

How It Works
The shaded code is of interest — the rest you have seen before. The first block in main() creates the left
column of radio buttons providing a color choice. You use a Box object with a vertical orientation to con-
tain the radio buttons. If you tried the radio buttons, you will have found that only one of them can ever
be selected. This is the effect of the ButtonGroup object that is used — to ensure that radio buttons oper-
ate properly, you must add them to a ButtonGroup object.

The ButtonGroup object ensures that only one of the radio buttons it contains can be selected at any
one time. Each time you click on a radio button to select it, any other button that is selected will be
deselected. Note that a ButtonGroup object is not a component — it’s just a logical grouping of radio
buttons — so you can’t add it to a container. You must add the buttons independently of the Box
container that manages their physical arrangement. The Box object for the right-hand group of
JCheckBox objects works in the same way as that for the radio buttons.

Both the Box objects holding the columns are added to another Box object that implements a horizontal
arrangement to position them side-by-side. Note how the vertical Box objects adjust their width to
match that of the largest component in the column. That’s why the two columns are bunched toward the
left side. You’ll see how to improve on this in a moment.

You use a JPanel object to hold the buttons. This has a flow layout manager by default, which is what
you want here. Calling the setPreferredSize() method for each button sets the preferred width and
height to that specified by the Dimension object size. This ensures that, space permitting, each button
will be 80 pixels wide and 20 pixels high.

I have introduced another way of obtaining a border for a component here. The
javax.swing.BorderFactory class contains static methods that return standard borders of various
kinds. The createBevelBorder() method returns a reference to a BevelBorder object as type
Border—Border being an interface that all border objects implement. You use this border for each
of the buttons. You’ll try some more of the methods in the BorderFactory class later.

To improve the layout of the application window, you can make use of some additional facilities pro-
vided by a Box container.

Struts and Glue
The Box class contains static methods to create an invisible component called a strut. A vertical strut has
a given height in pixels and zero width. A horizontal strut has a given width in pixels and zero height.
The purpose of these struts is to enable you to insert space between your components, either vertically
or horizontally. By placing a horizontal strut between two components in a horizontally arranged Box
container, you fix the distance between the components. By adding a horizontal strut to a vertically
arranged Box container, you can force a minimum width on the container. You can use a vertical strut in
a horizontal box to force a minimum height. The way in which you might use struts to fix the vertical
spacing between radio buttons is illustrated in Figure 17-30.

820

Chapter 17

Figure 17-30

Note that although vertical struts have zero width, they have no maximum width so they can expand
horizontally to have a width that takes up any excess space. Similarly, the height of a horizontal strut
will expand when excess vertical space is available.

A vertical strut is returned as an object of type Component by the static createVerticalStrut()
method in the Box class. The argument to the method specifies the height of the strut in pixels. To create
a horizontal strut, you use the createHorizontalStrut() method.

You can space out your radio buttons in the previous example by inserting struts between them:

// Create left column of radio buttons

Box left = Box.createVerticalBox();

left.add(Box.createVerticalStrut(30)); // Starting space

ButtonGroup radioGroup = new ButtonGroup(); // Create button group

JRadioButton rbutton; // Stores a button

radioGroup.add(rbutton = new JRadioButton(“Red”)); // Add to group

left.add(rbutton); // Add to Box

left.add(Box.createVerticalStrut(30)); // Space between

radioGroup.add(rbutton = new JRadioButton(“Green”));

left.add(rbutton);

left.add(Box.createVerticalStrut(30)); // Space between

radioGroup.add(rbutton = new JRadioButton(“Blue”));

left.add(rbutton);

Red

Vertical Box Container

This vertical strut forces
a minimum distance

between the top of the
vertical Box and the first

component

You can use a horizontal
strut in a vertical Box to
force the Box to have a

minimum width

Vertical struts can be
used in a vertical Box to
force a specific distance

between one component in
the container and the next

Green

Blue

Yellow

821

Creating Windows

left.add(Box.createVerticalStrut(30)); // Space between

radioGroup.add(rbutton = new JRadioButton(“Yellow”));

left.add(rbutton);

The extra statements add a 30-pixel vertical strut at the start of the columns, and a further strut of the
same size between each radio button and the next. You can do the same for the checkboxes:

// Create right columns of checkboxes

Box right = Box.createVerticalBox();

right.add(Box.createVerticalStrut(30)); // Starting space

right.add(new JCheckBox(“Dashed”));

right.add(Box.createVerticalStrut(30)); // Space between

right.add(new JCheckBox(“Thick”));

right.add(Box.createVerticalStrut(30)); // Space between

right.add(new JCheckBox(“Rounded”));

If you run the example with these changes, the window will look like the one shown in Figure 17-31.

Figure 17-31

It’s better, but far from perfect. The columns are now equally spaced in the window because the vertical
struts have assumed a width to take up the excess horizontal space that is available. The distribution of
surplus space vertically is different in the two columns because the number of components is different.
You can control where surplus space goes in a Box object with glue. Glue is an invisible component that
has the sole function of taking up surplus space in a Box container.

While the name glue gives the impression that it binds components together, in fact glue provides an
elastic connector between two components that can expand or contract as necessary, so it acts more like a
spring. Glue components can be placed between the actual components in the Box and at either or both
ends. Any surplus space that arises after the actual components have been accommodated is distributed
between the glue components added. If you wanted all the surplus space to be at the beginning of a Box
container, for example, you should first add a single glue component in the container.

You create a component that represents glue by calling the createGlue() method for a Box object. You
then add the glue component to the Box container in the same way as any other component wherever

822

Chapter 17

you want surplus space to be taken up. You can add glue at several positions in a row or column, and
spare space will be distributed between the glue components. You can add glue after the last component
in each column to make all the spare space appear at the end of each column of buttons. For the radio
buttons you can add the following statement:

// Statements adding radio buttons to left Box object...

left.add(Box.createGlue()); // Glue at the end

You can do the same for the right box:

// Statements adding check boxes to right Box object...

right.add(Box.createGlue()); // Glue at the end

The glue component at the end of each column of buttons will take up all the surplus space in each verti-
cal Box container. This will make the buttons line up at the top. Running the program with added glue
will result in the application window shown in Figure 17-32.

Figure 17-32

It’s better now, but let’s put together a final version of the example with some additional embroidery.

Try It Out Embroidering Boxes
You’ll use some JPanel objects with a new kind of border to contain the vertical Box containers:

import java.awt.Toolkit;

import java.awt.Dimension;

import java.awt.Container;

import java.awt.BorderLayout;

import java.awt.Color;

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.BoxLayout;

import javax.swing.Box;

import javax.swing.ButtonGroup;

823

Creating Windows

import javax.swing.JRadioButton;

import javax.swing.JCheckBox;

import javax.swing.JPanel;

import javax.swing.BorderFactory;

import javax.swing.border.Border;

import javax.swing.border.TitledBorder;

import javax.swing.border.EtchedBorder;

import javax.swing.border.CompoundBorder;

import javax.swing.border.BevelBorder;

public class TryBoxLayout4 {

// The window object

static JFrame aWindow = new JFrame(“This is a Box Layout”);

public static void main(String[] args) {

// Set up the window as before...

// Create left column of radio buttons with struts and glue as above...

// Create a panel with a titled border to hold the left Box container

JPanel leftPanel = new JPanel(new BorderLayout());

leftPanel.setBorder(new TitledBorder(

new EtchedBorder(), // Border to use

“Line Color”)); // Border title

leftPanel.add(left, BorderLayout.CENTER);

// Create right columns of checkboxes with struts and glue as above...

// Create a panel with a titled border to hold the right Box container

JPanel rightPanel = new JPanel(new BorderLayout());

rightPanel.setBorder(new TitledBorder(

new EtchedBorder(), // Border to use

“Line Properties”)); // Border title

rightPanel.add(right, BorderLayout.CENTER);

// Create top row to hold left and right

Box top = Box.createHorizontalBox();

top.add(leftPanel);

top.add(Box.createHorizontalStrut(5)); // Space between vertical boxes

top.add(rightPanel);

// Create bottom row of buttons

JPanel bottomPanel = new JPanel();

bottomPanel.setBorder(new CompoundBorder(

BorderFactory.createLineBorder(Color.black, 1), // Outer border

BorderFactory.createBevelBorder(BevelBorder.RAISED))); // Inner border

// Create and add the buttons as before...

Container content = aWindow.getContentPane(); // Set the container layout mgr

BoxLayout box = new BoxLayout(content, BoxLayout.Y_AXIS);

// Vertical for content pane

content.setLayout(box); // Set box layout manager

content.add(top);

content.add(bottomPanel);

aWindow.pack();

aWindow.setVisible(true); // Display the window

}

}

824

Chapter 17

The example will now display the window shown in Figure 17-33.

Figure 17-33

How It Works
Both vertical boxes are now contained within a JPanel container. Because JPanel objects are Swing
components, you can add a border to them, and this time you add a TitledBorder border that you
create directly using the constructor. A TitledBorder is a combination of the border that you specify by
the first argument to the TitledBorder constructor and a title that is a String object you specify as the
second argument to the constructor. You use a border of type EtchedBorder here, but you can use any
type of border.

You introduce space between the two vertically aligned Box containers by adding a horizontal strut to
the Box container that contains them. If you wanted space at each side of the window, you could add
struts to the container before and after the components.

The last improvement is to the panel holding the buttons along the bottom of the window. You now
have a border that is composed of two types, one inside the other: a LineBorder and a BevelBorder. A
CompoundBorder object defines a border that is a composite of two border objects, the first argument to
the constructor being the outer border and the second being the inner border. The LineBorder class
defines a border consisting of a single line of the color specified by its first constructor argument and a
thickness in pixels specified by the second. There is a static method defined for the class,
createBlackLineBorder(), that creates a black line border that is 1 pixel wide, so you could have
used that here.

Using a GridBagLayout Manager
The java.awt.GridBagLayout manager is much more flexible than the other layout managers you
have seen and, consequently, rather more complicated to use. The basic mechanism arranges compo-
nents in an arbitrary rectangular grid, but the rows and columns of the grid are not necessarily the same
height or width. A component is placed at a given cell position in the grid specified by the coordinates of
the cell, where the cell at the top-left corner is at position (0, 0). You can spread a component over several
cells in a row and/or column in the grid, but a component always occupies a rectangular group of cells.

825

Creating Windows

Each component in a GridBagLayout has its own set of constraints. These are defined by an object of
type GridBagConstraints that you associate with each component before adding the component to
the container. The location of each component, its relative size, and the area it occupies in the grid are all
determined by its associated GridBagConstraints object.

A GridBagConstraints object has no less than 11 public instance variables that may be set to define
the constraints for a component. Since they also interact with each other, there’s more entertainment here
than with a Rubik’s cube. Let’s first get a rough idea of what these instance variables in a
GridBagConstraints object do:

Instance Variable Description

gridx and gridy Determines the position of the component in the container as
coordinate positions of cells in the grid, where (0, 0) is the top-
left position in the grid

gridwidth and gridheight Determines the size of the area occupied by the component in
the container

weightx and weighty Determines how free space is distributed between components
in the container

anchor Determines where a component is positioned within the area
allocated to it in the container

ipadx and ipady Determines by how much the component size is to be increased
above its minimum size

fill Determines how the component is to be enlarged to fill the space
allocated to it

insets Specifies the free space that is to be provided around the compo-
nent within the space allocated to it in the container

All that should seem straightforward enough. You can now explore the possible values you can set for
these and then try them out.

GridBagConstraints Instance Variables
A component will occupy at least one grid position, or cell, in a container that uses a GridBagLayout
object, but it can occupy any rectangular array of cells. The total number of rows and columns, and thus
the cell size, in the grid for a container is variable and determined by the constraints for all of the compo-
nents in the container. Each component will have a specified position in the grid plus the area it is allo-
cated within the grid defined by a number of horizontal and vertical grid positions. This is illustrated in
Figure 17-34.

826

Chapter 17

Figure 17-34

The top-left cell in a layout is at position (0, 0). You specify the position of a component by defining
where the top-left cell that it occupies is, either relative to the grid origin or relative to the last compo-
nent that was added to the container. You specify the position of the top-left cell that a component occu-
pies in the grid by setting the gridx and gridy members of the GridBagConstraints object to
appropriate values of type int. The default value for gridx is GridBagConstraints.RELATIVE— a
constant that places the top-left grid position for the component in the column immediately to the right
of the previous component. The same value is the default for gridy, which places the next component
immediately below the previous one.

You specify the number of cells to be occupied by a component horizontally and vertically by setting
values for the gridwidth and gridheight instance variables for the GridBagConstraints object. The
default value for both of these is 1. You can use two constants as values for these variables. With a value
of GridBagConstraints.REMAINDER, the component will be the last one in the row or column and
occupy the remaining cells. If you specify the value as GridBagConstraints.RELATIVE, the compo-
nent will be the penultimate one in the row or column.

If the preferred size of the component is less than the display area, you can control how the size of the
component is adjusted to fit the display area by setting the fill and insets instance variables for the
GridBagConstraints object.

Grid cell 0.0

gridx=1
gridy=3

gridx=3
gridy=RELATIVE

gridheight=1 Component 1

gridwidth=2

gridwidth=2

gridheight=3 Component 2

Space around component
delivered by

Insets=new insets(5, 10, 15, 20)

827

Creating Windows

Variable Description

fill The value for this variable is of type int, and it determines how the size of the com-
ponent is adjusted in relation to the array of cells it occupies. The default value of
GridBagConstraints.NONE means that the component is not resized.
A value of GridBagConstraints.HORIZONTAL adjusts the width of the component
to fill the display area.
A value of GridBagConstraints.VERTICAL adjusts the height of the component to
fill the display area.
A value of GridBagConstraints.BOTH adjusts the height and the width to com-
pletely fill the display area.

insets This variable stores a reference to an object of type Insets. An Insets object
defines the space allowed between the edges of the components and boundaries of
the display area it occupies. Four parameter values to the class constructor define
the top, left-side, bottom, and right-side padding from the edges of the component.
The default value is Insets(0, 0, 0, 0).

If you don’t intend to expand a component to fill its display area, you may still want to enlarge the com-
ponent from its minimum size. You can adjust the dimensions of the component by setting the following
GridBagConstraints instance variables:

Variable Description

ipadx An int value that defines the number of pixels by which the top and bottom edges
of the component are to be expanded. The default value is 0.

ipady An int value that defines the number of pixels by which the left and right edges of
the component are to be expanded. The default value is 0.

If the component is still smaller than its display area in the container, you can specify where it should be
placed in relation to its display area by setting a value for the anchor instance variable of the
GridBagConstraints object. Possible values are NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTH-
WEST, WEST, NORTHWEST, and CENTER, all of which are defined in the GridBagConstraints class.

The last GridBagConstraints instance variables to consider are weightx and weighty, which are of
type double. These determine how space in the container is distributed between components in the hor-
izontal and vertical directions. You should always set a value for these; otherwise, the default of 0 will
cause the components to be bunched together adjacent to one another in the center of the container. The
absolute values for weightx and weighty are not important. It is the relative values that matter. If you
set all the values the same (but not zero), the space for each component will be distributed uniformly.
Space is distributed between components in the proportions defined by the values of weightx and
weighty you have set.

For example, if three components in a row have weightx values of 1.0, 2.0, and 3.0, the first will get 1/6
of the total in the x direction, the second will get 2/6, which is 1/3, and the third will get 3/6, which is
half. The proportion of the available space that a component gets in the x direction is the weightx value
for the component divided by the sum of the weightx values in the row. This also applies to the
weighty values for allocating space in the y direction.

828

Chapter 17

I’ll start with a simple example of placing two buttons in a window and introduce another way of
obtaining a standard border for a component.

Try It Out Applying the GridBagConstraints Object
You can compile and execute the following program to try out the GridBagLayout manager:

import java.awt.Toolkit;

import java.awt.Dimension;

import java.awt.GridBagLayout;

import java.awt.GridBagConstraints;

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.BorderFactory;

import javax.swing.border.Border;

public class TryGridBagLayout {

// The window object

static JFrame aWindow = new JFrame(“This is a Gridbag Layout”);

public static void main(String[] args) {

Toolkit theKit = aWindow.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

aWindow.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

GridBagLayout gridbag = new GridBagLayout(); // Create a layout manager

GridBagConstraints constraints = new GridBagConstraints();

aWindow.getContentPane().setLayout(gridbag); // Set the container layout mgr

// Set constraints and add first button

constraints.weightx = constraints.weighty = 10.0;

constraints.fill = constraints.BOTH; // Fill the space

addButton(“ Press “, constraints, gridbag); // Add the button

// Set constraints and add second button

constraints.gridwidth = constraints.REMAINDER; // Rest of the row

addButton(“GO”, constraints, gridbag); // Create and add button

aWindow.setVisible(true); // Display the window

}

static void addButton(String label,

GridBagConstraints constraints,

GridBagLayout layout) {

// Create a Border object using a BorderFactory method

Border edge = BorderFactory.createRaisedBevelBorder();

JButton button = new JButton(label); // Create a button

button.setBorder(edge); // Add its border

829

Creating Windows

layout.setConstraints(button, constraints); // Set the constraints

aWindow.getContentPane().add(button); // Add button to content pane

}

}

The program window will look like that shown in Figure 17-35.

Figure 17-35

As you see, the left button is slightly wider than the right button. This is because the length of the button
label affects the size of the button.

How It Works
Because the process will be the same for every button added, you have implemented a helper method,
addButton(). This method creates a Button object, associates the GridBagConstraints object with it
in the GridBagLayout object, and then adds it to the content pane of the frame window.

After creating the layout manager and GridBagConstraints objects, you set the values for weightx
and weighty to 10.0. A value of 1.0 or 100.0 would have the same effect because it is the relative values
that these variables have for the constraints on components in a column or row, not their absolute val-
ues. You set the fill constraint to BOTH to make the component fill the space it occupies. Note that
when the setConstraints() method is called to associate the GridBagConstraints object with the
button object, it creates a copy of the constraints object that you pass as the argument, and a reference
to the copy is stored in the layout — not a reference to the object that you created. This allows you to
change the constraints object that you created and use it for the second button without affecting the
constraints for the first.

The buttons are more or less equal in size in the x direction (they would be exactly the same size if the
labels were the same length) because the weightx and weighty values are the same for both. Both
buttons fill the space available to them because the fill constraint is set to BOTH. If fill was set to

830

Chapter 17

HORIZONTAL, for example, the buttons would be the full width of the grid positions they occupy, but just
high enough to accommodate the label, since they would have no preferred size in the y direction.

If you alter the constraints for the second button to

// Set constraints and add second button

constraints.weightx = 5.0; // Weight half of first

constraints.insets = new java.awt.Insets(10, 30, 10, 20); // Left 30 & right 20

constraints.gridwidth = constraints.RELATIVE; // Rest of the row

addButton(“GO”, constraints, gridbag); // Add button to content pane

the application window will be as shown in Figure 17-36.

Figure 17-36

Now the second button occupies one third of the space in the x direction — that corresponds to 5/(5+10)
of the total space in x that is available — and the first button occupies two-thirds. Note that the buttons
still occupy one grid cell each — the default values for gridwidth and gridheight of 1 apply — but the
weightx constraint values have altered the relative sizes of the cells for the two buttons in the x direction.

The second button is also within the space allocated — 10 pixels at the top and bottom, 30 pixels on the
left, and 20 on the right (set by the insets constraint). You can see that for a given window size here, the
size of a grid position depends on the number of objects. The more components there are, the less space
each will be allocated.

Suppose you wanted to add a third button, the same width as the Press button, and immediately below
it. You could do that by adding the following code immediately after that for the second button:

// Set constraints and add third button

constraints.insets = new java.awt.Insets(0,0,0,0); // No insets

constraints.gridx = 0; // Begin new row

constraints.gridwidth = 1; // Width as “Press”

addButton(“Push”, constraints, gridbag); // Add button to content pane

831

Creating Windows

You reset the gridx constraint to zero to put the button at the start of the next row. It has a default
gridwidth of 1 cell, like the others. The window would now look like the one shown in Figure 17-37.

Figure 17-37

Having seen how it looks now, clearly it would be better if the GO button were the height of Press and
Push combined. To arrange them like this, you need to make the height of the GO button twice that of
the other two buttons. The height of the Press button is 1 by default, so by making the height of the GO
button 2, and resetting the gridheight constraint of the Push button to 1, you should get the desired
result. Modify the code for the second and third buttons to:

// Set constraints and add second button

constraints.weightx = 5.0; // Weight half of first

constraints.gridwidth = constraints.RELATIVE; // Rest of the

rowconstraints.insets = new java.awt.Insets(10, 30, 10, 20); // Left 30 & right 20

constraints.gridheight = 2; // Height 2x “Press”

addButton(“GO”, constraints, gridbag); // Add button to content pane

// Set constraints and add third button

constraints.insets = new java.awt.Insets(0, 0, 0, 0); // No insets

constraints.gridx = 0; // Begin new row

constraints.gridwidth = 1; // Width as “Press”

constraints.gridheight = 1; // Height as “Press”

addButton(“Push”, constraints, gridbag); // Add button to content pane

With these code changes, the window will be as shown in Figure 17-38.

832

Chapter 17

Figure 17-38

You could also see the effect of padding the components out from their preferred size by altering the but-
ton constraints a little:

// Create constraints and add first button

constraints.weightx = constraints.weighty = 10.0;

constraints.fill = constraints.NONE;

constraints.ipadx = 30; // Pad 30 in x

constraints.ipady = 10; // Pad 10 in y

addButton(“Press”, constraints, gridbag); // Add button to content pane

// Set constraints and add second button

constraints.weightx = 5.0; // Weight half of first

constraints.fill = constraints.BOTH; // Expand to fill space

constraints.ipadx = constraints.ipady = 0; // No padding

constraints.gridwidth = constraints.REMAINDER; // Rest of the row

constraints.gridheight = 2; // Height 2x “Press”

constraints.insets = new Insets(10, 30, 10, 20); // Left 30 & right 20

addButton(“GO”, constraints, gridbag); // Add button to content pane

// Set constraints and add third button

constraints.gridx = 0; // Begin new row

constraints.fill = constraints.NONE;

constraints.ipadx = 30; // Pad component in x

constraints.ipady = 10; // Pad component in y

constraints.gridwidth = 1; // Width as “Press”

constraints.gridheight = 1; // Height as “Press”

constraints.insets = new Insets(0, 0, 0, 0); // No insets

addButton(“Push”, constraints, gridbag); // Add button to content pane

833

Creating Windows

With the constraints for the buttons as before, the window will look as shown in Figure 17-39.

Figure 17-39

Both the Push and the Press button occupy the same space in the container, but because fill is set to
NONE they are not expanded to fill the space in either direction. The ipadx and ipady constraints specify
by how much the buttons are to be expanded from their preferred size — by 30 pixels on the left and
right and 10 pixels on the top and bottom. The overall arrangement remains the same.

You need to experiment with using GridBagLayout and GridBagConstraints to get a good feel for
how the layout manager works because it’s only with experience that you’ll appreciate what you can do
with it.

Using a SpringLayout Manager
You can set the layout manager for the content pane of a JFrame object, aWindow, to be a javax.swing.
SpringLayout manager like this:

SpringLayout layout = new SpringLayout(); // Create a layout manager

Container content = aWindow.getContentPane(); // Get the content pane

content.setLayout(layout);

The layout manager defined by the SpringLayout class determines the position and size of each com-
ponent in the container according to a set of constraints that are defined by javax.swing.Spring
objects. Every component within a container using a SpringLayout manager has an object associated
with it of type SpringLayout.Constraints that defines constraints on the position of each of the four
edges of the component. Before you can access the SpringLayout.constraints object for a compo-
nent object, you must first add the component to the container. For example:

JButton button = new JButton(“Press Me”);

content.add(button);

834

Chapter 17

Now you can call the getConstraint() method for the SpringLayout object to obtain the object
encapsulating the constraints:

SpringLayout.Constraints constraints = layout.getConstraints(button);

The argument to the getConstraints() method identifies the component in the container for which
you want to access the constraints object. To constrain the location and size of the button object,
you’ll call methods for the constraints object to set individual constraints.

Understanding Constraints
The top, bottom, left, and right edges of a component are referred to by their compass points, north,
south, west, and east. When you need to refer to a particular edge in your code — for setting a constraint,
for example — you use constants that are defined in the SpringLayout class, NORTH, SOUTH, WEST, and
EAST, respectively. This is shown in Figure 17-40.

Figure 17-40

As Figure 17-40 shows, the position of a component is determined by a horizontal constraint on the x
coordinate of the component and a vertical constraint on the y coordinate. These obviously also deter-
mine the location of the WEST and NORTH edges of the component, since the position determines where
the top-left corner is located. The width and height are determined by horizontal constraints that relate
the position of the EAST and SOUTH edges to the positions of the WEST and NORTH edges, respectively.
Thus, the constraints on the positions of the EAST and SOUTH edges are determined by constraints that
are derived from the others, as follows:

EAST_constraint = X_constraint + width_constraint

SOUTH_constraint = Y_constraint + height_constraint

NORTH

Component

Position x,y

X constraint

Width contraint

Constraints on a Component in a SpringLayout

Each constraint is defined
by a Spring Object

SOUTH

EA
S

T

W
ES

T

H
ei

gh
t

co
nt

ra
in

t

Y
co

ns
tr

ai
nt

835

Creating Windows

You can set the X, Y, width, and height constraints independently, as you’ll see in a moment, and you
can set a constraint explicitly for any edge. Obviously, it is possible to set constraints such that the pre-
ceding relationships between the constraints may be violated. In this case, the layout manager will
adjust one or other of the constraints so that the preceding relationships still apply. The constraint that is
adjusted depends on which constraint you set to potentially cause the violation, as shown in the table:

If you set a constraint for a component on: The layout manager will make the adjustment:

X or the WEST edge width value set to EAST-X

The width EAST edge is set to X+width

EAST edge X is set to EAST-width

Y or the NORTH edge height is set to SOUTH-Y

The height SOUTH edge is set to Y+height

The SOUTH edge Y is set to SOUTH-height

The SpringLayout manager automatically adds Spring constraints that will control the width and
height of a component based on the component’s minimum, maximum, and preferred sizes. The width
or height will be set to a value between the maximum and minimum for the component. These sizes are
obtained dynamically by calling the getMinimumSize(), getMaximumSize(), and
getPreferredSize() methods for the component. Normally these constraints on the width and height
will expand or contract the component as the size of the container changes, but when the
getPreferredSize() and getMaximumSize() methods return the same value, the layout manager
will not alter the width and height of the component as the container size is changed.

Defining Constraints
The Spring class in the javax.swing package defines an object that represents a constraint. A Spring

object is defined by three integer values that relate to the notional length of the spring: the minimum
length, the preferred length, and the maximum length. A Spring object will also have an actual length
value that lies between the minimum and the maximum, and that will determine the location of the edge
to which it applies. You can create a Spring object like this:

Spring spring = Spring.constant(10, 30, 50); // min=10, pref=30, max=50

The static constant() method in the Spring class creates a Spring object from the three arguments
that are the minimum, preferred, and maximum values for the Spring object. If all three values are

836

Chapter 17

equal, the object is called a strut because its value is fixed at the common value you set for all three.
There’s an overloaded version of the constant() method for creating struts that has just one parameter:

Spring strut = Spring.constant(40); // min, pref, and max all set to 40

The Spring class also defines static methods that operate on Spring objects:

sum(Spring spr1, Spring spr2) Returns a reference to a new Spring object that has
minimum, preferred, and maximum values that are
the sum of the corresponding values of the arguments

minus(Spring spr) Returns a reference to a new Spring object with mini-
mum, preferred, and maximum values that are the
same magnitude as those of the argument but with
opposite signs

max(Spring spr1, Spring spr2) Returns a reference to a new Spring object that has
minimum, preferred, and maximum values that are
the maximum of the corresponding values of the
arguments

Setting Constraints for a Component
The setX() and setY() methods for a SpringLayout.Constraints object set the constraints for the
WEST and NORTH edges of the component, respectively. For example:

SpringLayout.Constraints constraints = layout.getConstraints(button);

Spring xSpring = Spring.constant(5,10,20); // Spring we’ll use for X

Spring ySpring = Spring.constant(3,5,8); // Spring we’ll use for Y

constraints.setX(xSpring); // Set the WEST edge constraint

constraints.setY(xSpring); // Set the NORTH edge constraint

The layout variable references a SpringLayout object that has been set as the layout manager for the
container that contains the button component. The setX() method defines a constraint between the
WEST edge of the container and the WEST edge of the button component. Similarly, the setY() method
defines a constraint between the NORTH edge of the container and the NORTH edge of the button compo-
nent. This fixes the location of the component in relation to the origin of the container, as illustrated in
Figure 17-41.

837

Creating Windows

Figure 17-41

To set the width and height of the component, you call the setWidth() and setHeight() methods for
its SpringLayout.Constraints object and supply a Spring object that you want to control the dimen-
sion. Here’s how you could specify specific Spring objects of your choosing:

Spring wSpring = Spring.constant(30,50,70); // Spring we’ll use for width

Spring hSpring = Spring.constant(15); // Strut we’ll use for height

constraints.setWidth(wSpring); // Set component width constraint

constraints.setHeight(hSpring); // Set component height constraint

The width constraint is applied between the WEST and EAST edges and the height constraint applies
between the component’s NORTH and SOUTH edges. Since you have specified a strut for the height, there
is no leeway on this constraint; its value is fixed at 15.

The Spring class defines the static methods width() and height() that return a Spring object based
on the minimum, maximum, and preferred sizes of the component that you pass as the argument to the
method. These are the constraints that the layout manager will apply to the width and height by default,
but there may be circumstances where you wish to reapply them. You could use these methods to create
Spring objects to control the width and height of the button object like this:

constraints.setWidth(Spring.width(button)); // Set component width constraint

constraints.setHeight(Spring.width(button)); // Set component height constraint

NORTH

wSpring

Position x,y

xSpring

ySpring

Constraints on a Component

Container
Origin

Set by
setWidth() and

setHeight()

Set by sety()
and setx()

SOUTH

Container

EA
S

T

W
ES

T

hS
pr

in
g

Component

838

Chapter 17

The springs you have set here will adjust the width and height based of the values for the minimum,
maximum, and preferred sizes for the component.

If you want to explicitly set an edge constraint for a component, you call the setConstraint() method
for the component’s SpringLayout.Constraints object:

layout.getConstraints(newButton)

.setConstraint(StringLayout.EAST, Spring.sum(xSpring, wSpring));

This statement ties the EAST edge of the newButton component to the WEST edge of the container by a
Spring object that is the sum of xSpring and wSpring.

You can also set constraints between pairs of vertical or horizontal edges, where one edge can belong to
a different component from the other. For example, you could add another button to the container like
this:

JButton newButton = new JButton(“Push”);

content.add(newButton);

You can now constrain its WEST and NORTH edges by tying the edges to the EAST and SOUTH edges of the
button component that you added to the container previously. You use the putConstraint() method
for the SpringLayout object to do this:

SpringLayout.Constraints newButtonConstr = layout.getConstraints(newButton);

layout.putConstraint(SpringLayout.WEST,

newButton,

xSpring,

SpringLayout.EAST,

button);

The first two arguments to the putConstraint() method for the layout object are the edge specification
and a reference to the dependent component, respectively. The third argument is a Spring object defin-
ing the constraint. The fourth and fifth arguments specify the edge and a reference to the component to
which the dependent component is anchored. Obviously, since constraints can only be horizontal or ver-
tical, both edges should have the same orientation. There is an overloaded version of the
putConstraint() method for which the third argument is a value of type int that defines a fixed dis-
tance between the edges.

Let’s look at a simple example using a SpringLayout object as the layout manager.

Try It Out Using a SpringLayout Manager
Here’s the code for an example that displays six buttons in a window:

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.SpringLayout;

import javax.swing.Spring;

import java.awt.Container;

import java.awt.Dimension;

import java.awt.Toolkit;

839

Creating Windows

public class TrySpringLayout {

// The window object

static JFrame aWindow = new JFrame(“This is a Spring Layout”);

public static void main(String[] args) {

Toolkit theKit = aWindow.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to two-thirds screen size

aWindow.setBounds(wndSize.width/6, wndSize.height/6, // Position

2*wndSize.width/3, 2*wndSize.height/3); // Size

aWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

SpringLayout layout = new SpringLayout(); // Create a layout manager

Container content = aWindow.getContentPane(); // Get the content pane

content.setLayout(layout); // Set the container layout mgr

JButton[] buttons = new JButton[6]; // Array to store buttons

SpringLayout.Constraints constr = null;

for(int i = 0; i < buttons.length; i++) {

buttons[i] = new JButton(“Press “ + (i+1));

content.add(buttons[i]); // Add a Button to content pane

}

Spring xSpring = Spring.constant(5,15,25); // x constraint for first button

Spring ySpring = Spring.constant(10,30, 50); // y constraint for first button

// Connect x,y for first button to left and top of container by springs

constr = layout.getConstraints(buttons[0]);

constr.setX(xSpring);

constr.setY(ySpring);

// Hook buttons together with springs

for(int i = 1 ; i< buttons.length ; i++) {

constr = layout.getConstraints(buttons[i]);

layout.putConstraint(SpringLayout.WEST, buttons[i],

xSpring,SpringLayout.EAST, buttons[i-1]);

layout.putConstraint(SpringLayout.NORTH, buttons[i],

ySpring,SpringLayout.SOUTH, buttons[i-1]);

}

aWindow.setVisible(true); // Display the window

}

}

When you compile and run this you should get a window with the buttons laid out as shown in Figure
17-42.

840

Chapter 17

Figure 17-42

How It Works
You first create a variable that will store a reference to a SpringLayout.Constraints object and array
to hold references to JButton objects:

JButton[] buttons = new JButton[6]; // Array to store buttons

SpringLayout.Constraints constr = null;

You create and add six buttons to the content pane of the window in a loop:

for(int i = 0; i < buttons.length; i++) {

buttons[i] = new JButton(“Press “ + (i+1));

content.add(buttons[i]); // Add a Button to content pane

}

As each button is added to the container, the layout manager will apply the contraints to the height and
width of the container that I discussed earlier. Unless these are overridden because the component is
overconstrained, these constraints will adjust the size of the button based on the minimum, maximum,
and preferred sizes for the component.

After adding six buttons to the content pane of the window, you define two Spring objects that you’ll
use to position the first button relative to the container:

Spring xSpring = Spring.constant(5,15,25); // x constraint for first button

Spring ySpring = Spring.constant(10,30, 50); // y constraint for first button

841

Creating Windows

You then set the location of the first button relative to the container:

constr = layout.getConstraints(buttons[0]);

constr.setX(xSpring);

constr.setY(ySpring);

This fixes the top-left corner of the first button. You can define the positions of each of the remaining
buttons relative to its predecessor. You do this by adding constraints between the NORTH and WEST edges
of each button and the SOUTH and EAST edges of its predecessor. This is done in the for loop:

for(int i = 1 ; i< buttons.length ; i++) {

constr = layout.getConstraints(buttons[i]);

layout.putConstraint(SpringLayout.WEST, buttons[i],

xSpring,SpringLayout.EAST, buttons[i-1]);

layout.putConstraint(SpringLayout.NORTH, buttons[i],

ySpring,SpringLayout.SOUTH, buttons[i-1]);

}

This places each component after the first relative to the bottom-right corner of its predecessor, so the
buttons are laid out in a cascade fashion.

Relating the Container Size to the Components
Of course, the size of the application window in our example is independent of the components within
it. If you resize the window the springs have no effect. If you call pack() for the aWindow object before
calling its setVisible() method, the window will shrink to a width and height just accommodating
the title bar so you won’t see any of the components. This is because SpringLayout does not adjust the
size of the container by default so the effect of pack() is as though the content pane were empty.

You can do much better than this. You can set constraints on the edges of the container using springs
that will control its size. You can therefore place constraints on the height and width of the container in
terms of the springs that you used to determine the size and locations of the components. This will have
the effect of relating all the springs that determine the size and position of the buttons to the size of the
application window. Try adding the following code to the example, immediately preceding the call to
setVisible() for the window object:

SpringLayout.Constraints constraint = layout.getConstraints(content);

constraint.setConstraint(SpringLayout.EAST,

Spring.sum(constr.getConstraint(SpringLayout.EAST),

Spring.constant(15)));

constraint.setConstraint(SpringLayout.SOUTH,

Spring.sum(constr.getConstraint(SpringLayout.SOUTH),

Spring.constant(10)));

aWindow.pack();

This sets the constraint on the EAST edge of a container that is the Spring constraining the EAST edge of
the last button plus a strut 15 units long. This positions the right edge of the container 15 units to the
right of the right edge of the last button. The bottom edge of the container is similarly connected by a
fixed link, 10 units long, to the bottom edge of the last button. If you recompile with these additions and
run the example again, you should find that not only is the initial size of the window set to accommo-
date all the buttons, but when you resize the window the size and positions of the buttons adapt accord-
ingly. Isn’t that nice?

842

Chapter 17

Note how the width and height of each button is maintained as you resize the window, even when the
content pane is too small to accommodate all the buttons. This is because a JButton object returns a
maximum size that is the same as the preferred size, so the layout manager will not alter the width or
the height.

The SpringLayout manager is extremely flexible and can do much of what the other layout mangers
can do if you choose the constraints on the components appropriately. It’s well worth experimenting to
see the effect of various configurations of springs on your application.

Adding a Menu to a Window
As I’ve already mentioned, a JMenuBar object represents the menu bar that is placed at the top of a win-
dow. You can add JMenu or JMenuItem objects to a JMenuBar object, and these will be displayed on the
menu bar. A JMenu object is a menu with a label that can display a list of menu items when clicked. A
JMenuItem object represents a menu item in a menu, with a label that results in some program action
when clicked — such as opening a dialog. A JMenuItem object can have an icon in addition to, or instead
of, a String label. Each item on the menu encapsulated in a JMenu object can be an object of either type
JMenu, JMenuItem, JCheckBoxMenuItem, or JRadioButtonMenuItem. If an item in a menu is a JMenu
object, then it represents a second level of menu containing further menu items.

A JCheckBoxMenuItem is a simple menu item with a checkbox associated with it. The checkbox can be
checked and unchecked and typically indicates that that menu item was selected last time the drop-
down menu was displayed. You can also add separators in a drop-down menu. These are simply bars to
separate one group of menu items from another. A JRadioButtonMenuItem is a menu item much like a
radio button in that it is intended to be one of a group of like menu items added to a ButtonGroup
object. Both JCheckBoxMenuItem and JRadioButtonMenuItem objects can have icons.

Creating JMenu and JMenuItem
To create a menu you call a JMenu class constructor and pass a String object to it that contains the label
for the menu. For example, to create a File menu you could write:

JMenu fileMenu = new JMenu(“File”);

The string that is passed as the argument is the text that will appear.

Creating a menu item is much the same as creating a menu:

JMenuItem openMenu = new JMenuItem(“Open”);

The argument is the text that will appear on the menu item.

If you create a JCheckboxMenuItem object by passing just a String argument to the constructor, the
object will represent a checkbox menu item that is initially unchecked. For example, you could create an
unchecked item with the following statement:

JCheckboxMenuItem circleItem = new JCheckboxMenuItem(“Circle”);

843

Creating Windows

Another constructor for this class allows you to set the check mark by specifying a second argument of
type boolean. For example:

JCheckboxMenuItem lineItem = new JCheckboxMenuItem(“Line”, true);

This creates an item with the label, Line, which will be checked initially. You can, of course, also use this
constructor to explicitly specify that you want an item to be unchecked by setting the second argument
to false.

A JRadioButtonMenuItem object is created in essentially the same way:

JRadioButtonMenuItem item = new JRadioButtonMenuItem(“Curve”, true);

This creates a radio button menu item that is selected.

If you want to use a menu bar in your application window, you must create your window as a JFrame
object, since the JFrame class incorporates the capability to manage a menu bar. You can also add a
menu bar to JDialog and JApplet objects. Let’s explore how you create a menu on a menu bar.

Creating a Menu
To create a window with a menu bar, you’ll define your own window class as a subclass of JFrame. This
will provide a much more convenient way to manage all the details of the window compared to using a
JFrame object directly as you have been doing up to now. By extending the JFrame class, you can add
your own members that will customize a JFrame window to your particular needs. You can also over-
ride the methods defined in the JFrame class to modify their behavior, if necessary.

You’ll be adding functionality to this example over several chapters, so create a directory for it with the
name Sketcher. You’ll be developing this program into a window-based sketching program that will
enable you to create sketches using lines, circles, curves, and rectangles, and to annotate them with text.
By building an example in this way, you’ll gradually create a much larger Java program than the exam-
ples seen so far, and you will also gain experience in combining many of the capabilities of
javax.swing and other standard packages in a practical situation.

Try It Out Building a Menu
To start with, you’ll have two class files in the Sketcher program. The file Sketcher.java will contain
the main() method where execution of the application will start, and the SketchFrame.java file will
contain the class defining the application window.

You can define a preliminary version of the window class as follows:

// Frame for the Sketcher application

import javax.swing.JFrame;

import javax.swing.JMenuBar;

844

Chapter 17

import javax.swing.JMenu;

public class SketchFrame extends JFrame {

// Constructor

public SketchFrame(String title) {

setTitle(title); // Set the window title

setDefaultCloseOperation(EXIT_ON_CLOSE);

setJMenuBar(menuBar); // Add the menu bar to the window

JMenu fileMenu = new JMenu(“File”); // Create File menu

JMenu elementMenu = new JMenu(“Elements”); // Create Elements menu

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

}

private JMenuBar menuBar = new JMenuBar(); // Window menu bar

}

Save this code as SketchFrame.java in the Sketcher directory.

Next, you can enter the code for the Sketcher class in a separate file:

// Sketching application

import java.awt.Toolkit;

import java.awt.Dimension;

public class Sketcher {

public static void main(String[] args) {

window = new SketchFrame(“Sketcher”); // Create the app window

Toolkit theKit = window.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

window.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

window.setVisible(true);

}

private static SketchFrame window; // The application window

}

845

Creating Windows

Save this file as Sketcher.java in the Sketcher directory. If you compile and run Sketcher, you
should see the window shown in Figure 17-43.

Figure 17-43

How It Works
The Sketcher class has a SketchFrame variable, window, as a data member that you’ll use to store the
application window object. You must declare this variable as static as there will be no instances of the
Sketcher class around. The window variable is initialized in the method main() that is called when
program execution begins. Once the window object exists, you set the size of the window based on the
screen size in pixels, which you obtain using the Toolkit object. This is exactly the same process that
you saw earlier in this chapter. Finally, in the main() method you call the setVisible() method for
the window object with the argument true to display the application window.

In the constructor for the SketchFrame class, you could pass the title for the window to the superclass
constructor to create the window with the title bar directly. However, later when you have developed
the application a bit more, you will want to add to the title, so you call the setTitle() member to set
the window title here. Next you call the setJMenuBar() method that is inherited from the JFrame class
to specify menuBar as the menu bar for the window. To define the two menus that are to appear on the
menu bar, you create one JMenu object with the label “File” and another with the label “Elements”—
these labels will be displayed on the menu bar. You add the fileMenu and elementMenu objects to the
menu bar by calling the add() method for the menuBar object.

The field that you have defined in the SketchFrame class represents the menu bar. Both items on the
menu bar are of type JMenu and are therefore menus, so you’ll be adding menu items to each of them.
The File menu will provide the file input, file output, and print options, and you’ll eventually use the
Elements menu to choose the kind of geometric figure you want to draw. Developing the menu further,
you can now add the menu items.

846

Chapter 17

Adding Menu Items to a Menu
Both menus on the menu bar need menu items to be added — they can’t do anything by themselves
because they are of type JMenu. You use a version of the add() method that is defined in the JMenu class
to add items to a menu.

The simplest version of the add() method creates a menu item with the label that you pass as an argu-
ment. For example:

JMenuItem newMenu = fileMenu.add(“New”); // Add the menu item “New”

This will create a menu item as a JMenuItem object with the label “New”, add it to the menu represented
by the fileMenu object, and return a reference to the menu item. You’ll need the reference to the menu
item to enable the program to react to the user clicking the item.

You can also create the JMenuItem object explicitly and use another version of the add() method for the
JMenu object to add it:

JMenuItem newMenu = new JMenuItem(“New”); // Create the item

fileMenu.add(newMenu); // and add it to the menu

You can operate on menu items by using the following methods defined in the JMenuItem class:

Method Description

void setEnabled(boolean b) If b has the value true, the menu item is enabled. If b has
the value false, the menu item is disabled. The default
state is enabled.

void setText(String label) Sets the menu item label to the string stored in the label.

String getText() Returns the current menu item label.

Since the JMenu class is a subclass of JMenuItem, these methods also apply to JMenu objects.

To add a separator to a menu you call the addSeparator() method for the JMenu object. The separator
will appear following the last menu item that you added to the menu.

Let’s now create the drop-down menus for the File and Element menus on the menu bar in the Sketcher
application and try out some of the menu items.

Try It Out Adding Drop-Down Menus
You can change the definition of our SketchFrame class to do this:

// Frame for the Sketcher application

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

847

Creating Windows

import javax.swing.JMenuItem;

import javax.swing.JRadioButtonMenuItem;

import javax.swing.JCheckBoxMenuItem;

import javax.swing.ButtonGroup;

public class SketchFrame extends JFrame {

// Constructor

public SketchFrame(String title) {

setTitle(title); // Set the window title

setDefaultCloseOperation(EXIT_ON_CLOSE);

setJMenuBar(menuBar); // Add the menu bar to the window

JMenu fileMenu = new JMenu(“File”); // Create File menu

JMenu elementMenu = new JMenu(“Elements”); // Create Elements menu

// Construct the file drop-down menu

newItem = fileMenu.add(“New”); // Add New item

openItem = fileMenu.add(“Open”); // Add Open item

closeItem = fileMenu.add(“Close”); // Add Close item

fileMenu.addSeparator(); // Add separator

saveItem = fileMenu.add(“Save”); // Add Save item

saveAsItem = fileMenu.add(“Save As...”); // Add Save As item

fileMenu.addSeparator(); // Add separator

printItem = fileMenu.add(“Print”); // Add Print item

// Construct the Element drop-down menu

elementMenu.add(lineItem = new JRadioButtonMenuItem(“Line”, true));

elementMenu.add(rectangleItem = new JRadioButtonMenuItem(“Rectangle”, false));

elementMenu.add(circleItem = new JRadioButtonMenuItem(“Circle”, false));

elementMenu.add(curveItem = new JRadioButtonMenuItem(“Curve”, false));

ButtonGroup types = new ButtonGroup();

types.add(lineItem);

types.add(rectangleItem);

types.add(circleItem);

types.add(curveItem);

elementMenu.addSeparator();

elementMenu.add(redItem = new JCheckBoxMenuItem(“Red”, false));

elementMenu.add(yellowItem = new JCheckBoxMenuItem(“Yellow”, false));

elementMenu.add(greenItem = new JCheckBoxMenuItem(“Green”, false));

elementMenu.add(blueItem = new JCheckBoxMenuItem(“Blue”, true));

848

Chapter 17

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

}

private JMenuBar menuBar = new JMenuBar(); // Window menu bar

// File menu items

private JMenuItem newItem, openItem, closeItem,

saveItem, saveAsItem, printItem;

// Element menu items

private JRadioButtonMenuItem lineItem, rectangleItem, circleItem, // Types

curveItem, textItem;

private JCheckBoxMenuItem redItem, yellowItem, // Colors

greenItem, blueItem ;

}

If you recompile Sketcher once more, you can run the application again to try out the menus. If you
extend the File menu by clicking on it, you’ll see that it has the menu items that you have added. The
window is shown in Figure 17-44.

Figure 17-44

849

Creating Windows

Now if you extend the Elements menu it should appear as shown with the Line and Blue items checked,
as shown in Figure 17-45.

Figure 17-45

How It Works
You have defined the fields that store references to the menu items for the drop-down menus as private
members of the class. For the File menu, the menu items are of type JMenuItem. In the Element menu
the items select a type of shape to be drawn, and because these are clearly mutually exclusive, you use
objects of type JRadioButtonMenuItem for them. You could use objects of the same type for the ele-
ment color menu items, but to try it out you are using the JCheckBoxMenuItem type.

To create the items in the File menu, you pass the String object for the label for each menu item to the
add() method and leave it to the JMenu object to create the JMenuItem object. The add() method
returns a reference to the object that it creates and you store the reference in one of the fields you have
defined for that purpose. You’ll need access to the menu item objects later when you add code to service
events that arise from the user clicking a menu item.

The first group of Elements menu items are JRadioButtonMenuItem objects, and you create each of
these in the argument to the add()method. To ensure only one is checked at a time, you also add them
to a ButtonGroup object. The color menu items are of type JCheckBoxMenuItem, so the current selec-
tion is indicated by a check mark on the menu. You’ll make Line the default element type and Blue the
default color, so you set both of these as checked by specifying true as the second argument to the
constructor.

The other items will be unchecked initially because you have specified the second argument as false.
You could have omitted the second argument to leave these items unchecked by default. It then means
that you need to remember the default to determine what is happening, so it is much better to set the
checks explicitly.

850

Chapter 17

You can see the effect of the addSeparator() method from the JMenu class. It produces the horizontal
bar separating the items for element type from those for color. If you select any of the unchecked ele-
ment type items on the Elements drop-down menu, they will be checked automatically, and only one
can appear checked. More than one of the color items can be checked at the moment, but you’ll add
some code in the next chapter to make sure only one of these items is checked at any given time.

You could try putting the color selection item in an additional drop-down menu. You can do this by
changing the code that follows the statement adding the separator in the Elements menu as follows:

elementMenu.addSeparator();

JMenu colorMenu = new JMenu(“Color”); // Color submenu

elementMenu.add(colorMenu); // Add the submenu

colorMenu.add(redItem = new JCheckBoxMenuItem(“Red”, false));

colorMenu.add(yellowItem = new JCheckBoxMenuItem(“Yellow”, false));

colorMenu.add(greenItem = new JCheckBoxMenuItem(“Green”, false));

colorMenu.add(blueItem = new JCheckBoxMenuItem(“Blue”, true));

Now you add a JMenu object, colorMenu, to the drop-down menu for Elements. This has its own drop-
down menu consisting of the color menu items. The Color item will be displayed on the Elements menu
with an arrow to show that a further drop-down menu is associated with it. If you run the application
again and extend the drop-down menus, the window should be as shown in Figure 17-46.

Figure 17-46

Whether you choose this menu structure or the previous one is a matter of taste. It might even be better
to have a separate item on the menu bar, but let’s leave it at that for now. You’ll see in the next chapter
that the programming necessary to deal with menu selections by the user is the same in either case.

851

Creating Windows

Adding a Shortcut for a Menu Item
A shortcut is a unique key combination used to select a menu on the menu bar directly from the key-
board to display the drop-down menu. A typical shortcut under MS Windows would be the Alt key plus
a letter from the menu item label, so the shortcut for the File menu item might be Alt+F. When you enter
this key combination the menu is displayed. You can add shortcuts for the File and Elements menu items
by adding the following statements after you add the menu items to the menu bar:

fileMenu.setMnemonic(‘F’); // Create shortcut

elementMenu.setMnemonic(‘E’); // Create shortcut

The setMnemonic() method is inherited from the AbstractButton class, so all subclasses of this class
inherit this method. The argument is a character in the String that is the label for the item that is to be
the shortcut character — under Windows, the File menu would then pop up if you key Alt+F. The effect
of setMnemonic() is to implement the shortcut and underline the shortcut character letter in the menu
label. Naturally, the shortcut for each menu on the menu bar must be a unique key combination.

An accelerator is a key combination that you can enter to select an item from a drop-down menu with-
out having to go through the process of displaying the menu. Under Windows, the Ctrl key is frequently
used in combination with a letter as an accelerator for a menu item, so Ctrl+L might be the combination
for the Line item in the Elements menu. To define the accelerator for a menu item, you call the
setAccelerator() method for the object that encapsulates the menu item. For example, for the Line
menu item you could write:

lineItem.setAccelerator(KeyStroke.getKeyStroke(‘L’, InputEvent.CTRL_DOWN_MASK));

The javax.swing.KeyStroke class defines a keystroke combination. The static method
getKeyStroke() in the KeyStroke class returns the KeyStroke object corresponding to the arguments.
The first argument is a character in the keystroke combination and the second argument specifies one or
more modifier keys. The modifier keys are specified as a combination of single-bit constants that are
defined in the InputEvent class that appears in the java.awt.event package. The InputEvent class
defines constants that identify control keys on the keyboard and mouse buttons. In this context, the con-
stants you are interested are SHIFT_DOWN_MASK, ALT_DOWN_MASK, META_DOWN_MASK, and what you
used in the preceding statement, CTRL_DOWN_MASK. If you want to express a combination of the Alt and
Ctrl keys for example, you can add them as shown in the following expression:

InputEvent.ALT_DOWN_MASK + InputEvent.CTRL_DOWN_MASK

Of course, when you add accelerators for menu items, if the accelerators are to work properly, you must
make sure that each accelerator key combination is unique. Let’s see how this works in practice.

Try It Out Adding Menu Shortcuts
You can add some shortcuts to Sketcher by amending the statements that add the items to the File menu
in the SketchFrame class constructor:

// Frame for the Sketcher application

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

852

Chapter 17

import javax.swing.JMenuItem;

import javax.swing.JRadioButtonMenuItem;

import javax.swing.JCheckBoxMenuItem;

import javax.swing.ButtonGroup;

import javax.swing.KeyStroke;

import static java.awt.event.InputEvent.*; // For modifier constants

public class SketchFrame extends JFrame {

// Constructor

public SketchFrame(String title) {

setTitle(title); // Call the base constructor

setDefaultCloseOperation(EXIT_ON_CLOSE);

setJMenuBar(menuBar); // Add the menu bar to the window

JMenu fileMenu = new JMenu(“File”); // Create File menu

JMenu elementMenu = new JMenu(“Elements”); // Create Elements menu

fileMenu.setMnemonic(‘F’); // Create shortcut

elementMenu.setMnemonic(‘E’); // Create shortcut

// Construct the file drop-down menu as before...

// Add File menu accelerators

newItem.setAccelerator(KeyStroke.getKeyStroke(‘N’,CTRL_DOWN_MASK));

openItem.setAccelerator(KeyStroke.getKeyStroke(‘O’, CTRL_DOWN_MASK));

saveItem.setAccelerator(KeyStroke.getKeyStroke(‘S’, CTRL_DOWN_MASK));

printItem.setAccelerator(KeyStroke.getKeyStroke(‘P’, CTRL_DOWN_MASK));

// Construct the Element drop-down menu as before...

// Add element type accelerators

lineItem.setAccelerator(KeyStroke.getKeyStroke(‘L’, CTRL_DOWN_MASK));

rectangleItem.setAccelerator(KeyStroke.getKeyStroke(‘E’, CTRL_DOWN_MASK));

circleItem.setAccelerator(KeyStroke.getKeyStroke(‘I’, CTRL_DOWN_MASK));

curveItem.setAccelerator(KeyStroke.getKeyStroke(‘V’, CTRL_DOWN_MASK));

elementMenu.addSeparator();

// Create the color submenu as before...

// Add element color accelerators

redItem.setAccelerator(KeyStroke.getKeyStroke(‘R’, CTRL_DOWN_MASK));

yellowItem.setAccelerator(KeyStroke.getKeyStroke(‘Y’, CTRL_DOWN_MASK));

greenItem.setAccelerator(KeyStroke.getKeyStroke(‘G’, CTRL_DOWN_MASK));

blueItem.setAccelerator(KeyStroke.getKeyStroke(‘B’, CTRL_DOWN_MASK));

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

}

// File menu items and the rest of the class as before...

}

853

Creating Windows

If you save SketchFrame.java after you have made the changes, you can recompile Sketcher and run it
again. The file menu will now appear as shown in Figure 17-47.

Figure 17-47

How It Works
You have added an import statement for the KeyStroke class, and a static import statement for the
constants in the InputEvent class. The names of the constants are already wordy and importing the
names saves having to add qualifiers to them.

You use the setMnemonic() method to set the shortcuts for the menu bar items, and the
setAccelerator() method to add accelerators to the submenu items. You must make sure that you do
not use duplicate key combinations, and the more menu items you have accelerators for, the trickier this
gets. The File menu here defines the standard Windows accelerators. You can see that the
setAccelerator() method adds the shortcut key combination to the item label.

The menus don’t actually work at the moment but at least they look good! You’ll start adding the code to
implement menu operations in the next chapter.

More on Applets
Applets are a peculiar kind of program, as they are executed in the context of a web browser. This places
some rather severe restrictions on what you can do in an applet to protect the environment in which it
executes. Without these restrictions an applet would be a very direct means for someone to interfere
with your system — in short, a virus delivery vehicle.

System security in Java programs is managed by a security manager. This is simply an object that pro-
vides methods for setting and checking security controls that determine what is and what is not allowed

854

Chapter 17

for a Java program. What an applet can and cannot do is determined by both the security manager that
the browser running the applet has installed and the security policy that is in effect for the system.

Unless permitted explicitly by the security policy in effect, the main default limitations on an applet are:

❑ An applet cannot have any access to files on the local computer.

❑ An applet cannot invoke any other program on the local computer.

❑ An applet cannot communicate with any computer other than the computer from which the
HTML page containing the applet was downloaded.

Obviously there will be circumstances where these restrictions are too stringent. In this case you can set
up a security policy that allows certain operations for specific trusted programs, applets, or sites by
authorizing them explicitly in a policy file. A policy file is an ASCII text file that defines what is permit-
ted for a particular code source. I won’t be going into details on this, but if you need to set up a policy
file for your system, it is easiest to use the policytool program supplied with the JDK.

Because they are normally shipped over the Internet as part of an HTML page, applets should be com-
pact. This doesn’t mean that they are inevitably simple or unsophisticated. Because they can access the
host computer from which they originated, they can provide a powerful means of enabling access to files
on that host, but they are usually relatively small to enable them to be easily downloaded.

The JApplet class includes the following methods, which are all called automatically by the browser or
applet viewer controlling the applet:

Method Description

void init() You implement this method to do any initialization that is necessary for the
applet. This method is called once by the browser when the applet starts
execution.

void start() You implement this method to start the processing for the applet. For
example, if your applet displays an animated image, you would start a
thread for the animation in this method.

This method is called by the browser immediately after init(). It is also
called if the user returns to the current .html page after leaving it.

void stop() This method is called by the browser when the user moves off the page
containing the applet. You implement this to stop any operations that you
started in the start() method.

void destroy() This method is called after the stop() method when the browser is shut
down. In this method you can release any resources your applet uses that
are managed by the local operating system. This includes such things as
resources used to display a window.

These are the basic methods you need to implement in the typical applet. You really need some graphics
knowledge to go further with implementing an applet, so you’ll return to the practical application of
these methods in Chapter 18.

855

Creating Windows

Converting an Application to an Applet
Subject to the restrictions described in the previous section, you can convert an application to an applet
relatively easily. You just need to be clear about how each part of program executes. You know that an
application is normally started in the method main(). The main() method is not called for an applet but
the method init() is, so one thing you should do is add an init() method to the application class.
The other obvious difference is that an applet always extends the JApplet class.

I can demonstrate how you can convert an application so that it also works as an applet by changing the
definition of the Sketcher class and making a slight modification to the SketchFrame class. Sketcher
doesn’t make a very sensible applet, but you’ll be able to see the principles at work. I suggest you copy
the current Sketcher.java and SketchFrame.java class files for use with this example as you’ll be
discarding the applet version of Sketcher after you’ve tried it out.

Try It Out Running Sketcher as an Applet
Having the applet code exit when you close the window is not really consistent with the notion of how
an applet works, so you’ll need to remove or comment out the following statement in the SketchFrame
class constructor:

setDefaultCloseOperation(EXIT_ON_CLOSE);

You need to modify the contents of Sketcher.java so that it contains the following:

// Sketching application

import java.awt.Dimension;

import java.awt.Toolkit;

import javax.swing.JApplet;

public class Sketcher extends JApplet {

public static void main(String[] args) {

theApp = new Sketcher(); // Create the application object

theApp.init(); // ...and initialize it

}

public void init() {

window = new SketchFrame(“Sketcher”); // Create the app window

Toolkit theKit = window.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

window.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

// The field theApp will be null when Sketcher is an applet

if(theApp != null) {

window.setDefaultCloseOperation(window.EXIT_ON_CLOSE);

}

window.setVisible(true);

}

856

Chapter 17

private static SketchFrame window; // The application window

private static Sketcher theApp; // The application object

}

To run Sketcher as an applet, you should add an .htm file to the Sketcher directory with the contents:

<APPLET CODE=”Sketcher.class” WIDTH=300 HEIGHT=200>

</APPLET>

If you recompile the revised version of the Sketcher class, you can run it as before, or using
appletviewer, or even within your browser.

How It Works
The class now extends the class JApplet, and an import statement has been added for the
javax.swing.JApplet class name.

The init() method now does most of what the method main() did before. The method main() now
creates an instance of the Sketcher class and stores it in the static data member theApp. The method
main() then calls the init() method for the new Sketcher object.

When Sketcher runs as an application, execution starts with the main() method, which creates an
instance of the Sketcher class and stores it in the theApp field. The main() method then calls the
init() method for the object referenced by theApp, and this will create the application window. When
Sketcher executes as an applet, a Sketcher object will be instantiated by the environment executed by
the applet, but the field, theApp, will not be initialized, so it will be null by default. This enables you to
test theApp in the init() method to decide whether or not to call the setDefaultCloseOperation()
for the window object. If you were to call this method in an applet, the security manager would not
allow the applet to execute.

Even if Sketcher is running as an applet, the application window appears as a detached window from
the Applet Viewer window, and it is still positioned relative to the screen.

Of course, when you implement the File menu, it will no longer be legal to derive the Sketcher class
from the JApplet class since it will contravene the rule that an applet must not access the files on the
local machine. It is also not recommended to create frame windows from within an untrusted applet, so
you may get a warning from the appletviewer about this. As I previously mentioned, Sketcher doesn’t
make a very sensible applet, so you’ll continue in the next chapter developing Sketcher from the previ-
ous version, when it was simply an application.

Summary
In this chapter you have learned how to create an application window, and how to use containers in the
creation of the GUI for a program. I discussed the following important points:

❑ The package javax.swing provides classes for creating a graphical user interface (GUI).

❑ A component is an object that is used to form part of the GUI for a program. All components
have the class Component as a superclass.

857

Creating Windows

❑ A container is a component that can contain other components. A container object is created
with a class that is a subclass of Container. The classes JPanel, JApplet, JWindow, JFrame,
and JDialog are containers.

❑ The class JApplet is the base class for an applet. The JFrame class is a base class for an applica-
tion window with a title bar, borders, and a menu.

❑ The arrangement of components in a container is controlled by a layout manager.

❑ The default layout manager for the content pane of JFrame, JApplet, and JDialog objects is
BorderLayout.

❑ The GridBagLayout provides the most flexible control of the positioning of components in a
container. The position of a component in a GridBagLayout is controlled by a
GridBagConstraints object.

❑ A Box container can be used to arrange components or containers in rows and columns. You can
use multiple nested Box containers in combination to easily create complex arrangements that
otherwise might require GridBagLayout to be used.

❑ A layout manager of type SpringLayout arranges components by applying constraints in the
form of Spring objects to their edges.

❑ A menu bar is represented by a JMenuBar object. Menu items can be objects of type JMenu,
JMenuItem, JCheckBoxMenuItem, or JRadioButtonMenuItem.

❑ You associate a drop-down menu with an item of type JMenu.

❑ You can create a shortcut for a menu by calling its setMnemonic() method, and you can create
an accelerator key combination for a menu item by calling its setAccelerator() method.

In the next chapter you’ll move on to look at events — that is, how you associate program actions with
menu items and components within a window.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Create an application with a square window in the center of the screen that is half the height of
the screen by deriving your own window class from JFrame.

2. Add six buttons to the application in the previous example in a vertical column on the left side
of the application window.

3. Add a menu bar containing the items File, Edit, Window, and Help.

4. Add a drop-down menu for Edit containing two groups of items of your own choice with a sep-
arator between them.

858

Chapter 17

5. Add another item to the Edit drop-down menu, which itself has a drop-down menu, and pro-
vide accelerators for the items in the menu.

6. Here’s an exercise to tickle the brain cells — use a SpringLayout to obtain the button arrange-
ment shown in Figure 17-48 in an application window.

Figure 17-48

859

Creating Windows

18
Handling Events

In this chapter you’ll learn how a window-based Java application is structured and how to
respond to user actions in an application or an applet. This is the fundamental mechanism you’ll
be using in virtually all of your graphical Java programs. Once you understand how user actions
are handled in Java, you’ll be equipped to implement the application-specific code that is neces-
sary to make your program do what you want.

You will learn:

❑ What an event is

❑ What an event-driven program is and how it is structured

❑ How events are handled in Java

❑ How events are categorized in Java

❑ How components handle events

❑ What an event listener is and how you create one

❑ What an adapter class is and how you can use it to make programming the handling of
events easier

❑ What actions are and how you use them

❑ How to create a toolbar

Window-Based Java Programs
Before you get into the programming specifics of window-based programs, you need to under-
stand a little of how such programs are structured, and how they work. There are fundamental
differences between the console programs that you have been producing up to now and a window-
based Java program. With a console program, you start the program, and the program code deter-
mines the sequences of events. Generally everything is predetermined. You enter data when
required, and the program will output data when it wants. At any given time, the specific program
code that will execute next is generally known.

A window-based application, or an applet for that matter, is quite different. The operation of the pro-
gram is driven by what you do with the graphical user interface (GUI). Selecting menu items or buttons
using the mouse, or through the keyboard, causes particular actions within the program. At any given
moment you have a whole range of possible interactions available to you, each of which will result in a
different program action. Until you do something, the specific program code that is to be executed next
is not known.

Event-Driven Programs
Your actions when you’re using the GUI for a window-based program or an applet — clicking a menu
item or a button, moving the mouse, and so on — are first recognized by the operating system. For each
action, the operating system determines which of the programs currently running on your computer
should know about it and passes the action on to that program. When you click a mouse button, it’s the
operating system that registers this and notes the position of the mouse cursor on the screen. It then
decides which application controls the window where the cursor was when you pressed the button, and
communicates the mouse button-press to that program. The signals that a program receives from the
operating system as a result of your actions are called events. The basic idea of how actions and events
are communicated to your program code is illustrated in Figure 18-1.

A program is not obliged to respond to any particular event. If you just move the mouse, for example,
the program need not invoke any code to react to that. If it doesn’t, the event is quietly disposed of. Each
event that the program does recognize is associated with one or more methods, and when the event
occurs — when you click a menu item, for example — the appropriate methods will be called automati-
cally. A window-based program is called an event-driven program because the sequence of events cre-
ated as a result of your interaction with the GUI drives and determines what happens in the program.

Events are not limited to window-based applications — they are a quite general
concept. Most programs that control or monitor things in the real world are event-
driven. Any occurrence external to a program, such as a switch closing or a preset
temperature being reached, can be registered as an event. In Java you can even create
events within your program to signal some other part of the code that something
noteworthy has happened. However, I’m going to concentrate on the kinds of events
that occur when you interact as a user with a program.

862

Chapter 18

Figure 18-1

The Event-Handling Process
To manage the user’s interaction with the components that make up the GUI for a program, you must
understand how events are handled in Java. To get an idea of how this works, let’s consider a specific
example. Don’t worry too much about the class names and other details here. Just try to get a feel for
how things connect.

Suppose the user clicks a button in the GUI for your program. The button is the source of this event.
The event that is generated as a result of the mouse click is associated with the JButton object in your
program that represents the button on the screen. An event always has a source object — in this case the
JButton object. When the button is clicked, it creates a new object that represents and identifies this

Keystrokes, Mouse Actions

Operating System

Java Library Classes

Events

Your
Program

method methodmethodmethod

863

Handling Events

event — in this case an object of type ActionEvent. This object contains information about the event
and its source. Any event that is passed to a Java program will be represented by a particular event
object — and this object will be passed as an argument to the method that is to handle the event.
Figure 18-2 illustrates this mechanism.

Figure 18-2

The event object corresponding to the button click will be passed to any listener object that has previ-
ously registered an interest in this kind of event — a listener object being simply an object that listens for
particular events. A listener is also called a target for an event. Here, “passing the event to the listener”
just means the event source calls a particular method in the listener object and passes the event object to
it as an argument. A listener object can listen for events for a particular object — just a single button, for
example — or it can listen for events for several different objects — a group of menu items, for example.
Which approach you take when you define a class representing listeners depends on the context and
which is most convenient from a programming point of view. Your programs will often involve both.

So how do you define a class that represents a listener? You can make the objects of any class listener
objects by making the class implement a listener interface. You will find quite a variety of listener inter-
faces, to cater to different kinds of events. In the case of our button click, the ActionListener interface
needs to be implemented to receive the event from the button. The code that is to receive this event
object and respond to the event is implemented in a method declared in the listener interface. In this
example, the actionPerformed() method in the ActionListener interface is called when the event
occurs, and the event object is passed as an argument. Each kind of listener interface defines particular
methods for receiving the events that that listener has been designed to deal with.

OK

public class MyButtonHandler
 implements ActionListener{
 // class Members...
 // Constuctor...
 ...
 button.addActionListener(this);
 ...

 void actionPerformed(ActionEvent e){
 // Handle the Event...
 }
}

ActionEvent
object Passed to

You connect the listener to
the event source

by calling addActionListener()
method for the source

object.

C
reates

B
utton click

864

Chapter 18

Simply implementing a listener interface isn’t sufficient to link the listener object to an event source. You
still have to connect the listener to the source, or sources, of the events that you want it to deal with. You
register a listener object with a source by calling a particular method in the source object. To register a
listener to listen for button-click events, you call the addActionListener() method for the JButton
object and pass the listener object as the argument to the method.

This mechanism for handling events using listeners is very flexible and very efficient, particularly for GUI
events. Any number of listeners can receive a particular event. However, a particular event is passed only
to the listeners that have registered to receive it, so only interested parties are involved in responding to
each event. Since being a listener just requires a suitable interface to be implemented, you can receive and
handle events virtually anywhere you like. The way in which events are handled in Java, using listener
objects, is referred to as the delegation event model. This is because the responsibility for responding to
events that originate with a component, such as a button or a menu item, is not handled by the objects
that originated the events themselves — but is delegated to separate listener objects.

Not all event handling necessarily requires a separate listener. A component can handle its own events,
as you’ll see a little later in this chapter.

A very important point to keep in mind when writing code to handle events is that all such code exe-
cutes in the same thread, the event-dispatching thread, which is separate from the thread in which
main() executes. This implies that while your event-handling code is executing, no other events can be
processed. The code to handle the next event will start executing only when the current event-handler
finishes. Thus, the responsiveness of your program to the user is dependent on how long your event-
handling code takes to execute. For snappy performance, your event handlers must take as little time as
possible to execute. Also, because events are processed in a separate thread from the main thread, you
must not modify or query the GUI for an application from the main thread once the GUI has been dis-
played or is ready to be displayed. Otherwise, a deadlock may result.

Avoiding Deadlocks in GUI Code
Preparing the application window and any components it contains and displaying it is described as real-
izing the window. Calling setVisible() for an application window object realizes the window. As I
said in the previous section, once an application GUI has been realized, modifying or querying it on the
main thread can cause deadlock because user interactions with the GUI, such as clicking a menu item,
are handled in the event-dispatching thread. There is also the rare possibility with some types of Swing
components that deadlocks can occur even when it is not apparent that you are modifying the GUI after
it has been realized. You can avoid any possibility of deadlock in your application arising from your GUI
creation code by arranging to execute all the code that creates the GUI on the event-dispatching thread.

The javax.swing.SwingUtilities class provides the static invokeLater() method, which makes
creating the GUI on the event-dispatching thread very easy. The invokeLater() method expects an
argument of type Runnable, which is a reference to an object of a type that implements the Runnable
interface. A simple way of defining a Runnable object that will create the GUI for an application is to
use an anonymous class. Let’s see how that works.

865

Handling Events

Try It Out Creating the GUI on the Event-Dispatching Thread
You can modify the last version of the Sketcher application in Chapter 17 to use the invokeLater()
method from the SwingUtilities class. Copy the Sketcher.java and SketchFrame.java files to a
new directory and modify the Sketcher class definition as follows:

import java.awt.Toolkit;

import java.awt.Dimension;

import javax.swing.SwingUtilities;

public class Sketcher {

public static void main(String[] args) {

SwingUtilities.invokeLater(

new Runnable() { // Anonymous Runnable class object

public void run() { // Run method executed in thread

creatGUI(); // Call static GUI creator

}

});

}

static void creatGUI() {

window = new SketchFrame(“Sketcher”); // Create the app window

Toolkit theKit = window.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

window.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

window.setVisible(true);

}

private static SketchFrame window; // The application window

}

If you look in the directory after you have recompiled Sketcher, you’ll see there are three .class files,
the two corresponding to the Sketcher and SketchFrame classes and the third corresponding to the
anonymous class. This version of Sketcher will display the application window with the File and
Elements menus exactly as the last example in the previous chapter.

How It Works
All the GUI creation code that was in main() is now in a separate static method createGUI(). The
main() method now calls the static invokeLater() method that is defined in the SwingUtilities
class. The invokeLater() method executes the run() method for the object that is passed as the argu-
ment on the event-dispatching thread after all pending events have been processed. It is sometimes useful
to call this method from within event-handling code that is already executing in the event-dispatching
thread because it provides a way for you to defer execution of the run() method in your Runnable object
until after outstanding events have been processed when this is desirable.

866

Chapter 18

You pass an object of an anonymous class that implements the Runnable interface to the
invokeLater() method. You have defined the anonymous class as:

new Runnable() { // Anonymous Runnable class object

public void run() { // Run method executed in thread

creatGUI(); // Call static GUI creator

}

}

You’ll recall from Chapter 16 that the Runnable interface defines just the run() method that is called
when the object is executed in a new thread, so the anonymous class needs to define only that method.
The run() method just calls the static method in the Sketcher class that creates the window and its
components, so it is this code that will now execute on the event-dispatching thread.

Let’s now get down to looking at the specifics of what kinds of events you can expect and the range of
listener interfaces that processes them.

Event Classes
Your program may need to respond to many different kinds of events — from menus, from buttons, from
the mouse, from the keyboard, and from a number of other components. To have a structured approach
to handling events, the events are broken down into subsets. At the topmost level, there are two broad
categories of events in Java:

❑ Low-Level Events — These are system-level events that arise from the keyboard or from the
mouse, or events associated with operations on a window, such as reducing it to an icon or clos-
ing it. The meaning of a low-level event is something like “the mouse was moved,” “this win-
dow has been closed,” or “this key was pressed.”

❑ Semantic Events — These are specific component-related events such as pressing a button by
clicking it to cause some program action or adjusting a scrollbar. They originate, and you inter-
pret them, in the context of the GUI you have created for your program. The meaning of a seman-
tic event is typically along the lines of “the OK button was pressed,” or “the Save menu item was
selected.” Each kind of component, a button or a menu item, for example, can generate a particu-
lar kind of semantic event.

These two categories can seem to be a bit confusing as they overlap in a way. If you click a button, you
create a semantic event as well as a low level event. The click produces a low-level event object in the
form of ‘the mouse was clicked’ as well as a semantic event ‘the button was pushed’. In fact it produces
more than one mouse event, as you’ll see. Whether your program handles the low-level events or the
semantic events, or possibly both kinds of events, depends on what you want to do.

Most of the events relating to the GUI for a program are represented by classes that are defined in the
java.awt.event package. This package also defines the listener interfaces for the various kinds of
events that it defines. The package javax.swing.event defines classes for events that are specific to
Swing components.

867

Handling Events

Low-Level Event Classes
You can elect to handle four kinds of low-level events in your programs. They are represented by the fol-
lowing classes in the java.awt.event package:

Event Description

FocusEvent Objects of this class represent events that originate when a component
gains or loses the keyboard focus. Only the component that has the
focus can receive input from the keyboard, so it will usually be high-
lighted or have the cursor displayed.

MouseEvent Objects of this class represent events that result from user actions with
the mouse, such as moving the mouse or pressing a mouse button.

KeyEvent Objects of this class represent events that arise from pressing keys on
the keyboard.

WindowEvent Objects of this class represent events that relate to a window, such as
activating or deactivating a window, reducing a window to its icon, or
closing a window. These events relate to objects of the Window class or
any subclass of Window.

The MouseEvent class has two subclasses that identify more specialized mouse events. One is the
MenuDragMouseEvent class that defines event objects signaling when the mouse has been dragged over
a menu item. The other is the MouseWheelEvent class that defines event objects indicating when the
mouse wheel is rotated.

Each of these event classes defines methods that enable you to analyze the event. For a MouseEvent object,
for example, you can get the coordinates of the cursor when the event occurred. These low-level event
classes also inherit methods from their superclasses and are related in the manner shown in Figure 18-3.

The AWTEvent class is itself a subclass of java.util.EventObject. The EventObject class imple-
ments the Serializable interface, so all objects of the event classes in the diagram are serializable. It
also defines a method, getSource(), that returns the object that is the source of an event as type
Object. All the event classes shown inherit this method.

Just so that you know, this isn’t an exhaustive list of all of the low-level event
classes. It’s a list of the ones you need to know about. For example, there’s also the
PaintEvent class that is concerned with the internals of how components are
painted on the screen. There’s also another low-level event class, ContainerEvent,
that defines events relating to a container, such as adding or removing components.
You can ignore these classes, as these events are handled automatically.

868

Chapter 18

Figure 18-3

The AWTEvent class defines constants that are public final values identifying the various kinds of events.
These constants are named for the sake of consistency as the event name in capital letters, followed by
_MASK. The constants identifying the low-level events that you are most likely to be interested in are:

MOUSE_EVENT_MASK MOUSE_MOTION_EVENT_MASK

MOUSE_WHEEL_EVENT_MASK KEY_EVENT_MASK

ADJUSTMENT_EVENT_MASK WINDOW_EVENT_MASK

WINDOW_FOCUS_EVENT_MASK WINDOW_STATUS_EVENT_MASK

TEXT_EVENT_MASK ITEM_EVENT_MASK

FOCUS_EVENT_MASK

Each of these constants is a value of type long with a single bit set to 1 and all the remaining set to 0.
Because they are defined this way you can combine them using a bitwise OR operator and you can
separate a particular constant out from a combination by using a bitwise AND.

The list of event masks above is not exhaustive. There are masks for component
events represented by objects of the class ComponentEvent and for container events.
These events occur when a component is moved or resized, or a component is added
to a container, for example. There is also a mask for events associated with compo-
nents that receive text input. You won’t normally need to get involved in these
events so I won’t be discussing them further.

AWTEvent

ComponentEvent

InputEventWindowEvent

All other classes are at
java.awt.event

In package java.awt

FocusEvent

MouseEvent KeyEvent

869

Handling Events

You use the identifiers for event masks to enable a particular group of events in a component object.
You call the enableEvents() method for the component, and pass the variable for the events you want
enabled as an argument. However, you do this only when you aren’t using a listener. Registering a lis-
tener automatically enables the events that the listener wants to hear, so you don’t need to call the
enableEvents() method. The circumstance when you might do this is when you want an object to
handle some of its own events, although you can achieve the same result using a listener.

Making a Window Handle Its Own Events
Using listeners is the preferred way of handling events since it is easier than enabling events directly for
an object, and the code is clearer. Nonetheless, you should take a look at how events are dealt with after
calling enableEvents() in case you come across it elsewhere. An example of where you might want to
call enableEvents() exists in the SketchFrame class in the Sketcher program.

As you may recall from the previous chapter, you used the setDefaultCloseOperation() method to
determine what happens when you close the window by clicking the X icon. Although the EXIT_ON_CLOSE
argument value that you used disposed of the frame and closed the application, it didn’t provide any oppor-
tunity to do any checking or cleanup before causing the program to exit. You can respond to the close icon
being clicked in the program yourself, rather than letting the JFrame facilities handle the associated event
within the window object itself. This will eventually enable you to prompt the user to save any data that has
been created before shutting down the application when a close event occurs, so let’s give it a try.

Try It Out Closing a Window
You need to modify the SketchFrame class definition from the previous example as follows:

// Frame for the Sketcher application

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import javax.swing.JRadioButtonMenuItem;

import javax.swing.JCheckBoxMenuItem;

import javax.swing.ButtonGroup;

import javax.swing.KeyStroke;

import java.awt.Event;

import static java.awt.event.InputEvent.*;

import static java.awt.AWTEvent.*;

import java.awt.event.WindowEvent;

public class SketchFrame extends JFrame {

// Constructor

public SketchFrame(String title) {

setTitle(title); // Set the window title

// setDefaultCloseOperation(EXIT_ON_CLOSE);

// rest of code as before...

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

enableEvents(WINDOW_EVENT_MASK); // Enable window events

}

870

Chapter 18

// Handle window events

protected void processWindowEvent(WindowEvent e) {

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

dispose(); // Release resources

System.exit(0); // Exit the program

}

super.processWindowEvent(e); // Pass on the event

}

private JMenuBar menuBar = new JMenuBar(); // Window menu bar

// File menu items

private JMenuItem newItem, openItem, closeItem,

saveItem, saveAsItem, printItem;

// Element menu items

private JRadioButtonMenuItem lineItem, rectangleItem, circleItem, // Types

curveItem, textItem;

private JCheckBoxMenuItem redItem, yellowItem, // Colors

greenItem, blueItem ;

}

You add the call to enableEvents() as the last in the constructor. Note that the statement that sets
EXIT_ON_CLOSE as the close option for the window is commented out. You could delete the statement if
you want. When you compile SketchFrame and run Sketcher again, you’ll be able to close the window as
before, and the program will shut down gracefully. However, this time it’s your method that’s doing it.

How It Works
The additional import statements make the constants defined in the AWTEvent class and the
WindowEvent class name available to your source file without the need to qualify them with the
package names. You call enableEvents() in the constructor with WINDOW_EVENT_MASK as the argu-
ment to enable window events. This enables all the window events represented by the WindowEvent
class. An object of this class can represent one of a number of different window events that are each iden-
tified by an event ID, which is a constant defined within the WindowEvent class. The event IDs for the
WindowEvent class are:

Event ID Description

WINDOW_OPENED The event that occurs the first time a window is made visible.

WINDOW_CLOSING The event that occurs as a result of the close icon being selected or
Close being selected from the window’s system menu.

WINDOW_CLOSED The event that occurs when the window has been closed.

WINDOW_ACTIVATED The event that occurs when the window is activated — obtains the
focus, in other words. When another GUI component has the focus,
you could make the window obtain the focus by clicking on it, for
example.

Table continued on following page

871

Handling Events

Event ID Description

WINDOW_DEACTIVATED The event that occurs when the window is deactivated — loses the
focus, in other words. Clicking on another window would cause this
event, for example.

WINDOW_GAINED_FOCUS The event that occurs when the window gains the focus. This implies
that the window or one of its components will receive keyboard
events.

WINDOW_LOST_FOCUS The event that occurs when the window loses the focus. This implies
that keyboard events will not be delivered to the window or any of
its components.

WINDOW_ICONIFIED The event that occurs when the window is minimized and reduced to
an icon.

WINDOW_DEICONIFIED The event that occurs when the window is restored from an icon.

WINDOW_STATE_CHANGED The event that occurs when the window state changes — when it is
maximized or minimized, for instance.

If any of these events occur, the processWindowEvent() method that you have added to the
SketchFrame class will be called. Your version of the method overrides the base class method that is
inherited from java.awt.Window, and is responsible for passing the event to any listeners that have
been registered. The argument of type WindowEvent that is passed to the method will contain the event
ID that identifies the particular event that occurred. To obtain the ID of the event, you call the getID()
method for the event object, and compare that with the ID identifying the WINDOW_CLOSING event. If the
event is WINDOW_CLOSING, you call the dispose() method for the window to close the window and
release the system resources it is using. You then close the application by calling the exit() method
defined in the System class.

The getID() method is defined in the AWTEvent class, which is a superclass of all the low-level event
classes I have discussed, so all event objects that encapsulate low-level events have this method.

In the SketchFrame class, the dispose() method is inherited originally from the Window class via the
base class JFrame. This method releases all the resources for the window object, including those for all
components owned by the object. Calling the dispose() method doesn’t affect the window object itself
in the program. It just tells the operating system that the resources used to display the window and the
components it contains on the screen are no longer required. The window object is still around together
with its components, so you could call its methods or even open it again.

Note that you call the processWindowEvent() method in the superclass if it is not
the closing event. It is very important that you do this as it allows the event to be
passed on to any listeners that have been registered for these events. If you don’t
call processWindowEvent() for the superclass, any events that you do not handle in
your processWindowEvent() method will be lost, because the base class method is
normally responsible for passing the event to the listeners that have been registered
to receive it.

872

Chapter 18

If you had not commented out the call to the setDefaultCloseOperation() method, your
processWindowEvent() method would still have been called when the close icon was clicked. In this
case you would not need to call dispose() and exit() in the method. This would all have been taken
care of automatically after your processWindowEvent() method had finished executing. This would be
preferable as it means there would be less code in your program, and the code to handle the default
close action is there in the JFrame class anyway.

Enabling Other Low-level Events
The enableEvents() method is inherited from the Component class. This means that any component
can elect to handle its own events. You just call the enableEvents() method for the component and
pass an argument defining the events you want the component to handle. If you want to enable more
than one type of event for a component, you just combine the event masks from AWTEvent that you saw
earlier by linking them with a bitwise OR. To make the window object handle mouse events as well as
window events, you could write:

enableEvents(WINDOW_EVENT_MASK | MOUSE_EVENT_MASK);

Of course, you must now also implement the processMouseEvent() method for the SketchFrame
class. Like the processWindowEvent() method, this method is protected and has void as the return
type. It receives the event as an argument of type MouseEvent. There are two other methods specific to
the Window class that handle events:

Event-Handling Methods Description

processWindowFocusEvent(WindowEvent e) This method is called for any window focus
events that arise as long as such events are
enabled for the window.

processWindowStateEvent(WindowEvent e) This method is called for events arising as a
result of the window changing state.

These methods and the processWindowEvent() method are available only for objects of type Window
or of a type that is a subclass of Window, so don’t try to enable window events on other components.

The other event-handling methods that you can override to handle component events are:

Event-Handling Methods Description

processEvent(AWTEvent e) This method is called first for any events that are
enabled for the component. If you implement this
method and fail to call the base class method, none
of the methods for specific groups of events will be
called.

processFocusEvent(FocusEvent e) This method will be called for focus events, if they
are enabled for the component.

Table continued on following page

873

Handling Events

Event-Handling Methods Description

processKeyEvent(KeyEvent e) This method will be called for key events, if
they are enabled for the component.

processMouseEvent(MouseEvent e) This method will be called for mouse
button events, if they are enabled for the
component.

processMouseMotionEvent(MouseEvent e) This method will be called for mouse move
and drag events, if they are enabled for the
component.

processMouseWheelEvent(MouseWheelEvent e) This method will be called for mouse wheel
rotation events, if they are enabled for the
component.

All the event-handling methods for a component are protected methods that have a return type of void.
The default behavior implemented by these methods is to dispatch the events to any listeners registered
for the component. If you don’t call the base class method when you override these methods after your
code has executed, this behavior will be lost.

Low-Level Event Listeners
To create a class that defines an event listener, your class must implement a listener interface. All event lis-
tener interfaces extend the interface java.util.EventListener. This interface doesn’t declare any
methods, though — it’s just used to identify an interface as being an event listener interface. It also allows
a variable of type EventListener to be used for storing a reference to any kind of event listener object.

There is a very large number of event listener interfaces. You’ll consider just eight at this point that are
concerned with low-level events. The following sections describe these interfaces and the methods they
declare.

Although it seemed to be convenient to handle the window-closing event in the
SketchFrame class by implementing processWindowEvent(), as a general rule you
should use listeners to handle events. Using listeners is the recommended approach to
handling events in the majority of circumstances, since separating the event handling
from the object that originated the event results in a simpler code structure that is eas-
ier to understand and is less error prone. You will change the handling of the window-
closing event in the Sketcher code to use a listener a little later in this chapter.

874

Chapter 18

The WindowListener Interface
This interface defines methods to respond to events reflecting changes in the state of a window.

Defined Methods Description

windowOpened(WindowEvent e) Called the first time the window is opened

windowClosing(WindowEvent e) Called when the system menu Close item or the
window close icon is selected

windowClosed(WindowEvent e) Called when the window has been closed

windowActivated(WindowEvent e) Called when the window is activated — by clicking
on it, for example

windowDeactivated(WindowEvent e) Called when a window is deactivated — by click-
ing on another window, for example

windowIconified(WindowEvent e) Called when a window is minimized and reduced
to an icon

windowDeiconified(WindowEvent e) Called when a window is restored from an icon

The WindowFocusListener Interface
This interface defines methods to respond to a window gaining or losing the focus. When a window has
the focus, one of its child components can receive input from the keyboard. When it loses the focus, key-
board input via a child component of the window is not possible.

Defined Methods Description

windowGainedFocus(WindowEvent e) Called when the window gains the focus such that
the window or one of its components will receive
keyboard events.

windowLostFocus(WindowEvent e) Called when the window loses the focus. After this
event, neither the window nor any of its compo-
nents will receive keyboard events.

The WindowStateListener Interface
This interface defines a method to respond to any change in the state of a window.

Defined Method Description

windowStateChanged(WindowEvent e) Called when the window state changes — when it
is maximized or iconified, for example

875

Handling Events

The MouseListener Interface
This interface defines methods to respond to events arising when the mouse cursor is moved into or out
of the area occupied by a component, or one of the mouse buttons is pressed, released, or clicked.

Defined Methods Description

mouseClicked(MouseEvent e) Called when a mouse button is clicked on a component —
that is, when the button is pressed and released

mousePressed(MouseEvent e) Called when a mouse button is pressed on a component

mouseReleased(MouseEvent e) Called when a mouse button is released on a component

mouseEntered(MouseEvent e) Called when the mouse enters the area occupied by a
component

mouseExited(MouseEvent e) Called when the mouse exits the area occupied by a
component

The MouseMotionListener Interface
This interface defines methods that are called when the mouse is moved or dragged with a button
pressed.

Defined Methods Description

mouseMoved(MouseEvent e) Called when the mouse is moved within a component

mouseDragged(MouseEvent e) Called when the mouse is moved within a component while
a mouse button is held down

The MouseWheelListener Interface
This interface defines a method to respond to the mouse wheel being rotated. This is frequently used to
scroll information that is displayed, but you can use it in any way that you want.

Defined Method Description

mouseWheelMoved(MouseWheelEvent e) Called when the mouse wheel is rotated

The KeyListener Interface
This interface defines methods to respond to events arising when a key on the keyboard is pressed or
released.

876

Chapter 18

Defined Methods Description

keyTyped(KeyEvent e) Called when a key on the keyboard is pressed and then released

keyPressed(KeyEvent e) Called when a key on the keyboard is pressed

keyReleased(KeyEvent e) Called when a key on the keyboard is released

The FocusListener Interface
This interface defines methods to respond to a component gaining or losing the focus. You might imple-
ment these methods to change the appearance of the component to reflect whether or not it has the focus.

Defined Methods Description

focusGained(FocusEvent e) Called when a component gains the keyboard focus

focusLost(FocusEvent e) Called when a component loses the keyboard focus

There is a further listener interface, MouseInputListener, that is defined in the javax.swing.event
package. This listener implements both the MouseListener and MouseMotionListener interfaces so it
declares methods for all possible mouse events in a single interface.

The WindowListener, WindowFocusListener, and WindowStateListener interfaces define methods
corresponding to each of the event IDs defined in the WindowEvent class that you saw earlier. If you
deduced from this that the methods in the other listener interfaces correspond to event IDs for the other
event classes, well, you’re right. All the IDs for mouse events are defined in the MouseEvent class.
These are:

MOUSE_CLICKED MOUSE_PRESSED MOUSE_DRAGGED

MOUSE_ENTERED MOUSE_EXITED MOUSE_RELEASED

MOUSE_MOVED MOUSE_WHEEL

The MOUSE_MOVED event corresponds to just moving the mouse. The MOUSE_DRAGGED event arises when
you move the mouse while keeping a button pressed.

The event IDs that the KeyEvent class defines are:

KEY_TYPED KEY_PRESSED KEY_RELEASED

Those defined in the FocusEvent class are:

FOCUS_GAINED FOCUS_LOST

877

Handling Events

To implement a listener for a particular event type, you just need to implement the methods declared in
the corresponding interface. You could handle some of the window events for the SketchFrame class by
making the application class the listener for window events.

Try It Out Implementing a Low-Level Event Listener
First, delete the call to the enableEvents() method in the SketchFrame() constructor. Then delete the
definition of the processWindowEvent() method from the class definition.

Now you can modify the previous version of the Sketcher class so that it is a listener for window events:

// Sketching application

import java.awt.Dimension;

import java.awt.Toolkit;

import java.awt.event.WindowListener;

import java.awt.event.WindowEvent;

public class Sketcher implements WindowListener {

public static void main(String[] args) {

theApp = new Sketcher(); // Create the application object

SwingUtilities.invokeLater(

new Runnable() { // Anonymous Runnable class object

public void run() { // Run method executed in thread

theApp.creatGUI(); // Call static GUI creator

}

});

}

// Method to create the application GUI

private void creatGUI() {

window = new SketchFrame(“Sketcher”); // Create the app window

Toolkit theKit = window.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to half screen size

window.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

window.addWindowListener(this); // theApp as window listener

window.setVisible(true);

}

// Handler for window closing event

public void windowClosing(WindowEvent e) {

window.dispose(); // Release the window resources

System.exit(0); // End the application

}

// Listener interface functions you must implement – but don’t need

public void windowOpened(WindowEvent e) {}

public void windowClosed(WindowEvent e) {}

878

Chapter 18

public void windowIconified(WindowEvent e) {}

public void windowDeiconified(WindowEvent e) {}

public void windowActivated(WindowEvent e) {}

public void windowDeactivated(WindowEvent e) {}

private SketchFrame window; // The application window

private static Sketcher theApp; // The application object

}

If you run the Sketcher program again, you will see it works just as before, but now the Sketcher class
object is handling the close operation.

How It Works
You have added import statements for the WindowEvent and WindowListener class names. The
Sketcher class now implements the WindowListener interface, so an object of type Sketcher can
handle window events. The main() method now creates a Sketcher object and stores the reference
in the static class member theApp.

The createGUI() method is now an instance method, and this executes on the event-dispatching
thread as shown in the previous example. The createGUI() method creates the application window
object as before, but now the reference is stored in a field belonging to theApp. After setting up the win-
dow components, the createGUI() method calls the addWindowListener() method for the window
object. The argument to the addWindowListener() method is a reference to the listener object that is
to receive window events. Here it is the variable this, which refers to the application object, theApp.
If you had other listener objects that you wanted to register to receive this event, you would just need
to add more calls to the addWindowListener() method — one call for each listener.

When you implement the WindowListener interface in the Sketcher class, you must implement all seven
methods that are declared in the interface. If you failed to do this, the class would be abstract and you
could not create an object of type Sketcher. Only the windowClosing() method contains code here —
the bodies of all the other methods are empty because you don’t need to use them. The windowClosing()
method does the same as the processWindowEvent() method that you implemented for the previous
version of the SketchFrame class, but here you don’t need to check the object passed to it because the
windowClosing() method is called only for a WINDOW_CLOSING event. You don’t need to pass the event
on either; this is necessary only when you handle events in the manner I discussed earlier. Here, if there
were other listeners around for the window events, they would automatically receive the event.

You have included the code that calls dispose() and exit() here, but if you set the default close oper-
ation in SketchFrame to EXIT_ON_CLOSE, you could omit these, too. You really need to put your appli-
cation cleanup code only in the windowClosing() method, and this will typically display a dialog to
just prompt the user to save any application data. You will get to that eventually.

Having to implement six methods that you don’t need is rather tedious. But you have a way to get around
this — by using what is called an adapter class, to define a listener.

Using Adapter Classes
An adapter class is a term for a class that implements a listener interface with methods that have no con-
tent, so they do nothing. The idea of this is to enable you to derive your own listener class from any of the

879

Handling Events

adapter classes that are provided, and then implement just the methods that you are interested in. The
other empty methods will be inherited from the adapter class so you don’t have to worry about them.

There’s an adapter class defined in the javax.swing.event package that defines the methods for the
MouseInputListener interface. There are five further adapter classes defined in the java.awt.event
package that cover the methods in the other low-level listener interfaces you have seen:

FocusAdapter WindowAdapter KeyAdapter

MouseAdapter MouseMotionAdapter MouseInputAdapter

The WindowAdapter class implements all of the methods defined in the WindowListener,
WindowFocusListener, and WindowStateListener interfaces. The other five each implement
the methods in the corresponding listener interface.

To handle the window closing event for the Sketcher application, you could derive your own class
from the WindowAdapter class and just implement the windowClosing() method. If you also make it
an inner class for the Sketcher class, it will automatically have access to the members of the Sketcher
object, regardless of their access specifiers. Let’s change the structure of the Sketcher class once more
to make use of an adapter class.

Try It Out Implementing an Adapter Class
The version of the Sketcher class to implement this will be as follows, with changes to the previous
version highlighted:

// Sketching application

import java.awt.Toolkit;

import java.awt.Dimension;

import javax.swing.SwingUtilities;

import java.awt.event.WindowEvent;

import java.awt.event.WindowAdapter;

public class Sketcher {

public static void main(String[] args) {

theApp = new Sketcher(); // Create the application object

SwingUtilities.invokeLater(

new Runnable() { // Anonymous Runnable class object

public void run() { // Run method executed in thread

theApp.creatGUI(); // Call static GUI creator

}

});

}

// Method to create the application GUI

private void creatGUI() {

window = new SketchFrame(“Sketcher”); // Create the app window

Toolkit theKit = window.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

880

Chapter 18

// Set the position to screen center & size to half screen size

window.setBounds(wndSize.width/4, wndSize.height/4, // Position

wndSize.width/2, wndSize.height/2); // Size

window.addWindowListener(new WindowHandler()); // Add window listener

window.setVisible(true); // Display the window

}

// Handler class for window events

class WindowHandler extends WindowAdapter {

// Handler for window closing event

public void windowClosing(WindowEvent e) {

window.dispose(); // Release the window resources

System.exit(0); // End the application

}

}

private SketchFrame window; // The application window

private static Sketcher theApp; // The application object

}

This example will display the same application window as the previous example.

How It Works
As the Sketcher class is no longer the listener for window, it doesn’t need to implement the
WindowListener interface. The WindowHandler class is the listener class for window events. Because
the WindowHandler class is an inner class to the Sketcher class, it has access to all the members of the
class, so calling the dispose() method for the window object is still quite straightforward — you just
access the window field of the top-level class.

The WindowAdapter object that is the listener for the window object is created in the argument to the
addWindowListener() method for window. You don’t need an explicit variable to contain it because it
will be stored in a data member of the Window class object. This data member is inherited from the
Window superclass of the SketchFrame class.

You haven’t finished with low-level events yet by any means, and you’ll return to handling more low-
level events in the next chapter when you begin to add drawing code to the Sketcher program. In the
meantime, let’s start looking at how you can manage semantic events.

An easy mistake to make when you’re using adapter classes is to misspell the name
of the method that you are using to implement the event — typically by using the
wrong case for a letter. In this case, you won’t be overriding the adapter class method
at all; you’ll be adding a new method. Your code will compile perfectly well but your
program will not handle any events. They will all be passed to the method in the
adapter class with the name your method should have had — which does nothing, of
course. This can be a bit mystifying until you realize where the problem is.

881

Handling Events

Semantic Events
As you saw earlier, semantic events relate to operations on the components in the GUI for your program.
If you select a menu item or click a button, for example, a semantic event is generated. Three classes rep-
resent the basic semantic events you’ll be dealing with most of the time, and they are derived from the
AWTEvent class, as shown in Figure 18-4.

Figure 18-4

An ActionEvent is generated when you perform an action on a component such as clicking on a
menu item or a button. An ItemEvent occurs when a component is selected or deselected, and an
AdjustmentEvent is produced when an adjustable object, such as a scrollbar, is adjusted.

Different kinds of components can produce different kinds of semantic events. The components that can
originate these events are:

Event Type Produced by Objects of Type

ActionEvent Buttons:
JButton, JToggleButton, JcheckBox

Menus:
JMenuItem, JMenu, JCheckBoxMenuItem, JradioButtonMenuItem

Text:
JTextField

EventObject

AWTEvent

In package java.util

In package java.awt

The base class for all semantic
events. There are semantic events

specific to Swing components
derived directly from this class.

ItemEvent

These three sematic event classes are in java.awt.event

AdjustmentEventActionEvent

882

Chapter 18

Event Type Produced by Objects of Type

ItemEvent Buttons:
JButton, JToggleButton, JcheckBox

Menus:
JMenuItem, JMenu, JCheckBoxMenuItem, JRadioButtonMenuItem

AdjustmentEvent JScrollbar

These three types of event are also generated by the old AWT components, but I won’t go into these here
as you are concentrating on the Swing components. Of course, any class you derive from these compo-
nent classes to define your own customized components can be the source of the event that the base
class generates. If you define your own class for buttons —MyFancyButton, say — your class will have
JButton as a base class and inherit all of the methods from the JButton class, and objects of your class
will originate events of type ActionEvent and ItemEvent.

Quite a large number of semantic events are specific to Swing components. Classes that have
AbstractButton as a base, which includes menu items and buttons, can generate events of type
ChangeEvent that signal some change in the state of a component. Components corresponding to the
JMenuItem class and classes derived from JMenuItem can generate events of type MenuDragMouseEvent
and of type MenuKeyEvent. An AncestorEvent is an event that is communicated to a child component
from a parent component. You’ll look at the details of some of these additional events when you need to
handle them for the components in question.

As with low-level events, the most convenient way to handle semantic events is to use listeners, so I’ll
delve into the listener interfaces for semantic events next.

Semantic Event Listeners
You have a listener interface defined for each of the three semantic event types that I have introduced so
far, and they each declare a single method:

Listener Interface Method

ActionListener void actionPerformed(ActionEvent e)

ItemListener void itemStateChanged(ItemEvent e)

AdjustmentListener void adjustmentValueChanged(AdjustmentEvent e)

Since each of these semantic event listener interfaces declares only one method, there’s no need for corre-
sponding adapter classes. The adapter classes for the low-level events were there only because of the
number of methods involved in each listener interface. To define your semantic event listener objects, you
just define a class that implements the appropriate listener interface. You can try that out by implementing
a simple applet now, and then see how you can deal with semantic events in a more complicated context
by adding to the Sketcher program later.

883

Handling Events

Semantic Event Handling in Applets
Event handling in an applet is exactly the same as in an application, but you ought to see it for yourself.
Let’s see how you might handle events for buttons in an applet. You can create an applet that uses some
buttons that have listeners. To make this example a bit more gripping, I’ll throw in the possibility of
monetary gain. That’s interesting to almost everybody.

Let’s suppose you want to implement an applet that will create a set of random numbers for a lottery
entry. The requirement is to generate six different random numbers between 1 and 49. It would also be
nice to be able to change a single number if you don’t like it, so you’ll add that capability as well. Since
the local lottery may not be like this, you’ll implement the applet to make it easily adaptable to fit local
requirements.

By displaying the six selected numbers on buttons, you can provide for changing one of the choices by
processing the action event for that button. Thus, clicking a button will provide another number. You’ll
also add a couple of control buttons, one to make a new selection for a complete set of lottery numbers,
and another just for fun to change the button color. Figure 18-5 shows how the applet will look when
running under appletviewer:

Figure 18-5

Try It Out A Lottery Applet
You can outline the broad structure of the applet’s code as follows:

// Applet to generate lottery entries

import javax.swing.JButton;

import javax.swing.JApplet;

import javax.swing.JPanel;

import javax.swing.BorderFactory;

import javax.swing.SwingUtilities;

import java.awt.GridLayout;

import java.awt.FlowLayout;

import java.awt.Dimension;

import java.awt.Container;

import java.awt.Color;

884

Chapter 18

import java.util.Random; // For random number generator

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class Lottery extends JApplet {

// Initialize the applet

public void init() {

// Create interface components on event dispatch thread...

}

// Create User Interface for applet

public void createGUI() {

// Set up the lucky numbers buttons...

// Set up the control buttons...

}

// Class defining custom buttons showing lottery selection

// Each button listens for its own events

class Selection extends JButton implements ActionListener {

// Constructor

public Selection(int value) {

// Create the button showing the value...

}

// Handle selection button event

public void actionPerformed(ActionEvent e) {

// Change the current selection value to a new selection value

}

// Details of the rest of the selection class definition...

}

// Class defining a handler for a control button

class HandleControlButton implements ActionListener {

// Constructor...

// Handle button click

public void actionPerformed(ActionEvent e) {

// Handle button click for a particular button...

}

// Rest of the inner class definition...

}

final static int numberCount = 6; // Number of lucky numbers

final static int minValue = 1; // Minimum in range

final static int maxValue = 49; // Maximum in range

static int[] values = new int[maxValue-minValue+1]; // Array of possible values

static { // Initialize array

for(int i = 0 ; i<values.length ; i++)

values[i] = i + minValue;

}

885

Handling Events

// An array of custom buttons for the selected numbers

private Selection[] luckyNumbers = new Selection[numberCount];

private static Random choice = new Random(); // Random number generator

}

How It Works
The applet class is called Lottery, and it contains two inner classes, Selection and
HandleControlButton. The Selection class provides a custom button that will show a number
as its label, the number being passed to the constructor as an argument. You can make an object of
the Selection class listen for its own action events. As I said at the outset, an event for a selection
button will change the label of the button to a different value, so of course, you’ll need to make sure
this doesn’t duplicate any of the values for the other buttons.

The two control buttons will use separate listeners to handle their action events, and the response to an
event will be quite different for each of them. One control button will create a new set of lucky numbers
while the other control button will just change the color of the buttons.

The numberCount member of the Lottery class sets the number of values that is created. The minValue
and maxValue members specify the range of possible values that lottery numbers can have. The possible
values for selections are stored in the values array, and this is set up in the static initialization block. The
Lottery class has an array of Selection objects as a data member — you can have arrays of components
just like arrays of any other kind of object. Since the Selection buttons will all be the same, it’s very con-
venient to create them as an array, and having an array of components enables you to set them up in a
loop. You also have a Random object as a class member that you’ll use to generate random integers.

You can now set about filling in the sections of the program that you have roughed out.

Filling in the Details
The generation of maxCount random values from the elements in the values array is quite independent
of everything else here, so you can define a static method in the Lottery class to do this:

public class Lottery extends JApplet {

// Generate numberCount random selections from the values array

static int[] getNumbers() {

int[] numbers = new int[numberCount]; // Store for the numbers to be returned

int candidate = 0; // Stores a candidate selection

for(int i = 0; i < numberCount; i++) { // Loop to find the selections

search:

// Loop to find a new selection different from any found so far

for(;;) {

candidate = values[choice.nextInt(values.length)];

for(int j = 0 ; j<i ; j++) { // Check against existing selections

if(candidate==numbers[j]) { // If it is the same

continue search; // get another random selection

}

}

886

Chapter 18

numbers[i] = candidate; // Store the selection in numbers array

break; // and go to find the next

}

}

return numbers; // Return the selections

}

// Plus the rest of the class definition...

}

The getNumbers() method returns a reference to an array of values of type int that represent the
selections — which must all be different, of course. You start the process by creating an array to hold the
selections, and a variable, candidate, to hold a potential selection for the values array. You generate a
new selection for each iteration of the outer for loop. The process for finding an acceptable selection is
quite simple. In the indefinite for loop with the label search, you choose a random value from the
values array using the random number generator and then check its value against any selections already
stored in the numbers array. If it is the same as any of them, the labeled continue statement will go to the
next iteration of the indefinite for loop. This will continue until a selection is found that is different from
the others. In this way you ensure that you end up with a set of selections that are all different.

Let’s implement the init() method and the creatGUI() method for the Lottery class next, as these
set up the Selection buttons and the rest of the applet.

Try It Out Setting Up the Lucky Number Buttons
The init() method has to execute only the createGUI() method on the event-dispatching thread:

// Initialize the applet

public void init() {

SwingUtilities.invokeLater(// Create interface components

new Runnable() { // on the event dispatching thread

public void run() {

createGUI();

}

});

}

In the class outline, you identified two tasks for the createGUI() method. The first was setting up the
lucky number buttons to be contained in the luckyNumbers array.

Here’s the code to do that:

// Create User Interface for applet

public void creatGUI() {

// Set up the selection buttons

Container content = getContentPane();

content.setLayout(new GridLayout(0,1)); // Set the layout for the applet

// Set up the panel to hold the lucky number buttons

JPanel buttonPane = new JPanel(); // Add the pane containing numbers

887

Handling Events

// Let’s have a fancy panel border

buttonPane.setBorder(BorderFactory.createTitledBorder(

BorderFactory.createEtchedBorder(Color.cyan,

Color.blue),

“Every One a Winner!”));

int[] choices = getNumbers(); // Get initial set of numbers

for(int i = 0; i<numberCount; i++) {

luckyNumbers[i] = new Selection(choices[i]);

buttonPane.add(luckyNumbers[i]);

}

content.add(buttonPane);

// Set up the control buttons...

}

How It Works
The init() method uses the invokeLater() method from the SwingUtilities class to execute the
createGUI() method on the event-dispatching thread. This guarantees that there is no possibility of a
deadlock arising in the GUI construction process. This is the same technique that you used in the previ-
ous example.

The first step in the createGUI() method is to define the layout manager for the applet. To make the
layout easier, you’ll use one panel to hold the selection buttons and another to hold the control buttons.
You position these panels one above the other by specifying the layout manager for the content pane of
the applet as a grid layout with one column. The top panel will contain the lucky number buttons and
the bottom panel will contain the control buttons.

The buttonPane panel that holds the lucky number buttons is of type JPanel, so it has a FlowLayout
object as its layout manager by default. A flow layout manager allows components to assume their
“natural” or “preferred size,” so you’ll set the preferred size for the buttons in the Selection class con-
structor. You decorate the panel with a border by calling its setBorder() method. The argument is the
reference that is returned by the static createTitledBorder() method from the BorderFactory class.
The first argument passed to createTitledBorder() is the border to be used, and the second argu-
ment is the title.

You use an etched border that is returned by another static method in the BorderFactory class. The
two arguments to this method are the highlight and shadow colors to be used for the border. A big
advantage of using the BorderFactory methods rather than creating border objects from the border
class constructors directly is that border objects will be shared where possible, so you can use a particu-
lar border in various places in your code and only one object will be created.

The buttons to display the chosen numbers will be of type Selection, and you’ll get to the detail of this
inner class in a moment. You call the static getNumbers() method to obtain the first set of random val-
ues for the buttons. You then create and store each button in the luckyNumbers array and add it to the
panel in the for loop. Since these buttons are going to listen for their own events, you don’t need to
worry about setting separate action listeners for them. The last step here is to add the buttonPane panel
to the content pane for the applet.

You can now add the code for the control buttons to the createGUI() method.

888

Chapter 18

Try It Out Setting Up the Control Buttons
The listeners for each of the control buttons will be of the same class type, so the listener object will need
some way to determine which button originated a particular event. One way to do this is to use con-
stants as IDs to identify the control buttons and pass the appropriate ID to the class constructor for the
listener object.

You can define the constants PICK_LUCKY_NUMBERS and COLOR as fields in the Lottery class for this
purpose. The COLOR control button will also reference a couple of variables of type Color, startColor,
and flipColor. You can add the following statements to the Lottery class after the definition of the
luckyNumbers array:

// An array of custom buttons for the selected numbers

private Selection[] luckyNumbers = new Selection[numberCount];

final public static int PICK_LUCKY_NUMBERS = 1; // Select button ID

final public static int COLOR = 2; // Color button ID

// swap colors

Color flipColor = new Color(Color.YELLOW.getRGB()^Color.RED.getRGB());

Color startColor = Color.YELLOW; // start color

The startColor field is initialized with the YELLOW color from the Color class. The flipColor field is
set to the color that results from ORing the colors YELLOW and RED. Of course, to get a sensible color as a
result you must OR the RGB values that you obtain from the Color objects, not the references to the
Color objects! You’ll be using the flipColor field to change the color of the buttons.

The code to add the other panel and the control buttons is as follows:

// Create User Interface for applet

public void createGUI() {

// Setting up the selections buttons as previously...

// Add the pane containing control buttons

JPanel controlPane = new JPanel(new FlowLayout(FlowLayout.CENTER, 5, 10));

// Add the two control buttons

JButton button; // A button variable

Dimension buttonSize = new Dimension(100,20); // Button size

controlPane.add(button = new JButton(“Lucky Numbers!”));

button.setBorder(BorderFactory.createRaisedBevelBorder());

button.addActionListener(new HandleControlButton(PICK_LUCKY_NUMBERS));

button.setPreferredSize(buttonSize);

controlPane.add(button = new JButton(“Color”));

button.setBorder(BorderFactory.createRaisedBevelBorder());

button.addActionListener(new HandleControlButton(COLOR));

button.setPreferredSize(buttonSize);

content.add(controlPane);

}

889

Handling Events

How It Works
You create another JPanel object to hold the control buttons and just to show that you can, you pass a
layout manager object to the constructor. It’s a FlowLayout manager again, but this time you explicitly
specify that the components are to be centered and the horizontal and vertical gaps are to be 5 and 10
pixels, respectively.

You declare the button variable to use as a temporary store for the reference to each button while you
set it up. You also define a Dimension object that you’ll use to set a common preferred size for the but-
tons. The buttons in this case are JButton components, not custom components, so you must set each of
them up here with a listener and a border. You add a raised bevel border to each button to make them
look like buttons — again using a BorderFactory method.

The listener for each button is an object of the inner class HandleControlButton, and you pass the
appropriate button ID to the constructor for reasons that will be apparent when you define that class.
To set the preferred size for each button object, you call its setPreferredSize() method. The argu-
ment is a Dimension object that specifies the width and height. Finally, after adding the two buttons to
controlPane, you add that to the content pane for the applet.

The inner class HandleControlButton defines the listener object for each control button, so let’s imple-
ment that next.

Try It Out Defining the Control Button Handler Class
You have already determined that the HandleControlButton class constructor will accept an argument
that identifies the particular button for which it is listening. This is to enable the actionPerformed()
method in the listener class to choose the course of action appropriate to the button. Here’s the inner
class definition to do that:

class HandleControlButton implements ActionListener {

// Constructor

public HandleControlButton(int buttonID) {

this.buttonID = buttonID; // Store the button ID

}

// Handle button click

public void actionPerformed(ActionEvent e) {

switch(buttonID) {

case PICK_LUCKY_NUMBERS:

int[] numbers = getNumbers(); // Get maxCount random numbers

for(int i = 0; i < numberCount; i++) {

luckyNumbers[i].setValue(numbers[i]); // Set the button values

}

break;

case COLOR:

Color color = new Color(

flipColor.getRGB()^luckyNumbers[0].getBackground().getRGB());

for(int i = 0; i < numberCount; i++)

luckyNumbers[i].setBackground(color); // Set the button colors

break;

}

}

890

Chapter 18

private int buttonID;

}

How It Works
The constructor stores its argument value in the buttonID field so each listener object will have the ID
for the button available. The actionPerformed() method uses the button ID to select the appropriate
code to execute for a particular button. Each case in the switch statement corresponds to a different but-
ton. You could extend this to enable the class to handle as many different buttons as you want by adding
case statements. Because of the way you have implemented the method, each button must have a unique
ID associated with it. Of course, this isn’t the only way to do this, as you’ll see in a moment.

For the PICK_LUCKY_NUMBERS button event, you just call the getNumbers() method to produce a set of
numbers, and then call the setValue() method for each selection button and pass a number to it. You’ll
implement the setValue() method when you define the Selection class in detail, in a moment.

For the COLOR button event, you create a new color by exclusive ORing (that is, XOR) the RGB value of
flipColor with the current button color. You’ll recall from the discussion of the ^ operator (in Chapter 2)
that you can use it to exchange two values, and that is what you are doing here. You defined flipColor
as the result of exclusive ORing the two colors, Color.YELLOW and Color.RED, together. Exclusive
ORing flipColor with either color will produce the other color, so you flip from one color to the other
automatically for each button by exclusive ORing the background and flipColor. As I said earlier, you
must get the RGB value for each color and operate on those — you can’t apply the ^ operator to the object
references. You then turn the resulting RGB value back into a Color object.

Let’s now add the inner class, Selection, which defines the lucky number buttons.

Try It Out Defining the Selection Buttons
Each button will need to store the value shown on the label, so the class will need a data member for this
purpose. The class will also need a constructor, a setValue() method to set the value for the button to a
new value, and a method to compare the current value for a button to a given value. You need to be able
to set the value for a button for two reasons — you’ll need the capability when you set up all six selec-
tions in the listener for the control button, and you’ll want to reset the value for a button to change it
individually.

The method to compare the value set for a button to a given integer will enable you to exclude a number
that was already assigned to a button when you are generating a new set of button values. You’ll also
need to implement the actionPerformed() method to handle the action events for the button, as the
buttons are going to handle their own events. Here’s the basic code for the class definition:

class Selection extends JButton implements ActionListener {

// Constructor

public Selection(int value) {

super(Integer.toString(value)); // Call base constructor and set the label

this.value = value; // Save the value

setBackground(startColor);

setBorder(BorderFactory.createRaisedBevelBorder()); // Add button border

setPreferredSize(new Dimension(80,20));

addActionListener(this); // Button listens for itself

}

891

Handling Events

// Handle selection button event

public void actionPerformed(ActionEvent e) {

// Change this selection to a new selection

int candidate = 0;

for(;;) { // Loop to find a different selection

candidate = values[choice.nextInt(values.length)];

if(isCurrentSelection(candidate)) { // If it is not different

continue; // find another

}

setValue(candidate); // We have one so set the button value

return;

}

}

// Set the value for the selection

public void setValue(int value) {

setText(Integer.toString(value)); // Set value as the button label

this.value = value; // Save the value

}

// Check the value for the selection

boolean hasValue(int possible) {

return value==possible; // Return true if equals current value

}

// Check the current choices

boolean isCurrentSelection(int possible) {

for(int i = 0; i < numberCount; i++) { // For each button

if(luckyNumbers[i].hasValue(possible)) { // check against possible

return true; // Return true for any =

}

}

return false; // Otherwise return false

}

private int value; // Value for the selection button

}

How It Works
The constructor calls the base class constructor to set the initial label for the button. It also stores the
value of type int that is passed as an argument. The setValue() method just updates the value for a
selection button with the value passed as an argument and changes the button label by calling the
setText() method, which is inherited from the base class, JButton. The hasValue() method returns
true if the argument value passed to it is equal to the current value stored in the data member value,
and false otherwise.

The actionPerformed() method has a little more meat to it, but the technique is similar to that in the
getNumbers() method. To change the selection, you must create a new random value for the button from
the numbers values array, but excluding all the numbers currently assigned to the six buttons. To do this
you just check each candidate against the six existing selections by calling the isCurrentSelection()
method and continue choosing a new candidate until you find one that’s different.

892

Chapter 18

In the isCurrentSelection() method, you just work through the array of Selection objects,
luckyNumbers, comparing each value with the possible argument using the hasValue() method.
If any button has the same value as possible, the method returns true; otherwise, it returns false.

You’re ready to start generating lottery entries. If you compile the Lottery.java file, you can run the
applet using appletviewer. You will need an HTML file, of course. The following contents for the file
will do the job:

<APPLET CODE=”Lottery.class” WIDTH=300 HEIGHT=200>

</APPLET>

You can adjust the width and height values to suit your monitor resolution if necessary.

The applet should produce a selection each time you click the left control button. Clicking any of the
selection buttons will generate an action event that causes a new value to be created for the button. This
enables you to replace any selection that you know to be unlucky with an alternative.

Undoubtedly, anyone who profits from using this applet will have immense feelings of gratitude and
indebtedness towards the author, who will not be offended in the slightest by any offers of a portion of
that success, however large!

Alternative Event-Handling Approaches
As I indicated in the discussion, there are various approaches to implementing listeners. Let’s look at a
couple of other ways in which you could have dealt with the control button events.

Instead of passing a constant to the listener class constructor to identify which button was selected, you
could have exploited the fact that the event object has a method, getSource(), that returns a reference
to the object that is the source of the event. To make use of this, a reference to both button objects would
need to be available to the actionPerformed() method. You could easily arrange for this to be the case
by adding a couple of fields to the Lottery class:

JButton pickButton = new JButton(“Lucky Numbers!”);

JButton colorButton = new JButton(“Color”);

The inner class could then be defined as follows:

class HandleControlButton implements ActionListener {

// Handle button click

public void actionPerformed(ActionEvent e) {

Object source = e.getSource(); // Get source object reference

if(source == pickButton) { // Is it the pick button?

int[] numbers = getNumbers(); // Get maxCount random numbers

for(int i = 0; i < numberCount; i++) {

luckyNumbers[i].setValue(numbers[i]); // Set the button values

}

} else if(source == colorButton) { // Is it the color button?

Color color = new Color(

flipColor.getRGB()^luckyNumbers[0].getBackground().getRGB());

893

Handling Events

for(int i = 0; i < numberCount; i++) {

luckyNumbers[i].setBackground(color); // Set the button colors

}

}

}

}

You no longer need to define a constructor, as the default will do. The actionPerformed() method
now decides what to do by comparing the reference returned by the getSource() method for the event
object with the two button references in the JButton fields of the Lottery class. With the previous ver-
sion of the listener class, you stored the ID as a data member, so a separate listener object was needed for
each button. In this case there are no data members in the listener class, so you can use one listener
object for both buttons.

The code to add these buttons in the createGUI() method would then be:

// Add the two control buttons

Dimension buttonSize = new Dimension(100,20);

pickButton.setPreferredSize(buttonSize);

pickButton.setBorder(BorderFactory.createRaisedBevelBorder());

colorButton.setPreferredSize(buttonSize);

colorButton.setBorder(BorderFactory.createRaisedBevelBorder());

HandleControlButton controlHandler = new HandleControlButton();

pickButton.addActionListener(controlHandler);

colorButton.addActionListener(controlHandler);

controlPane.add(pickButton);

controlPane.add(colorButton);

content.add(controlPane);

The only fundamental difference here is that you use one listener object for both buttons.

There is another possible way to implement listeners for these buttons. You could define a separate class
for each listener — this would not be unreasonable, as the actions to be performed in response to the
semantic events for each button are quite different. You could use anonymous classes in this case — as I
discussed back in Chapter 6. You could do this by adding the listeners for the button objects in the
createGUI() method like this:

// Add the two control buttons

Dimension buttonSize = new Dimension(100,20);

pickButton.setPreferredSize(buttonSize);

pickButton.setBorder(BorderFactory.createRaisedBevelBorder());

colorButton.setPreferredSize(buttonSize);

colorButton.setBorder(BorderFactory.createRaisedBevelBorder());

pickButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

int[] numbers = getNumbers();

894

Chapter 18

for(int i = 0; i < numberCount; i++) {

luckyNumbers[i].setValue(numbers[i]);

}

}

});

colorButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

Color color = new Color(flipColor.getRGB()^luckyNumbers[0]

.getBackground().getRGB());

for(int i = 0; i < numberCount; i++) {

luckyNumbers[i].setBackground(color);

}

}

});

controlPane.add(pickButton);

controlPane.add(colorButton);

content.add(controlPane);

Now the two listeners are defined by anonymous classes, and the implementation of the
actionPerformed() method in each just takes care of the particular button for which it is listening.
This is a very common technique when the action to be performed in response to an event is simple.

Handling Low-Level and Semantic Events
I said earlier in this chapter that a component generates both low-level and semantic events, and you
could handle both if you want. I can demonstrate this quite easily with a small extension to the Lottery
applet. Suppose you want to change the cursor to a hand cursor when it is over one of the selection but-
tons. This would be a good cue that you can select these buttons individually. You can do this by adding
a mouse listener for each button.

Try It Out A Mouse Listener for the Selection Buttons
There are many ways in which you could define the listener class. Here you’ll define it as a separate
class called MouseHandler:

// Mouse event handler for a selection button

import java.awt.Cursor;

import java.awt.event.MouseEvent;

import java.awt.event.MouseAdapter;

class MouseHandler extends MouseAdapter {

Cursor handCursor = new Cursor(Cursor.HAND_CURSOR);

Cursor defaultCursor = new Cursor(Cursor.DEFAULT_CURSOR);

// Handle mouse entering the selection button

public void mouseEntered(MouseEvent e) {

e.getComponent().setCursor(handCursor); // Switch to hand cursor

}

895

Handling Events

// Handle mouse exiting the selection button

public void mouseExited(MouseEvent e) {

e.getComponent().setCursor(defaultCursor); // Change to default cursor

}

}

All you need to do to expedite this is to add a mouse listener for each of the six selection buttons. You
need only one listener object and after creating this you need to change the loop only in the createGUI()
method for the applet to add the listener:

int[] choices = getNumbers(); // Get initial set of numbers

MouseHandler mouseHandler = new MouseHandler(); // Create the listener

for(int i = 0 ; i<numberCount ; i++) {

luckyNumbers[i] = new Selection(choices[i]);

luckyNumbers[i].addMouseListener(mouseHandler);

buttonPane.add(luckyNumbers[i]);

}

How It Works
The mouseEntered() method will be called when the mouse enters the area of the component with
which the listener is registered, and the method then changes the cursor for the component to a hand
cursor. When the cursor is moved out of the area occupied by the component, the mouseExited()
method is called, which restores the default cursor.

Just two extra statements in createGUI() create the listener object and then add it for each selection
button within the loop. If you recompile the applet and run it again, a hand cursor should appear when-
ever the mouse is over the selection buttons. Of course, you are not limited to just changing the cursor in
the event handler. You could highlight the button by changing its color for instance. You could apply the
same technique for any kind of component where the mouse is the source of actions for it.

Semantic Event Listeners in an Application
The Sketcher program is an obvious candidate for implementing semantic event listeners to support the
operation of the menu bar in the SketchFrame class. When you click on an item in one of the pull-down
menus, a semantic event will be generated that you can listen for and then use to determine the appro-
priate program action.

Listening to Menu Items
Let’s start with the Elements menu. This is concerned with identifying the type of graphic element to
be drawn next, and the color in which it will be drawn. You won’t be drawing them for a while, but you
can put in the infrastructure to set the type and color for an element without worrying about how it will
actually be created and drawn.

To identify the type of element, you can define constants that will act as IDs for the four types of element
you have provided for in the menu so far. This will help with the operation of the listeners for the menu
item as well as provide a way to identify a particular type of element. Since you’ll accumulate quite a
number of application-wide constants, it will be convenient to define them as static fields in a class from

896

Chapter 18

which they can be imported statically. To be able to import the static fields, the class must be in a named
package, so let’s set that up. To put the class in a package with the name Constants, you need to set up
a directory with this name at a suitable location on your disk, and then use the -classpath option
when you compile the class in the Constants package to identify the path to the Constants directory.
Here’s the initial definition, including constants to define line, rectangle, circle, and curve elements:

// Defines application wide constants

package Constants;

public class SketcherConstants {

// Element type definitions

public final static int LINE = 101;

public final static int RECTANGLE = 102;

public final static int CIRCLE = 103;

public final static int CURVE = 104;

// Initial conditions

public final static int DEFAULT_ELEMENT_TYPE = LINE;

}

Save this as SketcherConstants.java in the Constants directory you have created. Each element
type ID in the class is an integer constant with a unique value, and you can obviously extend the variety
of element types if necessary. Of course, you could also have defined the element IDs as enumeration
constants, but then you would have more than one class involved in the definition of constants for
Sketcher.

You have defined the DEFAULT_ELEMENT_TYPE constant to specify the initial element type to apply
when the Sketcher application starts. You could do the same thing for the Color submenu and supply
a constant that specifies the default initial element color:

// Defines application wide constants

package Constants;

import java.awt.Color;

public class SketcherConstants {

// Element type definitions

public final static int LINE = 101;

public final static int RECTANGLE = 102;

public final static int CIRCLE = 103;

public final static int CURVE = 104;

// Initial conditions

public final static int DEFAULT_ELEMENT_TYPE = LINE;

public final static Color DEFAULT_ELEMENT_COLOR = Color.BLUE;

}

You have defined the DEFAULT_ELEMENT_COLOR field as type Color, so you have added an import
statement for the Color class name. When you want to change the default startup color or element type,
you just need to change the values of the constants in the SketcherConstants class. This will automati-
cally take care of setting things up — as long as you implement the program code appropriately.

You can add fields to the SketchFrame class to store the current element type and color, since these are
application-wide values, and are not specific to a view:

897

Handling Events

private Color elementColor = DEFAULT_ELEMENT_COLOR; // Current element color

private int elementType = DEFAULT_ELEMENT_TYPE; // Current element type

You can now use these to ensure that the menu items are checked appropriately when the application
starts. Of course, for the class to compile, you also want the names of the constants from the
SketcherConstants class imported into the SketchFrame class, so make the following changes to the
SketchFrame class definition:

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import javax.swing.JRadioButtonMenuItem;

import javax.swing.JCheckBoxMenuItem;

import javax.swing.ButtonGroup;

import javax.swing.KeyStroke;

import static java.awt.event.InputEvent.*;

import static java.awt.AWTEvent.*;

import java.awt.event.WindowEvent;

import java.awt.Color;

import static java.awt.Color.*;

import static Constants.SketcherConstants.*;

public class SketchFrame extends JFrame {

// Constructor

public SketchFrame(String title) {

setTitle(title); // Set the window title

setJMenuBar(menuBar); // Add the menu bar to the window

setDefaultCloseOperation(EXIT_ON_CLOSE);

// Code to create the File menu...

// Construct the Element drop-down menu...

elementMenu.add(lineItem = new JRadioButtonMenuItem(

“Line”, elementType==LINE));

elementMenu.add(rectangleItem = new JRadioButtonMenuItem(

“Rectangle”, elementType==RECTANGLE));

elementMenu.add(circleItem = new JRadioButtonMenuItem(

“Circle”, elementType==CIRCLE));

elementMenu.add(curveItem = new JRadioButtonMenuItem(

“Curve”, elementType==CURVE));

ButtonGroup types = new ButtonGroup();

// ...plus the rest of the code for the element types as before...

elementMenu.addSeparator();

elementMenu.add(colorMenu); // Add the sub-menu

colorMenu.add(redItem = new JCheckBoxMenuItem(

“Red”, elementColor.equals(RED)));

colorMenu.add(yellowItem = new JCheckBoxMenuItem(

“Yellow”, elementColor.equals(YELLOW)));

colorMenu.add(greenItem = new JCheckBoxMenuItem(

“Green”, elementColor.equals(GREEN)));

898

Chapter 18

colorMenu.add(blueItem = new JCheckBoxMenuItem(

“Blue”, elementColor.equals(BLUE)));

// Add element color accelerators...

// ... plus the rest of the constructor as before...

}

// ...plus the rest of the class and include the two new data members...

private Color elementColor = DEFAULT_ELEMENT_COLOR; // Current element color

private int elementType = DEFAULT_ELEMENT_TYPE; // Current element type

}

You have imported static constants from the Color class, so you can use the names of the standard color
objects that the class defines without qualifying them. When you construct the element objects, you use
the elementType and elementColor members to set the state of each menu item. Only the element
type menu item corresponding to the default type set in elementType will be checked because that’s the
only comparison that will produce a true result as an argument to the JRadioButtonMenuItem con-
structor. The mechanism is the same for the color menu items, but note that you use the equals()
method defined in the Color class for a valid comparison of Color objects. You might just get away
with using == because you are using only constant Color values that are defined in the class, but as
soon as you use a color that is not one of these, this would no longer work. Of course, you have to
use == for the element type items because the IDs are of type int.

At this point it would be a good idea to recompile Sketcher to make sure everything is as it should be.
Because you now have your own package containing the SketcherConstants class definition, you must
use the -classpath option to tell the compiler where to find it. Assuming the Constants directory is a sub-
directory of the C:/Packages directory, and the current directory is the one containing Sketcher.java
and SketchFrame.java, you will need to use the following command to compile Sketcher:

javac -classpath “.;C:/Packages” Sketcher.java

The -classpath option defines two paths: the current directory, specified by the period, and C:/Packages,
which is the path to the Constants directory that contains the SketcherConstants.java source file. This
command should compile everything, including your package.

Having got that sorted out, you can have a go at implementing the listeners for the Elements menu,
starting with the type menu items.

Try It Out Handling Events for the Element Type Menu
You’ll add an inner class to SketchFrame that will define listeners for the menu items specifying the ele-
ment type. This class will implement the ActionListener interface because you want to respond to
actions on these menu items. Add the following definition as an inner class to SketchFrame:

// Handles element type menu items

class TypeListener implements ActionListener {

// Constructor

TypeListener(int type) {

this.type = type;

}

899

Handling Events

// Sets the element type

public void actionPerformed(ActionEvent e) {

elementType = type;

}

private int type; // Store the type for the menu

}

Now you can use objects of this class as listeners for the menu items. Add the following code to the
SketchFrame constructor, after the code that sets up the type menu items for the Elements menu just
before the last two lines of the constructor:

// Add type menu item listeners

lineItem.addActionListener(new TypeListener(LINE));

rectangleItem.addActionListener(new TypeListener(RECTANGLE));

circleItem.addActionListener(new TypeListener(CIRCLE));

curveItem.addActionListener(new TypeListener(CURVE));

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

}

It will also be necessary to add the following two import statements to the source file for the
SketchFrame class:

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

Recompile Sketcher and see how it looks. Don’t forget the -classpath option when you compile the
application. You’ll also need to specify the same -classpath option when you execute it; otherwise,
the SketcherConstants .class file won’t be found.

How It Works
The application window won’t look any different, as the listeners just set the current element type in the
SketchFrame object. The listener class is remarkably simple. Each listener object stores the type corre-
sponding to the menu item that is passed as the constructor argument. When an event occurs, the
actionPerformed() method just stores the type in the listener object in the elementType member of
the SketchFrame object.

Now you can do the same for the color menu items.

Try It Out Implementing Color Menu Item Listeners
You’ll define another inner class to SketchFrame that defines listeners for the Color menu items:

// Handles color menu items

class ColorListener implements ActionListener {

public ColorListener(Color color) {

this.color = color;

}

900

Chapter 18

public void actionPerformed(ActionEvent e) {

elementColor = color;

}

private Color color;

}

You just need to create listener objects and add them to the color menu items. Add the following code at
the end of the SketchFrame constructor after the code that sets up the Color submenu:

// Add color menu item listeners

redItem.addActionListener(new ColorListener(RED));

yellowItem.addActionListener(new ColorListener(YELLOW));

greenItem.addActionListener(new ColorListener(GREEN));

blueItem.addActionListener(new ColorListener(BLUE));

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

}

This adds a listener object for each menu item in the Color menu.

How It Works
The ColorListener class works in the same way as the TypeListener class. Each class object stores an
identifier for the menu item for which it is listening — in this case a Color object corresponding to the
color the menu item sets up. The actionPerformed() method just stores the Color object from the lis-
tener object in the elementColor member of the SketchFrame object.

Of course, the menu doesn’t quite work as it should. The Color menu item check marks are not being set
correctly, as you can see in Figure 18-6. You want an exclusive check, as with the radio buttons; having
more than one color checked at one time doesn’t make sense.

Figure 18-6

901

Handling Events

Fixing the Color Menu Check Marks
One way to deal with the problem is to make the listener object for a color menu item set the check
marks for all the menu items. You could code this in the ColorListener class as follows:

class ColorListener implements ActionListener {

public void actionPerformed(ActionEvent e) {

elementColor = color;

// Set the checks for all menu items

redItem.setState(color.equals(RED));

greenItem.setState(color.equals(GREEN));

blueItem.setState(color.equals(BLUE));

yellowItem.setState(color.equals(YELLOW));

}

// Rest of the class as before...

}

This calls the setState() method for each menu item. If the argument to the method is true the check
mark is set, and if it is false, it isn’t. Clearly this will set the check mark only for the item that corre-
sponds to the color referenced by color. This is quite straightforward, but there is a better way.

A ButtonGroup object works with JCheckBoxMenuItem objects because they have AbstractButton as
a base class. Therefore, you could add these menu items to their own button group in the SketchFrame
constructor, and it will all be taken care of for you. The ButtonGroup object tracks the state of all of the
buttons in the group. When any button is turned on, all the others are turned off, so only one button in
the group can be on at one time. So add the following code — it could go anywhere after the items have
been created but place it following the code that adds the items to the Color menu for consistency with
the element type code:

ButtonGroup colors = new ButtonGroup(); // Color menu items button group

colors.add(redItem);

colors.add(yellowItem);

colors.add(greenItem);

colors.add(blueItem);

Now the Color menu check marks are set automatically, so you can forget about them.

Using Actions
One difficulty with the code that you have added to support the menus is that it is very menu specific.
What I mean by this is that if you are going to do a proper job on the Sketcher application, you will
undoubtedly want it to have a toolbar. The toolbar will surely have a whole bunch of buttons that per-
form exactly the same actions as the menu items you have just implemented, so you’ll be in the business
of doing the same thing all over again in the toolbar context. Of course, the only reason I brought it up,
as I’m sure you’ve anticipated, is that there is another way of working with menus, and that is to use an
Action object.

An Action object is a bit of a strange beast. It can be quite hard to understand at first, so I’ll take it
slowly. First of all let’s look at what is meant by an “action” here, as it is a precise term in this context.
An action is an object of any class that implements the javax.swing.Action interface. This interface

902

Chapter 18

declares methods that operate on an action object — for example, storing properties relating to the
action, enabling it and disabling it. The Action interface happens to extend the ActionListener inter-
face, so an action object is a listener as well as an action. Now that you know an Action object can get
and set properties and is also a listener, how does that help us in implementing the Sketcher GUI?

The answer is in the last capability of an Action object. Some Swing components, such as those of type
JMenu and JToolBar, have an add() method that accepts an argument of type Action. When you add
an Action object to these using the add() method, the method creates a component from the Action
object that is automatically of the right type. If you add an Action object to a JMenu object, a JMenuItem
will be created and returned by the add() method. On the other hand, when you add exactly the same
Action object to a JToolBar object, an object of type JButton will be created and returned. This means
that you can add the very same Action object to both a menu and a toolbar, and since the Action object
is its own listener, you automatically get both the menu item and the toolbar button supported by the
same action. Clever, eh?

First, you should look at the Action interface.

The Action Interface
In general, properties are items of information that relate to a particular object and are stored as part of
the object. Properties are often stored in a map, where a key identifies a particular property, and the value
corresponding to that property can be stored in association with the key. The Properties class that is
defined in the java.util package does exactly that. The Action interface has provision for storing seven
basic standard properties that relate to an Action object:

❑ A name — A String object that is used as the label for a menu item or a toolbar button.

❑ A small icon — A javax.swing.Icon object to be displayed on a toolbar button.

❑ A short description of the action — A String object to be used as a tooltip.

❑ An accelerator key for the action — Defined by a javax.swing.KeyStroke object.

❑ A long description of the action — A String object that is intended to be used as context-
sensitive help.

❑ A mnemonic key for the action — This is a key code of type int.

❑ An action command key — Defined by an entry in a javax.swing.ActionMap object associated
with a component. The ActionMap object for a component defines mappings between objects
that are keys and actions.

Just so you are aware of them I have included the complete set here, but you will concentrate on just using
the first three. You haven’t met Icon objects before, but you’ll get to them a little later in this chapter.

You are not obliged to provide for all of these properties in your action classes, but the Action interface
provides the framework for it. These properties are stored internally in a map collection in your action
class, so the Action interface defines constants that you use as keys for each of the standard properties.
These constants are all of type String, and the ones you are interested in are NAME, SMALL_ICON, and
SHORT_DESCRIPTION. The others are ACCELERATOR_KEY, LONG_DESCRIPTION, MNEMONIC_KEY, and
ACTION_COMMAND_KEY. There is another constant of type String defined in the interface with the name
DEFAULT, but this is not used currently. The Action interface also declares the following methods:

903

Handling Events

Method Description

void putValue(String key, Object value) Stores the value with the key key in the
map supported by the action class. To
store the name of an action within a
class method, you might write:

putValue(NAME, theName);

This uses the standard key NAME to store
the object theName.

Object getValue(String key) This retrieves the object from the map
corresponding to the key key. To
retrieve a small icon within an action
class method, you might write:

Icon lineIcon = (Icon)getValue

(SMALL_ICON);

boolean isEnabled() This returns true if the action object is
enabled and false otherwise.

void setEnabled(boolean state) This sets the Action object as enabled if
the argument state is true and disabled
if it is false. This operates on both the
toolbar button and the menu item if they
have been created using the same object.

void addPropertyChangeListener(This adds the listener passed as an argu-
PropertyChangeListener listener) ment, which listens for changes to prop-

erties such as the enabled state of the
object. This is used by a container for an
Action object to track property changes.

void removePropertyChangeListener(This removes the listener passed as an
PropertyChangeListener listener) argument. This is also for use by a

Container object.

Of course, since the Action interface extends the ActionListener interface, it also incorporates the
ActionPerformed() method that you are already familiar with. So far, all you seem to have gained
with this interface is a license to do a lot of work in implementing it, but it’s not as bad as that. The
javax.swing package defines the AbstractAction class that already implements the Action inter-
face. If you extend this class to create your own action class, you get a basic infrastructure for free. Let’s
try it out in the context of Sketcher.

904

Chapter 18

Using Actions as Menu Items
This will involve major surgery on the SketchFrame class. Although you’ll be throwing away all those
fancy varieties of menu items you spent so much time putting together, at least you know how they work
now, and you’ll end up with much less code after re-engineering the class, as you’ll see. As the saying goes,
you’ve got to crack a few eggs to make a soufflé.

You’ll go back nearly to square one and reconstruct the class definition. First you’ll delete a lot of code
from the existing class definition. Comments will show where you’ll add code to re-implement the
menus using actions. Get your definition of the SketchFrame class to the following state:

// Frame for the Sketcher application

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import javax.swing.JRadioButtonMenuItem;

import javax.swing.JCheckBoxMenuItem;

import javax.swing.ButtonGroup;

import javax.swing.KeyStroke;

import javax.swing.Action;

import javax.swing.AbstractAction;

import java.awt.event.WindowEvent;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.Color;

import static java.awt.event.InputEvent.*;

import static java.awt.AWTEvent.*;

import static java.awt.Color.*;

import static Constants.SketcherConstants.*;

public class SketchFrame extends JFrame {

// Constructor

public SketchFrame(String title) {

setTitle(title); // Set the window title

setJMenuBar(menuBar); // Add the menu bar to the window

setDefaultCloseOperation(EXIT_ON_CLOSE); // Default is exit the application

JMenu fileMenu = new JMenu(“File”); // Create File menu

JMenu elementMenu = new JMenu(“Elements”); // Create Elements menu

fileMenu.setMnemonic(‘F’); // Create shortcut

elementMenu.setMnemonic(‘E’); // Create shortcut

// You will construct the file drop-down menu here using actions...

// you will add the types menu items here using actions...

elementMenu.addSeparator();

JMenu colorMenu = new JMenu(“Color”); // Color sub-menu

elementMenu.add(colorMenu); // Add the sub-menu

905

Handling Events

// You will add the color menu items here using actions...

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

}

// You will add inner classes defining action objects here...

// You will add action objects as members here...

private JMenuBar menuBar = new JMenuBar(); // Window menu bar

private Color elementColor = DEFAULT_ELEMENT_COLOR; // Current element color

private int elementType = DEFAULT_ELEMENT_TYPE; // Current element type

}

Note that you have restored the statement to set the default close operation as EXIT_ON_CLOSE, so you
won’t need to call dispose() and exit() in the window event handler. Now would be a good time to
delete the statements from the windowClosing() method in the inner WindowHandler class to the
Sketcher class. The old inner classes in SketchFrame have been deleted, as well as the fields storing ref-
erences to menu items. All the code to create the menu items has been wiped as well, along with the code
that added the listeners. You are ready to begin reconstruction. You can rebuild it stronger, faster, better!

Defining Action Classes
You’ll need three inner classes defining actions, one for the File menu items, another for the
element type menu items, and the third for element colors. You’ll derive each of these classes from
the javax.swing.AbstractAction class that already implements the Action interface. The
AbstractAction class has three constructors:

Method Description

AbstractAction() Defines an object with a default name and
icon

AbstractAction(String name) Defines an object with the name specified by
the argument and a default icon

AbstractAction(String name, Icon icon) Defines an object with the name and icon
specified by the arguments

The AbstractAction class definition already provides the mechanism for storing action properties. For
the last two constructors, the argument values that you pass will be stored using the standard keys that I
described earlier in the context of the Action interface. For the moment, you’ll take advantage only of
the second constructor and leave icons till a little later.

You can define the FileAction inner class as follows:

// Inner class defining Action objects for File menu items

class FileAction extends AbstractAction {

// Constructor

FileAction(String name) {

906

Chapter 18

super(name);

}

// Constructor

FileAction(String name, KeyStroke keystroke) {

this(name);

if(keystroke != null) {

putValue(ACCELERATOR_KEY, keystroke);

}

}

// Event handler

public void actionPerformed(ActionEvent e) {

// You will add action code here eventually...

}

}

You have two constructors. The first just stores the name for the action by calling the base class constructor.
The second stores the name by calling the first constructor and then stores the accelerator keystroke using
the appropriate key if the argument is not null. Calling the other constructor rather than the base class
constructor is better here, in case you add code to the other constructor later on (as you certainly will!).

Because the class is an action listener, you have implemented the actionPerformed() method in it.
You don’t yet know what you are going to do with the File menu item actions, so you can leave it open
for now and let the actionPerformed() method do nothing. Add the FileAction class as an inner
class to SketchFrame where the comment indicated.

The SketchFrame class will need a data member of type FileAction for each menu item you intend to
add, so add the following statement to the SketchFrame class definition where the comment indicated:

// File actions

private FileAction newAction, openAction, closeAction,

saveAction, saveAsAction, printAction;

You can define an inner class for the element type menus next:

// Inner class defining Action objects for Element type menu items

class TypeAction extends AbstractAction {

TypeAction(String name, int typeID) {

super(name);

this.typeID = typeID;

}

public void actionPerformed(ActionEvent e) {

elementType = typeID;

}

private int typeID;

}

Add this definition to the SketchFrame class following the previous inner class. The only extra code
here compared to the previous action class is that you retain the typeID concept to identify the element

907

Handling Events

type. This makes the listener operation simple and fast. Because each object corresponds to a particular
element type, there is no need for any testing of the event — you just store the current typeID as the new
element type in the SketchFrame class object. You won’t be adding accelerator key combinations for
type menu items, so you don’t need to provide for them in the class.

Add the following statement to the SketchFrame class for the members that will store references to the
TypeAction objects, following the statement defining the fields that store FileAction references:

// Element type actions

private TypeAction lineAction, rectangleAction, circleAction, curveAction;

The third inner class to SketchFrame is just as simple:

// Handles color menu items

class ColorAction extends AbstractAction {

public ColorAction(String name, Color color) {

super(name);

this.color = color;

}

public void actionPerformed(ActionEvent e) {

elementColor = color;

// This is temporary – just to show it works...

getContentPane().setBackground(color);

}

private Color color;

}

You also use the same idea that you used in the listener class for the Color menu items in the previous
implementation of SketchFrame. Here you have a statement in the actionPerformed() method that
sets the background color of the content pane to the element color. When you click on a color menu item,
the background color of the content pane will change so you will be able to see that it works. You’ll
remove this code later.

Add the following statement to the SketchFrame class for the color action members following the
TypeAction fields:

// Element color actions

private ColorAction redAction, yellowAction,

greenAction, blueAction;

You can try these action classes out now.

Try It Out Actions in Action
Fundamentally, all you need to do to create the menu items is use the JMenuItem constructor, which
accepts an Action argument, and then use the add() method for the JMenu object to add the menu item
to a menu. This all happens in the SketchFrame constructor — with the aid of a helper method that will
economize on the number of lines of code you need:

908

Chapter 18

public SketchFrame(String title) {

setTitle(title); // Set the window title

setJMenuBar(menuBar); // Add the menu bar to the window

setDefaultCloseOperation(EXIT_ON_CLOSE); // Default is exit the application

JMenu fileMenu = new JMenu(“File”); // Create File menu

JMenu elementMenu = new JMenu(“Elements”); // Create Elements menu

fileMenu.setMnemonic(‘F’); // Create shortcut

elementMenu.setMnemonic(‘E’); // Create shortcut

// Create the action items for the file menu

newAction = new FileAction(“New”, KeyStroke.getKeyStroke(‘N’, CTRL_DOWN_MASK));

openAction = new FileAction(“Open”,

KeyStroke.getKeyStroke(‘O’, CTRL_DOWN_MASK));

closeAction = new FileAction(“Close”);

saveAction = new FileAction(“Save”,

KeyStroke.getKeyStroke(‘S’, CTRL_DOWN_MASK));

saveAsAction = new FileAction(“Save As...”);

printAction = new FileAction(“Print”,

KeyStroke.getKeyStroke(‘P’, CTRL_DOWN_MASK));

// Construct the file drop-down menu

fileMenu.add(new JMenuItem(newAction));

fileMenu.add(new JMenuItem(openAction));

fileMenu.add(new JMenuItem(closeAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(saveAction));

fileMenu.add(new JMenuItem(saveAsAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(printAction));

// Construct the Element drop-down menu

elementMenu.add(new JMenuItem(lineAction = new TypeAction(“Line”, LINE)));

elementMenu.add(new JMenuItem(rectangleAction =

new TypeAction(“Rectangle”, RECTANGLE)));

elementMenu.add(new JMenuItem(circleAction =

new TypeAction(“Circle”, CIRCLE)));

elementMenu.add(new JMenuItem(curveAction = new TypeAction(“Curve”, CURVE)));

elementMenu.addSeparator();

JMenu colorMenu = new JMenu(“Color”); // Color sub-menu

elementMenu.add(colorMenu); // Add the sub-menu

colorMenu.add(new JMenuItem(redAction = new ColorAction(“Red”, RED)));

colorMenu.add(new JMenuItem(yellowAction = new ColorAction(“Yellow”, YELLOW)));

colorMenu.add(new JMenuItem(greenAction = new ColorAction(“Green”, GREEN)));

colorMenu.add(new JMenuItem(blueAction = new ColorAction(“Blue”, BLUE)));

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

}

You have added four blocks of code. The first two are for the File menu, one block creating the action
objects and the other creating the menu items. The other two blocks of code are for the element type and

909

Handling Events

color menus. You create the action items for these menus in the arguments to the JMenuItem constructor
calls. It’s convenient to do this here as the constructor calls are relatively simple. You could adopt the
same approach with the File menu items, but the statements will begin to look rather complicated.

When you create a JMenuItem object from an Action object, the accelerator key combination is auto-
matically set for the menu item when the Action object defines one.

If you recompile and run Sketcher, you will get a window that looks like the one shown in Figure 18-7.

Figure 18-7

How It Works
You create an Action object for each item in the File menu. You then create the menu items correspond-
ing to the Action objects and add them to the File menu. The JMenuItem constructor automatically
adds an accelerator key for a menu item if it exists in the Action object.

The items for the other menus are created in essentially the same way except that you create and store
the Action objects in the expressions that produce the arguments to the JMenuItem constructor calls.
These objects are then passed to the add() method for the menu object. It’s reasonable to create the
Action objects in the expressions for the arguments to the constructor, as they are relatively simple
expressions. Because you store the references to the Action objects, they will be available later when
you want to create toolbar buttons corresponding to the menu items. The accelerators for the Elements
menu items have been omitted here on the grounds that they were not exactly standard or convenient.

If you try out the color menus you should see the background color change. If it doesn’t, there’s some-
thing wrong somewhere. Now that you have the menus set up using Action objects, you are ready to
tackle adding a toolbar to the Sketcher application.

910

Chapter 18

Adding a Toolbar
A toolbar is a bar, usually positioned below the menu bar, which contains a row of buttons that typically
provides a more direct route to menu options. You could add a toolbar to the Sketcher program for the
menu items that are likely to be most popular. Just so that you know where you are heading, the kind of
toolbar you will end up with ultimately is shown in Figure 18-8.

Figure 18-8

The four buttons in the first group are for the most frequently used functions in the File menu. The other
two groups of four buttons select the element type and element color, respectively. So how are you going
to put this toolbar together?

Adding the toolbar itself couldn’t be easier. A toolbar is a Swing component defined by the
javax.swing.JToolBar class. You can add a member to the SketchFrame class for a toolbar by adding
the following field to the class definition:

private JToolBar toolBar = new JToolBar(); // Window toolbar

You can position this following the declaration of the menuBar member. It simply creates a JToolBar
object as a member of the class. Of course, you’ll need to add an import statement to the SketchFrame
class for javax.swing.JToolbar.

To add the toolbar to the application window, you need to add the following statement after the existing
code in the SketchFrame constructor:

getContentPane().add(toolBar, BorderLayout.NORTH);

This adds the (currently empty) toolbar to the top of the content pane for the frame window. The content
pane has the BorderLayout manager as the default, which is very convenient. A JToolBar object

911

Handling Events

should be added to a Container using the BorderLayout manager since it is normally positioned at
one of the four sides of a component. The other three sides of the content pane would be identified by
the SOUTH, EAST, and WEST constants in the BorderLayout class. An empty toolbar is not much use so
let’s see how you add buttons to it.

Adding Buttons to a Toolbar
The JToolBar class inherits the add() methods from the Container class, so you can create JButton
objects and add them to the toolbar using this method. The JButton class defines a constructor that
accepts an argument of type Action, and creates a button based on the Action object that is passed to it.
You can use this to create buttons for any of the Action objects that you created for the menus, and have
the toolbar button events taken care of without any further work.

For example, you could add a button for the openAction object corresponding to the Open menu item
in the File menu with the following statements:

JButton button = new JButton(openAction); // Create button from Action

toolBar.add(button); // Add a toolbar button

That’s all you need basically. The JButton constructor will create a JButton object based on the Action
object that you pass as the argument. The add() method for toolBar adds the JButton object to the tool-
bar. You could still modify the button later — by adding a border, for example. Let’s see how that looks.

Try It Out Adding a Toolbar Button
Assuming you have added the declaration for the toolBar object to the SketchFrame class, you just
need to add a couple of statements preceding the last statement in the constructor to add the toolbar to
the content pane:

public SketchFrame(String title) {

// Constructor code as before...

JButton button = new JButton(openAction); // Create button

button.setBorder(BorderFactory.createRaisedBevelBorder());// Add button border

toolBar.add(button);

getContentPane().add(toolBar, BorderLayout.NORTH);

}

You’ll also need to add import statements for javax.swing.JButton, javax.swing.BorderFactory,
and java.awt.BorderLayout to the SketchFrame class.

If you recompile Sketcher and run it, the window should look like that shown in Figure 18-9.

912

Chapter 18

Figure 18-9

How It Works
There’s not much to say about this. The add() method for the toolBar object creates a button based on
the openAction object that you passed as the argument. You store the reference returned in the button
so that you can add a border to the button.

A feature that comes for free with a JToolBar object is that it is automatically dockable and can float as
an independent window. You can drag the toolbar using the mouse by holding mouse button 1 down
with the cursor in the gray area to the left of the button and then dragging it to a new position. The tool-
bar will turn into a free-floating window, as Figure 18-10 shows.

Figure 18-10

913

Handling Events

You can also drag the toolbar to its original docked position again at the top of the content pane. You must
drag with the cursor in the gray area of the toolbar to redock it. Dragging with the cursor in the toolbar
title area just moves the window. It’s not always convenient to have the toolbar floating. You can inhibit
the capability to drag the toolbar around by calling the setFloatable() method for the JToolBar object
with the argument specified as false. Let’s do this for Sketcher, so add the following statement to the
SketchFrame constructor before the statement that adds the toolbar to the content pane:

toolBar.setFloatable(false); // Inhibit toolbar floating

getContentPane().add(toolBar, BorderLayout.NORTH);

}

A true argument to the setFloatable() method will allow the toolbar to float, so you can switch this
on and off in an application as you wish. You can also test whether the toolbar can float by calling the
isFloatable() method for the JToolBar object. This will return true if the toolbar is floatable and
false otherwise. If you recompile SketchFrame and run Sketcher again you will see that the gray bit
at the left-hand end of the toolbar is no longer there, and you cannot drag the toolbar around.

The toolbar would probably look a little better with a border to differentiate it from the menu bar. You
can add an etched border by inserting the following statement in the SketchFrame constructor immedi-
ately before you add the toolbar to the content pane:

toolBar.setBorder(BorderFactory.createEtchedBorder(WHITE, LIGHT_GRAY));

The button that has been created in the toolbar uses the name from the Action object as its label by
default. You really want toolbar buttons with icons instead of text, so that’s the next step.

Adding Icons
A reference to an icon is generally stored in a variable of type javax.swing.Icon. Icon is an interface
that declares methods that return the height and width of an icon in pixels — these are the getHeight()
and getWidth() methods, respectively. The Icon interface also declares a method to paint the icon
image on a component — the paint() method. One class that implements the Icon interface is
javax.swing.ImageIcon, and it is this class that you use to create an icon object in your program
from a file that contains the data defining the icon image.

The ImageIcon class provides several constructors, and the one you’ll be using accepts a String argu-
ment that specifies the file in which the icon image is found. The String object that you pass as the
argument can be just a file name, in which case the file should be in the current directory, which is the
one that contains the .class files for the application or applet. You can also supply a string that speci-
fies the path and file name where the file containing the image is to be found. The ImageIcon construc-
tors accept icon files in PNG format (Portable Network Graphics format, which have .png extensions),
GIF format (Graphics Interchange Format, or .gif files), or JPEG format (Joint Photographic Experts
Group format, or .jpg files) formats, but I’ll assume GIF files in the Sketcher code. If you want to use
files in one of the other formats, just modify the code accordingly.

914

Chapter 18

You’ll put the files containing the icons for the Sketcher application in a subdirectory of the Sketcher
directory called Images, so create a subdirectory to your Sketcher application directory with this name.
To create an icon for the openAction object from an image in a file open.gif in the Images directory,
you could write:

openAction.putValue(Action.SMALL_ICON, new ImageIcon (“Images/open.gif”));

This stores the ImageIcon object in the Action object associated with the SMALL_ICON key. The add()
method for the toolbar object will then look for the icon for the toolbar button that it creates using this
key. Let’s see if it works.

You will need to obtain, or create for yourself, the GIF files containing the icons for the toolbar buttons.
You can use any graphics editor that can save files in the GIF format to create them — Paint Shop Pro,
Microsoft Paint, or GIMP, for example. If you are creating your own icons, make sure the background
pixels have a transparent color. You won’t get the rollover action if they aren’t. If you are using your
own icons, make sure the file for the openAction object is called open.gif and stored in the Images
subdirectory. You’ll need GIF files for other buttons, too, and they will each have a file name that is the
same as the label on the corresponding menu item. If you want to put all the icon files together for the
toolbar buttons, for the File menu you’ll need save.gif, new.gif, and print.gif; for the element
types you’ll need line.gif, rectangle.gif, circle.gif, and curve.gif; and for the colors
you’ll need red.gif, yellow.gif, green.gif, and blue.gif.

GIF files for all the icons that the Sketcher application uses are included with the Sketcher source code
that you can download from the Wrox Press web site: http://www.wrox.com.

You can also download icons for a variety of applications from the Java look-and-feel graphics repository
at http://java.sun.com/developer/techDocs/hi/repository. These icons have been
designed specifically to go with the Java look-and-feel. The icons are available as 16x16 pixels and 24x24
pixels. The first four icons on the toolbar shown at the beginning of this section are 16x16 icons from
this set — the others I created for myself.

Try It Out A Button with an Icon
You can add the statement to create the icon for the Action object just before you create the toolbar
button:

public SketchFrame(String title) {

// Constructor code as before...

openAction.putValue(Action.SMALL_ICON, new ImageIcon (“Images/open.gif”));

JButton button = new JButton(openAction); // Create button

button.setBorder(BorderFactory.createRaisedBevelBorder());// Add button border

toolBar.add(button);

toolBar.setFloatable(false); // Inhibit toolbar floating

toolBar.setBorder(BorderFactory.createEtchedBorder(WHITE, LIGHT_GRAY));

getContentPane().add(toolBar, BorderLayout.NORTH);

}

915

Handling Events

In fact, you could put the statement anywhere after the openAction object has been created, but here will
be convenient. You’ll need an import statement in SketchFrame.java for the javax.swing.ImageIcon
class name. If you recompile Sketcher and run it again, you should see the window shown in Figure 18-11.

Figure 18-11

How It Works
The ImageIcon object that you store in the openAction object is automatically used by the add()
method for the toolBar object to add the icon to the button. Unfortunately, you get the label on the
toolbar button as well as the icon so you’ll want to get rid of the label. If you look at the corresponding
menu item though, you get both the label and the icon here, too, and you may want to inhibit the icon
in this context. I’ll return to modifying the menu items a little later in this chapter, after you’ve finished
with the toolbar. Removing the label from the toolbar button is simple — you just call the setText()
method for the button with the argument as null.

It would be better if you altered the inner classes that define the Action objects to add icons automati-
cally when a suitable .gif file is available. You can take care of the labels as well. Let’s try that now.

Try It Out Adding All the Toolbar Buttons
You can modify the constructor for each inner class to add the corresponding icon. Here’s how you can
implement this in the FileAction class:

FileAction(String name) {

super(name);

String iconFileName = “Images/” + name + “.gif”;

if(new File(iconFileName).exists()) {

putValue(SMALL_ICON, new ImageIcon(iconFileName));

}

}

916

Chapter 18

This takes care of both class constructors because the other constructor calls this constructor. Because
you refer to the File class here, you need to add an import statement for java.io.File to the begin-
ning of the SketchFrame.java source file. This code assumes all icon files follow the convention that
their name is the same as the String associated with the NAME key. If you want to have any file name,
you could pass the String defining the file name to the constructor. If the icon file is not available then
nothing happens, so the code will work whether or not an icon is defined.

The code that you need to add to the constructors for the TypeAction and ColorAction inner classes is
exactly the same as you have added to the FileAction class, so go ahead and copy it across to the con-
structor in each of these classes.

You can reduce the amount of code in the SketchFrame constructor a little by defining a helper method
in the SketchFrame class to create toolbar buttons as follows:

// Method to add a button to the toolbar

private JButton addToolBarButton(Action action) {

JButton button = new JButton(action);

button.setBorder(BorderFactory.createRaisedBevelBorder());// Add button border

button.setText(null);

toolBar.add(button);

return button;

}

The argument is the Action object for the toolbar button that is to be added, and the code is similar to the
specific code you had in the SketchFrame constructor to create the button for the openAction object. The
setText() method call for the button will remove the label so the toolbar buttons will just have icons. You
can remove the statement from the SketchFrame constructor that created the toolbar button for the
openAction action and replace it by the following code to create all the toolbar buttons that you need:

public SketchFrame(String title) {

// Constructor code as before...

// Add file buttons

toolBar.addSeparator(); // Space at the start

addToolBarButton(newAction);

addToolBarButton(openAction);

addToolBarButton(saveAction);

addToolBarButton(printAction);

// Add element type buttons

toolBar.addSeparator();

addToolBarButton(lineAction);

addToolBarButton(rectangleAction);

addToolBarButton(circleAction);

addToolBarButton(curveAction);

// Add element color buttons

toolBar.addSeparator();

addToolBarButton(redAction);

addToolBarButton(yellowAction);

addToolBarButton(greenAction);

addToolBarButton(blueAction);

toolBar.addSeparator(); // Space at the end

917

Handling Events

toolBar.setFloatable(false); // Inhibit toolbar floating

toolBar.setBorder(BorderFactory.createEtchedBorder(WHITE, LIGHT_GRAY));

getContentPane().add(toolBar, BorderLayout.NORTH); // Add the toolbar

}

Now you should get the window shown in Figure 18-8, with a nice neat toolbar. You can see the color
buttons in action since they will change the background color. Note how the buttons automatically show
when the mouse cursor is over the button. There is also visual feedback when you click a button. You’ll
lose this functionality if the background color for your icons is not transparent.

How It Works
The extra code in the inner class constructors stores an icon in each object if there is a GIF file with the
appropriate name in the Images subdirectory. You create each of the toolbar buttons by calling our
addToolBarButton() helper method with an Action item corresponding to a menu item. The helper
method passes the Action object to the add() method for the JToolBar object to create a JButton
object. It also adds a border to the button. The addToolBarButton() method returns a reference to the
button object in case you need it.

Fixing the Menus
Things are perhaps still not quite as you would have them. If you take a look at the menus in Figure 18-12
you’ll see what I mean.

Figure 18-12

All of the menu items now have icons too. While this is a helpful cue to what the toolbar icons are,
maybe you would rather not have them as they look a little cluttered. You could get rid of the icons very
easily by modifying the menu items created in the expression that is the argument to the add() method
for the JMenu objects. The JMenuItem class has a setIcon() method that accepts a reference of type
Icon to set an icon for a menu item. If you want to remove the icon for a menu item, you just call its
setIcon() method with the argument as null.

918

Chapter 18

Try It Out Removing Menu Item Icons
You just need to modify the statements that add the menu items in the SketchFrame constructor to
remove the icons for all the menu items, like this:

public SketchFrame(String title) {

// Code as before...

// Construct the file drop-down menu

fileMenu.add(new JMenuItem(newAction)).setIcon(null);

fileMenu.add(new JMenuItem(openAction)).setIcon(null);

fileMenu.add(new JMenuItem(closeAction)).setIcon(null);

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(saveAction)).setIcon(null);

fileMenu.add(new JMenuItem(saveAsAction)).setIcon(null);

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(printAction)) .setIcon(null);

// Construct the Element drop-down menu

elementMenu.add(new JMenuItem(lineAction =

new TypeAction(“Line”, LINE))).setIcon(null);

elementMenu.add(new JMenuItem(rectangleAction =

new TypeAction(“Rectangle”, RECTANGLE))).setIcon(null);

elementMenu.add(new JMenuItem(circleAction =

new TypeAction(“Circle”, CIRCLE))).setIcon(null);

elementMenu.add(new JMenuItem(curveAction =

new TypeAction(“Curve”, CURVE))).setIcon(null);

elementMenu.addSeparator();

JMenu colorMenu = new JMenu(“Color”); // Color sub-menu

elementMenu.add(colorMenu); // Add the sub-menu

colorMenu.add(new JMenuItem(redAction =

new ColorAction(“Red”, RED))).setIcon(null);

colorMenu.add(new JMenuItem(yellowAction =

new ColorAction(“Yellow”, YELLOW))).setIcon(null);

colorMenu.add(new JMenuItem(greenAction =

new ColorAction(“Green”, GREEN))).setIcon(null);

colorMenu.add(new JMenuItem(blueAction =

new ColorAction(“Blue”, BLUE))).setIcon(null);

// Rest of the code as before...

}

When you run Sketcher with this modification to SketchFrame, you should see the menu items without
icons.

How It Works
When you construct each of the menu items using our helper method, addMenuItem(), you remove the
icon from the JMenuItem that is created by passing null to its setIcon() method. Thus none of the
menu item objects has an icon associated with it. Of course, the toolbar buttons are unaffected and retain
the icons defined by the Action objects they are created from. I rather like the icons on the menu items,
so I’m going to leave them in. Further versions of Sketcher will include the icons in the menus.

919

Handling Events

Adding Tooltips
I’m sure you have seen tooltips in operation. These are the little text prompts that appear automatically
when you let the mouse cursor linger over certain GUI elements on the screen for a second or two. They
disappear automatically when you move the cursor. I think you will be surprised at how easy it is to
implement support for tooltips in Java.

The secret is in the Action objects that you are using. Action objects have a built-in capability to store
tooltip text because it is already provided for with the SHORT_DESCRIPTION key that is defined in the inter-
face. All you have to do is store the tooltip text in the inner classes that are derived from AbstractAction.
The tooltip will then be automatically available on the toolbar buttons that you create. Let’s work through
the Action classes and provide for tooltip text.

Try It Out Implementing Tooltips
You can provide for tooltip text in each of the inner classes by adding constructors with an extra parame-
ter for the text that is to be the tooltip. You need two additional constructors in the FileAction class,
one for when the Action item has an accelerator key and the other for when it doesn’t. The definition of
the first new FileAction class constructor will be:

// Constructor to implement an accelerator and a tooltip

FileAction(String name, KeyStroke keystroke, String tooltip) {

this(name, keystroke); // Call the other constructor

if(tooltip != null) { // If there is tooltip text

putValue(SHORT_DESCRIPTION, tooltip); // ...squirrel it away

}

}

This just calls the constructor that accepts arguments defining the name and the keystroke. It then stores
the tooltip string using the SHORT_DESCRIPTION key, as long as it isn’t null. Although you wouldn’t
expect a null to be passed for the tooltip text reference, it’s best not to assume it as this could crash the
program. If the string for the tooltip text is null, you do nothing.

The other constructor will take care of a tooltip for an Action item without an accelerator keystroke:

// Constructor to implement a tooltip

FileAction(String name, String tooltip) {

this(name); // Call the other constructor

if(tooltip != null) { // If there is tooltip text

putValue(SHORT_DESCRIPTION, tooltip); // ...squirrel it away

}

}

Of course, you must now change the code in the SketchFrame constructor that creates FileAction
items so that you incorporate the tooltip argument:

// Create the action items for the file menu

newAction = new FileAction(“New”, KeyStroke.getKeyStroke(‘N’,

CTRL_DOWN_MASK), “Create new sketch”);

openAction = new FileAction(“Open”, KeyStroke.getKeyStroke(‘O’,

CTRL_DOWN_MASK), “Open existing sketch”);

closeAction = new FileAction(“Close”, “Close sketch”);

920

Chapter 18

saveAction = new FileAction(“Save”, KeyStroke.getKeyStroke(‘S’,

CTRL_DOWN_MASK), “Save sketch”);

saveAsAction = new FileAction(“Save As...”, “Save as new file”);

printAction = new FileAction(“Print”, KeyStroke.getKeyStroke(‘P’,

CTRL_DOWN_MASK), “Print sketch”);

You can do exactly the same with the TypeAction class — just add the following constructor to the class
definition:

// Constructor to implement a tooltip

TypeAction(String name, int typeID, String tooltip) {

this(name, typeID);

if(tooltip != null) { // If there is a tooltip

putValue(SHORT_DESCRIPTION, tooltip); // ...squirrel it away

}

}

You can now modify the code in the SketchFrame constructor to pass a tooltip string when you create a
TypeAction object:

// Construct the Element drop-down menu

elementMenu.add(new JMenuItem(lineAction =

new TypeAction(“Line”, LINE, “Draw lines”)));

elementMenu.add(new JMenuItem(rectangleAction =

new TypeAction(“Rectangle”, RECTANGLE, “Draw rectangles”)));

elementMenu.add(new JMenuItem(circleAction =

new TypeAction(“Circle”, CIRCLE, “Draw circles”)));

elementMenu.add(new JMenuItem(curveAction =

new TypeAction(“Curve”, CURVE, “Draw curves”)));

And you need to add a constructor that does exactly the same as in the other action classes to the
ColorAction class:

// Constructor to implement a tooltip

public ColorAction(String name, Color color, String tooltip) {

this(name, color);

if(tooltip != null) { // If there is a tooltip

putValue(SHORT_DESCRIPTION, tooltip); // ...squirrel it away

}

}

The corresponding changes required in the SketchFrame constructor are:

JMenu colorMenu = new JMenu(“Color”); // Color sub-menu

elementMenu.add(colorMenu); // Add the sub-menu

colorMenu.add(new JMenuItem(redAction =

new ColorAction(“Red”, RED, “Draw in red”)));

colorMenu.add(new JMenuItem(yellowAction =

new ColorAction(“Yellow”, YELLOW, “Draw in yellow”)));

colorMenu.add(new JMenuItem(greenAction =

new ColorAction(“Green”, GREEN, “Draw in green”)));

colorMenu.add(new JMenuItem(blueAction =

new ColorAction(“Blue”, BLUE, “Draw in blue”)));

921

Handling Events

Of course, if you want to use your own tooltip text for any of these, you can. You should keep it short
since it is displayed on the fly. You can try the tooltips out now that you have the last piece in place. Just
recompile the SketchFrame class and run Sketcher again. You should be able to see the tooltip when
you let the cursor linger over a button, as Figure 18-13 illustrates.

Figure 18-13

How It Works
Action objects act as a repository for the tooltip text for components that implement the actions, so this
works for the toolbar buttons in Sketcher. If an Action object contains a tooltip property, a toolbar but-
ton that you create from it will automatically have the tooltip operational. Try lingering the cursor over a
menu item. Since the menu items are also created from Action items, tooltips are available for them, too.

Disabling Actions
You won’t want to have all of the menu items and toolbar buttons enabled all of the time. For example,
while there is no sketch active, the Save and Print menu items should not be operational, and neither
should the corresponding buttons. The Action objects provide a single point of control for enabling or
disabling menu items and the corresponding toolbar buttons. To disable an action, you call the
setEnabled() method for the Action object with an argument of false. You can restore the enabled
state by calling the method with a true argument. The isEnabled() method for an Action object
returns true if the action is enabled, and false otherwise.

Let’s see toolbar button inaction in action in Sketcher.

922

Chapter 18

Try It Out Disabling Actions
You’ll disable the actions corresponding to the Save, Close, and Print actions. Add the following state-
ments to the end of the SketchFrame constructor:

// Disable actions

saveAction.setEnabled(false);

closeAction.setEnabled(false);

printAction.setEnabled(false);

That’s all that’s necessary. If you run the modified version of Sketcher, menu items and toolbar buttons cor-
responding to the Action objects you have disabled will be grayed out and non-operational. Figure 18-14
shows the application window with the disabled toolbar buttons grayed out.

Figure 18-14

If you extend the File menu, you will see that the corresponding menu items are grayed out, too.

How It Works
The state of both the JMenuItem and JButton objects created from an Action object is determined
by the state of the Action object. Disabling the Action object disables any menus or toolbar buttons
created from it. If you want a demonstration that they really are disabled, try disabling a couple of the

color actions.

923

Handling Events

Summary
In this chapter you have learned how to handle events in your applications and in your applets. Events
are fundamental to all window-based applications, as well as most applets, so you’ll be applying the
techniques you have seen this chapter throughout the rest of the book.

The most important points I have discussed in this chapter are:

❑ A user interaction generates an event in the context of a component.

❑ Two categories of events are associated with a component: low-level events from the mouse or
keyboard, or window system events such as opening or closing a window; and semantic events
that represent component actions such as pressing a button or selecting a menu item.

❑ Both low-level and semantic events can arise simultaneously.

❑ An event for a component can be handled by the component object itself, or by a separate object
that implements a listener interface corresponding to the event type.

❑ A component that is to handle its own events does so by calling its enableEvents() method
and implementing the class method to process the kind of event that has been enabled.

❑ A listener object that is registered with a component will receive notification of the events origi-
nating with the component that correspond to the type(s) of events the listener can handle.

❑ A listener interface for low-level events requires several event-handling methods to be
implemented.

❑ A listener interface for semantic events declares a single event-handling method.

❑ An adapter class defines a set of empty methods for one or more low-level event interfaces. You
can create your own class defining a low-level event listener by deriving your class from an
adapter class and then implementing the event-handling methods in which you are interested.

❑ Events in applications and in applets are handled in exactly the same way.

❑ An Action object is an object of a class that implements the Action interface. Action objects
can be used to create menu items and associated toolbar buttons.

❑ An Action object is automatically the listener for the menu item and toolbar button that are cre-
ated from it.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Modify Sketcher to add an Exit action for the File menu and the toolbar.

2. Modify the Lottery applet to present the six numbers selected in ascending sequence.

3. Replace the action listener for the selection buttons in the Lottery applet with a mouse listener
and use the mousePressed() method to update the selection with a new value.

924

Chapter 18

4. Modify the Lottery applet to implement the mouse listener for a selection button as an inner
class to the Lottery class.

5. Modify the Lottery applet to implement the control buttons on a toolbar based on Action
objects.

6. Change the Lottery applet to handle the MOUSE_ENTERED and MOUSE_EXITED events within
the toolbar buttons you added in the previous exercise and display a hand cursor.

7. Add tooltips to the lucky number buttons and the toolbar buttons in the Lottery applet. (You
can make the tooltip the same for each of the lucky number buttons.)

925

Handling Events

19
Drawing in a Window

In this chapter you’ll look at how you can draw using the Java 2D facilities that are part of the Java
Foundation Classes (JFC). You’ll explore how you draw in an applet and in an application. You’ll
investigate how you can combine the event-handling capability that you learned about in the pre-
vious chapter with the drawing facilities you’ll explore in this chapter to implement an interactive
graphical user interface for creating a sketch.

By the end of this chapter you will have learned:

❑ What components are available for creating a GUI

❑ How coordinates are defined for drawing on a component

❑ How you implement drawing on a component

❑ How to structure the components in a window for drawing

❑ What kinds of shapes you can draw on a component

❑ How you implement mouse listener methods to enable interactive drawing operations

Using the Model/View Architecture
You need to develop an idea of how you’re going to manage the data for a sketch in the Sketcher
program before you start drawing a sketch, because this will affect where and how you handle
events. You already have a class that defines an application window, SketchFrame, but this class
would not be a very sensible place to store the underlying data that defines a sketch. For one
thing, you’ll want to save a sketch in a file, and serialization is the easiest way to do that. If you’re
going to use serialization to store a sketch, you won’t want all the stuff in the implementation of
the SketchFrame class muddled up with the data relating to the sketch you have created.

For another thing, it will make the program easier to implement if you separate out the basic data
defining a sketch from the definition of the GUI. This will be along the lines of the Model-View-
Controller (MVC) architecture that I first mentioned in Chapter 17, a variant of which is used in
the definition of Swing components. Ideally, you should manage the sketch data in a class
designed specifically for that purpose — this class will be the model for a sketch.

A class representing a view of the data in the model class will display the sketch and handle user
interactions — so this class will combine viewing functions and a sketch controller. The general GUI cre-
ation and operations not specific to a view will be dealt with in the SketchFrame class. This is not the
only way of implementing the things you want in the Sketcher program, but it’s quite a good way.

The model object will contain a mixture of text and graphics that will make up a sketch. You can call
the model class SketchModel, and the class that will represent a view of the model can have the name
SketchView, although you won’t be adding the view to the program until the next chapter. Figure 19-1
illustrates the relationships between the classes you’ll have in Sketcher.

Figure 19-1

The application object will have overall responsibility for managing links between the other objects
involved in the program. Any object that has access to the application object will be able to communicate
with any other object as long as the application class has methods to make each of the objects available.
Thus, the application object will act as the communication channel between objects.

Note that SketchFrame is not the view class — it just defines the application window and the GUI com-
ponents associated with that. When you create a SketchView object in the next chapter, you’ll arrange
to insert the SketchView object into the content pane of the SketchFrame object and manage it using
the layout manager for the content pane. By defining the view class separately from the application
class, you separate the view of a sketch from the menus and other components that you use to interact
with the program. One benefit of this is that the area in which you display a sketch has its own coordi-
nate system, independent of that of the application window.

Application Object
of type Sketcher

The application object
is in overall control

creates

creates

creates

View Object
of type SketchView

Model Object
of type SketchModel

Application Window
Object

of type SketchFrame

inserted into
the control pane

manages the
view of the sketch

changes to
the modeldisplays

the sketch

928

Chapter 19

To implement the foundations for the model/view design in Sketcher, you need to define classes for the
model and the view, at least in outline. You can define in skeleton form the class to contain the data
defining a sketch:

import java.util.Observable;

class SketchModel extends Observable {

// Detail of the rest of class to be filled in later...

}

You obviously have a bit more work to do on this class to make it effective! You’ll add to this as you go
along. Since the SketchModel class extends the Observable class, you’ll be able to register the view
class with it as an observer and automatically notify the view of any changes to the model. This facility
will come into its own when you have multiple views. You can define the view class as a component by
deriving it from the JComponent class. This will build in all the methods for operating as a component
and you can override any of these as necessary. The view class also needs to implement the Observer
interface so that you can register it with the model to receive notification when the model changes.
Here’s the outline:

import javax.swing.JComponent;

import java.util.Observer;

import java.util.Observable;

class SketchView extends JComponent implements Observer {

public SketchView(Sketcher theApp) {

this.theApp = theApp;

}

// Method called by Observable object when it changes

public void update(Observable o, Object rectangle) {

// Code to respond to changes in the model...

}

private Sketcher theApp; // The application object

}

The view is definitely going to need access to the model to display it, but rather than store a reference to
the model, the constructor has a parameter to enable the application object to be passed to it. By storing
the application object in the view, rather than a reference to the model and adding a method to the appli-
cation object to return a reference to the model, you make the view object independent of the model
object. If a completely different object represents the model because, for example, a new file is loaded,
you don’t need to change the view object. As long as the view object is registered as an observer for the
new model, the view will automatically redraw the new sketch when it is notified by the model that it
has changed.

To integrate a model and its view into the Sketcher application, you just need to add some code to the
Sketcher class:

import java.awt.Toolkit;

import java.awt.Dimension;

import java.awt.BorderLayout;

import javax.swing.SwingUtilities;

929

Drawing in a Window

import java.awt.event.WindowEvent;

import java.awt.event.WindowAdapter;

public class Sketcher {

public static void main(String[] args) {

theApp = new Sketcher();

SwingUtilities.invokeLater(

new Runnable() { // Anonymous Runnable class object

public void run() { // Run method executed in thread

theApp.creatGUI(); // Call static GUI creator

}

});

}

public void createGUI() {

window = new SketchFrame(“Sketcher”, this); // Create the app window

Toolkit theKit = window.getToolkit(); // Get the window toolkit

Dimension wndSize = theKit.getScreenSize(); // Get screen size

// Set the position to screen center & size to 2/3 screen size

window.setBounds(wndSize.width/6, wndSize.height/6, // Position

2*wndSize.width/3, 2*wndSize.height/3); // Size

window.addWindowListener(new WindowHandler()); // Add window listener

sketch = new SketchModel(); // Create the model

view = new SketchView(this); // Create the view

sketch.addObserver(view); // Register view with the model

window.getContentPane().add(view, BorderLayout.CENTER);

window.setVisible(true);

}

// Return a reference to the application window

public SketchFrame getWindow() {

return window;

}

// Return a reference to the model

public SketchModel getModel() {

return sketch;

}

// Return a reference to the view

public SketchView getView() {

return view;

}

// Handler class for window events

class WindowHandler extends WindowAdapter {

// Handler for window closing event

public void windowClosing(WindowEvent e) {

// Code to be added here later...

}

}

930

Chapter 19

private SketchModel sketch; // The data model for the sketch

private SketchView view; // The view of the sketch

private static SketchFrame window; // The application window

private static Sketcher theApp; // The application object

}

There is no code in the windowClosing() method at present, so this assumes you have restored
EXIT_ON_CLOSE as the default closing action in the SketchFrame class as I suggested in the previous
chapter. You’ll be adding code to the windowClosing() method in the WindowHandler inner class
when you save sketches on disk.

The SketchFrame constructor needs to be modified as follows:

public SketchFrame(String title, Sketcher theApp) {

setTitle(title); // Set the window title

this.theApp = theApp; // Save app. object reference

setJMenuBar(menuBar); // Add the menu bar to the window

setDefaultCloseOperation(EXIT_ON_CLOSE); // Default is exit the application

// Rest of the constructor as before...

}

You can add a field to the SketchFrame class that will store the reference to the application object:

private Sketcher theApp; // The application object

There are new methods in the Sketcher class that return a reference to the application window, the
model, and the view, so all of these are now accessible from anywhere in the Sketcher application code
where you have a reference to the application object available.

After creating the model and view objects in the createGUI() method in the Sketcher class, you regis-
ter the view as an observer for the model to enable the model to notify the view when any changes
occur. You then add the view to the content pane of the window object, which is the main application
window. Since you add the view in the center using the BorderLayout manager for the content pane,
it will occupy all the remaining space in the pane.

Now that you know roughly the direction in which you are heading, let’s move on down the road.

Coordinate Systems in Components
In Chapter 17, you saw how your computer screen has a coordinate system that is used to define the
position and size of a window. You also saw how you can add components to a container with their
position established by a layout manager. The coordinate system used by a container to position compo-
nents within it is analogous to the screen coordinate system. The origin is at the top-left corner of the
container, with the positive x-axis running horizontally from left to right, and the positive y-axis running
from top to bottom. The positions of buttons in a JWindow or a JFrame object are specified as a pair of
(x, y) pixel coordinates, relative to the origin at the top-left corner of the container object on the screen.
In Figure 19-2 you can see the coordinate system for the Sketcher application window.

931

Drawing in a Window

Figure 19-2

Of course, the layered pane for the window object will have its own coordinate system, with the origin
in the top-left corner of the pane, and this is used to position the menu and the content pane. The con-
tent pane will have its own coordinate system, too, which will be used to position the components that
it contains.

It’s not just containers and windows that have their own coordinate system: Each JButton object also
has its own system, as do JToolBar objects. In fact, every component has its own coordinate system,
and some examples are illustrated in Figure 19-3.

Figure 19-3

Origin for the toolbar

x

y y

x

y

x

Origin for the line button

Origin for the color button

Positive Y-Axis

Window origin at 0,0

Positive X-Axis

932

Chapter 19

It’s clear that a container needs a coordinate system for specifying the positions of the components it
contains. You also need a coordinate system to draw on a component — to draw a line, for example, you
need to be able to specify where it begins and ends in relation to the component — and while the coordi-
nate system you use for drawing on a component is similar to that used for positioning components in a
container, it’s not exactly the same. It’s more complicated when you are drawing — but for very good
reasons. Let’s see how the coordinate system for drawing works.

Drawing on a Component
Before I get into the specifics of how you draw on a component, let’s understand the principle ideas
behind it. When you draw on a component using the Java 2D capabilities, two coordinate systems are
involved. When you draw something — a line or a curve, for example — you specify the line or the curve
in a device-independent logical coordinate system called the user coordinate system for the component,
or user space. By default, this coordinate system has the same orientation as the system that I discussed
for positioning components in containers. The origin is at the top-left corner; the positive x-axis runs
from left to right, and the positive y-axis from top to bottom. Coordinates are usually specified as float-
ing-point values, although you can also use integers.

A particular graphical output device will have its own device coordinate system, or device space, as illus-
trated in Figure 19-4. This coordinate system has the same orientation as the default user coordinate sys-
tem, but the coordinate units depend on the characteristics of the device. Your display, for example, will
have a different device coordinate system for each configuration of the screen resolution, so the coordinate
system when your display is set to a resolution 1024x768 pixels will be different from the coordinate sys-
tem for 800x600 pixels.

Figure 19-4

Incidentally, the drawing process is often referred to as rendering, because graphical output devices are
generally raster devices and the drawing elements such as lines, rectangles, text, and so on need to be
rendered into a rasterized representation before they can be output to the device.

User
Coordinates

Device
Coordinates

Device
Coordinates

x

y

x

y

x

y

Automatic mapping
from user coordinates
to device coordinates

933

Drawing in a Window

Having a device-independent coordinate system for drawing means that you can use essentially the
same code for writing graphical information to a variety of different devices — to your display screen,
for example, or to your printer, even though these devices themselves have quite different coordinate
systems with different resolutions. The fact that your screen might have 90 pixels per inch while your
printer may have 600 dots per inch is automatically taken care of. Java 2D will deal with converting your
user coordinates to the device coordinate system that is specific to the output device you are using.

With the default mapping from user coordinates to device coordinates, the units for user coordinates are
assumed to be 1/72 of an inch. Since for most screen devices the pixels are approximately 1/72 inch
apart, the conversion amounts to an identity transformation. If you want to use user coordinates that
are in some other units, you have to provide for this yourself. You’ll look into the mechanism that you
would use to do this when I discuss transformations in the next chapter.

Graphics Contexts
The user coordinate system for drawing on a component using Java 2D is encapsulated in an object of
type Graphics2D, which is usually referred to as a graphics context. It provides all the tools you need to
draw whatever you want on the surface of the component. A graphics context enables you to draw lines,
curves, shapes, filled shapes, as well as images, and gives you a great deal of control over the drawing
process.

The Graphics2D class is derived from the Graphics class that defined device contexts in earlier versions
of Java, so if you feel the need to use the old drawing methods, they are all inherited in the Graphics2D
class. I’ll be concentrating on the more powerful and flexible facilities provided by Graphics2D, but as
you’ll see, references to graphics contexts are usually passed around as type Graphics, so you need to be
aware of it. Note that both the Graphics and Graphics2D classes are abstract classes, so you can’t create
objects of either type directly. An object representing a graphics context is entirely dependent on the com-
ponent to which it relates, so a graphics context is always obtained for use with a particular component.

The Graphics2D object for a component takes care of mapping user coordinates to device coordinates,
so it contains information about the device that is the destination for output as well as the user coordi-
nates for the component. The information required for converting user coordinates to device coordinates
is encapsulated in three different kinds of objects:

❑ A GraphicsEnvironment object encapsulates all the graphics devices (as GraphicsDevice
objects) and fonts (as Font objects) that are available on your computer.

❑ A GraphicsDevice object encapsulates information about a particular device, such as a screen
or a printer, and stores it in one or more GraphicsConfiguration objects.

❑ A GraphicsConfiguration object defines the characteristics of a particular device, such as a
screen or a printer. Your display screen will typically have several GraphicsConfiguration
objects associated with it, each corresponding to a particular combination of screen resolution
and number of displayable colors.

The graphics context also maintains other information necessary for drawing operations, such as the
drawing color, the line style, and the specification of the fill color and pattern for filled shapes. You’ll see
how to work with these attributes in examples later in this chapter.

934

Chapter 19

Because a graphics context defines the drawing context for a specific component, you must have a refer-
ence to the graphics context object for a component before you can draw on the component. For the most
part, you’ll draw on a component by implementing the paint() method that is called whenever the
component needs to be reconstructed. An object representing the graphics context for the component is
passed as an argument to the paint() method, and you use this object to do the drawing. The graphics
context includes all the methods that you use to draw on a component, and you’ll be looking into many
of these in this chapter.

The paint() method is not the only way of drawing on a component. You can obtain a graphics context
for a component at any time just by calling its getGraphics() method and then using methods for the
Graphics object to specify the drawing operations.

There are occasions when you want to get a component redrawn while avoiding a direct call of the
paint() method. In such cases you should call repaint() for the component. Five versions of this
method are available; you’ll look at four:

repaint() Method Description

repaint() Causes the entire component to be repainted by
calling its paint() method after all of the cur-
rently outstanding events have been processed.

repaint(long msec) Requests that the entire component be repainted
within msec milliseconds.

repaint(int msec, Adds the region specified by the arguments to the
int x, int y, dirty region list if the component is visible. The
int width, int height) dirty region list is simply a list of areas of the com-

ponent that need to be repainted. The component
will be repainted by calling its paint() method
when all currently outstanding events have been
processed, or within msec milliseconds. The region
is the rectangle at position (x, y), with the width
and height as specified by the last two arguments.

repaint(Rectangle rect) Adds the rectangle specified by rect to the dirty
region list if the component is visible.

You will find that the first and the last methods are the ones you use most of the time.

That’s enough theory for now. It’s time to get a bit of practice. Let’s get an idea of how you can draw on
a component by drawing on the SketchView object that you added to Sketcher. All you need to do is
implement the paint() method in the SketchView class.

Try It Out Drawing in a View
Add the following implementation of the paint() method to the SketchView class:

import javax.swing.JComponent;

import java.util.Observer;

import java.util.Observable;

935

Drawing in a Window

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Color;

class SketchView extends JComponent implements Observer {

public void paint(Graphics g) {

// Temporary code

Graphics2D g2D = (Graphics2D)g; // Get a Java 2D device context

g2D.setPaint(Color.RED); // Draw in red

g2D.draw3DRect(50, 50, 150, 100, true); // Draw a raised 3D rectangle

g2D.drawString(“A nice 3D rectangle”, 60, 100); // Draw some text

}

// Rest of the class as before...

}

If you recompile the file SketchFrame.java and run Sketcher once again, you can see what the
paint() method produces. You should see the window shown in Figure 19-5.

Figure 19-5

Okay, it’s not your traditional meaning of 3D. In this case, the edges of the rectangle are highlighted so
that they appear to be beveled and lift from the top left-hand corner (or the coordinate origin).

How It Works
The graphics context is passed as the argument to the paint() method as type Graphics (the base class
for Graphics2D), so to use the methods defined in the Graphics2D class you must first cast it to that
type. The paint() method still has a parameter type of Graphics for compatibility with applications
written using older versions of Java.

936

Chapter 19

Once you have cast the graphics context, you then set the color in which you will draw by calling the
setPaint() method for the Graphics2D object and passing the drawing color as the argument. All sub-
sequent drawing operations will now be in the color Color.RED. You can change this with another call
to setPaint() whenever you want to draw in a different color.

Next, you call the draw3DRect() method for the Graphics2D object, and this draws the 3D rectangle.
The first two arguments are integers specifying the x and y coordinates of the top-left corner of the rect-
angle to be drawn, relative to the user space origin of the component, which in this case is the top-left
corner of the view object in the content pane. The third and fourth arguments are the width and height
of the rectangle, respectively, also in units determined by the user coordinate system.

The drawString() method draws the string specified as the first argument at the position determined
by the second and third arguments — these are the x and y coordinates in user coordinates of the bottom-
left corner of the first letter of the string. The string will be drawn by obtaining the glyphs for the current
Font object in the device context corresponding to the characters in the string. As I said when I discussed
Font objects, the glyphs for a font define the physical appearance of the characters.

However, there’s more to drawing than is apparent from this example. The graphics context has infor-
mation about the line style to be drawn, as well as the color, the font to be used for text, and more
besides. Let’s dig a little deeper into what is going on.

The Drawing Process
A Graphics2D object maintains a whole heap of information that determines how things are drawn.
Most of this information is contained in six attributes within a Graphics2D object:

❑ The paint attribute determines the drawing color for lines. It also defines the color and pattern
to be used for filling shapes. The paint attribute is set by calling the setPaint(Paint paint)
method for the graphics context. java.awt.Paint is an interface that is implemented by the
Color class that defines a color. It is also implemented by the java.awt.GradientPaint and
java.awt.TexturePaint classes, which represent a color pattern and a texture, respectively.
You can therefore pass references of any of these types to the setPaint() method. The default
paint attribute is the color of the component.

❑ The stroke attribute defines a pen that determines the line style, such as solid, dashed, or dotted
lines, and the line thickness. It also determines the shape of the ends of lines. The stroke attribute
is set by calling the setStroke(Stroke s) method for a graphics context. The default stroke
attribute defines a square pen that draws a solid line with a thickness of 1 user coordinate unit.
The ends of the line are square, and joins are mitered. The java.awt.Stroke interface is imple-
mented by the java.awt.BasicStroke class, which defines a basic set of attributes for rendering
lines.

❑ The font attribute determines the font to be used when drawing text. The font attribute is set by
calling the setFont(Font font) method for the graphics context. The default font is the font
set for the component.

❑ The transform attribute defines the transformations to be applied during the rendering process.
What you draw can be translated, rotated, and scaled as determined by the transforms currently
in effect. There are several methods for applying transforms to what is drawn, as you’ll see. The
default transform is the identity transform, which leaves things unchanged.

937

Drawing in a Window

❑ The clip attribute defines the boundary of an area on a component. Rendering operations are
restricted so that drawing takes place only within the area enclosed by the clip boundary. The
clip attribute is set by calling one of the two setClip() methods for a graphics context. With
one version of setClip() you define the boundary of the area to be rendered as a rectangle that
you specify by the coordinates of its top-left corner and the height and width of the rectangle.
The other setClip() method expects the argument to be a reference of type java.awt.Shape.
The Shape interface is implemented by a variety of classes in the java.awt.geom package that
define geometric shapes of various kinds, such as lines, circles, polygons, and curves. The
default clip attribute is the whole component area.

❑ The composite attribute determines how overlapping shapes are drawn on a component. You
can alter the transparency of the fill color of a shape so an underlying shape shows through. You
set the composite attribute by calling the setComposite(Composite comp) method for the
graphics context. The default composite attribute causes a new shape to be drawn over what-
ever is already there, taking account of the transparency of any of the colors used.

All of the objects that represent attributes are stored as references within a Graphics2D object. Therefore,
you must always call a setXXX() method to alter an attribute in a graphics context, not try to modify an
external object directly. If you externally alter an object that has been used to set an attribute, the results
are unpredictable.

You can also affect how the rendering process deals with “jaggies” when drawing lines. The process to
eliminate jaggies on sloping lines is called antialiasing, and you can change the antialiasing that is
applied by calling one of the two setRenderingHints() methods for a graphics context. I won’t be
going into this aspect of drawing further, though.

There’s a huge amount of detail on attributes under the covers. Rather than going into all that here,
you’ll be exploring how to apply new attributes to a graphics context piecemeal where it is relevant to
the various examples you’ll create.

Rendering Operations
You have the following basic methods available with a Graphics2D object for rendering various kinds
of graphic entities:

Method Description

draw(Shape shape) Renders a shape using the current attributes for the graphics
context. I’ll be discussing what a shape is next.

fill(Shape shape) Fills a shape using the current attributes for the graphics con-
text. You’ll see how to do this later in this chapter.

drawString(String text) Renders a text string using the current attributes for the graph-
ics context. You’ll be applying this further in the next chapter.

drawImage() Renders an image using the current attributes for the graphics
context. This is quite a complicated operation so you won’t be
getting very far into this.

Let’s see what shapes are available. They’ll help make Sketcher a lot more useful.

938

Chapter 19

Shapes
Classes that define geometric shapes are contained in the java.awt.geom package, but the Shape inter-
face that these classes implement is defined in java.awt. Objects that represent shapes are often passed
around as references of type Shape, so you’ll usually need to import class names from both packages
into your source file. Any class that implements the Shape interface defines a shape, and visually a
shape will be some composite of straight lines and curves. Straight lines, rectangles, ellipses, and curves
are all shapes.

A graphics context knows how to draw objects of a type that implements the Shape interface. To draw a
shape on a component, you just need to pass the object defining the shape to the draw() method for the
Graphics2D object for the component. To explore this in detail, I’ll split the shapes into three groups:
straight lines and rectangles, arcs and ellipses, and freeform curves. First, though, you must take a look
at how points are defined.

Classes Defining Points
Two classes in the java.awt.geom package define points, Point2D.Float and Point2D.Double. From
the class names you can see that these are both inner classes to the Point2D class, which also happens to
be an abstract base class for both classes too. The Point2D.Float class defines a point from a pair of (x, y)
coordinates of type float, whereas the Point2D.Double class defines a point as a coordinate pair of
type double. The Point class in the java.awt package also defines a point, but in terms of a coordinate
pair of type int. The Point class also has Point2D as a base, and the hierarchy of classes that represents
points is shown in Figure 19-6.

Figure 19-6

The Point class actually predates the Point2D class, but the Point class was redefined to make it a sub-
class of Point2D when Point2D was introduced, hence the somewhat unusual class hierarchy with only
two of the subclasses as inner classes. The merit of this arrangement is that all of the subclasses inherit

Point2D

java.awt.geom

Point

Coordinates
of type int

Java.awt

Point2D.Double

Coordinates
of type double

Java.awt.geom

Point2D.Float

Coordinates
of type float

abstract
base class

Java.awt.geom

939

Drawing in a Window

the methods defined in the Point2D class, so operations on each of the three kinds of point are the same.
Objects of all three concrete types that represent points can be passed around as references of type
Point2D.

The three subclasses of Point2D define a default constructor that defines the point (0,0) and a construc-
tor that accepts a pair of coordinates of the type appropriate to the class type.

The operations that each of the three concrete point classes inherits are:

1. Accessing coordinate values — The getX() and getY() methods return the x and y coordi-
nates of a point as type double, regardless of how the coordinates are stored. These are abstract
methods in the Point2D class, so they are defined in each of the subclasses. Although you get
coordinates as values of type double from all three concrete classes via these methods, you can
always access the coordinates with their original type directly since the coordinates are stored in
public fields with the same names, x and y, in each case.

2. Calculating the distance between two points — You have no less than three overloaded ver-
sions of the distance() method for calculating the distance between two points, and returning
it as type double:

distance(This is a static version of the method that calculates
double x1, double y1, the distance between the points (x1, y1) and
double x2, double y2) (x2, y2).

distance(This calculates the distance from the current point
double xNext, double yNext) (the object for which the method is called) and the

point (xNext, yNext).

distance(Point2D nextPoint) This calculates the distance from the current point
to the point nextPoint. The argument can be any
of the subclass types, Point, Point2D.Float, or
Point2D.Double.

Here’s how you might calculate the distance between two points:

Point2D.Double p1 = new Point2D.Double(2.5, 3.5);

Point p2 = new Point(20, 30);

double lineLength = p1.distance(p2);

You can also calculate this distance without creating the points by using the static method:

double lineLength = Point2D.distance(2.5, 3.5, 20, 30);

Corresponding to each of the three distance() methods is a convenience method,
distanceSq(), with the same parameter list that returns the square of the distance between
two points as a value of type double.

940

Chapter 19

3. Comparing points — The equals() method compares the current point with the point object
referenced by the argument and returns true if they are equal and false otherwise.

4. Setting a new location for a point — The inherited setLocation() method comes in two ver-
sions. One accepts an argument that is a reference of type Point2D and sets the coordinate val-
ues of the current point to those of the point passed as an argument. The other accepts two
arguments of type double that are the x and y coordinates of the new location. The Point class
also defines a version of setLocation() that accepts two arguments of type int to define the
new coordinates.

Lines and Rectangles
The java.awt.geom package contains the following classes for shapes that are straight lines and rectangles:

Class Description

Line2D This is an abstract base class defining a line between two points. Two
concrete subclasses —Line2D.Float and Line2D.Double— define
lines in terms of user coordinates of type float and double, respec-
tively. You can see from their names that the subclasses are nested
classes to the abstract base class Line2D.

Rectangle2D This is the abstract base class for the Rectangle2D.Double and
Rectangle2D.Float classes that define rectangles. A rectangle is
defined by the coordinates of the position of its top-left corner plus its
width and height. The Rectangle2D class is also the abstract base class
for the Rectangle class in the java.awt package, which stores the
position coordinates and the height and width as values of type int.

RoundRectangle2D This is the abstract base class for the RoundRectangle2D.Double and
RoundRectangle2D.Float classes, which define rectangles with
rounded corners. The rounded corners are specified by a width and
height.

Like the java.awt.Point class, the Rectangle class that is defined in the java.awt package predates
the Rectangle2D class, but the definition of the Rectangle class was changed to make Rectangle2D a
base for compatibility reasons. Note that there is no equivalent to the Rectangle class for lines defined
by integer coordinates. If you are browsing the documentation, you may notice there is a Line interface,
but this declares operations for an audio channel and has nothing to do with geometry.

941

Drawing in a Window

Figure 19-7 illustrates how, lines, rectangles, and round rectangles are defined.

Figure 19-7

You can define a line by supplying two Point2D objects to a constructor, or two pairs of (x, y) coordi-
nates. For example, here’s how you define a line by two coordinate pairs:

Line2D.float line = new Line2D.Float(5.0f, 100.0f, 50.0f, 150.0f);

This draws a line from the point (5.0, 100.0) to the point (50.0, 150.0). You could also create the same line
using Point2D.Float objects, like this:

Point2D.Float p1 = new Point2D.Float(5.0f, 100.0f);

Point2D.Float p2 = new Point2D.Float(50.0f, 150.0f);

Line2D.float line = new Line2D.Float(p1, p2);

You draw a line using the draw() method for a Graphics2D object. For example:

g2D.draw(line); // Draw the line

x1,y1

h

w

Rectangle2D.Float(x1,y1,w,h)

x1,y1

h

w

cw

Point p2
x2,y2

Point p1
x1,y1

ch

RoundRectangle2D.Float(x1,y1,w,h,cw,ch)

Line2D.Float(x1,y1,x2,y2)
or
Line2D.Float(p1,p2)

942

Chapter 19

To create a rectangle, you specify the coordinates of its top-left corner, and the width and height of the
rectangle:

float width = 120.0f;

float height = 90.0f;

Rectangle2D.Float rectangle = new Rectangle2D.Float(50.0f, 150.0f, width, height);

The default constructor creates a rectangle at the origin with a zero width and height. You can set the
position, width, and height of a rectangle by calling its setRect() method. There are three versions of
this method. One of them accepts arguments for the coordinates of the top-left corner and the width and
height as values of type float, exactly as in the constructor. Another accepts arguments with the same
meaning but of type double. The third setRect() method accepts an argument of type Rectangle2D
so you can pass any type of rectangle object to it.

A Rectangle2D object has getX() and getY() methods for retrieving the coordinates of the top-left
corner, and getWidth() and getHeight() methods that return the width and height of the rectangle,
respectively.

A round rectangle is a rectangle with rounded corners. The corners are defined by a width and a height
and are essentially a quarter segment of an ellipse (I’ll get to the details of ellipses later). Of course, if the
corner width and height are equal, then the corner will be a quarter of a circle.

You can define a round rectangle using coordinates of type double with the following statements:

Point2D.Double position = new Point2D.Double(10, 10);

double width = 200.0;

double height = 100;

double cornerWidth = 15.0;

double cornerHeight = 10.0;

RoundRectangle2D.Double roundRect = new RoundRectangle2D.Double(

position.x, position.y, // Position of top-left

width, height, // Rectangle width & height

cornerWidth, cornerHeight); // Corner width & height

The only difference between this and defining an ordinary rectangle is the addition of the width and
height to be applied for the corner rounding.

Combining Rectangles
You can combine two rectangles to produce a new rectangle that is either the union of the two original
rectangles or the intersection. Let’s take a couple of specifics to see how this works. You can create two
rectangles with the statements:

float width = 120.0f;

float height = 90.0f;

Rectangle2D.Float rect1 = new Rectangle2D.Float(50.0f, 150.0f, width, height);

Rectangle2D.Float rect2 = new Rectangle2D.Float(80.0f, 180.0f, width, height);

You can obtain the intersection of the two rectangles with the statement:

Rectangle2D.Float rect3 = rect1.createIntersection(rect2);

943

Drawing in a Window

The effect is illustrated in Figure 19-8 by the shaded rectangle. Of course, the result is the same if you call
the method for rect2 with rect1 as the argument. If the rectangles don’t overlap, the rectangle that is
returned will be the rectangle from the bottom right of one rectangle to the top right of the other that
does not overlap either of the original rectangles.

Figure 19-8

The following statement produces the union of the two rectangles:

Rectangle2D.Float rect3 = rect1.createUnion(rect2);

The result is shown in Figure 19-8 by the rectangle with the heavy boundary that encloses the other two.

Testing Rectangles
Perhaps the simplest test you can apply to a Rectangle2D object is for an empty rectangle. The isEmpty()
method that is implemented in all the rectangle classes returns true if the Rectangle2D object is empty —
which is when either the width or the height (or both) are zero.

You can also test whether a point lies inside any type of rectangle object by calling its contains() method.
There are contains() methods for all the rectangle classes that accept either a Point2D argument, or a
pair of (x, y) coordinates of a type matching that of the rectangle class: They return true if the point lies
within the rectangle and false otherwise. Every shape class defines a getBounds2D() method that
returns a Rectangle2D object that encloses the shape.

The getBounds2D() method is frequently used in association with the contains() method to provide
an efficient test of whether the cursor lies within a particular shape. Testing whether the cursor is within
the enclosing rectangle will be a lot faster in general than testing whether it is within the precise bound-
ary of the shape and is good enough for many purposes — for example, when you are selecting a partic-
ular shape on the screen to manipulate it in some way.

Rectangle2DFloat rect3 =
 rect1.createIntersection(rect2);

80,180

50,150

120

9
0

9
0

120

rect1

rect2

rect3

Rectangle2DFloat rect4 =
 rect1.createUnion(rect2);

80,180

50,150

120

9
0

9
0

120

rect1

rect2

rect4

944

Chapter 19

You also have versions of the contains() method to test whether a given rectangle lies within the area
occupied by a rectangle object — this obviously enables you to test whether a shape lies within another
shape. You can pass the given rectangle to the contains() method as the coordinates of its top-left cor-
ner, and its height and width as type double, or as a Rectangle2D reference. The method returns true
if the rectangle object completely contains the given rectangle.

Let’s try drawing a few simple lines and rectangles by inserting some code in the paint() method for
the view in Sketcher.

Try It Out Drawing Lines and Rectangles
Begin by adding import statements to SketchView.java for the class names from the java.awt.geom
package that you’ll be using:

import java.awt.geom.Rectangle2D;

import java.awt.geom.Point2D;

import java.awt.geom.Line2D;

Now you can replace the previous code in the paint() method in the SketchView class with the
following:

public void paint(Graphics g) {

// Temporary code - to be deleted later...

Graphics2D g2D = (Graphics2D)g; // Get a Java 2D device context

g2D.setPaint(Color.RED); // Draw in red

// Position width and height of first rectangle

Point2D.Float p1 = new Point2D.Float(50.0f, 10.0f);

float width1 = 60;

float height1 = 80;

// Create and draw the first rectangle

Rectangle2D.Float rect = new Rectangle2D.Float(p1.x, p1.y, width1, height1);

g2D.draw(rect);

// Position width and height of second rectangle

Point2D.Float p2 = new Point2D.Float(150.0f, 100.0f);

float width2 = width1 + 30;

float height2 = height1 + 40;

// Create and draw the second rectangle

g2D.draw(new Rectangle2D.Float(

(float)(p2.getX()), (float)(p2.getY()), width2, height2));

g2D.setPaint(Color.BLUE); // Draw in blue

// Draw lines to join corresponding corners of the rectangles

Line2D.Float line = new Line2D.Float(p1,p2);

g2D.draw(line);

945

Drawing in a Window

p1.setLocation(p1.x + width1, p1.y);

p2.setLocation(p2.x + width2, p2.y);

g2D.draw(new Line2D.Float(p1,p2));

p1.setLocation(p1.x, p1.y + height1);

p2.setLocation(p2.x, p2.y + height2);

g2D.draw(new Line2D.Float(p1,p2));

p1.setLocation(p1.x – width1, p1.y);

p2.setLocation(p2.x – width2, p2.y);

g2D.draw(new Line2D.Float(p1, p2));

p1.setLocation(p1.x, p1.y – height1);

p2.setLocation(p2.x, p2.y – height2);

g2D.draw(new Line2D.Float(p1, p2));

g2D.drawString(“Lines and rectangles”, 60, 250); // Draw some text

}

If you type this in correctly and recompile the SketchView class, the Sketcher window will look like the
one shown in Figure 19-9.

Figure 19-9

How It Works
After casting the graphics context object that is passed to the paint() method to type Graphics2D, you
set the drawing color to red. All subsequent drawing that you do will be in red until you change the
color with another call to setPaint(). You define a Point2D.Float object to represent the position of
the first rectangle, and you define variables to hold the width and height of the rectangle. You use these

946

Chapter 19

to create the rectangle by passing them as arguments to the constructor that you saw earlier in this chap-
ter and display the rectangle by passing the rect object to the draw() method for the graphics context,
g2D. The second rectangle is defined by essentially the same process, except that this time you create the
Rectangle2D.Float object in the argument expression for the draw() method.

Note that you have to cast the values returned by the getX() and getY() members of the Point2D
object, as they are returned as type double. It is generally more convenient to reference the x and y
fields directly as you do in the rest of the code.

You change the drawing color to blue so that you can see quite clearly the lines you are drawing. You
use the setLocation() method for the point objects to move the point on each rectangle to successive
corners and draw a line at each position. The caption also appears in blue since that is the color in effect
when you call the drawString() method to output the text string.

Arcs and Ellipses
There are shape classes defining both arcs and ellipses. The abstract class representing a generic ellipse is:

Class Description

Ellipse2D This is the abstract base class for the Ellipse2D.Double and
Ellipse2D.Float classes that define ellipses. An ellipse is defined by the
top-left corner, width, and height of the rectangle that encloses it.

The class representing an elliptic arc is:

Class Description

Arc2D This is the abstract base class for the Arc2D.Double and Arc2D.Float classes
that define arcs as a portion of an ellipse. The full ellipse is defined by the
position of the top-left corner and the width and height of the rectangle that
encloses it. The arc length is defined by a start angle measured in degrees anti-
clockwise relative to the horizontal axis of the full ellipse, plus an angular
extent measured anticlockwise from the start angle in degrees. You can specify
an arc as OPEN, which means the ends are not connected; as CHORD, which
means the ends are connected by a straight line; or as PIE, which means the
ends are connected by straight lines to the center of the whole ellipse. These
constants are defined as static members of the Arc2D class.

Arcs and ellipses are closely related since an arc is just a segment of an ellipse. Constructors for the
Ellipse2D.Float and Arc2d.Float classes are shown in Figure 19-10. To define an ellipse you supply
the data necessary to define the enclosing rectangle — the coordinates of the top-left corner, the width,
and the height. To define an arc you supply the data to define the ellipse, plus additional data that
defines the segment of the ellipse that you want. The seventh argument to the arc constructor deter-
mines the type, whether OPEN, CHORD, or PIE.

947

Drawing in a Window

Figure 19-10

You could define an ellipse with the following statements:

Point2D.Double position = new Point2D.Double(10,10);

double width = 200.0;

double height = 100;

Ellipse2D.Double ellipse = new Ellipse2D.Double(

position.x, position.y, // Top-left corner

width, height); // width & height of rectangle

You could define an arc that is a segment of the previous ellipse with this statement:

Arc2D.Double arc = new Arc2D.Double(

position.x, position.y, // Top-left corner

width, height, // width & height of rectangle

0.0, 90.0, // Start and extent angles

Arc2D.OPEN); // Arc is open

This defines the upper-right quarter segment of the whole ellipse as an open arc. The angles are measured
counterclockwise from the horizontal in degrees. As shown in Figure 19-10, the first angular argument is
where the arc starts, and the second is the angular extent of the arc.

Of course, a circle is just an ellipse for which the width and height are the same, so the following statement
defines a circle with a diameter of 150:

double diameter = 150.0;

Ellipse2D.Double circle = new Ellipse2D.Double(

position.x, position.y, // Top-left corner

diameter, diameter); // width & height of rectangle

This presumes the point position is defined somewhere. You will often want to define a circle by its
center and radius — adjusting the arguments to the constructor a little does this easily:

Point2D.Double center = new Point2D.Double(200, 200);

double radius = 150;

Ellipse2D.Double newCircle = new Ellipse2D.Double(

center.x-radius, center.y-radius, // Top-left corner

2*radius, 2*radius); // width & height of rectangle

Ellipse2D.Float(x1,y1,w,h)

w

h

x1,y1

Arc2D.Float(x1,y1,w,h,start,extent,Arc2D.OPEN)

w

h

x1,y1

start

extent

948

Chapter 19

The fields that store the coordinates of the top-left corner of the enclosing rectangle and the width and
height are public members of Ellipse2D and Arc2D objects. They are x, y, width, and height, respec-
tively. An Arc2D object also has public members, start and extent, that store the angles.

Try It Out Drawing Arcs and Ellipses
Let’s modify the paint() method in SketchView.java once again to draw some arcs and ellipses. First
modify the import statements for Rectangle2D and Line2D:

import java.awt.geom.Ellipse2D;

import java.awt.geom.Arc2D;

import java.awt.geom.Point2D;

Now you can replace the code in the body of the paint() method:

public void paint(Graphics g) {

// Temporary code - to be deleted later...

Graphics2D g2D = (Graphics2D)g; // Get a Java 2D device context

Point2D.Double position = new Point2D.Double(50,10); // Initial position

double width = 150; // Width of ellipse

double height = 100; // Height of ellipse

double start = 30; // Start angle for arc

double extent = 120; // Extent of arc

double diameter = 40; // Diameter of circle

// Define open arc as an upper segment of an ellipse

Arc2D.Double top = new Arc2D.Double(position.x, position.y,

width, height,

start, extent,

Arc2D.OPEN);

// Define open arc as lower segment of ellipse shifted up relative to 1st

Arc2D.Double bottom = new Arc2D.Double(

position.x, position.y – height + diameter,

width, height,

start + 180, extent,

Arc2D.OPEN);

// Create a circle centered between the two arcs

Ellipse2D.Double circle1 = new Ellipse2D.Double(

position.x + width/2 – diameter/2,position.y,

diameter, diameter);

// Create a second circle concentric with the first and half the diameter

Ellipse2D.Double circle2 = new Ellipse2D.Double(

position.x + width/2 – diameter/4, position.y + diameter/4,

diameter/2, diameter/2);

// Draw all the shapes

g2D.setPaint(Color.BLACK); // Draw in black

g2D.draw(top);

g2D.draw(bottom);

949

Drawing in a Window

g2D.setPaint(Color.BLUE); // Draw in blue

g2D.draw(circle1);

g2D.draw(circle2);

g2D.drawString(“Arcs and ellipses”, 80, 100); // Draw some text

}

Running Sketcher with this version of the paint() method in SketchView will produce the window
shown in Figure 19-11.

Figure 19-11

How It Works
This time you create all the shapes first and then draw them. The two arcs are segments of ellipses of the
same height and width. The lower arc segment is shifted up with respect to the first arc segment so that
they intersect, and the distance between the top of the rectangle for the first arc and the bottom of the
rectangle for the second arc is diameter, which is the diameter of the first circle you create.

Both circles are created centered between the two arcs and are concentric. Finally, you draw all the
shapes — the arcs in black and the circles in blue.

Next time you change the code in Sketcher, you’ll be building the application as it should be, so you can
now remove the temporary code from the paint() method and the code that sets the background color
in the ColorAction inner class to the SketchFrame class.

Curves
There are two classes that define arbitrary curves, one defining a quadratic or second-order curve, and
the other defining a cubic curve. The cubic curve just happens to be a Bézier curve (so called because it
was developed by a Frenchman, Monsieur Pierre Bézier, and first applied in the context of defining

950

Chapter 19

contours for programming numerically controlled machine tools for manufacturing car body forms).
The classes defining these curves are:

Class Description

QuadCurve2D This is the abstract base class for the QuadCurve2D.Double and Quad

Curve2D.Float classes that define a quadratic curve segment. The curve is
defined by its end points plus a control point that defines the tangent at
each end. The tangents are the lines from the end points to the control point.

CubicCurve2D This is the abstract base class for the CubicCurve2D.Double and Cubic

Curve2D.Float classes that define a cubic curve segment. The curve is
defined by its end points plus two control points that define the tangent at
each end. The tangents are the lines from the end points to the correspond-
ing control point.

Figure 19-12

In general, there are many other methods for modeling arbitrary curves, but the two defined in Java
have the merit that they are both easy to understand and the effect on the curve segment when you
move a control point is quite intuitive.

An object of each curve type defines a curve segment between two points. The control points — one for a
QuadCurve2D curve and two for a CubicCurve2D curve — control the direction and magnitude of the
tangents at the end points. A QuadCurve2D curve constructor has six parameters corresponding to the x
and y coordinates of the starting point for the segment, the x and y coordinates of the control point, and
the x and y coordinates of the end point. You can define a QuadCurve2D curve from a point start to a
point end, plus a control point, control, with the following statements:

Point2D.Double startQ = new Point2D.Double(50, 150);

Point2D.Double endQ = new Point2D.Double(150, 150);

Point2D.Double control = new Point2D.Double(80,100);

QuadCurve2D.Double quadCurve

= new QuadCurve2D.Double(startQ.x, startQ.y, // Segment start point

control.x, control.y, // Control point

endQ.x, endQ.y); // Segment end point

x1,y1

x2,y2

x1,y1

x2,y2ctrlx1,ctrly1

ctrlx2,ctrly2

ctrlx,ctrly

QuadCurve2D.Float(x1,y1,ctrlx,ctrly,x2,y2) CubicCurve2D.Float(x1,y1,ctrlx1,ctrly1,ctrlx2,ctrly2,x2,y2)

951

Drawing in a Window

The QuadCurve2D subclasses have public members storing the end points and the control point so you
can access them directly. The coordinates of the start and end points are stored in the fields x1, y1, x2,
and y2. The coordinates of the control point are stored in ctrlx and ctrly.

Defining a cubic curve segment is very similar — you just have two control points, one for each end of
the segment. The arguments are the (x, y) coordinates of the start point, the control point for the start of
the segment, the control point for the end of the segment, and finally the end point. You could define a
cubic curve with the following statements:

Point2D.Double startC = new Point2D.Double(50, 300);

Point2D.Double endC = new Point2D.Double(150, 300);

Point2D.Double controlStart = new Point2D.Double(80, 250);

Point2D.Double controlEnd = new Point2D.Double(160, 250);

CubicCurve2D.Double cubicCurve = new CubicCurve2D.Double(

startC.x, startC.y, // Segment start point

controlStart.x, controlStart.y, // Control point for start

controlEnd.x, controlEnd.y, // Control point for end

endC.x, endC.y); // Segment end point

The cubic curve classes also have public members for all the points: x1, y1, x2, and y2 for the end points
and ctrlx1, ctrly1, ctrlx2, and ctrly2 for the corresponding control points. You could therefore use
the default constructor to create a curve object with all the fields set to 0 and set them yourself. The fol-
lowing statements create the same curve as the previous fragment:

CubicCurve2D.Double cubicCurve = new CubicCurve2D.Double();

cubicCurve.x1 = 50;

cubicCurve.y1 = 300;

cubicCurve.x2 = 150;

cubicCurve.y2 = 300;

cubicCurve.ctrlx1 = 80;

cubicCurve.ctrly1 = 250;

cubicCurve.ctrlx2 = 160;

cubicCurve.ctrly2 = 250;

Of course, you could use the same approach to create a quadratic curve.

You will understand these curve classes better if you try them out. This time let’s do it with an applet.

Try It Out Drawing Curves
You can define an applet to display the curves I used as examples in the previous section:

import javax.swing.JApplet;

import javax.swing.JComponent;

import java.awt.Color;

import java.awt.Graphics2D;

import java.awt.Container;

import java.awt.Graphics;

952

Chapter 19

import java.awt.geom.Point2D;

import java.awt.geom.CubicCurve2D;

import java.awt.geom.QuadCurve2D;

public class CurveApplet extends JApplet {

// Initialize the applet

public void init() {

pane = new CurvePane(); // Create pane containing curves

Container content = getContentPane(); // Get the content pane

// Add the pane displaying the curves to the content pane for the applet

content.add(pane); // BorderLayout.CENTER is default position

}

// Class defining a pane on which to draw

class CurvePane extends JComponent {

// Constructor

public CurvePane() {

quadCurve = new QuadCurve2D.Double(// Create quadratic curve

startQ.x, startQ.y, // Segment start point

control.x, control.y, // Control point

endQ.x, endQ.y); // Segment end point

cubicCurve = new CubicCurve2D.Double(// Create cubic curve

startC.x, startC.y, // Segment start point

controlStart.x, controlStart.y, // Control point for start

controlEnd.x, controlEnd.y, // Control point for end

endC.x, endC.y); // Segment end point

}

public void paint(Graphics g) {

Graphics2D g2D = (Graphics2D)g; // Get a 2D device context

// Draw the curves

g2D.setPaint(Color.BLUE);

g2D.draw(quadCurve);

g2D.draw(cubicCurve);

}

}

// Points for quadratic curve

Point2D.Double startQ = new Point2D.Double(50, 75); // Start point

Point2D.Double endQ = new Point2D.Double(150, 75); // End point

Point2D.Double control = new Point2D.Double(80, 25); // Control point

// Points for cubic curve

Point2D.Double startC = new Point2D.Double(50, 150); // Start point

Point2D.Double endC = new Point2D.Double(150, 150); // End point

Point2D.Double controlStart = new Point2D.Double(80, 100); // 1st control point

Point2D.Double controlEnd = new Point2D.Double(160, 100); // 2nd control point

QuadCurve2D.Double quadCurve; // Quadratic curve

CubicCurve2D.Double cubicCurve; // Cubic curve

CurvePane pane = new CurvePane(); // Pane to contain curves

}

953

Drawing in a Window

You will need an HTML file to run the applet. The contents can be something like:

<applet code=”CurveApplet.class” width=300 height=300></applet>

If you run the applet using appletviewer, you will get a window that looks like the one shown in
Figure 19-13.

Figure 19-13

How It Works
To display the curves, you need an object of your own class type so that you can implement the paint()
method for it. You define the inner class, CurvePane, for this purpose with JComponent as the base class
so it is a Swing component. You create an object of this class (which is a member of the CurveApplet
class) and add it to the content pane for the applet using its inherited add() method. The layout man-
ager for the content pane is BorderLayout, and the default positioning is BorderLayout.CENTER so
the CurvePane object fills the content pane.

The points defining the quadratic and cubic curves are defined as fields in the CurveApplet class and
the fields that store references to the curve objects are used in the paint() method for the CurvePane
class to display curves. The fields that store points are used in the CurvePane class constructor to create
the objects encapsulating curves. You draw the curves in the paint() method by calling the draw()
method for the Graphics2D object and passing a reference to a curve object as the argument. The classes
that define curves implement the Shape interface so any curve object can be passed to the draw()
method that has a parameter of type Shape.

It’s hard to see how the control points affect the shape of the curve, so let’s add some code to draw the
control points.

954

Chapter 19

Try It Out Displaying the Control Points
You can mark the position of each control point by drawing a small circle around it. You can define a
marker using an inner class of CurveApplet that you can define as follows:

// Inner class defining a control point marker

class Marker {

public Marker(Point2D.Double control) {

center = control; // Save control point as circle center

// Create circle around control point

circle = new Ellipse2D.Double(control.x-radius, control.y-radius,

2.0*radius, 2.0*radius);

}

// Draw the marker

public void draw(Graphics2D g2D) {

g2D.draw(circle);

}

// Get center of marker – the control point position

Point2D.Double getCenter() {

return center;

}

Ellipse2D.Double circle; // Circle around control point

Point2D.Double center; // Circle center – the control point

static final double radius = 3; // Radius of circle

}

The argument to the constructor is the control point that is to be marked. The constructor stores this con-
trol point in the member center and creates an Ellipse2D.Double object that is the circle to mark the
control point. The class also has a method, draw(), to draw the marker using the Graphics2D object
reference that is passed to it, so Marker objects can draw themselves, given a graphics context. The
getCenter() method returns the center of the marker as a Point2D.Double reference. You’ll use the
getCenter() method when you draw tangent lines from the end points of a curve to the corresponding
control points.

You can now add fields to the CurveApplet class to define the Marker objects for the control points.
These definitions should follow the members that define the points:

// Markers for control points

Marker ctrlQuad = new Marker(control);

Marker ctrlCubic1 = new Marker(controlStart);

Marker ctrlCubic2 = new Marker(controlEnd);

955

Drawing in a Window

You can now add code to the paint() method for the CurvePane class to draw the markers and the
tangents from the end points of the curve segments:

public void paint(Graphics g) {

// Code to draw curves as before...

// Create and draw the markers showing the control points

g2D.setPaint(Color.red); // Set the color

ctrlQuad.draw(g2D);

ctrlCubic1.draw(g2D);

ctrlCubic2.draw(g2D);

// Draw tangents from the curve end points to the control marker centers

Line2D.Double tangent = new Line2D.Double(startQ, ctrlQuad.getCenter());

g2D.draw(tangent);

tangent = new Line2D.Double(endQ, ctrlQuad.getCenter());

g2D.draw(tangent);

tangent = new Line2D.Double(startC, ctrlCubic1.getCenter());

g2D.draw(tangent);

tangent = new Line2D.Double(endC, ctrlCubic2.getCenter());

g2D.draw(tangent);

}

If you recompile the applet with these changes, when you execute it again you should see the window
shown in Figure 19-14.

Figure 19-14

How It Works
In the Marker class constructor, the top-left corner of the rectangle enclosing the circle for a control point
is obtained by subtracting the radius from the x and y coordinates of the control point. You then create
an Ellipse2D.Double object with the width and height as twice the value of radius— which is the
diameter of the circle.

In the paint() method, you call the draw() method for each of the Marker objects to draw a red circle
around each control point. The tangents to the curves are just lines from the end points of each curve
segment to the centers of the corresponding Marker objects.

956

Chapter 19

It would be good to see what happens to a curve segment when you move the control points around.
Then you could really see how the control points affect the shape of the curve. That’s not as difficult to
implement as it might sound, so let’s give it a try.

Try It Out Moving the Control Points
You’ll arrange to allow a control point to be moved by positioning the cursor on it, pressing a mouse
button, and dragging it around. Releasing the mouse button will stop the process for that control point,
so the user will then be free to manipulate another control point. To implement this functionality in the
applet you will add another inner class to CurveApplet that will handle mouse events:

class MouseHandler extends MouseInputAdapter {

public void mousePressed(MouseEvent e) {

// Check if the cursor is inside any marker

if(ctrlQuad.contains(e.getX(), e.getY()))

selected = ctrlQuad;

else if(ctrlCubic1.contains(e.getX(), e.getY()))

selected = ctrlCubic1;

else if(ctrlCubic2.contains(e.getX(), e.getY()))

selected = ctrlCubic2;

}

public void mouseReleased(MouseEvent e) {

selected = null; // Deselect any selected marker

}

public void mouseDragged(MouseEvent e) {

if(selected != null) { // If a marker is selected

// Set the marker to current cursor position

selected.setLocation(e.getX(), e.getY());

pane.repaint(); // Redraw pane contents

}

}

Marker selected = null; // Stores reference to selected marker

}

You need to add two import statements to the beginning of the source file, one because you reference
the MouseInputAdapter class and the other because you refer to the MouseEvent class:

import javax.swing.event.MouseInputAdapter;

import java.awt.event.MouseEvent;

The mousePressed() method calls a contains() method for a Marker that should test whether the point
defined by the arguments is inside the marker. You can implement this in the Marker class like this:

// Test if a point x,y is inside the marker

public boolean contains(double x, double y) {

return circle.contains(x,y);

}

957

Drawing in a Window

This just calls the contains() method for the circle object that is the marker. This will return true if the
point (x, y) is inside the circle, and false if it isn’t.

The mouseDragged() method calls a setLocation() method for the selected Marker object that is
supposed to move the marker to a new position, so you need to implement this in the Marker class, too:

// Sets a new control point location

public void setLocation(double x, double y) {

center.x = x; // Update control point

center.y = y; // coordinates

circle.x = x-radius; // Change circle position

circle.y = y-radius; // correspondingly

}

After updating the coordinates of the point center, you also update the position of the circle by setting
its data member directly. You can do this because x and y are public members of the Ellipse2D.Double
class and store the coordinates of the center of the ellipse.

You can create a MouseHandler object in the init() method for the applet and set it as the listener for
mouse events for the pane object:

public void init() {

pane = new CurvePane(); // Create pane containing curves

Container content = getContentPane(); // Get the content pane

// Add the pane displaying the curves to the content pane for the applet

content.add(pane); // BorderLayout.CENTER is default position

MouseHandler handler = new MouseHandler(); // Create the listener

pane.addMouseListener(handler); // Monitor mouse button presses

pane.addMouseMotionListener(handler); // as well as movement

}

Of course, to make the effect of moving the control points apparent, you must update the curve objects
before you draw them. You can add the following code to the paint() method to do this:

public void paint(Graphics g) {

Graphics2D g2D = (Graphics2D)g; // Get a 2D device context

// Update the curves with the current control point positions

quadCurve.ctrlx = ctrlQuad.getCenter().x;

quadCurve.ctrly = ctrlQuad.getCenter().y;

cubicCurve.ctrlx1 = ctrlCubic1.getCenter().x;

cubicCurve.ctrly1 = ctrlCubic1.getCenter().y;

cubicCurve.ctrlx2 = ctrlCubic2.getCenter().x;

cubicCurve.ctrly2 = ctrlCubic2.getCenter().y;

// Rest of the method as before...

958

Chapter 19

You can update the data members that store the control point coordinates for the curves directly because
they are public members of each curve class. You get the coordinates of the new positions for the control
points from their markers by calling the getCenter() method for each Marker object and then using
the appropriate data member of the Point2D.Double object that is returned to update the fields for the
curve objects.

If you recompile the applet with these changes and run it again you should get something like the win-
dow shown in Figure 19-15.

Figure 19-15

You should be able to drag the control points around with the mouse and see the curves change shape.
If you find it’s a bit difficult to select the control points, just make the value of radius a bit larger. Note
how the angle of the tangent as well as its length affects the shape of the curve.

How It Works
The mousePressed() method in the MouseHandler class will be called when you press a mouse but-
ton. In this method you check whether the current cursor position is within any of the markers enclosing
the control points. You do this by calling the contains() method for each Marker object and passing
the coordinates of the cursor position to it. The getX() and getY() methods for the MouseEvent object
supply the coordinates of the current cursor position. If one of the markers does enclose the cursor, you
store a reference to the Marker object in the selected member of the MouseHandler class for use by the
mouseDragged() method.

In the mouseDragged() method, you set the location for the Marker object referenced by selected to
the current cursor position, and call repaint() for the pane object. The repaint() method causes the
paint() method to be called for the component, so everything will be redrawn, taking account of the
modified control point position.

Releasing the mouse button will cause the mouseReleased() method to be called. In here you just set
the selected field back to null so no Marker object is selected. Remarkably easy, wasn’t it?

959

Drawing in a Window

Complex Paths
You can define a more complex geometric shape as an object of type GeneralPath. A GeneralPath

object can be a composite of lines, Quad2D curves, and Cubic2D curves, or even other GeneralPath
objects.

In general, closed shapes such as rectangles and ellipses can be filled with a color or pattern quite easily
because they consist of a closed path enclosing a region. In this case, whether a given point is inside or
outside a shape can be determined quite simply. With more complex shapes such as those defined by a
GeneralPath object, it can be more difficult. Such paths may be defined by an exterior bounding path
that encloses interior “holes,” and the “holes” may also enclose further interior paths. Therefore, it is not
necessarily obvious whether a given point is inside or outside a complex shape. In these situations, the
determination of whether a point is inside or outside a shape is made by applying a winding rule. When
you crate a GeneralPath object, you have the option of defining one of two winding rules that will then
be used to determine whether a given point is inside or outside the shape. The winding rules that you
can specify are defined by static constants defined in the GeneralPath class:

Winding Rule Description

WIND_EVEN_ODD In this case, a point is interior to a GeneralPath object if the boundary is
crossed an odd number of times by a line from a point exterior to the
GeneralPath to the point in question. When you use this winding rule
for shapes with holes, a point is determined to be interior to the shape if it
is enclosed by an odd number of boundaries.

WIND_NON_ZERO In this case, whether a point is inside or outside a path is determined by
considering how the path boundaries cross a line drawn from the point in
question to infinity, taking account of the direction in which the path
boundaries are drawn.

Looking along the line from the point, the point is interior to the GeneralPath object if the difference
between the number of times the line is crossed by a boundary from left to right, and the number of
times the line is crossed from right to left, is non-zero. When you use this rule for shapes bounded by
more than one contiguous path — with holes, in other words — the result will vary depending on the
direction in which each path is drawn. If an interior path is drawn in the opposite direction to the outer
path, the interior of the inner path will be determined as not being interior to the shape.

The way these winding rules affect the filling of a complex shape is illustrated in Figure 19-16.

The region of the shape that is determined as being inside the shape is shown shaded in Figure 19-16.
The directions in which the boundaries are drawn are indicated by the arrows on the boundaries. As you
can see, the region where P3 lies is determined as being outside the shape by the WIND_EVEN_ODD rule,
and as being inside the shape by the WIND_NON_ZERO rule.

960

Chapter 19

Figure 19-16

You have four constructors available for creating GeneralPath objects:

Constructor Description

GeneralPath() Defines a general path with a default winding
rule of WIND_NON_ZERO

GeneralPath(int rule) Creates an object with the winding rule specified
by the argument. You can specify the argument as
WIND_NON_ZERO or WIND_EVEN_ODD.

GeneralPath(int rule, int capacity) Creates an object with the winding rule specified
by the first argument and the number of path seg-
ments specified by the second argument. In any
event, the capacity is increased when necessary.

GeneralPath(Shape shape) Creates an object from the object passed as an
argument.

Boundary crossings = 2
P3 is outside

Boundary crossings = 1
P2 is inside

Boundary crossings = 2
P1 is outside

P3

P2

WIND_EVEN_ODD

P1

left-to-right = 2
right-to-left = 0
difference = 2
P3 is insideleft-to-right = 1

right-to-left = 0
difference = 1
P2 is inside

left-to-right = 1
right-to-left = 1
difference = 0
P1 is outside

P3

P2

WIND_NON_ZERO

P1

961

Drawing in a Window

You can create a GeneralPath object with the following statement:

GeneralPath p = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

A GeneralPath object embodies the notion of a current point of type Point2D from which the next
path segment will be drawn. You set the initial current point by passing a pair of (x, y) coordinates as
values of type float to the moveTo() method for the GeneralPath object. For example, for the object
generated by the previous statement, you could set the current point with the following statement:

p.moveTo(10.0f,10.0f); // Set the current point to 10,10

When you add a segment to a general path, the segment is added starting at the current point, and the
end of the segment becomes the new current point that will be used as the starting point for the next
segment. Of course, if you want disconnected segments in a path, you can call moveTo() to move the
current point to wherever you want before you add a new segment. If you need to get the current posi-
tion at any time, you can call the getCurrentPoint() method for a GeneralPath object, and the cur-
rent point will be returned as a reference of type Point2D.

You can use the following methods to add segments to a GeneralPath object:

Methods to Add Segments Description

lineTo(float x, float y) Draws a line from the current point to the
point (x, y)

quadTo(float ctrlx, Draws a quadratic curve segment from
float ctrly, the current point to the point (x2, y2)
float x2, float y2) with (ctrlx, ctrly) as the control point

curveTo(float ctrlx1, Draws a Bezier curve segment from
float ctrly1, the current point with control point
float ctrlx2, float ctrly2, (ctrlx1, ctrly1) to (x2, y2) with
float x2, float y2) (ctrlx2, ctrly2) as the control point

Each of these methods updates the current point to be the end of the segment that is added. A path can
consist of several subpaths since a new subpath is started by a moveTo() call. The closePath() method
closes the current subpath by connecting the current point at the end of the last segment to the point
defined by the previous moveTo() call.

Let’s illustrate how this works with a simple example. You could create a triangle with the following
statements:

GeneralPath p = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

p.moveTo(50.0f, 50.0f); // Start point for path

p.lineTo(150.0f, 50.0f); // Line from 50,50 to 150,50

p.lineTo(150.0f, 250.0f); // Line from 150,50 to 150,250

p.closePath(); // Line from 150,250 back to start

962

Chapter 19

The first line segment starts at the current position set by the moveTo() call. Each subsequent segment
begins at the end point of the previous segment. The closePath() call joins the latest end point to the
point set by the previous moveTo() call — which in this case is the beginning of the path. The process is
much the same using quadTo() or curveTo() method calls, and of course you can intermix them in
any sequence you like.

Once you have created a path for a GeneralPath object by calling its methods to add segments to the
path, you can remove them all by calling its reset() method. This empties the path.

The GeneralPath class implements the Shape interface, so a Graphics2D object knows how to draw a
path. You just pass a reference to a GeneralPath object as the argument to the draw() method for the
graphics context. To draw the path, p, that was defined in the preceding example in the graphics context
g2D, you would write:

g2D.draw(p); // Draw path p

Let’s try an example.

Try It Out Reaching for the Stars
You won’t usually want to construct a GeneralPath object as I did in the preceding example. You will
probably want to create a particular shape — a triangle or a star, say — and then draw it at various points
on a component. You might think you can do this by subclassing GeneralPath, but the GeneralPath
class is declared as final so subclassing is not allowed. However, you can always add a GeneralPath
object as a member of your class. You can try drawing some stars using your own Star class. You’ll use
a GeneralPath object to create the star shown in Figure 19-17.

Figure 19-17

10

5

20 20

A C

GStart point
for drawing E

D

F

B

963

Drawing in a Window

Here’s the code for a class defining the star:

import java.awt.geom.Point2D;

import java.awt.geom.GeneralPath;

import java.awt.Shape;

public class Star {

public Star(float x, float y) {

start = new Point2D.Float(x, y); // store start point

createStar();

}

// Create the path from start

private void createStar() {

Point2D.Float point = start;

p = new GeneralPath(GeneralPath.WIND_NON_ZERO);

p.moveTo(point.x, point.y);

p.lineTo(point.x + 20.0f, point.y – 5.0f); // Line from start to A

point = (Point2D.Float)p.getCurrentPoint();

p.lineTo(point.x + 5.0f, point.y – 20.0f); // Line from A to B

point = (Point2D.Float)p.getCurrentPoint();

p.lineTo(point.x + 5.0f, point.y + 20.0f); // Line from B to C

point = (Point2D.Float)p.getCurrentPoint();

p.lineTo(point.x + 20.0f, point.y + 5.0f); // Line from C to D

point = (Point2D.Float)p.getCurrentPoint();

p.lineTo(point.x – 20.0f, point.y + 5.0f); // Line from D to E

point = (Point2D.Float)p.getCurrentPoint();

p.lineTo(point.x – 5.0f, point.y + 20.0f); // Line from E to F

point = (Point2D.Float)p.getCurrentPoint();

p.lineTo(point.x – 5.0f, point.y – 20.0f); // Line from F to g

p.closePath(); // Line from G to start

}

// Modify the location of this star

public Shape atLocation(float x, float y) {

start.setLocation(x, y); // Store new start

p.reset(); // Erase current path

createStar(); // create new path

return p; // Return the path

}

// Make the path available

public Shape getShape() {

return p;

}

private Point2D.Float start; // Start point for star

private GeneralPath p; // Star path

}

You can now define an applet that will draw stars:

import javax.swing.JApplet;

import javax.swing.JComponent;

import java.awt.Graphics;

964

Chapter 19

import java.awt.Graphics2D;

public class StarApplet extends JApplet {

// Initialize the applet

public void init() {

StarPane pane = new StarPane(); // Pane containing stars

getContentPane().add(pane); // BorderLayout.CENTER is default position

}

// Class defining a pane on which to draw

class StarPane extends JComponent {

public void paint(Graphics g) {

Graphics2D g2D = (Graphics2D)g;

Star star = new Star(0,0); // Create a star

float delta = 60f; // Increment between stars

float starty = 0f; // Starting y position

// Draw 3 rows of 4 stars

for(int yCount = 0; yCount < 3; yCount++) {

starty += delta; // Increment row position

float startx = 0f; // Start x position in a row

// Draw a row of 4 stars

for(int xCount = 0; xCount<4; xCount++) {

g2D.draw(star.atLocation(startx += delta, starty));

}

}

}

}

}

The HTML file for this applet could contain:

<applet code=”StarApplet.class” width=360 height=240></applet>

This is large enough to accommodate our stars. If you compile and run the applet, you should see the
Applet Viewer window shown in Figure 19-18.

Figure 19-18

965

Drawing in a Window

How It Works
The Star class has a GeneralPath object, p, as a member that will reference the path for a star. The con-
structor sets the coordinates of the start point from the arguments and calls the createStar() method,
which creates the path for the star. The first line is drawn relative to the start point that is set by the
call to moveTo() for p. For each subsequent line, you retrieve the current position by calling
getCurrentPoint() for p and drawing the line relative to that. The last line to complete the star
is drawn by calling closePath().

You always need a Shape reference to draw a Star object, so you have included in the class a
getShape() method that simply returns a reference to the current GeneralPath object as type Shape.
The atLocation() method recreates the path for the star starting at the new position specified by the
arguments and returns a reference to it.

The StarApplet class draws stars on a component defined by the inner class StarPane. You draw the
stars using the paint() method for the StarPane object, which is a member of the StarApplet class.
Each star is drawn in the nested loop with the position specified by (x, y). The y coordinate defines the ver-
tical position of a row, so this is incremented by delta on each iteration of the outer loop. The coordinate x is
the position of a star within a row so this is incremented by delta on each iteration of the inner loop.

Note that you could have defined the Star class so that it implemented the Shape interface. This
would allow references of type Star to be used directly as the argument for the draw() method for a
Graphics2D object. Implementing the Shape interface would have been quite easy, if a little tedious.
It would just have involved defining the 10 methods from the Shape interface in the Star class, which
you could do by making each method call the corresponding method for the field p in the Star class.

Filling Shapes
Once you know how to create and draw a shape, filling it is easy. You just call the fill() method for
the Graphics2D object and pass a reference of type Shape to it. This works for any shape but for sensi-
ble results the boundary should be closed. The way the enclosed region will be filled is determined by
the window rule in effect for the shape.

Let’s try it out by modifying the applet example that displayed stars.

Try It Out Filling Stars
To fill the stars you just need to call the fill() method for each star in the paint() method of the
StarPane object. Modify the paint() method as follows:

public void paint(Graphics g) {

Graphics2D g2D = (Graphics2D)g;

Star star = new Star(0,0); // Create a star

float delta = 60; // Increment between stars

float starty = 0; // Starting y position

// Draw 3 rows of 4 stars

for(int yCount = 0 ; yCount<3; yCount++) {

966

Chapter 19

starty += delta; // Increment row position

float startx = 0; // Start x position in a row

// Draw a row of 4 stars

for(int xCount = 0 ; xCount<4; xCount++) {

g2D.setPaint(Color.BLUE); // Drawing color blue

g2D.draw(star.atLocation(startx += delta, starty));

g2D.setPaint(Color.GREEN); // Color for fill is green

g2D.fill(star.getShape()); // Fill the star

}

}

}

You also need an import statement for the Color class name in the StarApplet.java source file:

import java.awt.Color;

Now the applet window will look something like that shown in Figure 19-19, but in color, of course.

Figure 19-19

How It Works
You set the color for drawing and filling the stars separately, simply to show that you can get both.
The stars are displayed in green with a blue boundary. You can fill a shape without drawing a boundary
for it — just call the fill() method. You could amend the example to do this by modifying the inner
loop to:

for(int xCount = 0 ; xCount<4; xCount++) {

g2D.setPaint(Color.GREEN); // Color for fill is green

g2D.fill(star.atLocation(startx += delta, starty)); // Fill the star

}

Now all you will get is the green fill for each shape — no outline.

967

Drawing in a Window

Gradient Fill
You are not limited to filling a shape with a uniform color. You can create a GradientPaint object that
represents a graduation in shade from one color to another and pass that to the setPaint() method for
the graphics context. There are four GradientPaint class constructors:

Constructor Description

GradientPaint(Defines a gradient from point p1 with the
Point2D p1, Color c1, color c1 to the point p2 with the color c2.
Point2D p2, Color c2) The color varies linearly from color c1 at

point p1 to color c2 at point p2.

By default the gradient is acyclic, which
means the color variation applies only
between the two points. Beyond either
end of the line the color is the same as
the nearest end point.

GradientPaint(This does same as the previous
float x1, float y1, Color c1, constructor but with the points
float x2, float y2, Color c2) specified by their coordinates.

GradientPaint(With the last argument specified as false,
Point2D p1, Color c1, this is identical to the first constructor.
Point2D p2, Color c2, If you specify cyclic as true, the color
boolean cyclic) gradation repeats cyclically off either end

of the line — that is, you get repetitions of
the color gradient in both directions.

GradientPaint(This is the same as the previous
float x1, float y1, constructor except for the explicit
Color c1, float x2, float y2, point coordinates.
Color c2, boolean cyclic)

Points that are off the line defining the color gradient will have the same color as the normal (that is,
right-angle) projection of the point onto the line. This stuff is easier to demonstrate than to describe, so
Figure 19-20 shows the output from the example you’re going to try out next.

You can see that points along lines at right angles to the line defined by p1 and p2 have the same color as
the point on the line. The window shows both cyclic and acyclic gradient fill.

968

Chapter 19

Figure 19-20

Try It Out Color Gradients
You’ll create an example similar to the star applet, except that the applet will draw rectangles with
GradientPaint fills. Here’s the complete code:

import javax.swing.JComponent;

import javax.swing.JApplet;

import java.awt.Color;

import java.awt.GradientPaint;

import java.awt.Graphics2D;

import java.awt.Graphics;

import java.awt.geom.Rectangle2D;

import java.awt.geom.Point2D;

import java.awt.geom.Line2D;

public class GradientApplet extends JApplet {

// Initialize the applet

public void init() {

GradientPane pane = new GradientPane(); // Pane containing filled rectangles

getContentPane().add(pane); // BorderLayout.CENTER is default position

}

// Class defining a pane on which to draw

class GradientPane extends JComponent {

public void paint(Graphics g) {

Graphics2D g2D = (Graphics2D)g;

969

Drawing in a Window

Point2D.Float p1 = new Point2D.Float(150.f, 75.f); // Gradient line start

Point2D.Float p2 = new Point2D.Float(250.f, 75.f); // Gradient line end

float width = 300;

float height = 50;

GradientPaint g1 = new GradientPaint(p1, Color.WHITE,

p2, Color.DARK_GRAY,

true); // Cyclic gradient

Rectangle2D.Float rect1 = new Rectangle2D.Float(

p1.x-100, p1.y-25, width,height);

g2D.setPaint(g1); // Gradient color fill

g2D.fill(rect1); // Fill the rectangle

g2D.setPaint(Color.BLACK); // Outline in black

g2D.draw(rect1); // Fill the rectangle

g2D.draw(new Line2D.Float(p1, p2));

g2D.drawString(“Cyclic Gradient Paint”, p1.x-100, p1.y-50);

g2D.drawString(“p1”, p1.x-20, p1.y);

g2D.drawString(“p2”, p2.x+10, p2.y);

p1.setLocation(150, 200);

p2.setLocation(250, 200);

GradientPaint g2 = new GradientPaint(p1, Color.WHITE,

p2, Color.DARK_GRAY,

false); // Acyclic gradient

rect1.setRect(p1.x-100, p1.y-25, width, height);

g2D.setPaint(g2); // Gradient color fill

g2D.fill(rect1); // Fill the rectangle

g2D.setPaint(Color.BLACK); // Outline in black

g2D.draw(rect1); // Fill the rectangle

g2D.draw(new Line2D.Float(p1, p2));

g2D.drawString(“Acyclic Gradient Paint”, p1.x-100, p1.y-50);

g2D.drawString(“p1”, p1.x-20, p1.y);

g2D.drawString(“p2”, p2.x+10, p2.y);

}

}

}

If you run this applet with the following HTML, you should get the window previously shown in
Figure 19-20:

<applet code=”GradientApplet.class” width=400 height=280></applet>

Note that to get a nice smooth color gradation, your monitor needs to be set up for at least 16-bit colors
(65536 colors), and preferably 24-bit colors (16.7 million colors).

970

Chapter 19

How It Works
The applet displays two rectangles, and they are annotated to indicate which is which. The applet also
displays the gradient lines, which lie in the middle of the rectangles. You can see the cyclic and acyclic
gradients quite clearly. You can also see how points off the gradient line have the same color as the nor-
mal projection onto the line.

The first block of shaded code in the paint() method creates the upper rectangle where the
GradientPaint object that is used is g1. This is created as a cyclic gradient between the points p1 and p2,
and varying from white to dark gray. I chose these shades because the book is printed in black and white,
but you can try the example with any color combination you like. To set the color gradient for the fill, you
call setPaint() for the Graphics2D object and pass g1 to it. Any shapes that are drawn and/or filled
subsequent to this call will use the gradient color, but here you just fill the rectangle, rect1.

To make the outline and the annotation clearer, you set the current color back to black before calling the
draw() method to draw the outline of the rectangle and the drawString() method to annotate it.

The code for the lower rectangle is essentially the same as that for the first. The only important differ-
ence is that you specify the last argument to the constructor as false to get an acyclic gradient fill pat-
tern. This causes the colors of the ends of the gradient line to be the same as the end points. You could
have omitted the boolean parameter here, getting an acyclic gradient by default.

The applet shows how points off the gradient line have the same color as the normal projection onto the
line. This is always the case, regardless of the orientation of the gradient line. You could try changing the
definition of g1 for the upper rectangle to:

GradientPaint g1 = new GradientPaint(p1.x, p1.y – 20, Color.WHITE,

p2.x, p2.y + 20, Color.DARK_GRAY,

true); // Cyclic gradient

You’ll also need to draw the gradient line in its new orientation:

g2D.draw(rect1); // Fill the rectangle

//g2D.draw(new Line2D.Float(p1, p2));

g2D.draw(new Line2D.Float(p1.x, p1.y - 20, p2.x, p2.y + 20));

The annotation for the end points will also have to be moved:

g2D.drawString(“p1”,p1.x – 20,p1.y – 20);

g2D.drawString(“p2”,p2.x + 10,p2.y + 20);

971

Drawing in a Window

If you run the applet with these changes, you can see in Figure 19-21 how the gradient is tilted and how
the color of a point off the gradient line matches that of the point that is the orthogonal projection onto it.

Figure 19-21

Managing Shapes
When you create shapes in Sketcher, you’ll have no idea of the sequence of shape types that will occur.
This is determined totally by the person using the program to produce a sketch. You’ll therefore need to
be able to draw shapes and perform other operations on them without knowing what they are — and of
course polymorphism can help here.

You don’t want to use the shape classes defined in java.awt.geom directly as you’ll want to add your
own attributes such as color or line style for the shapes that can be drawn in Sketcher and store them as
part of the object. You could consider using the shape classes as base classes for your shapes, but you
couldn’t use the GeneralPath class in this scheme of things because, as I said earlier, the class has been
defined as final and therefore cannot be subclassed. You could consider defining an interface that all
your shape classes would implement. However, some methods have a common implementation in all
your shape classes, which would mean that you would need to repeat this code in every class.

Taking all of this into account, the easiest approach might be to define a common base class for the
Sketcher shape classes and include a member in each class to store a shape object of one kind or another.
You’ll then be able to include a polymorphic method to return a reference to a shape as type Shape for
use with the draw() method of a Graphics2D object.

You can start by defining a base class, Element, from which you’ll derive the classes defining specific
types of shapes for Sketcher. The Element class will have data members that are common to all types of
shapes, and you can put the methods that you want to be able to execute polymorphically in this class
too. All you need to do is make sure that each shape class that is derived from the Element class has its
own implementation of these methods.

972

Chapter 19

Figure 19-22 shows the initial members that you’ll define in the Element base class. The only field for
now is the color member to store the color of a shape. The getShape() and getBounds() methods
will be abstract here since the Element class is not intended to define a shape, but you’ll be able to
implement the getColor() method in this class. The other methods will be implemented by the sub-
classes of Element.

Figure 19-22

Initially, you’ll define the five classes shown Figure 19-22 that represent shapes, with the Element class as
a base. They provide objects that represent straight lines, rectangles, circles, freehand curves, and blocks of
text. These classes will all inherit the fields that you define for the Element class. As you can see from the
names of the Sketcher shape classes, they are all inner classes to the Element class. The Element class will
serve as the base class, as well as house the shape classes. This will avoid any possible confusion with
other classes that might have names such as Line or Circle, for example. Since there will be no Element
objects around, you’ll declare the shape classes as static members of the Element class.

You can now define the base class, Element. Note that this won’t be the final version, as you’ll be
adding more functionality in later chapters. Here’s the code that needs to go in Element.java in the
same directory as Sketcher.java:

import java.awt.Color;

import java.awt.Shape;

public abstract class Element {

public Element(Color color) {

this.color = color;

}

public Color getColor() {

return color;

}

Methods:
Color getColor()

 Shape getShape()
 Rectangle getBounds()

Data Members:
Color color;

Element Class
Element.Circle

Sketcher Shape Classes

Element.Curve

Element.Line

Element.Rectangle

973

Drawing in a Window

public abstract Shape getShape();

public abstract java.awt.Rectangle getBounds();

protected Color color; // Color of a shape

}

You have defined a constructor to initialize the color data member and the getColor() method to pro-
vide access to the current shape color. The other methods are abstract, so they must be implemented by
the subclasses.

Note that the return type for the abstract getBounds() method is fully qualified using the package
name. This is to prevent confusion with your own Rectangle class that you’ll be adding later on in this
chapter.

Storing Shapes in the Model
Even though you haven’t defined the classes for the shapes that Sketcher will create, you can implement
the mechanism for storing them in the SketchModel class. You’ll be storing all of them as objects of type
Element, so you can use a LinkedList<Element> collection class object to hold an arbitrary number of
Element objects. A linked list also has the advantage that deleting a shape is fast.

You can add a member to the SketchModel class that you defined earlier in the Sketcher program to
store elements:

import java.util.Observable;

import java.util.LinkedList;

class SketchModel extends Observable {

protected LinkedList<Element> elements = new LinkedList<Element>();

}

You’ll definitely want methods to add and delete Element objects from the linked list. It will also be
very useful if the SketchModel class implements the Iterable<Element> interface because that will
allow a collection-based for loop to be used to iterate over the Element objects stored in the model.
Here’s how the class looks to accommodate that:

import java.util.Observable;

import java.util.LinkedList;

import java.util.Iterator;

class SketchModel extends Observable implements Iterable<Element> {

public boolean remove(Element element) {

boolean removed = elements.remove(element);

if(removed) {

setChanged();

notifyObservers(element.getBounds());

}

return removed;

}

974

Chapter 19

public void add(Element element) {

elements.add(element);

setChanged();

notifyObservers(element.getBounds());

}

public Iterator<Element> iterator() {

return elements.iterator();

}

protected LinkedList<Element> elements = new LinkedList<Element>();

}

All three methods make use of methods that are defined for the LinkedList<Element> object elements,
so they are very simple. When you add or remove an element, the model is changed; therefore, you call the
setChanged() method inherited from Observable to record the change and the notifyObservers()
method to communicate this to any observers that have been registered with the model. You pass the
Rectangle object that is returned by getBounds() for the shape to notifyObservers(). Each of the
shape classes defined in the java.awt.geom package implements the getBounds() method to return the
rectangle that bounds the shape. You’ll be able to use this in the view to specify the area that needs to be
redrawn.

In the remove() method, it is possible that the element was not removed — because it was not there,
for example — so you test the boolean value that is returned by the remove() method for the
LinkedList<Element> object. You also return this value from the remove() method in the
SketchModel class, as the caller may want to know if an element was removed or not.

Next, even though you haven’t defined any of the specific shape classes that Sketcher will support, you
can still make provision for displaying them in the view class.

Drawing Shapes
You’ll draw the shapes in the paint() method for the SketchView class, so if you haven’t already done
so, remove the old code from the paint() method now. You can replace it with code for drawing
Sketcher shapes like this:

import javax.swing.JComponent;

import javax.swing.JComponent;

import java.util.Observer;

import java.util.Observable;

import java.awt.Graphics;

import java.awt.Graphics2D;

class SketchView extends JComponent implements Observer {

public SketchView(Sketcher theApp) {

this.theApp = theApp;

}

// Method called by Observable object when it changes

public void update(Observable o, Object rectangle) {

// Code to respond to changes in the model...

}

975

Drawing in a Window

public void paint(Graphics g) {

Graphics2D g2D = (Graphics2D)g; // Get a 2D device context

for(Element element : theApp.getModel()) { // Go through the list

element = (Element)elements.next(); // Get the next element

g2D.setPaint(element.getColor()); // Set the element color

g2D.draw(element.getShape()); // Draw its shape

}

}

// Method called by Observable object when it changes

public void update(Observable o, Object rectangle) {

// Code to respond to changes in the model...

}

private Sketcher theApp; // The application object

}

The getModel() method that you implemented in the Sketcher class returns a reference to the
SketchModel object, and because SketchModel implements the Iterable<> interface, you can use a
collection-based for loop to iterate over the Element objects it contains. For each element, you obtain its
color and pass that to the setPaint() method for the graphics context. You then pass the Shape refer-
ence that the getShape() method returns to the draw() method for g2D. This will draw the shape in
the color you passed previously to the setPaint() method. In this way you draw all the elements that
are stored in the model.

It’s time you put in place the mechanism for creating Sketcher shapes.

Drawing Using the Mouse
You’ve drawn shapes so far just using data internal to the program. In the Sketcher program you want to
be able to draw a shape using the mouse in the view and then store the finished shape in the model.
Ideally, the process should be as natural as possible, so you’ll implement a mechanism that allows you to
draw by pressing the left mouse button (more accurately, button 1) and dragging the cursor to draw the
selected type of shape. So for a line, the point where you depress the mouse button will be the start point
for the line, and the point where you release the button will be the end point. This process is illustrated
in Figure 19-23.

As the user drags the mouse with the button down, Sketcher will display the line as it looks at that
point. Thus, the line will be displayed dynamically all the time the mouse cursor is being dragged and
the left button remains pressed. This process is called rubber-banding.

You can use essentially the same process of pressing the mouse button and dragging the cursor for all four
of the shapes you saw when I discussed the Element class. Thus, two points will define each shape — the
cursor position where the mouse button is pressed and the cursor position where the mouse button is
released (plus the color for the shape, of course). This implies that the shape constructors will all have
three parameters, corresponding to the two points and the color. Let’s look at how you handle mouse
events to make this work.

976

Chapter 19

Figure 19-23

Handling Mouse Events
Because all the drawing operations for a sketch will be accomplished using the mouse, you must imple-
ment the process for creating elements within the methods that handle the mouse events. The mouse
events you’re interested in will originate in the SketchView object because the mouse events that relate
to drawing shapes will originate in the content pane for the application window, which is the view
object. You’ll make the view responsible for handling all its own events, which includes events that
occur in the drawing process as well as interactions with existing shapes.

Drawing a shape, such as a line, interactively will involve you in handling three different kinds of
mouse event. Let’s summarize what they are, and what you need to do when they occur:

Event Action

Left Button (Button 1) pressed Save the cursor position somewhere as the starting point for
the line. You’ll store this in a data member of the inner class
to SketchView that you’ll create to define listeners for
mouse events.

Mouse dragged Save the current cursor position somewhere as the end
point for the line. Erase any previously drawn temporary
line, and create a new temporary line from the starting point
that was saved initially. Draw the new temporary line.

Left Button (Button 1) released If there’s a reference to a temporary line stored, add it to the
sketch model and redraw it.

Left mouse button down

Left mouse button up

Drawing a Line Using the Mouse

Lines deleted and drawn
continuously while the

mouse is dragged with the
button down

When the mouse button is
released, the final line is left

977

Drawing in a Window

You’ll remember from the previous chapter that there are two mouse listener interfaces: MouseListener,
which has methods for handling events that occur when the mouse buttons are pressed or released, and
MouseMotionListener, which has methods for handling events that arise when the mouse is moved.
You’ll also recall that the MouseInputAdapter class implements both, and since you need to implement
methods from both interfaces, you’ll add an inner class to the SketchView class that extends the
MouseInputAdapter class.

Since there’s quite a lot of code involved in this, you’ll first define the bare bones of the class to handle
mouse events and then continue to add the detail incrementally until it does what you want.

Try It Out Implementing a Mouse Listener
Add the following class outline as an inner class to SketchView:

import javax.swing.JComponent;

import java.util.Observer;

import java.util.Observable;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Point;

import java.awt.event.MouseEvent;

import javax.swing.event.MouseInputAdapter;

class SketchView extends JComponent implements Observer {

// Rest of the class as before...

class MouseHandler extends MouseInputAdapter {

public void mousePressed(MouseEvent e) {

// Code to handle mouse button press...

}

public void mouseDragged(MouseEvent e) {

// Code to handle the mouse being dragged...

}

public void mouseReleased(MouseEvent e) {

// Code to handle the mouse button being release...

}

private Point start; // Stores cursor position on press

private Point last; // Stores cursor position on drag

private Element tempElement; // Stores a temporary element

}

}

You have implemented the three methods that you’ll need to create an element. The mousePressed()
method will store the position of the cursor in the start member of the MouseHandler class, so this
point will be available to the mouseDragged() method that will be called repeatedly when you drag the
mouse cursor with the button pressed. The mouseDragged() method will create an element using the
current cursor position and the position saved in start and store a reference to it in the tempElement
member of the class. The last member of the MouseHandler class will be used to store the cursor posi-
tion when mouseDragged() is called. Both start and last are of type Point since this is the type that

978

Chapter 19

you’ll get for the cursor position, but remember that Point is a subclass of Point2D, so you can always
cast a Point reference to Point2D when necessary. The process ends when you release the mouse but-
ton, causing the mouseReleased() method to be called.

An object of type MouseHandler will be the listener for mouse events for the view object, so you should
put this in place in the SketchView constructor. Add the following code at the end of the existing code:

public SketchView(Sketcher theApp) {

this.theApp = theApp;

MouseHandler handler = new MouseHandler(); // create the mouse listener

addMouseListener(handler); // Listen for button events

addMouseMotionListener(handler); // Listen for motion events

}

You call the addMouseListener() and addMotionListener() methods and pass the same listener
object as the argument to both because the listener class deals with both types of event. Both these
methods are inherited in the SketchView class from the Component class, which also defines an
addMouseWheelListener() method for when you want to handle mouse wheel events.

Let’s go for the detail of the MouseHandler class now, starting with the mousePressed() method.

Handling Mouse Button Press Events
The first thing you’ll need to do is find out which button is pressed. It is generally a good idea to make
mouse button operations specific to a particular button. That way you avoid potential confusion when
you extend the code to support more functionality. This is very easy to do. The getButton() method
for the MouseEvent object that is passed to a handler method returns a value of type int that indicates
which of the three supported buttons changed state. It can return one of four constant values that are
defined in the MouseEvent class, BUTTON1, BUTTON2, BUTTON3, or NOBUTTON, the last constant being the
return value when no button has changed state in the current mouse event. On a two-button mouse or a
wheel mouse, BUTTON1 for a right-handed user corresponds to the left button and BUTTON2 corresponds
to the right button. Of course, the buttons associated with these constants are reversed if you have a left-
handed mouse setup. BUTTON3 corresponds to the middle button when there is one. You can detect
when button 1 is pressed by using the following code in the mousePressed() method:

public void mousePressed(MouseEvent e) {

if(e.getButton() == MouseEvent.BUTTON1)

// Code to handle button 1 press...

}

The MouseEvent object that is passed as the argument to the mousePressed() method records the cur-
rent cursor position, and you can get a Point reference to it by calling the getPoint() method for the
object. For example:

public void mousePressed(MouseEvent e) {

start = e.getPoint(); // Save the cursor position in start

if(e.getButton() == MouseEvent.BUTTON1) {

// Rest of the code to handle button 1 press...

}

}

979

Drawing in a Window

This saves the current cursor position in the start field of the MouseHandler object. You save it before
the if statement because you are likely to want the current cursor position available whichever button
was pressed.

As well as saving the cursor position, your implementation of the mousePressed() method must set
things up to enable the mouseDragged() method to create an element and display it. One thing the
mouseDragged() method needs to know is whether button 1 is down or not, because you only want to
draw a shape while button 1 is down. After all, you may want to use dragging with button 2 down for
some other function. The getButton() method won’t tell you which button is pressed in this case
because it records which button changed state in the event, not which button is down, and the button
state won’t change as a consequence of a mouse dragged event. You can store the state of button 1 when
the mousePressed() method is called, though. Then it will be available to the mouseDragged()
method. First, you need to add a suitable field to the MouseHandler class:

private boolean button1Down = false; // Flag for button 1 state

Now you can store the state of button 1 when the mousePressed() method executes:

public void mousePressed(MouseEvent e) {

start = e.getPoint(); // Save the cursor position in start

if(button1Down = (e.getButton() == MouseEvent.BUTTON1)) {

// Rest of the code to handle button 1 press...

}

}

The mouseDragged() method is going to be called very frequently, and to implement rubber-banding of
the element each time, the redrawing of the element needs to be very fast. You don’t want to have the
whole view redrawn each time, as this will carry a lot of overhead. You need a different approach.

Using XOR Mode
One way to do this is to draw in XOR mode. You set XOR mode by calling the setXORMode() method
for a graphics context and passing a color to it — usually the background color. In this mode the pixels
are not written directly to the screen. The color in which you are drawing is combined with the color of
the pixel currently displayed together with a third color that you specify, by exclusive ORing them
together, and the resultant pixel color is written to the screen. The third color is usually set to be the
background color, so the color of the pixel that is written is the result of the following operation:

resultant_Color = foreground_color^background_color^current_color

If you remember the discussion of the exclusive OR operation, back in Chapter 2, you’ll realize that the
effect of this is to flip between the drawing color and the background color. The first time you draw a
shape, the result will be in the color you are drawing with, except for overlaps with other shapes, since
they won’t be in the background color. When you draw the same shape a second time, the result will be
the background color so the shape will disappear. Drawing a third time will make it reappear.

980

Chapter 19

Based on the way XOR mode works, you can now implement the mousePressed() method for the
MouseHander class like this:

public void mousePressed(MouseEvent e) {

start = e.getPoint(); // Save the cursor position in start

if(button1Down = (e.getButton() == MouseEvent.BUTTON1)) {

g2D = (Graphics2D)getGraphics(); // Get graphics context

g2D.setXORMode(getBackground()); // Set XOR mode

g2D.setPaint(theApp.getWindow().getElementColor()); // Set color

}

}

Note that the getGraphics() method being called in this method is for the view object; the MouseHandler
class has no such method because the method is defined in the Component class, which is not a base class for
the MouseHandler class. If button 1 was pressed, you obtain a graphics context for the view and store it in
g2D, so you must add g2D as a field in the MouseHandler class:

private Graphics2D g2D = null; // Temporary graphics context

You use the g2D object to set XOR mode, because you’ll use this mode in the mouseDragged() method
to erase a previously drawn shape without reconstructing the whole sketch. The last thing that is done
here is to retrieve the current drawing color, which is recorded in the SketchFrame object. You’ll
remember that this is set when you select a menu item or a toolbar button. You use theApp object stored
in the view to get the SketchFrame object, and then call its getElementColor() member to retrieve the
color in which an element should be drawn. This method doesn’t exist in SketchFrame yet, but it’s not
difficult to implement. Add the following method to the SketchFrame class definition:

public Color getElementColor() {

return elementColor;

}

With the button press code in place, you can have a go at implementing mouseDragged().

Handling Mouse Dragging Events
You obtain the cursor position in the mouseDragged() method in the same way as you did in the
mousePressed() method, which is by calling getPoint() for the event object that is passed as the
argument, so you could write:

last = e.getPoint(); // Get cursor position

But you want to handle drag events only for button 1, so you’ll make this conditional upon the
button1Down field having the value true. When mouseDragged() is called for the first time, you won’t
have created an element, so you can just create one from the points stored in start and last and then
draw it using the graphics context saved by the mousePressed() method. The mouseDragged()
method will be called lots of times while you drag the mouse though, and for every occasion other than
the first, you must take care to redraw the old element before creating the new one so that you effec-
tively erase it. Because the graphics context is in XOR mode, drawing the element a second time will
draw it in the background color, so it will disappear. Here’s how you can do all that:

981

Drawing in a Window

public void mouseDragged(MouseEvent e) {

last = e.getPoint(); // Save cursor position

if(button1Down) {

if(tempElement == null) { // Is there an element?

tempElement = createElement(start, last); // No, so create one

} else {

g2D.draw(tempElement.getShape()); // Yes – draw to erase it

tempElement.modify(start, last); // Now modify it

}

g2D.draw(tempElement.getShape()); // and draw it

}

}

If button 1 is pressed, button1Down will be true so you are interested. You first check for an existing
element by comparing the reference in tempElement with null. If there isn’t one, you create an element
of the current type by calling a method, createElement(), that you’ll add to the SketchView class in a
moment. You save a reference to the element that is created in the tempElement member of the listener
object.

If tempElement is not null then an element already exists, so you modify the existing element to incor-
porate the latest cursor position by calling the method modify() for the element object. You will need to
add an implementation of this method for each element type. Finally, you draw the latest version of the
element that is referenced by tempElement. Since you expect to call the modify() method for an ele-
ment polymorphically, you should add it to the base class, Element. It will be abstract in the Element
class, so add the following declaration to the Element class definition:

public abstract void modify(Point start, Point last);

Since you reference the Point class here, you should add an import statement for it in the
Element.java file:

import java.awt.Point;

You can implement the createElement() method as a private member of the MouseHandler class
because it’s not needed anywhere else. The parameters for the method are just the two points that will
be used to define each element. Here’s the code:

private Element createElement(Point start, Point end) {

switch(theApp.getWindow().getElementType()) {

case LINE:

return new Element.Line(start, end,

theApp.getWindow().getElementColor());

case RECTANGLE:

return new Element.Rectangle(start, end,

theApp.getWindow().getElementColor());

case CIRCLE:

return new Element.Circle(start, end,

theApp.getWindow().getElementColor());

case CURVE:

return new Element.Curve(start, end,

982

Chapter 19

theApp.getWindow().getElementColor());

default:

assert false; // We should never get to here

}

return null;

}

Since you refer to the constants identifying element types here, you must import the static members of
the SketcherConstants class that you defined in the Constants package into the SketchView.java
source file. Add the following import statement:

import static Constants.SketcherConstants.*;

The createElement() method returns a reference to a shape as type Element. You determine the type
of shape to create by retrieving the element type ID stored in the SketchFrame class by the menu item
listeners that you put together in the previous chapter. The getElementType() method isn’t there in
the SketchFrame class yet, but you can add it now as follows:

public int getElementType() {

return elementType;

}

The switch statement in the createElement() method selects the constructor to be called, and as you
see, they are all essentially of the same form. If the code falls through the switch with an ID that you
haven’t provided for, you return null. Of course, none of these shape class constructors exists in the
Sketcher program yet, so if you want to try compiling the code you have so far, you will need to com-
ment out each of the return statements. The form of the constructor calls implies that all the shape
classes are inner classes to the Element class, which is what was decided earlier. You’ll be implementing
these very soon, but first let’s add the next piece of mouse event handling that’s required — handling
button release events.

Handling Button Release Events
When the mouse button is released, you will have created an element. In this case all you need to do is to
add the element that is referenced by the tempElement member of the MouseHandler class to the
SketchModel object that represents the sketch. One thing you need to consider though — someone
might click the mouse button without dragging it. In this case there won’t be an element to store, so
you’ll just clean up the data members of the MouseHandler object:

public void mouseReleased(MouseEvent e) {

if(button1Down = (e.getButton()==MouseEvent.BUTTON1)) {

button1Down = false; // Reset the button 1 flag

if(tempElement != null) { // If there is an element...

theApp.getModel().add(tempElement); // ...add it to the model...

tempElement = null; // ...and reset the field

}

if(g2D != null) { // If there’s a graphics context

g2D.dispose(); // ...release the resource...

g2D = null; // ...and reset field to null

}

983

Drawing in a Window

start = last = null; // Remove the points

}

}

When button 1 for the mouse is released it will change state, so you can use the getButton() method
here to verify that this occurred. Of course, once button 1 is released, you should reset the flag
button1Down. If there is a reference stored in tempElement, you add it to the model by calling the
add() method that you defined for the SketchModel class and set tempElement back to null. It is
most important that you set tempElement back to null here. Failing to do that would result in the old
element reference being added to the model when you click the mouse button.

When you add the new element to the model, the view will be notified as an observer, so the update()
method for the view object will be called. You can implement the update() method in the SketchView
class like this:

public void update(Observable o, Object rectangle) {

if(rectangle != null & rectangle instanceof Rectangle) {

repaint((Rectangle)rectangle);

} else {

repaint();

}

}

If the reference passed to update() is not null, then you should have a reference to a Rectangle object
that was provided by the notifyObservers() method call in the add() method for the SketchModel
object. To make doubly sure, you also verify that the argument is indeed of type Rectangle before you
attempt to cast it to that type. This rectangle is the area occupied by the new element, so when you pass
this to the repaint() method for the view object, just this area will be added to the area to be redrawn
on the next call of the paint() method. If rectangle is null or not of type Rectangle, you call the
version of repaint() that has no parameter to redraw the whole view. Of course, you’ll need to import
the Rectangle class name into the source file for the SketchView class:

import java.awt.Rectangle;

Another important operation that the mouseReleased() method carries out is to call the dispose()
method for the g2D object. Every graphics context makes use of finite system resources. If you use a lot
of graphics context objects and you don’t release the resources they use, your program will consume
more and more resources. Under some versions of MS Windows, for example, the amount of such
resources that you can have is limited, so you may eventually run out, your computer will stop working,
and you’ll have to reboot. When you call dispose() for a graphics context object, it can no longer be
used, so you set g2D back to null to be on the safe side.

A reminder about a potential error in using adapter classes: Be sure to spell the
method names correctly. If you don’t, your method won’t get called, but the base
class member will. The base class method does nothing so your code won’t work as
you expect. There will be no warning or error messages about this because your code
will be perfectly legal — though quite wrong. You will simply have added an addi-
tional and quite useless method to those defined in the adapter class.

984

Chapter 19

You have implemented all three methods that you need to draw shapes. You could try it out if only you
had a shape to draw, but before I get into that I’ll digress briefly to introduce you to another class that
you can use to get information about where the mouse cursor is.

Locating the Mouse Cursor Using
MouseInfo Class Methods

The java.awt.MouseInfo class provides a way for you to get information about the mouse at any time.
The MouseInfo class defines a static method, getPointerInfo(), that returns a reference to an object
of type java.awt.PointerInfo, which encapsulates information about where the mouse cursor was
when the method was called. To find the location of the mouse cursor from a PointerInfo object you
call its getLocation() method. This method returns a reference to a Point object that identifies the
mouse cursor location. Thus you can find out where the mouse cursor is at any time like this:

Point position = MouseInfo.getPointerInfo().getLocation();

After executing this code fragment, the position object will contain the coordinates of the mouse cur-
sor at the time you call the getPointerInfo() method. Note that the PointerInfo object that this
method returns does not get updated when the mouse cursor is moved, so there’s no point in saving
each. You must always call the getPointerInfo() method each time you want to find out where the
cursor is.

Where you have multiple display devices attached, you can find out which display the mouse cursor is
on by calling the getDevice() method for the PointerInfo object. This returns a reference to a
java.awt.GraphicsDevice object that encapsulates the display that shows the cursor.

The MouseInfo class also defines a static method getNumberOfButtons(), which returns a value of
type int specifying the number of buttons on the mouse. This is useful when you want to make your
code adapt automatically to the number of buttons on the mouse when the code executes. You can make
your program take advantage of the second or third buttons on the mouse and also adapt to use alterna-
tive GUI mechanisms when they are not available — by using a mouse button combined with keyboard
key presses, for example.

Most of the time you will want to find the cursor location from within a mouse event-handling method.
In these cases you’ll find it is easiest to obtain the mouse cursor location from the MouseEvent object
that is passed to the method handling the event. However, when you don’t have a MouseEvent object
available, you still have the MouseInfo class methods to fall back on.

Now, I’ll return to the subject of how you can define shapes.

Defining Your Own Shape Classes
All the classes that define shapes in Sketcher will be static nested classes of the Element class. As I said ear-
lier, as well as being a convenient way to keep the shape class definitions together, this will also avoid pos-
sible conflicts with the names of standard classes such as the Rectangle class in the java.awt package.

You can start with the simplest type of Sketcher shape — a class representing a line.

985

Drawing in a Window

Defining Lines
A line will be defined by two points and its color. You can define the Line class as a nested class in the
base class Element as follows:

import java.awt.Color;

import java.awt.Shape;

import java.awt.Point;

import java.awt.geom.Line;

public abstract class Element {

// Code defining the base class...

// Nested class defining a line

public static class Line extends Element {

public Line(Point start, Point end, Color color) {

super(color);

line = new Line2D.Double(start, end);

}

// Method to return the line as a Shape reference

public Shape getShape() {

return line;

}

// Obtain the rectangle bounding the line

public java.awt.Rectangle getBounds() {

return line.getBounds();

}

// Change the end point for the line

public void modify(Point start, Point last) {

line.x2 = last.x;

line.y2 = last.y;

}

private Line2D.Double line;

}

}

You have to specify the Line class as static to avoid a dependency on an Element object being available.
The Element class is abstract, so there’s no possibility of creating objects of this type. The Line construc-
tor has three parameters, the two end points of the line as type Point and the color. You could specify
the Point parameters to the constructor as type Point2D because Point2D is a superclass of Point, but
since all the points you’ll be working with originate from mouse events as type Point, you might as
well stick to that type for the parameters. After passing the color to the base class constructor, you create
the line as a Line2D.Double object. Because this class implements the Shape interface, you can return it
as type Shape from the getShape() method.

The getBounds() method couldn’t be simpler. You just return the Rectangle object produced by the
getBounds() method for the line object. However, note how the return type is fully qualified. This is
because you’ll be adding a Rectangle class as a nested class to the Element class. When you do, the
compiler will interpret the type Rectangle within the code for the Element class as your rectangle
class, and not the one defined in the java.awt package. You can always use a fully qualified class name
when conflicts like this arise.

986

Chapter 19

Try It Out Drawing Lines
If you have saved the Element class definition as Element.java in the same directory as the rest of the
Sketcher classes, all you need to do is make sure all the constructor calls other than Element.Line are
commented out in the createElement() member of the MouseHandler class that is an inner class to
SketchView. The code for the method should look like this:

private Element createElement(Point start, Point end) {

switch(theApp.getWindow().getElementType()) {

case LINE:

return new Element.Line(start, end,

theApp.getWindow().getElementColor());

case RECTANGLE:

// return new Element.Rectangle(start, end,

// theApp.getWindow().getElementColor());

case CIRCLE:

// return new Element.Circle(start, end,

// theApp.getWindow().getElementColor());

case CURVE:

// return new Element.Curve(start, end,

// theApp.getWindow().getElementColor());

default:

assert false; // We should never get to here

}

return null;

}

If you compile and run Sketcher, you should be able to draw a figure like that shown in Figure 19-24.

Figure 19-24

987

Drawing in a Window

You can only draw lines at this point though. Trying to draw anything else will result in an assertion
because the code will fall through the cases in the switch in the createElement() method until you
hit the default case.

How It Works
As you drag the mouse, Element.Line objects are being repeatedly created and drawn to produce the
rubber-banding effect. Each line is from the point where you pressed the mouse button to the current
cursor position. Try drawing lines in different colors. It should all work. If it doesn’t, maybe you forgot
to remove the getContentPane().setBackground(color) call that you put temporarily in the
actionPerformed() method in the ColorAction inner class to SketchFrame.

If you are typing in the code as you go (and I hope that you are!), you may have made a few mistakes, as
there’s been such a lot of code added to Sketcher. In this case don’t look back at the code in the book first
to find out why. Before you do that, try using the Java debugger that comes with the JDK, or even just
implementing the methods that might be the problem with println() calls of your own so you can
trace what’s going on. It’s good practice for when you are writing your own code.

Defining Rectangles
The interactive mechanism for drawing a rectangle is similar to that for a line. When you are drawing a
rectangle, the point where the mouse is pressed will define one corner of the rectangle, and as you drag
the mouse, the cursor position will define an opposite corner, as illustrated in Figure 19-25.

Figure 19-25

Releasing the mouse button will establish the final rectangle shape to be stored in the model. As you can
see, the cursor position when you press the mouse button can be any corner of the rectangle. This is fine
from a usability standpoint, but our code needs to take account of the fact that a Rectangle2D object is
always defined by the top-left corner, plus a width and a height.

Left Mouse Button
Released

Left Mouse Button
Pressed

Mouse
Dragged

(x1,y1)

(x2,y2)

Left Mouse Button
Pressed

Left Mouse Button
Released

Mouse
Dragged

(x2,y2)

(x1,y1)

Left Mouse Button
Pressed

Left Mouse Button
Released

(x2,y2)

(x1,y1)

Left Mouse Button
Released

Left Mouse Button
Pressed

(x1,y1)

(x2,y2)

988

Chapter 19

Figure 19-25 shows the four possible orientations of the mouse path as it is dragged in relation to the
rectangle drawn. The top-left corner will have coordinates that are the minimum x and the minimum y
from the points at the ends of the diagonal. The width will be the absolute value of the difference
between the x coordinates for the two ends, and the height will be the absolute value of the difference
between the y coordinates. From that you can define the Rectangle class for Sketcher.

Try It Out The Element.Rectangle Class
Here’s the definition of the class for a rectangle object:

import java.awt.Color;

import java.awt.Shape;

import java.awt.Point;

import java.awt.geom.Line2D;

import java.awt.geom.Rectangle2D;

class Element {

// Code for the base class definition...

// Nested class defining a line...

// Nested class defining a rectangle

public static class Rectangle extends Element {

public Rectangle(Point start, Point end, Color color) {

super(color);

rectangle = new Rectangle2D.Double(

Math.min(start.x, end.x), Math.min(start.y, end.y), // Top-left corner

Math.abs(start.x – end.x), Math.abs(start.y – end.y)); // Width & height

}

// Method to return the rectangle as a Shape reference

public Shape getShape() {

return rectangle;

}

// Method to return the rectangle enclosing this rectangle

public java.awt.Rectangle getBounds() {

return rectangle.getBounds();

}

// Method to redefine the rectangle

public void modify(Point start, Point last) {

rectangle.x = Math.min(start.x, last.x);

rectangle.y = Math.min(start.y, last.y);

rectangle.width = Math.abs(start.x – last.x);

rectangle.height = Math.abs(start.y – last.y);

}

private Rectangle2D.Double rectangle;

}

}

989

Drawing in a Window

If you uncomment the line in the createElement() method that creates rectangles and recompile the
Sketcher program, you will be ready to draw rectangles as well as lines. You need to recompile only
Element.java and SketchView.java. The rest of Sketcher is still the same. If you run it again, you
should be able to draw rectangles and lines — in various colors, too. A typical high-quality artistic sketch
that you are now able to create is shown in Figure 19-26.

Figure 19-26

How It Works
The code that enables rectangles to be drawn works in essentially the same way as for lines. You can
drag the mouse in any direction to create a rectangle. The constructor sorts out the correct coordinates
for the top-left corner. This is because the rectangle is being defined from its diagonal, so the rectangle
is always defined from the point where the mouse button was pressed to the current cursor position.
Because its top-left corner always defines the position of a Rectangle2D object, you can no longer tell
from this object which diagonal was used to define it.

Defining Circles
The most natural mechanism for drawing a circle is to make the point where the mouse button is
pressed the center, and the point where the mouse button is released the end of the radius — that is,
on the circumference. You’ll need to do a little calculation to make it work this way.

Figure 19-27 illustrates the drawing mechanism for a circle. Circles will be drawn dynamically as the
mouse is dragged, with the cursor position being on the circumference of the circle. You’ll have the cen-
ter of the circle and a point on the circumference available in the methods that handle the mouse events,
but the Ellipse2D class that you’ll use to define a circle will expect it to be defined by the coordinates of
the point on the top-right corner of the rectangle that encloses the circle plus its height and width. This
means you have to calculate the position, height, and width of the rectangle from the center and radius
of the circle.

990

Chapter 19

Figure 19-27

Pythagoras’ theorem provides the formula that you might use to calculate the radius of the circle from
the point at the center and the point on the circumference, and this is shown in Figure 19-27. The for-
mula may look a little complicated but Java makes this easy. Remember the distance() method
defined in Point2D class? That does exactly what is shown here, so you’ll be able to use that to obtain
the radius directly from two points. When you have the radius, you can then calculate the coordinates of
the top-left point by subtracting the radius value from the coordinates of the center. The height and
width of the enclosing rectangle for the circle will be just twice the radius.

Try It Out Adding Circles
Here’s how this is applied in the definition of the Element.Circle class:

import java.awt.Color;

import java.awt.Shape;

import java.awt.Point;

import java.awt.geom.Line2D;

import java.awt.geom.Rectangle2D;

import java.awt.geom.Ellipse2D;

class Element {

// Code defining the base class...

// Nested class defining a line...

// Nested class defining a rectangle...

// Nested class defining a circle

public static class Circle extends Element {

public Circle(Point center, Point circum, Color color) {

super(color);

Left mouse button
down

defines the
center
(x1,y1)

(x1– r , y 1– r)

Left mouse button
released defines
the end of the

radius
(x2,y2)

r 2 = (x2–x 1)2 + (y2–y 1)2

height = 2r

width = 2r

Mouse dragged

radius r

991

Drawing in a Window

// Radius is distance from center to circumference

double radius = center.distance(circum);

circle = new Ellipse2D.Double(center.x – radius, center.y – radius,

2.*radius, 2.*radius);

}

// Return the circle as a Shape reference

public Shape getShape() {

return circle;

}

// Return the rectangle bounding this circle

public java.awt.Rectangle getBounds() {

return circle.getBounds();

}

// Recreate this circle

public void modify(Point center, Point circum) {

double radius = center.distance(circum);

circle.x = center.x – (int)radius;

circle.y = center.y – (int)radius;

circle.width = circle.height = 2*radius;

}

private Ellipse2D.Double circle;

}

}

If you amend the createElement() method in the MouseHandler class by uncommenting the line that
creates Element.Circle objects and recompile the Sketcher program, you’ll be ready to draw circles.
You are now equipped to produce artwork of the astonishing sophistication shown in Figure 19-28.

Figure 19-28

992

Chapter 19

How It Works
The circle is generated with the button down point as the center and the cursor position while dragging
as a point on the circumference. The distance() method defined in the Point2D class calculates the
radius, and then this value is used to calculate the coordinates of the top-left corner of the enclosing rect-
angle. The width and height of the rectangle enclosing the circle are just twice the radius value, so the
circle is stored as an Ellipse2D.Double object with a width and height as twice the radius.

Drawing Curves
Curves are a bit trickier to deal with than the other shapes. You want to be able to create a freehand
curve by dragging the mouse, so that as the cursor moves the curve extends. This needs to be reflected in
how you define the Element.Curve class. Let’s first consider how the process of drawing a curve is
going to work and define the Element.Curve class based on that.

The QuadCurve2D and CubicCurve2D classes are not very convenient or easy to use here. A curve is
going to be entered freehand, and the data that you get will be a series of points that are relatively close
together, but you don’t know ahead of time how many there are going to be; as long as the mouse is
being dragged you’ll collect more points. This gives us a hint as to the approach you could adopt for cre-
ating a curve to keep it as simple as possible. Figure 19-29 illustrates one approach you could take.

Figure 19-29

Since successive points that define the freehand curve will be quite close together, you could create a
visual representation of the curve by joining the points to forms a series of connected line segments.
Since the lengths of the line segments will be short, it should look like a reasonable curve.

Left mouse button
release ends the

curve drawing
process

For each of the following
MOUSE_DRAGGED

events, we add the point
to the curve

Left mouse button
press defines the

first point

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

(x6,y6)

(x7,y7)

At the first MOUSE_DRAGGED
event, we create a new curve

993

Drawing in a Window

This looks like a job for a GeneralPath object. A GeneralPath object can handle any number of seg-
ments, and you can add to it. If you construct an initial path as soon as you have two points — which
will be when you process the first MOUSE_DRAGGED event — you can extend the curve by calling the
modify() method to add another segment using the point that you get for each of the subsequent
MOUSE_DRAGGED events.

Try It Out The Element.Curve Class
The approach described in the previous section means that the outline of the Curve class is going to be:

import java.awt.Color;

import java.awt.Shape;

import java.awt.Point;

import java.awt.geom.Line2D;

import java.awt.geom.Rectangle2D;

import java.awt.geom.Ellipse2D;

import java.awt.geom.GeneralPath;

class Element {

// Code defining the base class...

// Nested class defining a line...

// Nested class defining a rectangle...

// Nested class defining a circle...

// Nested class defining a curve

public static class Curve extends Element {

public Curve(Point start, Point next, Color color) {

super(color);

curve = new GeneralPath();

curve.moveTo(start.x, start.y); // Set current position as start

curve.lineTo(next.x, next.y); // Add segment line to next

}

// Add another segment

public void modify(Point start, Point next) {

curve.lineTo(next.x, next.y); // Add segment to next point

}

// Return a reference to the curve path as type Shape

public Shape getShape() {

return curve;

}

// Return the rectangle bounding the path

public java.awt.Rectangle getBounds() {

return curve.getBounds();

}

private GeneralPath curve;

}

}

994

Chapter 19

The Curve class constructor creates a GeneralPath object and adds a single line segment to it by mov-
ing the current point for the path to start by calling moveTo() and then calling the lineTo() method
for the GeneralPath object with next as the argument. Additional segments are added by the modify()
method. This calls lineTo() for the GeneralPath member of the class with the new point, next, as the
argument. This will add a line from the end of the last segment that was added to the new point.

Try It Out Drawing Curves
Of course, you’ll need to uncomment the line creating an Element.Curve object in the createElement()
method in the MouseHandler inner class to SketchFrame. Then you’re ready to roll again. If you recom-
pile Sketcher you’ll be able to give freehand curves a whirl, and produce elegant sketches such as that in
Figure 19-30.

Figure 19-30

How It Works
Drawing curves works in essentially the same way as drawing the other elements. The use of XOR mode
is superfluous with drawing a curve since you only extend it, but it would be quite a bit of work to treat
it as a special case. This would be justified only if drawing curves were too slow and produced excessive
flicker.

You may be wondering if you can change from XOR mode back to the normal mode of drawing in a
graphics context. Certainly you can: just call the setPaintMode() method for the graphics context
object to get back to the normal drawing mode.

There’s some fabricated text in the last screenshot — if you can recognize it as such. In the next chapter
you’ll add a rather more sophisticated facility for adding text to a sketch. Don’t draw too many master-
pieces yet. You won’t be able to preserve them for the nation and posterity by saving them in a file until
Chapter 21.

995

Drawing in a Window

Summary
In this chapter you have learned how to draw on components and how you can use mouse listeners to
implement a drawing interface. The important points I have covered in this chapter are:

❑ A Graphics2D component represents the drawing surface of the component.

❑ You draw on a component by calling methods for its Graphics2D object.

❑ The user coordinate system for drawing on a component has the origin in the top-left corner of
the component by default, with the positive x-axis from left to right, and the positive y-axis from
top to bottom. This is automatically mapped to the device coordinate system, which is in the
same orientation.

❑ You normally draw on a component by implementing its paint() method. The paint()
method is passed a Graphics2D object that is the graphics context for the component but as
type Graphics. You must cast the Graphics object to type Graphics2D to be able to access the
Graphics2D class methods. The paint() method is called whenever the component needs to
be redrawn.

❑ You can’t create a Graphics2D object. If you want to draw on a component outside of the
paint() method, you can obtain a Graphics2D object for the component by calling its
getGraphics() method.

❑ There is more than one drawing mode that you can use. The default mode is paint mode, where
drawing overwrites the background pixels with pixels of the current color. Another mode is
XOR mode, where the current color is combined with the background color. This is typically
used to alternate between the current color and a color passed to the setXORMode() method.

❑ The Graphics2D class defines methods for drawing outline shapes as well as filled shapes.

❑ The java.awt.geom package defines classes that represent 2D shapes.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Add code to the Sketcher program to support drawing an ellipse.

2. Modify the Sketcher program to include a button for switching fill mode on and off.

3. Extend the classes defining rectangles, circles, and ellipses to support filled shapes.

4. Extend the curve class to support filled shapes.

5. (Harder — for curve enthusiasts!) Implement an applet to display a curve as multiple
CubicCurve2D objects from points on the curve entered by clicking the mouse. The applet
should have two buttons — one to clear the window and allow points on the curve to be entered
and the other to display the curve. Devise your own scheme for default control points.

6. (Also harder!) Modify the previous example to ensure that the curve is continuous — this
implies that the control points on either side of an interior point, and the interior point itself,
should be on a straight line. Allow control points to be dragged with the mouse, but still main-
taining the continuity of the curve.

996

Chapter 19

20
Extending the GUI

In this chapter you’ll investigate how you can improve the graphical user interface (GUI) for
Sketcher. After adding a status bar, you’ll be creating dialogs and exploring how you can use them
to communicate with the user and manage input. Another GUI capability you’ll be looking at is
context menus, which are pop-up menus that vary depending on the context in which they are dis-
played. You’ll be using context menus to enhance the functionality of the Sketcher application. All
of this will give you a lot more practice in implementing event listeners, and much more besides.

In this chapter you’ll learn:

❑ How to create a status bar

❑ How to create a dialog

❑ What a modal dialog is and how it differs from a non-modal dialog

❑ How to create a message box dialog

❑ How you can use components in a dialog to receive input

❑ What a pop-up menu is

❑ How you can apply and use transformations to the user coordinate system when drawing
on a component

❑ What context menus are and how you can implement them

Creating a Status Bar
One limitation of the Sketcher program as it stands is that you have no direct feedback on what
current element type and color have been selected. As a gentle start to this chapter, let’s fix that
now. A window status bar at the bottom of an application window is a common and very conve-
nient way of displaying the status of various application parameters, each in its own pane.

You can make up your own class, StatusBar, for example, that will define a status bar. Ideally
you would design a class for a generic status bar and customize it for Sketcher, but as space is

limited you’ll take the simple approach of designing a class that is specific to Sketcher. The JPanel class
would be a good base for the StatusBar class since it represents a panel, and you can add objects repre-
senting status bar panes to it. You can use the JLabel class as a base for defining status bar panes and
add sunken borders to them for a distinct appearance.

Let’s start with a status bar at the bottom of the Sketcher application that contains two panes to show the
current element type and color. Then the user will know exactly what they are about to draw. You can
start by defining the StatusBar class that will represent the status bar in the application window, and
you’ll define the StatusPane class that defines a region within the status bar as an inner class to
StatusBar.

Try It Out Defining a Status Bar Class
Here’s an initial stab at the definition for the StatusBar class:

// Class defining a status bar

import javax.swing.JPanel;

import javax.swing.JLabel;

import javax.swing.BorderFactory;

import javax.swing.border.BevelBorder;

import java.awt.Color;

import java.awt.Font;

import java.awt.FlowLayout;

import java.awt.Dimension;

import static Constants.SketcherConstants.*;

class StatusBar extends JPanel {

// Constructor

public StatusBar() {

setLayout(new FlowLayout(FlowLayout.LEFT, 10, 3));

setBackground(Color.LIGHT_GRAY);

setBorder(BorderFactory.createLineBorder(Color.DARK_GRAY));

setColorPane(DEFAULT_ELEMENT_COLOR);

setTypePane(DEFAULT_ELEMENT_TYPE);

add(colorPane); // Add color pane to status bar

add(typePane); // Add type pane to status bar

}

// Set color pane label

public void setColorPane(Color color) {

// Code to set the color pane text...

}

// Set type pane label

public void setTypePane (int elementType) {

// Code to set the type pane text....

}

// Panes in the status bar

private StatusPane colorPane = new StatusPane(“BLUE”);

private StatusPane typePane = new StatusPane(“LINE”);

// Class defining a status bar pane

998

Chapter 20

class StatusPane extends JLabel {

public StatusPane(String text) {

setBackground(Color.LIGHT_GRAY); // Set background color

setForeground(Color.BLACK);

setFont(paneFont); // Set the fixed font

setHorizontalAlignment(CENTER); // Center the pane text

setBorder(BorderFactory.createBevelBorder(BevelBorder.LOWERED));

setPreferredSize(new Dimension(100,20));

setText(text); // Set the text in the pane

}

// Font for pane text

private Font paneFont = new Font(“Serif”, Font.PLAIN, 10);

}

}

How It Works
Since the StatusBar class imports the names of static members of the SketcherConstants class that
you defined in the Constants package, all the constants that represent possible element types and col-
ors are available. This outline version of StatusBar has two fields of type StatusPane, which will be
the panes showing the current color and element type. The initial information to be displayed by a
StatusPane object is passed to the constructor as a String object.

The StatusBar constructor updates the information to be displayed in each pane by calling the
setColorPane() and setTypePane() methods. These ensure that initially the StatusPane objects dis-
play the default color and type that you’ve defined for the application. One or other of these methods
will be called whenever it is necessary to update the status bar. You’ll complete the definitions for
setColorPane() and setTypePane() when you’ve been through the detail of the StatusPane class.

The StatusBar panel has a FlowLayout manager that is set in the constructor. The panes in the status
bar need display only a small amount of text, so you’ve derived the StatusPane class from the JLabel
class — so a pane for the status bar will be a specialized kind of JLabel. This means that you can call the
setText() method that is inherited from JLabel to set the text for the StatusPane objects. The
StatusPane objects will be left-justified when they are added to the status bar, as a result of the first
argument to the setLayout() method call in the StatusBar constructor. The layout manager will leave
a 10-pixel horizontal gap between successive panes in the status bar, and a 3-pixel vertical gap between
rows of components. The border for the status bar is a single dark gray line that you add using the
BorderFactory method.

The only field in the StatusPane class is the Font object font. You’ve defined the font to be used for
pane text as a standard 10-point Serif font. The StatusPane constructor sets the background color to
light gray, the foreground color to dark gray, and sets the standard font for the pane. The constructor
also sets the alignment of the text as centered by calling the inherited method
setHorizontalAlignment(), and passing the value CENTER to it — this value is defined in the base
class JLabel.

If you can maintain a fixed width for each pane, it will prevent the size of the pane from jumping around
when you change the text. So you’ve set the setPreferredSize() at the minimum necessary for
accommodating the longest text field that needs to be displayed. Lastly, the StatusPane constructor sets
the initial text to be displayed in the pane by calling the inherited setText() method.

999

Extending the GUI

Try It Out Updating the Panes
You can code the setColorPane() method as follows:

// Set color pane label

public void setColorPane(Color color) {

String text = null; // Text for the color pane

if(color.equals(Color.RED)) {

text = “RED”;

} else if(color.equals(Color.YELLOW)) {

text = “YELLOW”;

} else if(color.equals(Color.GREEN)) {

text = “GREEN”;

} else if(color.equals(Color.BLUE)) {

text = “BLUE”;

} else {

text = “CUSTOM COLOR”;

}

colorPane.setForeground(color);

colorPane.setText(text); // Set the pane text

}

In the code for the setTypePane() method, you can use a switch statement rather than if statements
to test the parameter value because it is of type int:

// Set type pane label

public void setTypePane(int elementType) {

String text = null; // Text for the type pane

switch(elementType) {

case LINE:

text = “LINE”;

break;

case RECTANGLE:

text = “RECTANGLE”;

break;

case CIRCLE:

text = “CIRCLE”;

break;

case CURVE:

text = “CURVE”;

break;

default:

assert false;

}

typePane.setText(text); // Set the pane text

}

How It Works
This code is quite simple. The text to be displayed in the color pane is selected in the series of if-else
statements. They each compare the color that is passed as the argument with the standard colors you use
in Sketcher and set the text variable accordingly. The last else should never be reached at the moment,

1000

Chapter 20

but it will be obvious if it is. This provides the possibility of adding more flexibility in the drawing color
later on. Note that you also set the foreground color to the currently selected element color, so the text
will be drawn in the color to which it refers.

The type pane uses a switch as it is more convenient, but the basic process is the same as for the color
pane. If something goes wrong somewhere that results in an invalid element type, the program will
assert through the default case.

All you need now is to implement the status bar in the SketchFrame class. For this you must add a field
to the SketchFrame class that stores a reference to the status bar, modify the SketchFrame class con-
structor to add the status bar to the content pane of the window, and extend the actionPerformed()
methods in the TypeAction and ColorAction classes to update the status bar when the element type
or color is altered.

Try It Out The Status Bar in Action
You can add the following statement to the SketchFrame class to define the status bar as a data mem-
ber, following the members that define the menu bar and toolbar:

private StatusBar statusBar = new StatusBar(); // Window status bar

You create statusBar as a data member so that it can be accessed throughout the class definition,
including from within the Action classes. You need to add one statement to the end of the
SketchFrame class constructor:

public SketchFrame(String title, Sketcher theApp) {

// Constructor code as before...

getContentPane().add(statusBar, BorderLayout.SOUTH); // Add the statusbar

}

This adds the status bar to the bottom of the application window. To update the status bar when the ele-
ment type changes, you can add one statement to the actionPerformed() method in the inner class
TypeAction:

public void actionPerformed(ActionEvent e) {

elementType = typeID;

statusBar.setTypePane(typeID);

}

The type pane is updated by calling the setTypePane() method for the status bar and passing the cur-
rent element type to it as an argument. You can add a similar statement to the actionPerformed()
method to update the color pane:

public void actionPerformed(ActionEvent e) {

elementColor = color;

statusBar.setColorPane(color);

}

1001

Extending the GUI

If you now recompile and run Sketcher again, you’ll see the status bar in the application, as shown in
Figure 20-1.

Figure 20-1

As you change the element type and color through the menus or toolbar buttons, the status bar will be
updated automatically.

Using Dialogs
A dialog is a window that is displayed within the context of another window — its parent. You use
dialogs to manage input that can’t be handled conveniently through interaction with the view — select-
ing from a range of options, for example, or enabling data to be entered from the keyboard. You can also
use dialogs for information messages or warnings. The JDialog class in the javax.swing package
defines dialogs, and a JDialog object is a specialized sort of Window. A JDialog object will typically
contain one or more components for displaying information or allowing data to be entered, plus buttons
for selection of dialog options (including closing the dialog), so there’s quite a bit of work involved in
putting one together. However, for many of the typical dialogs that you will want to use, the
JOptionPane class provides an easy shortcut to creating dialogs. Figure 20-2 shows a dialog that you’ll
create later in this chapter using just one statement.

Figure 20-2

1002

Chapter 20

You’ll use this dialog to provide a response to clicking on a Help/About menu item that you’ll add to
Sketcher in a moment. First, though, you need to understand a little more about how dialogs work.

Modal and Non-Modal Dialogs
There are two different kinds of dialog that you can create, and they have distinct operating characteris-
tics. You have a choice of creating either a modal dialog or a non-modal dialog.

When you display a modal dialog — typically by selecting a menu item or clicking a button — it inhibits
the operation of any other windows in the application until you close the dialog. The dialog in Figure
20-2 that displays a message is a modal dialog. The dialog window retains the focus as long as it is dis-
played, and operation of the application cannot continue until you click the OK button. Modal dialogs
that manage input will normally have at least two buttons, an OK button that you use to accept what-
ever input has been entered and then close the dialog, and a Cancel button to just close the dialog and
abort the entry of the data. Dialogs that manage input are almost always modal dialogs, simply because
you won’t generally want to allow other interactions to be triggered until your user’s input is complete.

A non-modal dialog can be left on the screen for as long as you want, since it doesn’t block interaction
with other windows in the application. You can also switch the focus back and forth between using a
non-modal dialog and using any other application windows that are on the screen.

Whether you create a modal or a non-modal dialog is determined either by an argument to a dialog class
constructor, or by which constructor you choose, because some of them create non-modal dialogs by
default. The default, no-argument JDialog constructor creates a non-modal dialog with an empty title
bar. Since you have no provision for specifying a parent window for the dialog with the no-argument
constructor, a shared hidden frame will be used as the parent in this case. You have a choice of five con-
structors for creating a JDialog object where the parent can be a window of type Frame or JFrame:

Constructor Description

Title Bar Parent Window Mode

JDialog(Frame parent) (empty) parent non-modal

JDialog(Frame parent, title parent non-modal
String title)

JDialog(Frame parent, (empty) parent modal
boolean modal) (when modal is

true)

non-modal
(when modal is
false)

Table continued on following page

1003

Extending the GUI

Constructor Description

Title Bar Parent Window Mode

JDialog(Frame parent, title parent modal
String title, (when modal

boolean modal) is true)

non-modal
(when modal

is false)

JDialog(Frame parent, title parent modal
String title, (when modal

boolean modal, is true)
GraphicsConfiguration gc)

non-modal
(when modal

is false)

Because the first parameter to each of these constructors is of type Frame, you can supply a reference of
type Frame or of type JFrame. There are a further five constructors for creating JDialog objects with a
Dialog or JDialog object as the parent. The only difference between these and the ones in the table is
that the type of the first parameter is Dialog rather than Frame. Any of these constructors can throw an
exception of type HeadlessException if the system on which the code is executing does not have a dis-
play attached.

After you’ve created a JDialog object using any of the constructors, you can change the kind of dialog
window it will produce from modal to non-modal, or vice versa, by calling the setModal() method for
the object. If you specify the argument to the method as true, the dialog will be modal, and a false
argument will make it non-modal. You can also check whether a JDialog object is modal or not. The
isModal() method for the object will return true if it represents a modal dialog and false otherwise.

All JDialog objects are initially invisible, so to display them you must call the setVisible() method
for the JDialog object with the argument true. This method is inherited from the Component class via
the Container and Window classes. If you call setVisible() with the argument false, the dialog win-
dow is removed from the screen. Once you’ve displayed a modal dialog window, the user can’t interact
with any of the other application windows until you call setVisible() for the dialog object with the
argument false, so you typically do this in the event handler that is called to close the dialog. Note that
the setVisible() method affects only the visibility of the dialog. You still have a perfectly good
JDialog object so when you want to display the dialog again, you just call its setVisible() method
with an argument set to true. Of course, if you call dispose() for the JDialog object, or set the default
close operation to DISPOSE_ON_CLOSE, then you won’t be able to use the JDialog object again.

To set or change the title bar for a dialog, you just pass a String object to the setTitle() method for
the JDialog object. If you want to know what the current title for a dialog is, you can call the
getTitle() method, which will return a reference to a String object that contains the title bar string.

1004

Chapter 20

Dialog windows are resizable by default, so you can normally change the size of a dialog window by
dragging its boundaries. If you don’t want to allow a dialog window to be resized, you can inhibit this
by calling the setResizable() method for the JDialog object with the argument as false. An argu-
ment value of true re-enables the resizing capability.

A Simple Modal Dialog
The simplest kind of dialog is one that just displays some information. You could see how this works by
adding a Help menu with an About menu item, and then displaying an About dialog to provide infor-
mation about the application.

You’ll derive your own dialog class from JDialog so you can create an About dialog. AboutDialog
seems like a good name for the new class.

Try It Out Defining the AboutDialog Class
The constructor for the AboutDialog class will need to accept three arguments — the parent Frame
object, which will be the application window in Sketcher; a String object defining what should appear
on the title bar; and a String object for the message that you want to display. You’ll need only one but-
ton in the dialog window, an OK button to close the dialog. You can make the whole thing self-contained
by making the AboutDialog class the action listener for the button, and because it’s relevant only in the
context of the SketchFrame class, you can define it as an inner class to SketchFrame:

// Import statements as before...

import javax.swing.JDialog;

import javax.swing.JPanel;

import javax.swing.JLabel;

import java.awt.Dimension;

import java.awt.Point;

public class SketchFrame extends JFrame {

// SketchFrame class as before...

// Class defining a general purpose message box

class AboutDialog extends JDialog implements ActionListener {

public AboutDialog(JFrame parent, String title, String message) {

super(parent, title, true);

// If there was a parent, set dialog position inside

if(parent != null) {

Dimension parentSize = parent.getSize(); // Parent size

Point p = parent.getLocation(); // Parent position

setLocation(p.x+parentSize.width/4,p.y+parentSize.height/4);

}

// Create the message pane

JPanel messagePane = new JPanel();

messagePane.add(new JLabel(message));

getContentPane().add(messagePane);

// Create the button pane

JPanel buttonPane = new JPanel();

JButton button = new JButton(“OK”); // Create OK button

buttonPane.add(button); // add to content pane

1005

Extending the GUI

button.addActionListener(this);

getContentPane().add(buttonPane, BorderLayout.SOUTH);

setDefaultCloseOperation(DISPOSE_ON_CLOSE);

pack(); // Size window for components

setVisible(true);

}

// OK button action

public void actionPerformed(ActionEvent e) {

setVisible(false); // Set dialog invisible

dispose(); // Release the dialog resources

}

}

}

How It Works
The constructor first calls the base JDialog class constructor to create a modal dialog with the title bar
given by the title argument. It then defines the position of the dialog relative to the position of the
frame.

By default the AboutDialog window will be positioned relative to the top-left corner of the screen. To
position the dialog in a more sensible position relative to the application window, you set the coordi-
nates of the top-left corner of the dialog as one quarter of the distance across the width of the application
window, and one quarter of the distance down from the top-left corner of the application window.

You add the components you want to display in a dialog to the content pane for the JDialog object. The
content pane has a BorderLayout manager by default, just like the content pane for the application
window, and this is quite convenient for the AboutDialog layout. The dialog contains two JPanel
objects that are created in the constructor, one to hold a JLabel object for the message that is passed as
an argument to the constructor and the other to hold the OK button that will close the dialog. The
messagePane object is added so that it fills the center of the dialog window. The buttonPane position is
specified as BorderLayout.SOUTH, so it will be at the bottom of the dialog window. Both JPanel
objects have a FlowLayout manager by default.

You want the AboutDialog object to be the listener for the OK button so you pass the this variable as
the argument to the addActionListener() method call for the button.

The pack() method is inherited from the Window class. This method packs the components in the win-
dow, setting the window to an optimal size for the components it contains before laying out the compo-
nents. Note that if you don’t call pack() here, the size for your dialog will not be set and you won’t be
able to see it.

When you create an instance of the AboutDialog class in the Sketcher program a lit-
tle later in this chapter, you’ll specify the SketchFrame object as the parent for the
dialog. The parent relationship between the application window and the dialog
implies a lifetime dependency. When the SketchFrame object is destroyed, the
AboutDialog object will be, too, because it is a child of the SketchFrame object.
This doesn’t just apply to JDialog objects — any Window object can have another
Window object as a parent.

1006

Chapter 20

The actionPerformed() method will be called when the OK button is selected. This just disposes of
the dialog by calling the dispose() method for the AboutDialog object so the dialog window will dis-
appear from the screen and the resources it was using will be released.

To add a Help menu with an About item to the Sketcher application, you need to insert some code into
the SketchFrame class constructor.

Try It Out Creating an About Menu Item
You shouldn’t have any trouble with this. You can make the SketchFrame object the listener for the
About menu item, so add ActionListener as the interface implemented by SketchFrame:

public class SketchFrame extends JFrame implements ActionListener {

The changes to the constructor to add the Help menu will be:

public SketchFrame(String title , Sketcher theApp) {

setTitle(title); // Set the window title

this.theApp = theApp; // Save application object reference

setJMenuBar(menuBar); // Add the menu bar to the window

setDefaultCloseOperation(EXIT_ON_CLOSE); // Default is exit the application

JMenu fileMenu = new JMenu(“File”); // Create File menu

JMenu elementMenu = new JMenu(“Elements”); // Create Elements menu

JMenu helpMenu = new JMenu(“Help”); // Create Help menu

fileMenu.setMnemonic(‘F’); // Create shortcut

elementMenu.setMnemonic(‘E’); // Create shortcut

helpMenu.setMnemonic(‘H’); // Create shortcut

// All the stuff for the previous menus and the toolbar, as before...

// Add the About item to the Help menu

aboutItem = new JMenuItem(“About”); // Create the item

aboutItem.addActionListener(this); // Listener is the frame

helpMenu.add(aboutItem); // Add item to menu

menuBar.add(helpMenu); // Add the Help menu

}

Add aboutMenu as a private member of the SketchFrame class:

// Sundry menu items

private JMenuItem aboutItem;

Lastly, you need to implement the method in the SketchFrame class to handle the About menu item’s
events:

// Handle About menu action events

public void actionPerformed(ActionEvent e) {

if(e.getSource() == aboutItem) {

// Create about dialog with the app window as parent

AboutDialog aboutDlg = new AboutDialog(this, “About Sketcher”,

“Sketcher Copyright Ivor Horton 2004”);

}

}

1007

Extending the GUI

You can now recompile SketchFrame.java to try out your smart new dialog, which you can see in
Figure 20-3.

Figure 20-3

The dialog pops up when you select the About item in the Help menu. Until you select the OK button in
the About Sketcher dialog, you can’t interact with the application window at all because you created this
as a modal dialog. By changing the last argument in the call to the superclass constructor in the
AboutDialog constructor, you can make it non-modal and see how that works. This kind of dialog is
usually modal though.

If you resize the application window before you display the About dialog, you’ll see that the position of
the dialog relative to the application window is adjusted accordingly.

How It Works
This is stuff that should be very familiar to you by now. You create a JMenu object for the Help item on
the menu bar, and add a shortcut for it by calling its setMnemonic() member. You create a JMenuItem
object, which is the About menu item, and call its addActionListener() method to make the
SketchFrame object the listener for the item. After adding the menu item to the Help menu, you add the
helpMenu object to the menubar object.

You create an AboutDialog object in the actionPerformed() method for the SketchFrame object, as
this method will be called when the About menu item is clicked. Before you display the dialog, you ver-
ify that the source of the event is the menu item, aboutItem. This is not important now, but you’ll add
other menu items later, and you’ll want to handle their events using the same actionPerformed()
method. The dialog object is self-contained and disposes of itself when the OK button is clicked. The dia-

1008

Chapter 20

log that you want to display here will always display the same message, so there’s no real point in creat-
ing and destroying it each time you want to display it. You could arrange for the dialog box object to be
created once, and the reference stored as a member of the SketchFrame class. Then you could make it
visible in the actionPerformed() method for the menu item and make it invisible in the
actionPerformed() method responding to the dialog OK button event.

This is all very well, but it was a lot of work just to get a dialog with a message displayed. Deriving a
class from JDialog gives you complete flexibility as to how the dialog works, but you didn’t really need
it in this case. Didn’t I say there was an easier way?

Instant Dialogs
The JOptionPane class in the javax.swing package defines a number of static methods that will create
and display standard modal dialogs for you. The simplest dialog you can create this way is a message
dialog rather like the About message dialog in the previous example. The following static methods in the
JOptionPane class produce message dialogs:

Dial-a-Dialog Methods Description

showMessageDialog(This method displays a modal dialog with the default
Component parent, title “Message”. The first argument is the parent for the
Object message) dialog. The Frame object containing the component will

be used to position the dialog. If the first argument is
null, a default Frame object will be created and that will
be used to position the dialog centrally on the screen.

The second argument specifies what is to be displayed in
addition to the default OK button. This can be a String
object specifying the message or an Icon object defining
an icon to be displayed. It can also be a Component, in
which case the component will be displayed. If some
other type of object is passed as the second argument, its
toString() method will be called, and the String
object that is returned will be displayed. You will usually
get a default icon for an information message along with
your message.

You can pass multiple items to be displayed by passing
an array of type Object[] for the second argument.
Each array element will be processed as above according
to its type and they will be arranged in a vertical stack.
Clever, eh?

Table continued on following page

1009

Extending the GUI

Dial-a-Dialog Methods Description

showMessageDialog(This displays a dialog just as the preceding method, but
Component parent, with the title specified by the third argument. The fourth
Object message, argument, messageType, can be:
String title,

int messageType) ERROR_MESSAGE

INFORMATION_MESSAGE
WARNING_MESSAGE

QUESTION_MESSAGE

PLAIN_MESSAGE

These determine the style of the message constrained by
the current look-and-feel. This will usually include a
default icon, such as a question mark for
QUESTION_MESSAGE.

showMessageDialog(This displays a dialog just as the preceding method
Component parent, except that the icon will be what you pass as the fifth
Object message, argument. Specifying a null argument for the icon will
String title, produce a dialog just as the previous version of the
int messageType, method.
Icon icon)

You could have used one of these for the About dialog instead of all that messing about with inner
classes. Let’s see how.

Try It Out An Easy About Dialog
Delete the inner class AboutDialog from SketchFrame— you won’t need that any longer. Change the
implementation of the actionPerformed() method in the SketchFrame class to the following:

public void actionPerformed(ActionEvent e) {

if(e.getSource() == aboutItem) {

// Create about dialog with the menu item as parent

JOptionPane.showMessageDialog(this, // Parent

“Sketcher Copyright Ivor Horton 2004”, // Message

“About Sketcher”, // Title

JOptionPane.INFORMATION_MESSAGE); // Message type

}

}

1010

Chapter 20

Add an import statement for JOptionPane to SketchFrame.java and then recompile SketchFrame
and run Sketcher once more. When you click on the Help/About menu item, you should get something
like the window shown in Figure 20-4.

Figure 20-4

The pretty little icon comes for free.

How It Works
All the work is done by the static showMessageDialog() method in the JOptionPane class. What you
get is controlled by the arguments that you supply, and the Swing look-and-feel that is in effect. By
default this will correspond to the cross-platform look-and-feel, and this is what Figure 20-4 shows. You
get the icon you see because you specified the message type as INFORMATION_MESSAGE. You can try
plugging in the other message types to see what you get.

Input Dialogs
JOptionPane also has four static methods that you can use to create standard modal input dialogs:

showInputDialog(Object message)

This method displays a default modal input dialog with a text field for input. The message you pass as
the argument is set as the caption for the input field and the default also supplies an OK button, a Cancel

1011

Extending the GUI

button, and Input as a title. For example, if you pass the message “Enter Input:” as the argument, as
in the following statement,

String input = JOptionPane.showInputDialog(“Enter Input:”);

the dialog shown in Figure 20-5 will be displayed.

Figure 20-5

When you click the OK button, whatever you entered in the text field will be returned by the
showInputDialog() method and stored in input; this will be “This is the input...” in this case.
If you click the Cancel button, null will be returned. Note that this is not the same as no input. If you
click OK without entering anything in the text field, a reference to an empty String object will be
returned.

You could also use the overloaded version of the method that has the following form:

String showInputDialog(Component parent, Object message)

This version produces the same dialog as the previous method, but with the component you specify as
the first argument as the parent of the dialog.

Another possibility is to use the method with the following form:

String showInputDialog(Component parent, Object message,

String title, int messageType)

In this case the title of the dialog is supplied by the third argument, and the style of the message is deter-
mined by the fourth argument. The values for the fourth argument can be any of those I discussed ear-
lier in the context of message dialogs. For example, you could display the dialog shown in Figure 20-6
with the following statement:

String input = JOptionPane.showInputDialog(null, “Enter Input:”,

“Dialog for Input”, JOptionPane.WARNING_MESSAGE);

Figure 20-6

1012

Chapter 20

The data that you enter in the text field is returned by the showInputDialog() method when the OK
button is pressed as before.

You also have a version that accepts seven arguments:

String showInputDialog(Component parent, Object message,

String title, int messageType,

Icon icon, Object[] selections,

object initialSelection)

This version of the method displays a dialog with a list of choices in a drop-down list box. You pass the
items that are the set of choices as the sixth argument to the method in the form of an array, and it can be
an array of elements of any class type. The initial selection to be shown when the dialog is first displayed
is specified by the seventh argument. Whatever is chosen when the OK button is clicked will be returned
as type Object, and if the Cancel button is clicked, null will be returned. You can specify your own icon
to replace the default icon by passing a reference of type Icon as the fifth argument. The following state-
ments display the dialog shown in Figure 20-7:

String[] choices = {“Money”, “Health”, “Happiness”, “This”, “That”, “The Other”};

String input = (String)JOptionPane.showInputDialog(null, “Choose now...”,

“The Choice of a Lifetime”,

JOptionPane.QUESTION_MESSAGE,

null, // Use default icon

choices, // Array of choices

choices[1]); // Initial choice

Figure 20-7

Note that you have to cast the reference returned by this version of the showInputDialog() method to
the type of choice value you have used. Here you are using type String, but the selections could be
type Icon, or whatever you want.

Using a Dialog to Create Text Elements
It would be good if our Sketcher program also provided a means of adding text to a picture — after all,
you might want to put your name to a sketch. A dialog is the obvious way to provide the mechanism for
entering the text when you create text elements. You can use one of the showInputDialog() methods
for this, but first you need to add a Text menu item to the Elements menu, and you’ll have to define a
class to represent text elements, which will be the Element.Text class, of course, with Element as a
base class. Let’s start with the Element.Text class.

Text is a little tricky. For one thing, you can’t treat it just like another element. There is no object that
implements the Shape interface that represents a text string, so unless you want to define one, you can’t

1013

Extending the GUI

use the draw() method for a graphics context to display text. You have to use the drawString()
method. You’ll also have to figure out the bounding rectangle for the text on screen for yourself. With
Shape objects, you can rely on the getBounds() method supplied by the 2D shape classes in
java.awt.geom, but with text you’re on your own.

Ideally you want to avoid treating text elements as a special case. Having many tests for types while
you’re drawing a sketch in the paint() method for the view generates considerable processing over-
head that you would be better off without. One way around this is to make every element draw itself.
You could implement a polymorphic method in each element class —draw(), say — and pass a
Graphics2D object to it. Each shape or text element could then figure out how to draw itself. The
paint() method in the view class would not need to worry about what type of element was being
drawn at all.

Try It Out Defining the Element.Text Class
Let’s see how that works out. You can start by adding an abstract draw() method to the Element class
definition:

public abstract class Element {

public Element(Color color) {

this.color = color;

}

public Color getColor() {

return color;

}

public abstract java.awt.Rectangle getBounds();

public abstract void modify(Point start, Point last);

public abstract void draw(Graphics2D g2D);

protected Color color; // Color of a shape

// Plus definitions for our shape classes...

}

Note that the getShape() method declaration has been deleted from the Element class as you won’t be
needing it further. You can remove the definitions of the getShape() method from all the nested classes
of the Element class. You also need to make the Graphics2D class name accessible so add an import
statement for it to Element.java:

import java.awt.Graphics2D;

The draw() method now needs to be implemented in each of the nested classes to the Element class,
but because each of the current inner classes has a Shape member, it will be essentially the same in each.
The version for the Element.Line class will be:

public void draw(Graphics2D g2D) {

g2D.setPaint(color); // Set the line color

g2D.draw(line); // Draw the line

}

1014

Chapter 20

This just sets the color and passes the Shape object that is a member of the class to the draw() method
for the Graphics2D object. To implement the draw() method for the other element classes, just replace
the argument to the g2D.draw() method call, with the name of the Shape member of the class, and
update the comments.

You can now change the implementation of the paint() method in the SketchView class to:

public void paint(Graphics g) {

Graphics2D g2D = (Graphics2D)g; // Get a 2D device context

for(Element element : theApp.getModel()) { // Go through the list

element.draw(g2D); // Element draws itself

}

}

The paint() method is now quite a lot shorter, as the element sets its own color in the graphics context
before it draws itself.

You must not forget to update the mouseDragged() method in the MouseHandler class in SketchView
to use the new mechanism for drawing elements:

public void mouseDragged(MouseEvent e) {

last = e.getPoint(); // Save cursor position

if(button1Down) {

if(tempElement == null) { // Is there an element?

tempElement = createElement(start, last); // No, so create one

} else {

tempElement.draw(g2D); // Yes - draw to erase it

tempElement.modify(start, last); // Now modify it

}

tempElement.draw(g2D); // and draw it

}

}

The mousePressed() method doesn’t need to set the color in the graphics context, as the draw() meth-
ods for the shapes do that now. You can delete the following statement from the definition of
mousePressed() in the Sketcher view class:

g2D.setPaint(theApp.getWindow().getElementColor()); // Set color

You are now ready to get back to the Element.Text class. You can define the Element.Text class quite
easily. The constructor will need five arguments, though — the font to be used for the string, the string to
be displayed, the position where it is to be displayed, its color, and its bounding rectangle. To get the
bounding rectangle for a string, you need access to a graphics context, so it will be easier to create the
bounding rectangle before you create a text element, and then pass it to the constructor.

Here’s the class definition for objects that define text elements:

import java.awt.Color;

import java.awt.Shape;

import java.awt.Point;

import java.awt.Font;

1015

Extending the GUI

import java.awt.Graphics2D;

import java.awt.geom.Line2D;

import java.awt.geom.Rectangle2D;

import java.awt.geom.Ellipse2D;

import java.awt.geom.GeneralPath;

class Element {

// Code that defines the base class...

// Definitions for the other shape classes...

// Nested class defining text elements

public static class Text extends Element {

public Text(Font font, String text, Point position, Color color,

java.awt.Rectangle bounds) {

super(color);

this.font = font;

this.position = position;

this.text = text;

this.bounds = bounds;

this.bounds.setLocation(position.x, position.y – (int)bounds.getHeight());

}

public java.awt.Rectangle getBounds() {

return bounds;

}

public void draw(Graphics2D g2D) {

g2D.setPaint(color);

Font oldFont = g2D.getFont(); // Save the old font

g2D.setFont(font); // Set the new font

g2D.drawString(text, position.x, position.y);

g2D.setFont(oldFont); // Restore the old font

}

public void modify(Point start, Point last) {

// No code is required here, but you must supply a definition

}

private Font font; // The font to be used

private String text; // Text to be displayed

private Point position; // Position of the text

private java.awt.Rectangle bounds; // The bounding rectangle

}

}

How It Works
The Element.Text class constructor passes the color to the superclass constructor and stores the other
argument values in data members of the Element.Text class. When you create the bounding rectangle
to pass to the constructor, the default reference point for the top-left corner of the rectangle will be (0, 0).
This is not what you want for the text object so you have to modify it, as shown in Figure 20-8.

1016

Chapter 20

Figure 20-8

In the constructor, you adjust the coordinates of the top-left corner of the bounding rectangle relative to the
point, position, where the string will be drawn. Remember that the point coordinates that you pass to the
drawString() method must correspond to the bottom-left corner of the first character in the string.

The code to draw text is not difficult — it’s just different from drawing shapes. It amounts to calling
setPaint() to set the text color, setting the font in the graphics context by calling its setFont()
method, and finally calling drawString() to display the text. You don’t know whether some other
method may be relying on the font that’s already set for the graphics context, so you save the old font
before changing it and then restore it when you are done.

You could do with a menu item and a toolbar button to work with text that will set the element type to
TEXT, so let’s deal with that next.

Try It Out Adding the Text Menu Item
First, you can add a textAction member to the SketchFrame class, so amend the declaration for the
TypeAction members to:

private TypeAction lineAction, rectangleAction, circleAction,

curveAction, textAction;

You’ll need an icon in the Images directory that is a subdirectory to the Sketcher directory if you want
to create a toolbar button for text. I just created an icon with ‘T’ on it, but you can create something
fancier if you have a mind to. The file containing the icon should have the name Text.gif, because
that’s what the TypeAction object will assume.

height

width

0,0

This point is the reference point from which
the string is drawn in a graphics context. Thus
the location of the top-left corner of the rectangle
needs to be set to:

position.x, position.y-height

When we create the bounding
rectangle for a string, by default this
corner will be located at:

position

Here is some text.

1017

Extending the GUI

You can add a statement to the SketchFrame constructor that will add the menu item, following the
statements that create the other items in the element menu:

public class SketchFrame extends JFrame implements ActionListener {

// Constructor

public SketchFrame(String title, Sketcher theApp) {

// Code as before...

// Code to add the other Element menu items as before...

addMenuItem(elementMenu, textAction = new TypeAction(“Text”, TEXT,

“Draw text”));

// Code as before...

}

// Rest of the code for the SketchFrame class...

}

The new statement assumes you have defined the value of TEXT in the SketcherConstants class, so
now add that to the class as well as a default font for use with text elements:

package Constants;

import java.awt.Color;

import java.awt.Font;

public class SketcherConstants {

// Element type definitions

public final static int LINE = 101;

public final static int RECTANGLE = 102;

public final static int CIRCLE = 103;

public final static int CURVE = 104;

public final static int TEXT = 105;

// Initial conditions

public final static int DEFAULT_ELEMENT_TYPE = LINE;

public final static Color DEFAULT_ELEMENT_COLOR = Color.BLUE;

public final static Font DEFAULT_FONT = new Font(“SansSerif”,Font.PLAIN, 12);

}

If you don’t like the SansSerif font, choose another font that you have on your machine. You’ll need a
data member in the application window object to hold a reference to the current font. It will start out as
the default font, but you’ll be adding the means to alter this later. Add the following data member after
the others in SketchFrame:

private Color elementColor = DEFAULT_ELEMENT_COLOR; // Current element color

private int elementType = DEFAULT_ELEMENT_TYPE; // Current element type

private Font font = DEFAULT_FONT; // Current font

Of course, you also need a method in the SketchFrame class to retrieve the current font from the appli-
cation window object:

public Font getCurrentFont() {

return font;

}

Don’t forget to add an import statement for java.awt.Font to the SketchFrame source file. Now the
view will be able to get the current font when necessary, via the application object.

1018

Chapter 20

If you want the toolbar button as well, you will need to add one statement to the SketchFrame con-
structor, following the others, that adds element type selection buttons:

// Add element type buttons

toolBar.addSeparator();

addToolBarButton(lineAction);

addToolBarButton(rectangleAction);

addToolBarButton(circleAction);

addToolBarButton(curveAction);

addToolBarButton(textAction);

The action events for the menu item and toolbar button for text are taken care of and the final piece is
dealing with mouse events when you create a text element.

Text elements are going to be different from shapes in how they are created and displayed. More informa-
tion is required for a text element. To create a text element you need to know what the text is, its color, its
font, and where it is to be placed. You’ll also have to construct its bounding rectangle. This sounds as
though it might not be much harder than creating geometric elements, but there are complications.

Try It Out Creating Text Elements
You start the process of creating geometric elements in SketchView’s MouseHandler class, but you
can’t simply start with the mousePressed() method, as would at first seem logical. The problem is the
sequence of events. You want to display a dialog to manage the text entry, but if you display a dialog in
the mousePressed() method, the mouseReleased() event will get lost, unless you’re happy to hold
down the mouse button while typing into the text field with the other hand!

A simple solution is to separate the creation of text elements altogether and create them in the
mouseClicked() method. This method is called after the mouse button is released, so all the other
events will have occurred and been dealt with.

You can implement the mouseClicked() method in the inner class, MouseHandler, so that it will create
a text element. The code for the method will be along the following lines:

public void mouseClicked(MouseEvent e) {

if((e.getButton()== MouseEvent.BUTTON1) &&

(theApp.getWindow().getElementType() == TEXT)) {

start = e.getPoint(); // Save cursor position – start of text

String text = JOptionPane.showInputDialog(

(Component)e.getSource(), // Used to get the frame

“Enter Text:”, // The message

“Dialog for Text Element”, // Dialog title

JOptionPane.PLAIN_MESSAGE); // No icon

if(text != null && text.length()!= 0) { // If we have text

// create the element

// Code to create the Element.Text element

// and add it to the sketch model...

}

}

}

1019

Extending the GUI

You’ll need to import JOptionPane from the javax.swing package into SketchView.java as well as
the Component and Font class names from the java.awt package, so add the following import state-
ments to the source file:

import java.awt.Component;

import java.awt.Font;

import javax.swing.JOptionPane;

You want to do something in the mouseClicked() method only if it was mouse button 1 that was
clicked and the current element type is TEXT, so the if statement tests for that. When the if condition is
true, you save the cursor position and pop a dialog to permit the text string to be entered. If a string
that is not an empty was entered, you go ahead and create a text element and add it to the sketch model.

You still have to add the code for creating a text element. The tricky part is figuring out what the size of
the rectangle that bounds the text is. The Font class defines a getStringBounds() method that returns
a rectangle indicating the logical bounds for a string in a given context in which the string is drawn.
Unfortunately, as the documentation for this method says, it does not always return a rectangle enclos-
ing all of the text. If you were to use this, parts of the text could get chopped off when displayed. To get
a rectangle that completely encloses the text in every case, you must create a TextLayout object for the
text and use its getBounds() method to obtain a rectangle.

This TextLayout class is defined in the java.awt.font package, so you’ll need an import statement
for that in the SketchView.java file:

import java.awt.font.TextLayout;

A TextLayout object encapsulates the graphical representation of a given text string on a particular
graphics device, so, as well as the text and the font, a TextLayout class constructor needs information
on the dimensions of the font in the context of the graphical device. The FontRenderContext class in
the java.awt.font package defines an object that encapsulates the information necessary to display
text in a given graphics context. You obtain a FontRenderContext object from a Graphics2D object,
g2D, like this:

FontRenderContext frc = g2D.getFontRenderContext();

All you need now is a Graphics2D object. You can get that by calling the getGraphics() method that
the SketchView object inherits from the JComponent class:

Graphics2D g2D = (Graphics2D)getGraphics();

You have all the pieces you need to create the bounding rectangle for the text, and hence the
Element.Text object. Here’s the code that goes in the if statement in the mouseClicked() method
that will create the text element and add it to the model:

if(text != null) { // If we have text

// create the element

g2D = (Graphics2D)getGraphics();

Font font = theApp.getWindow().getCurrentFont();

tempElement = new Element.Text(

font, // The font

text, // The text

start, // Position of the text

1020

Chapter 20

theApp.getWindow().getElementColor(), // The text color

new java.awt.font.TextLayout(text, font, // The bounding rectangle

g2D.getFontRenderContext()).getBounds().getBounds()

);

if(tempElement != null) { // If we created one

theApp.getModel().add(tempElement); // add it to the model

tempElement = null; // and reset the field

}

g2D.dispose(); // Release context resources

g2D = null;

start = null;

}

The bounding rectangle for the text is produced by the rather fearsome looking expression for the last
argument to the Element.Text constructor. It’s much easier than it looks so let’s take it apart.

The TextLayout constructor you are using expects three arguments: the text string, the font, and a
FontRenderContext object for the context in which the text is to be displayed. You call the
getBounds() method for the TextLayout object, which returns a reference to a rectangle of type
Rectangle2D. Since you want a rectangle of type Rectangle to pass to the Element.Text constructor,
you call the getBounds() method for the Rectangle2D object, hence the repetition in the code.

Once the element has been created, you just add it to the model, and clean up the variables that you
were using.

You must now make sure that the other mouse event handlers do nothing when the current element is
TEXT. You don’t want the XOR mode set when you are just creating text elements, for example. A simple
additional condition that tests the current element type will take care of it in the mousePressed()
method:

public void mousePressed(MouseEvent e) {

// Code to handle mouse button press...

start = e.getPoint(); // Save the cursor position in start

if((button1Down = (e.getButton()==MouseEvent.BUTTON1)) &&

(theApp.getWindow().getElementType() != TEXT)) {

g2D = (Graphics2D)getGraphics(); // Get graphics context

g2D.setXORMode(getBackground()); // Set XOR mode

}

}

The if expression will be true only if button 1 was pressed and the current element type is not TEXT.
You can update the mouseDragged() method in a similar way:

public void mouseDragged(MouseEvent e) {

last = e.getPoint(); // Save cursor position

if(button1Down && (theApp.getWindow().getElementType() != TEXT)) {

if(tempElement == null) { // Is there an element?

tempElement = createElement(start, last); // No, so create one

} else {

tempElement.draw(g2D); // Yes – draw to erase it

tempElement.modify(start, last); // Now modify it

1021

Extending the GUI

}

g2D.draw(tempElement.getShape()); // and draw it

}

}

The change to the mouseReleased() method is exactly the same as for mousePressed(), so go ahead
and modify the if condition in that method, too. The only other change you need is to make the status
bar respond to the TEXT element type being set. To do this you can make a small addition to the defini-
tion of the setTypePane() method in the StatusBar class:

public void setTypePane(int elementType) {

String text; // Text for the type pane

switch(elementType) {

// case labels as before...

case TEXT:

text = “TEXT”;

break;

default:

assert false;

}

typePane.setText(text); // Set the pane text

}

How It Works
The mouseClicked() handler responds to mouse button 1 being clicked when the element type is TEXT.
This method will be called after the mouseReleased() method has been called. Within the if statement
that determines that the current element is of type TEXT, you create a dialog to receive the text input by
calling the static showInputDialog() in the JOptionPane class. If the Cancel button is clicked in the
dialog, text will be null, so in this case you do nothing. If text is not null, you create an Element.Text
object at the current cursor position containing the text string that was entered in the dialog. You then add
this to the model, as long as it’s not null. It’s important to reset the start and tempElement members
back to null; otherwise, subsequent event-handling operations will be confused.

Incidentally, although there isn’t a method to detect double-clicks on the mouse button, it’s easy to
implement. The getClickCount() method for the MouseEvent object that is passed to
mouseClicked() returns the click count. To respond to a double-click, you could write the following
statements:

if(e.getClickCount() == 2) {

//Response to double-click...

}

The other event-handling methods behave as before so far as the geometric elements are concerned, and
do nothing if the element type is TEXT. You can try it out.

1022

Chapter 20

Try It Out Testing the TextDialog Class
All you need to do now is recompile Sketcher and run it again. To open the text dialog, select the new
toolbar button or the menu item and click in the view where you want the text to appear.

You just type the text that you want and click the OK button. The text will be displayed starting at the
point in the view where you clicked the mouse button. You can draw text in any of the colors — just like
the geometric elements. The application window may look something like that in Figure 20-9 when the
text dialog is displayed.

Figure 20-9

A Font Selection Dialog
You don’t really want to be stuck with a 12-point SansSerif font. You need to be able to release your cre-
ativity so your sketches will astound and delight! A font dialog that pops up in response to a click on a
suitable menu item should enable you to change the font for text elements to any of those available on
the system. It will also give you a chance to see how you can get at and process the fonts that are avail-
able. You’ll also learn more about how to add components to a dialog window. The first step is to estab-
lish what the font dialog will do.

You want to be able to choose the font name from those available on the system on which the application
is executing. You’ll also want to select the style of the font, whether plain, bold, or italic, as well as the
point size. It would also be nice to see what a font looks like before you decide to use it. The dialog will
therefore need to obtain a list of the fonts available and display them in a component. It will also need a
component to allow the point size to be selected and some means for choosing the style for the font.

1023

Extending the GUI

This is not going to be a wimpy pathetic excuse for a dialog like those you have seen so far. This is going
to be a real chunky Java programmer’s dialog. You’ll drag in a diversity of components here, just for the
experience, and you’ll be building it step-by-step, as it involves quite a lot of code. Just so that you know
where you’re headed, the finished dialog is shown in Figure 20-10.

Figure 20-10

The component that provides the choice of font in the dialog is a Swing component of type
javax.swing.JList that can display a list of any type of component. Below that is a panel holding a
JLabel object, which displays a sample of the current font. The list of font names and the panel below
are displayed in a split pane defined by the JSplitPane class. Here the pane is split vertically, but a
JSplitPane object can also hold two panels side by side. The point size is displayed in another Swing
component called a spinner, which is an object of type javax.swing.JSpinner. The choice for the font
style options is provided by two radio buttons, and either, neither, or both may be selected. Finally, you
have two buttons to close the dialog.

You can set the foundations by defining the FontDialog class with its data members and its constructor,
and then build on that.

Try It Out A FontDialog Class
The major work will be in the dialog class constructor. That will set up all the GUI elements as well as
the necessary listeners to respond to operations with the dialog. The dialog object will need to know that
the SketchFrame object that represents the Sketcher application window is the parent, so you’ll pass a
SketchFrame reference to the constructor.

1024

Chapter 20

Here’s the code for the outline of the FontDialog class:

// Class to define a dialog to choose a font

import java.awt.Font;

import javax.swing.JDialog;

class FontDialog extends JDialog {

// Constructor

public FontDialog(SketchFrame window) {

// Code to initialize the data members...

// Code to create buttons and the button panel...

// Code to create the data input panel...

// Code to create the font choice and add it to the input panel...

// Code to create the font size choice and add it to the input panel...

// Code to create the font style checkboxes and add them to the input panel...

// ...and then some!

}

private Font font; // Currently selected font

private int fontStyle; // Font style – Plain,Bold,Italic

private int fontSize; // Font point size

}

You’ll be adding a few more data members shortly, but at least you know you’ll need the three that are
shown here. The code to initialize the data members within the FontDialog constructor is easy. You can
initialize the font member and the associated fontStyle and fontSize members from the current font
that is stored in the application window:

public FontDialog(SketchFrame window) {

// Call the base constructor to create a modal dialog

super(window, “Font Selection”, true);

font = window.getCurrentFont(); // Get the current font

fontStyle = font.getStyle(); // ...style

fontSize = font.getSize(); // ...and size

// Plus the code for the rest of the constructor...

}

You call the base class constructor and pass the window object to it as the parent. The second
argument is the title for the dialog, and the third argument determines that the dialog is modal. The
getCurrentFont() method returns the font stored in the window object, and you use this to initialize
the fontStyle and fontSize members; therefore, the first time you open the dialog this will be the
default setting.

1025

Extending the GUI

Creating the Font Dialog Buttons
Next you can add the code to the constructor that will create the button panel with the OK and Cancel
buttons. You can place the button panel at the bottom of the content pane for the dialog using the default
BorderLayout manager:

public FontDialog(SketchFrame window) {

// Initialization as before...

// Create the dialog button panel

JPanel buttonPane = new JPanel(); // Create a panel to hold buttons

// Create and add the buttons to the buttonPane

buttonPane.add(ok = createButton(“OK”)); // Add the OK button

buttonPane.add(cancel = createButton(“Cancel”)); // Add the Cancel button

getContentPane().add(buttonPane, BorderLayout.SOUTH);// Add pane to content pane

// Plus the code for the rest of the constructor...

}

The buttonPane object will have a FlowLayout manager by default, so this will take care of positioning
the buttons. You add the button pane to the dialog content pane using the BorderLayout.SOUTH speci-
fication to place it at the bottom of the window. Because creating each button involves several steps that
are the same for both buttons, you are using a helper method, createButton(), that requires only the
button label as an argument. You can see that you store each button reference in a class field, so you
must add these as members of the FontDialog class:

private JButton ok; // OK button

private JButton cancel; // Cancel button

You’ll use these fields in the listener for the button events, as you’ll see in a moment.

You can code the createButton() method as a member of the FontDialog class as follows:

JButton createButton(String label) {

JButton button = new JButton(label); // Create the button

button.setPreferredSize(new Dimension(80,20)); // Set the size

button.addActionListener(this); // Listener is the dialog

return button; // Return the button

}

You set the preferred size of the button here to ensure that the buttons are all of the same size. Without
this call, each button would be sized to fit its label, so the dialog would look a bit untidy. The listener is
the FontDialog class object, so the FontDialog class must implement the ActionListener interface,
which implies that an actionPerformed() method must be defined in the class:

import java.awt.Font;

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import javax.swing.JDialog;

1026

Chapter 20

import javax.swing.JButton;

import javax.swing.JPanel;

class FontDialog extends JDialog implements ActionListener {

// Constructor definition...

// createButton() definition...

public void actionPerformed(ActionEvent e) {

if(e.getSource()== ok) { // Is it the OK button?

((SketchFrame)getOwner()).setCurrentFont(font); // Set the selected font

}

// Now hide the dialog - for ok or cancel

setVisible(false);

}

// Plus the rest of the class definition...

}

The getSource() member of the ActionEvent object e returns a reference to the object that originated
the event, so you can use this to determine the button for which the method is being called. You just
compare the source object (which is holding the reference to the object to which the event applies) to
the OK button object to determine whether it was clicked. If it is the OK button, you call the
setCurrentFont() method in the SketchFrame object that is the parent for this dialog to set the font.
You then just hide the dialog so Sketcher can continue. This will be the sole action when the Cancel but-
ton is selected for the dialog.

Of course, you must add the definition of setCurrentFont() to the SketchFrame class:

// Method to set the current font

public void setCurrentFont(Font font) {

this.font = font;

}

Let’s now get back to the FontDialog constructor.

Adding the Data Pane
You can now add a panel to contain the components that will receive input. You’ll be using a JList
object for the font names, a JSpinner object for the point size of the font, and two JRadioButton
objects for selecting the font style. You can add the code to create the panel first:

public FontDialog(SketchFrame window) {

// Initialization as before...

// Button panel code as before...

// Code to create the data input panel

JPanel dataPane = new JPanel(); // Create the data entry panel

dataPane.setBorder(BorderFactory.createCompoundBorder(// Create pane border

BorderFactory.createLineBorder(Color.BLACK),

BorderFactory.createEmptyBorder(5, 5, 5, 5)));

GridBagLayout gbLayout = new GridBagLayout(); // Create the layout

dataPane.setLayout(gbLayout); // Set the pane layout

GridBagConstraints constraints = new GridBagConstraints();

// Plus the code for the rest of the constructor...

}

1027

Extending the GUI

Here you use a GridBagLayout manager so you can set constraints for each component that you add to
the dataPane container. You also set a black line border for dataPane with an inset empty border 5 pix-
els wide. This uses the BorderFactory static methods that you have seen before. You have many other
possible layout managers that you could use here. BoxLayout managers are very easy to use to lay out
components in vertical columns and horizontal rows.

The first component that you’ll add to dataPane will be a label that prompts for the font selection:

public FontDialog(SketchFrame window) {

// Initialization as before...

// Button panel code as before...

// Set up the data input panel to hold all input components as before...

// Code to create the font choice and add it to the input panel

JLabel label = new JLabel(“Choose a Font”);

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

gbLayout.setConstraints(label, constraints);

dataPane.add(label);

// Plus the code for the rest of the constructor...

}

With the fill constraint set as HORIZONTAL, the components in a row will fill the width of the
dataPane container, but without affecting the height. With the width constraint set to REMAINDER, the
label component will fill the width of the row.

You need a few more import statements in the FontDialog source file, so add the following statements:

import java.awt.Color;

import java.awt.GridBagLayout;

import java.awt.GridBagConstraints;

import javax.swing.JLabel;

import javax.swing.BorderFactory;

Implementing the Font List
You’ll add the JList object that displays the list of fonts next, but you won’t add this directly to the
dataPane panel because the list is likely to be long enough to need scrolling capability. The list of fonts
will have to be obtained using the GraphicsEnvironment object that encapsulates information about
the system in which the application is running. You’ll recall that you call a static method in the
GraphicsEnvironment class to get the GraphicsEnvironment object. Here’s the code to create the list
of font names:

public FontDialog(SketchFrame window) {

// Initialization as before...

// Button panel code as before...

// Set up the data input panel to hold all input components as before...

// Add the font choice prompt label as before...

1028

Chapter 20

// Code to set up font list choice component

GraphicsEnvironment e = GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontNames = e.getAvailableFontFamilyNames(); // Get the font names

fontList = new JList(fontNames); // Create list of font names

fontList.setValueIsAdjusting(true); // single event selection

fontList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);// Choose 1 font

fontList.setSelectedValue(font.getFamily(),true);

fontList.addListSelectionListener(this);

JScrollPane chooseFont = new JScrollPane(fontList); // Scrollable list

chooseFont.setMinimumSize(new Dimension(300,100));

chooseFont.setWheelScrollingEnabled(true); // Enable mouse wheel scroll

// Plus the code for the rest of the constructor...

}

You obtain the list of font family names for the system on which Sketcher is running by calling the
getAvailableFontFamilyNames() method for the GraphicsEnvironment object. The fontList
variable will need to be accessible in the method-handling events for the list, so this will be another data
member of the class:

private JList fontList; // Font list

The fontNames array holds String objects, but you can create a JList object for any kind of object —
images, for example. You can also create a JList object by passing a Vector<> object that contains the
objects you want in the list to the constructor. It is possible to allow multiple entries from a list to be
selected, in which case the selection process may cause multiple events — when you drag the cursor over
several list items, for example. You can make certain that there is only one event for a selection, even
though multiple items are selected, by calling the setValueIsAdjusting() method with the argument
true. Calling setSelectionMode() with the argument SINGLE_SELECTION ensures that only one font
name can be selected.

You have two possible multiple selections that you can enable for a JList object. Passing the value
SINGLE_INTERVAL_SELECTION to the setSelectionMode() method allows a series of consecutive
items to be selected. Passing MULTIPLE_SELECTION_INTERVAL provides you with total flexibility and
allows any number of items anywhere to be selected. The initial selection in the list is set by the
setSelectedValue() call. You pass the family name for the current font as the argument specifying the
initial selection. There is a complementary method, getSelectedValue(), that you’ll be using in the
event handler.

There’s a special kind of listener for JList selection events that is an object of a class type that imple-
ments the ListSelectionListener interface. Since you set the FontDialog object as the listener for
the list in the call to the addListSelectionListener() method, you had better make sure the
FontDialog class implements the interface:

class FontDialog extends JDialog

implements ActionListener, // For buttons etc.

ListSelectionListener { // For list box

1029

Extending the GUI

There’s only one method in the ListSelectionListener interface, and you can implement it in the
FontDialog class like this:

// List selection listener method

public void valueChanged(ListSelectionEvent e) {

if(!e.getValueIsAdjusting()) {

font = new Font((String)fontList.getSelectedValue(), fontStyle, fontSize);

fontDisplay.setFont(font);

fontDisplay.repaint();

}

}

This method will be called when you select an item in the list. You have only one list, so you don’t need
to check which object was the source of the event. If you were handling events from several lists, you
could call the getSource() method for the event object that is passed to valueChanged(), and com-
pare it with the references to the JList objects being used.

The ListSelectionEvent object that is passed to the valueChanged() method contains records
of the index positions of the list items that changed. You can obtain these as a range by calling the
getFirstIndex() method for the event object to get the first in the range, and the getLastIndex()
method will return the last in the range. You don’t need to worry about any of this in the FontDialog class
because you have disallowed multiple selections and you just want the newly selected item in the list.

You have to be careful though. Since you start out with an item already selected, selecting another font
name from the list will cause two events — one for deselecting the original font name and the other for
selecting the new name. You make sure that you deal only with the last event by calling the
getValueIsAdjusting() method for the event object in the if expression. This returns false for the
event when all changes due to a selection are complete, and true if things are still changing when the
event occurred. Thus your implementation of the valueChanged() method will do nothing when the
getValueIsAdjusting() method returns true.

Once you are sure nothing further is changing, which will be when getValueIsAdjusting() returns
false, you retrieve the selected font name from the list by calling its getSelectedValue() method.
The item is returned as type Object so you have to cast it to type String before using it. You create a
new Font object using the selected family name and the current values for fontStyle and fontSize.
You store the new font in the data member font and also call the setFont() member of a data member,
fontDisplay, that you haven’t added to the FontDialog class yet. This will be a JLabel object dis-
playing a sample of the current font. After you’ve set the new font, you call repaint() for the label
fontDisplay to get it redrawn.

If you allow multiple selections on the list with the SINGLE_SELECTION_INTERVAL method, you can
use the getFirstIndex() and getLastIndex() methods to get the range of index values for the
item that may have changed. If on the other hand you employ the MULTIPLE_SELECTION_INTERVAL
option, you would need to figure out which items in the range were actually selected. You could do this
by calling the getSelectedIndices() method or the getSelectedValues() method for the
list object. The first of these returns an array of index values of type int for the selected items, and the
second returns an array of elements of type Object that reference the selected items.

A JList object doesn’t support scrolling directly, but it is scrolling “aware.” To get a scrollable list, one
with scrollbars, you just need to pass the JList object to the JScrollPane constructor, as you have in

1030

Chapter 20

the FontDialog constructor. A JScrollPane object creates a pane with scrollbars — either vertical, hori-
zontal, or both — as necessary for whatever it contains. You set a minimum size for the JScrollPane
object to limit how small it can be made in the split pane into which you’ll insert it in a moment. Note
how easy it is to get the mouse wheel supported for scrolling here. You just call the
setWheelScrollingEnabled() method for the scroll pane with the argument as true, and it’s done.

The new code that you’ve added requires a few more import statements:

import java.awt.GraphicsEnvironment;

import javax.swing.JList;

import javax.swing.ListSelectionModel;

import javax.swing.JScrollPane;

import javax.swing.event.ListSelectionListener;

import javax.swing.event.ListSelectionEvent;

Displaying the Selected Font
You’ll display the selected font in a JLabel object that you’ll place in another JPanel pane. Adding the
following code to the constructor will do this:

public FontDialog(SketchFrame window) {

// Initialization as before...

// Button panel code as before...

// Set up the data input panel to hold all input components as before...

// Add the font choice prompt label as before...

// Set up font list choice component as before...

// Panel to display font sample

JPanel display = new JPanel();

fontDisplay = new JLabel(“Sample Size: x X y Y z Z”);

fontDisplay.setPreferredSize(new Dimension(300,100));

display.add(fontDisplay);

// Plus the code for the rest of the constructor...

}

You create the JPanel object display and add the JLabel object fontDisplay to it. Remember, you
update this object in the valueChanged() handler for selections from the list of font names. You’ll also
be updating it when the font size or style is changed. The fontDisplay object just represents some sam-
ple text. You can choose something different if you like.

It’s not strictly necessary here but just for the experience you’ll use a split pane to hold the scroll pane
containing the list, chooseFont, and the display panel.

Using a Split Pane
A JSplitPane object represents a pane with a movable horizontal or vertical split, so that it can hold
two components. The split pane divider can be adjusted by dragging it with the mouse. Here’s the code
to do that:

public FontDialog(SketchFrame window) {

// Initialization as before...

1031

Extending the GUI

// Button panel code as before...

// Set up the data input panel to hold all input components as before...

// Add the font choice prompt label as before...

// Set up font list choice component as before...

// Panel to display font sample as before...

//Create a split pane with font choice at the top

// and font display at the bottom

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,

true,

chooseFont,

display);

gbLayout.setConstraints(splitPane, constraints); // Split pane constraints

dataPane.add(splitPane); // Add to the data pane

// Plus the code for the rest of the constructor...

}

You’ll need an import statement for javax.swing.JSplitPane in FontDialog.java.

The constructor does it all. The first argument specifies that the pane supports two components, one
above the other. You can probably guess that for side-by-side components you would specify
JSplitPane.HORIZONTAL_SPLIT. If the second constructor argument is true, the components are
redrawn continuously as the divider is dragged. If it is false the components are not redrawn until you
stop dragging the divider.

The third argument is the component to go at the top, or to the left for HORIZONTAL_SPLIT, and the
fourth argument is the component to go at the bottom, or to the right, as the case may be.

You don’t need to do it here, but you can change the components in a split pane. You have four methods
to do this: setLeftComponent() and setRightComponent() for a horizontal arrangement of the
panes and setTopComponent() and setBottomComponent() for a vertical arrangement of the
panes. You just pass a reference to the component you want to set to whichever method you want to use.
There are also corresponding get methods to retrieve the components in a split pane. You can even
change the orientation by calling the setOrientation() method and passing either
JSplitPane.HORIZONTAL_SPLIT or JSplitPane.VERTICAL_SPLIT to it.

There is a facility to provide a widget on the divider to collapse and restore either pane. You don’t need
it, but if you want to try this here, you can add the following statement after the JSplitPane construc-
tor call:

splitPane.setOneTouchExpandable(true);

Calling this method with the argument as false will remove the widget.

Once you have created the splitPane object, you add it to the dataPane panel with constraints that
make it fill the full width of the container.

Next you can add the font size selection mechanism.

1032

Chapter 20

Using a Spinner
You could use another list for this, but to broaden your horizons you’ll use another Swing component, a
javax.swing.JSpinner object. A JSpinner object displays a sequence of numbers or objects and the
user can select any one from the set. The spinner displays up and down arrows at the side of the spinner
for stepping through the list. You can also use the keyboard up and down arrow keys for this.

The sequence of choices in a spinner is managed by a javax.swing.SpinnerModel object. There are
three concrete spinner model classes defined in the javax.swing package. The one you use depends on
what sort of items you are choosing from:

Class Description

SpinnerNumberModel A model for a sequence of numbers. Numbers are stored internally
and returned as type Number, which is the superclass of the classes
encapsulating the primitive numerical types —Integer, Long, Dou-
ble, etc. Number is also the superclass of other classes such as
BigDecimal, but only the classes corresponding to the primitive
types are supported.

SpinnerListModel A model for a sequence defined by an array of objects of any type, or
by a java.util.List<> object. You could use this to use a sequence
of strings as the choices in the spinner.

SpinnerDateModel A model for a sequence of dates specified as java.util.Date
objects.

I won’t be able to go through all the detail on these, so let’s just take a JSpinner object using a
SpinnerNumberModel class to contain the sequence, as that fits with selecting a font size.

You’ll be using a fixed range of point sizes to choose from, so let’s add some constants to the
SketcherConstants class to define this:

public final static int pointSizeMin = 8; // Minimum font point size

public final static int pointSizeMax = 24; // Maximum font point size

public final static int pointSizeStep = 2; // Point size step

Thus the smallest point size that can be chosen is 8, the largest is 24, and the step from 8 onwards is 2.

You create a JSpinner object by passing a SpinnerModel reference to it. For example:

JSpinner spinner = new JSpinner(spinnerModel);

In the font dialog, the spinner model will be of type SpinnerNumberModel, and the constructor you’ll
use to create the object expects four arguments: a current value that will be the one displayed initially, a
minimum value, a maximum value, and the step size. Here’s how you can create that for the font dialog:

public FontDialog(SketchFrame window) {

// Initialization as before...

// Button panel code as before...

1033

Extending the GUI

// Set up the data input panel to hold all input components as before...

// Add the font choice prompt label as before...

// Set up font list choice component as before...

// Panel to display font sample as before...

// Create a split pane with font choice at the top as before...

// Set up the size choice using a spinner

JPanel sizePane = new JPanel(); // Pane for size choices

label = new JLabel(“Choose point size”); // Prompt for point size

sizePane.add(label); // Add the prompt

chooseSize = new JSpinner(new SpinnerNumberModel(fontSize,

pointSizeMin, pointSizeMax, pointSizeStep));

chooseSize.addChangeListener(this); sizePane.add(chooseSize);

// Add spinner to pane

gbLayout.setConstraints(sizePane, constraints); // Set pane constraints

dataPane.add(sizePane); // Add the pane

// Plus the code for the rest of the constructor...

}

Add import statements for the two new class names you are referencing here and a static import state-
ment for the constants in the SketcherConstants class:

import javax.swing.JSpinner;

import javax.swing.SpinnerNumberModel;

import static Constants.SketcherConstants.*;

You again create a panel to contain the spinner and its associated prompt, as it makes the layout easier.
The default FlowLayout in the panel is fine for what you want. You had better add a couple more mem-
bers to the FontDialog class to store the references to the chooseSize and fontDisplay objects:

private JSpinner chooseSize; // Font size options

private JLabel fontDisplay; // Font sample

A spinner generates an event of type ChangeEvent when an item is selected that will be sent to listeners
of type ChangeListener. The listener for our spinner is the FontDialog object so you need to specify
that it implements the ChangeListener interface:

class FontDialog extends JDialog

implements ActionListener, // For buttons etc.

ListSelectionListener, // For list box

ChangeListener { // For the spinner

The ChangeListener interface defines one method, stateChanged(), which has a parameter of type
ChangeEvent. You obtain a reference to the source of the event by calling getSource() for the event
object. You then need to cast the reference to the type of the source — in this case, JSpinner. For exam-
ple, you could code it like this:

public void stateChanged(ChangeEvent e) {

JSpinner source = (JSpinner)e.getSource();

// ...plus code to deal with the spinner event for source...

}

1034

Chapter 20

Of course, you want the value that is now selected in the spinner, and the getValue() method will
return a reference to this as type Object. Since you are using a SpinnerNumberModel object as the spin-
ner model, the object encapsulating the value will actually be of type Number, so you can cast the refer-
ence returned by getValue() to this type. You can get a little closer to what you want by amending our
stateChanged() method to:

public void stateChanged(ChangeEvent e) {

Number value = (Number)((JSpinner)e.getSource()).getValue();

}

You’re not really interested in a Number object though. What you want is the integer value it contains, so
you can store it in the fontSize member of the dialog and then derive a new font. The intValue()
method for the Number object will produce that. You can therefore arrive at the final version of
setChanged() that does what you want:

public void stateChanged(ChangeEvent e) {

fontSize = ((Number)(((JSpinner)e.getSource()).getValue())).intValue();

font = font.deriveFont((float)fontSize);

fontDisplay.setFont(font);

fontDisplay.repaint();

}

That first statement looks quite daunting but since you put it together one step at a time, you should see
that it isn’t really difficult — there are just a lot of parentheses to keep in sync. You now need to add
import statements for the ChangeListener interface and the ChangeEvent class:

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

Using Radio Buttons to Select the Font Style
Two JRadioButton objects will provide the means for selecting the font style. One will select bold or
not, and the other will select italic or not. A plain font is simply one that is neither bold nor italic. You
could use JCheckBox objects here if you prefer — they would work just as well. Here’s the code:

public FontDialog(SketchFrame window) {

// Initialization as before...

// Button panel code as before...

// Set up the data input panel to hold all input components as before...

// Add the font choice prompt label as before...

// Set up font list choice component as before...

// Panel to display font sample as before...

// Create a split pane with font choice at the top as before...

// Set up the size choice using a spinner as before...

// Set up style options using radio buttons

JRadioButton bold = new JRadioButton(“Bold”, (fontStyle & Font.BOLD) > 0);

JRadioButton italic = new JRadioButton(“Italic”,

(fontStyle & Font.ITALIC) > 0);

bold.addItemListener(new StyleListener(Font.BOLD)); // Add button listeners

italic.addItemListener(new StyleListener(Font.ITALIC));

JPanel stylePane = new JPanel(); // Create style pane

stylePane.add(bold); // Add buttons

stylePane.add(italic); // to style pane...

1035

Extending the GUI

gbLayout.setConstraints(stylePane, constraints); // Set pane constraints

dataPane.add(stylePane); // Add the pane

getContentPane().add(dataPane, BorderLayout.CENTER);

pack();

setVisible(false);

}

You can add another import statement, too:

import javax.swing.JRadioButton;

It looks like a lot of code, but it’s repetitive as you have two radio buttons. The second argument to the
JRadioButton constructor sets the state of the button. If the existing style of the current font is BOLD
and/or ITALIC, the initial states of the buttons will be set accordingly. You add a listener of type
StyleListener for each button, and you’ll add a definition for this type as an inner class to
FontDialog in a moment. Note that you pass the style constant that corresponds to the set state of the
button to the constructor for the listener.

The stylePane object presents the buttons using the default FlowLayout manager, and this pane is
added as the last row to dataPane. The final step is to add the dataPane object as the central pane in
the content pane for the dialog. The call to pack() lays out the dialog components with their preferred
sizes if possible, and the setVisible() call with the argument false means that the dialog is initially
hidden. Since this is a complex dialog, you won’t want to create a new object each time you want to dis-
play the font dialog. You’ll just call the setVisible() method for the dialog object with the argument
true when you want to display it.

Listening for Radio Buttons
The inner class, StyleListener, in the FontDialog class will work on principles that you have seen
before. A radio button (or a checkbox) generates events of type java.awt.ItemEvent, and the listener
class must implement the java.awt.ItemListener interface:

class StyleListener implements ItemListener {

public StyleListener(int style) {

this.style = style;

}

public void itemStateChanged(ItemEvent e) {

if(e.getStateChange()==ItemEvent.SELECTED) { // If style was selected

fontStyle |= style; // turn it on in the font style

} else {

fontStyle &= ~style; // otherwise turn it off

}

font = font.deriveFont(fontStyle); // Get a new font

fontDisplay.setFont(font); // Change the label font

fontDisplay.repaint(); // repaint

}

private int style; // Style for this listener

}

1036

Chapter 20

The constructor accepts an argument that is the style for the button, so the value of the member, style,
will be the value you want to set in the fontStyle member that you use to create a new Font object,
either Font.BOLD or Font.ITALIC. Since the listener for a particular button already contains the corre-
sponding style, the itemStateChanged() method that is called when an item event occurs just switches
the value of style in the fontStyle member of FontDialog either on or off, depending on whether
the radio button was selected or deselected. It then derives a font with the new style, sets it in the
fontDisplay label, and repaints it.

This code calls for two more import statements in the FontDialog source file:

import java.awt.event.ItemListener;

import java.awt.event.ItemEvent;

You have now completed the FontDialog class. If you have been creating the code yourself, now would
be a good time to try compiling the class to see what missing —import statements usually. All you need
now is some code in the SketchFrame class to make use of it.

Try It Out Using the Font Dialog
To get the font dialog operational in Sketcher, you’ll add a new menu, Options, to the menu bar with a
Choose font... menu item and install a listener for the menu item. To keeps things vaguely shipshape it
would be best to add the fragments of code in the SketchFrame constructor in the places where you do
similar things.

Create the Options menu with the following code in the SketchFrame constructor:

JMenu fileMenu = new JMenu(“File”); // Create File menu

JMenu elementMenu = new JMenu(“Elements”); // Create Elements menu

JMenu optionsMenu = new JMenu(“Options”); // Create options menu

JMenu helpMenu = new JMenu(“Help”); // Create Help menu

fileMenu.setMnemonic(‘F’); // Create shortcut

elementMenu.setMnemonic(‘E’); // Create shortcut

optionsMenu.setMnemonic(‘O’); // Create shortcut

helpMenu.setMnemonic(‘H’); // Create shortcut

You can add the menu item like this somewhere in the constructor:

// Add the font choice item to the options menu

fontItem = new JMenuItem(“Choose font...”);

fontItem.addActionListener(this);

optionsMenu.add(fontItem);

You can add a declaration for the fontItem member of the SketchFrame class by adding it to the exist-
ing declaration for the aboutItem, which is probably somewhere near the end in your file. It may take
some hunting to find it with the amount of code you now have in this class:

private JMenuItem aboutItem, fontItem;

1037

Extending the GUI

You need to add the Options menu to the menu bar before the Help menu to be consistent with convention:

menuBar.add(fileMenu); // Add the file menu

menuBar.add(elementMenu); // Add the element menu

menuBar.add(optionsMenu); // Add the options menu

You can create a FontDialog object by adding a statement to the end of the SketchFrame constructor:

fontDlg = new FontDialog(this); // Create the font dialog

You can reuse the FontDialog object as often as you want. When you need to display it, you simply call
its setVisible() method. Of course, you’ll declare fontDlg as a member of the SketchFrame class:

private FontDialog fontDlg; // The font dialog

You can modify the actionPerformed() method in the SketchFrame class to handle the events for the
new menu item:

public void actionPerformed(ActionEvent e) {

if(e.getSource() == aboutItem) {

// Create about dialog with the menu item as parent

JOptionPane.showMessageDialog(this, // Parent

“Sketcher Copyright Ivor Horton 2000”,// Message

“About Sketcher”, // Title

JOptionPane.INFORMATION_MESSAGE); // Message type

} else if(e.getSource() == fontItem) { // Set the dialog window position

Rectangle bounds = getBounds();

fontDlg.setLocation(bounds.x + bounds.width/3, bounds.y + bounds.height/3);

fontDlg.setVisible(true); // Show the dialog

}

}

The new else if block makes the dialog visible after setting its location in relation to the application
window. You’ll need an import statement for the Rectangle class name in the source file for
SketchFrame:

import java.awt.Rectangle;

If you recompile Sketcher, you will be able to play with fonts to your heart’s content. Figure 20-11 shows
what I mean.

How It Works
This last piece is relatively trivial. The additional menu is added to the menu bar just like the other
menus. The menu item is a JMenuItem object rather than an Action object and the
actionPerformed() method is called when the Choose font... menu item is clicked. This sets the top-
left corner of the dialog window one-third of the way in from the top and left sides of the application
window. It then calls setVisible() for the dialog object to display it.

1038

Chapter 20

Figure 20-11

Pop-Up Menus
The javax.swing package defines the JPopupMenu class, which represents a menu that you can pop up
at any position within a component, but conventionally you display it at the current mouse cursor posi-
tion when a particular mouse button is pressed, usually button 2. There are two constructors in the
PopupMenu class: one to which you pass a String object that defines a name for the menu, and a default
constructor that defines a menu without a name. If you specify a name for a pop-up menu with a state-
ment such as

generalPopup = new PopupMenu(“General”);

the name you supply is primarily for identification purposes and is not always displayed when the
menu is popped up: it depends on your environment. Under MS Windows, for example, it doesn’t
appear. This is different from a menu on a menu bar where the string you pass to the constructor is what
appears on the menu bar. Don’t forget to add an import statement for javax.swing.JPopupMenu.

Let’s add a pop-up menu to the SketchFrame class by adding a data member of type JPopupMenu:

private JPopupMenu popup = new JPopupMenu(“General”); // Window pop-up

1039

Extending the GUI

To populate a pop-up menu with menu items, you add JMenuItem objects by passing each of them to
the add() method for the JPopupMenu object. If you’re using Action objects because you also want to
implement toolbar buttons, you can create the JMenuItem object using a constructor that accepts a refer-
ence of type Action and then pass it to the add() method for the pop-up menu object. You can also pass
a String object to add(), which will create a JMenuItem object and add it to the pop-up. A reference to
the menu item object is always returned by the various overloaded add() methods. Handling the events
for the menu items is an identical process to that for regular menu items, and Action objects handle
their own events, as you have seen.

You’ll now add menu items to the pop-up that you have created as a member of a SketchFrame object
by adding the following code to the SketchFrame class constructor:

// Create pop-up menu

popup.add(new JMenuItem(lineAction));

popup.add(new JMenuItem(rectangleAction));

popup.add(new JMenuItem(circleAction));

popup.add(new JMenuItem(curveAction));

popup.add(new JMenuItem(textAction));

popup.addSeparator();

popup.add(new JMenuItem(redAction));

popup.add(new JMenuItem(yellowAction));

popup.add(new JMenuItem(greenAction));

popup.add(new JMenuItem(blueAction));

This adds the element menu items to the pop-up. You might want to add the font choice menu item to
the pop-up, but you must not try to add the same JMenuItem object to two different menus. You could
either create an Action object that would pop up the font dialog and create two menu item objects from
that, or you could create an independent menu item that did the same thing as the original when it was
clicked and add that to the pop-up. The former approach would be better because a single Action object
would handle events from either menu item.

Displaying a Pop-Up Menu
You can display a pop-up within the coordinate system of any component, by calling the show()
method for the JPopupMenu object. The method requires three arguments to be specified: a reference to
the parent component that is the context for the pop-up, and the x and y coordinates where the menu is
to be displayed, relative to the origin of the parent. For example:

generalPopup.show(view, xCoord, yCoord);

This displays the pop-up at position (xCoord, yCoord) in the coordinate system for the component, view.

A pop-up menu is usually implemented as a context menu. The principal idea of a context menu is that
it’s not just a single menu: It displays a different set of menu items depending on the context — that is,
what is under the mouse cursor when the button is clicked. The mouse button that you press to display
a context menu is sometimes called a pop-up trigger, simply because pressing it triggers the display of
the pop-up. On systems that support the notion of a pop-up trigger, the pop-up trigger is fixed, but it
can be different between systems. It is usually the right mouse button on a two- or three-button mouse
for right-handed users. On systems with a one-button mouse, you typically have to hold down a modi-
fier key while pressing the mouse button to fire the pop-up trigger.

1040

Chapter 20

The MouseEvent class has a special method, isPopupTrigger(), that returns true when the event
should display a pop-up menu. This method will return true only in the mousePressed() or
mouseReleased() methods. It will always return false in methods corresponding to other mouse
events. This method helps solve the problem of different mouse buttons being used on different systems
to display a pop-up. If you use this method to decide when to display a pop-up, you’ve got them cov-
ered — well, almost. You would typically use this with the following code to display a pop-up:

public void mouseReleased(MouseEvent e) {

if(e.isPopupTrigger()) {

// Code to display the pop-up menu...

}

}

I have shown conceptual code for the mouseReleased() method here. This would be fine for Windows,
but unfortunately it may not work on some other systems — Solaris, for example. This is because in
some operating system environments, the isPopupTrigger() returns true only when the button is
pressed, not when it is released. The pop-up trigger is not just a particular button — it is a either a
mouse-pressed event or a mouse-released event associated with a particular button. This implies that if
you want your code to work on a variety of systems using the “standard” mouse button to trigger the
pop-up in every case, you must implement the code to call isPopupTrigger() and pop the menu in
both the mousePressed() and mouseReleased() methods. The method will return true only in one
or the other. Of course, you could always circumvent this by ignoring convention and pop the menu for
a specific button press with code like this:

if((e.getButton() == e.BUTTON3) {

// Code to display the pop-up menu...

}

Now the pop-up would operate only with button 3, regardless of the convention for the underlying
operating system, but the user may not be particularly happy about having to use a different pop-up
trigger for your Java program compared to other applications on the same system.

Try It Out Displaying a Pop-Up Menu
In Sketcher, the pop-up menu would sensibly operate in the area where the sketch is displayed — in
other words, triggering the pop-up menu has to happen in the view. Assuming you have already added
the code to SketchFrame that will create the pop-up menu as I discussed earlier, you just need to add a
method to SketchFrame to make the pop-up available to the view:

// Retrieve the pop-up menu

public JPopupMenu getPopup() {

return popup;

}

Now a SketchView object can get a reference to the pop-up in the SketchFrame object by using the
application object to get to this method.

1041

Extending the GUI

To maintain proper cross-platform operation for Sketcher, you’ll implement the pop-up triggering in
both the mousePressed() and the mouseReleased() methods. To make it easier, you can implement
the processing of the pop-up trigger event in a separate method in the MouseHandler inner class to
SketchView:

// Process pop-up trigger event

public void processPopupTrigger(MouseEvent e) {

start = e.getPoint(); // Save the cursor position in start

theApp.getWindow().getPopup().show((Component)e.getSource(),

start.x, start.y);

start = null;

}

The response to the event is to display the pop-up menu at the position defined by start. You obtain a
reference to the JPopupMenu object from the application window object, which you access via the appli-
cation object reference that is stored in the view. You then call the show() method for the pop-up menu
object, passing a reference to the source of the event as the parent. Note that the method retrieves the
cursor position from the MouseEvent object. You could use the position stored in start by the
mousePressed() method, but if the event is associated with the mouse released event and the user
drags the cursor before releasing the button, the menu will appear at a different position from where the
button is released.

Here’s how mousePressed() should be implemented in the MouseHandler inner class to SketchView:

public void mousePressed(MouseEvent e) {

if(e.isPopupTrigger()) {

processPopupTrigger(e);

} else if((button1Down = (e.getButton() == MouseEvent.BUTTON1)) &&

(theApp.getWindow().getElementType() != TEXT)) {

start = e.getPoint(); // Save the cursor position in start

g2D = (Graphics2D)getGraphics(); // Get graphics context

g2D.setXORMode(getBackground()); // Set XOR mode

}

}

The method checks for a pop-up trigger event. If that’s what it is, the method calls the
processPopupTrigger() method to handle the event. If it’s not the pop-up trigger event, things pro-
cess exactly as before. The cursor position is now retrieved from the event object inside the body of the
second if statement.

Implementing the mouseReleased() method is just as easy:

public void mouseReleased(MouseEvent e) {

if(e.isPopupTrigger()) {

processPopupTrigger(e);

} else if(button1Down = (e.getButton()==MouseEvent.BUTTON1) &&

(theApp.getWindow().getElementType() != TEXT)) {

button1Down = false; // Reset the button 1 flag

if(tempElement != null) { // If there is an element...

theApp.getModel().add(tempElement); // ...add it to the model...

tempElement = null; // ...and reset the field

1042

Chapter 20

}

if(g2D != null) { // If there’s a graphics context

g2D.dispose(); // ...release the resource...

g2D = null; // ...and reset field to null

}

start = last = null; // Remove the points

}

}

If you recompile Sketcher and run it again, the pop-up menu should appear in response to a right-button
click, or whatever button triggers a context menu on your system. The way it looks on my system is
shown in Figure 20-12.

Figure 20-12

Note how you get the icons and the label for each of the menu items. This is because both are defined in
the Action objects that were used to generate the menu, and they have not been set to null by calling
the setIcon() method for the menu items.

How It Works
The isPopupTrigger() method for the MouseEvent object returns true when the button correspond-
ing to a context menu is pressed or released. In this case you call the processPopupTrigger() method
that you implemented to display the pop-up menu. When you click on a menu item in the pop-up, or
click elsewhere, the pop-up menu is automatically hidden. Now any element type or color is a couple of
clicks away.

This is just a pop-up menu, not a context menu. A context menu should be different depending on
what’s under the cursor. You’ll now look more closely at how you could implement a proper context
menu capability in Sketcher.

1043

Extending the GUI

Implementing a Context Menu
As a context menu displays a different menu depending on the context, it follows that the program
needs to know what is under the cursor at the time the pop-up trigger button is pressed. Let’s take the
specific instance of the view in Sketcher where you are listening for mouse events. You could define two
contexts for the cursor in the view — one when an already drawn element is under the cursor and
another when there is no element under the cursor. In the first context, you could display a special pop-
up menu that provides operations that apply specifically to the element under the cursor — with menu
items to delete or move the element, for example. In the second context, when there is no element under
the cursor, you could display the pop-up menu that you created in the previous example. The context
menu that will be displayed when an element is under the cursor is going to look like that shown in
Figure 20-13.

Figure 20-13

That’s where you’re headed, but there are a few bridges to be crossed on the way. For starters, if the con-
text menu is to be really useful, users will need to know which element is under the cursor before they
pop up the context menu, otherwise they can’t be sure to which element the pop-up menu operations
will apply, particularly when elements overlap on the screen. Deleting the wrong element could be irri-
tating to say the least.

What you need is some visual feedback to show when an element is under the cursor — highlighting the
element under the cursor by changing its color, for example.

Try It Out Highlighting an Element
You could draw an element in magenta rather than its normal color to highlight that it’s the one under
the mouse cursor. Every element will need a boolean field to indicate whether it is highlighted or not so
the object will know which color to use in the draw() method when drawing the element You can add
this variable as a field in the Element class:

protected boolean highlighted = false; // Highlight flag

1044

Chapter 20

You can add this line immediately following the statement for the other data members in the Element
class definition. The highlighted field will be inherited by all of the subclasses of Element.

You’ll need a method to set the highlighted flag in the Element class:

// Set or reset highlight color

public void setHighlighted(boolean highlighted) {

this.highlighted = highlighted;

}

This method will also be inherited by all of the subclasses of Element.

To implement the basis for getting highlighting to work, you need to change one line in the draw()
method for each of the subclasses of Element— that is, Element.Line, Element.Circle,
Element.Curve, Element.Rectangle, and Element.Text. The line to change is the one that sets the
drawing color — it’s the first line in each of the draw() methods. You should change it to:

g2D.setPaint(highlighted ? Color.MAGENTA : color);

Now each element can potentially be highlighted.

How It Works
The setHighlighted()method accepts a boolean value as an argument and stores it in the data mem-
ber highlighted. When you want an element to be highlighted, you just call this method with the argu-
ment as true. To switch highlighting off for an element, you call this method with the argument false.

Previously, the setPaint() statement just set the color stored in the data member color as the drawing
color. Now, if highlighted is true, the color will be set to magenta, and if highlighted is false, the
color stored in the data member color will be used.

To make use of highlighting to provide the visual feedback necessary for a user-friendly implementation
of the context menu, you need to determine at all times what is under the cursor. This means you must
track and analyze all mouse moves all the time!

Tracking Mouse Moves
Whenever the mouse is moved, the mouseMoved() method in the MouseMotionListener interface is
called. You can therefore track mouse moves by implementing this method in the MouseHandler class,
which is an inner class to the SketchView class. Before I get into that, I need to define what I mean by an
element being under the cursor, and more crucially, how you are going to find out to which element, if
any, this applies.

It’s not going to be too difficult. You can arbitrarily decide that an element is under the cursor when the
cursor position is inside the bounding rectangle for an element. This is not too precise a method, but it
has the great attraction that it is extremely simple. Precise hit-testing on an element would carry consid-
erably more processing overhead. Electing to add any greater complexity will not help you to under-
stand the principles here, so you’ll stick with the simple approach.

1045

Extending the GUI

So what is going to be the methodology for finding the element under the cursor? Brute force basically:
Whenever the mouse is moved, you can just search through the bounding rectangles for each of the ele-
ments in the model until you find one that encloses the current cursor position. You’ll then arrange for
the first element that you find to be highlighted. If you check all the elements in the model without find-
ing a bounding rectangle that encloses the cursor, then there isn’t an element under the cursor. The
mechanism for the various geometric elements is illustrated in Figure 20-14.

Figure 20-14

To record a reference to the element that is under the cursor, you’ll add a data member of type Element
to the SketchView class. If there isn’t an element under the cursor, you’ll make sure that this data mem-
ber is null.

Try It Out Referring to Elements
Add the following statement after the statement that declares the theApp data member in the
SketchView class definition:

private Element highlightElement; // Highlighted element

The mouseMoved() method is going to be called very frequently, so you must make sure it executes as
quickly as possible. This means that for any given set of conditions, you execute the minimum amount
of code. Here’s the implementation of the mouseMoved() method in the MouseHandler class in
SketchView:

Circle is under the
cursor here

Curve is under the
cursor here

Line is under the
cursor here

Rectangle is under
the cursor here

Nothing is under the
cursor here

bounding
rectangles

Element.Circle
Element.Curve

Element.Rectangle

Rectangle bounds = element.getBounds(); // Gets bounding rectangle
bounds.contains(cursor) returns true if cursor is in bounds

Element.Line

1046

Chapter 20

// Handle mouse moves

public void mouseMoved(MouseEvent e) {

Point currentCursor = e.getPoint(); // Get current cursor position

for(Element element : theApp.getModel()) { // Go through the list

if(element.getBounds().contains(currentCursor)) { // Under the cursor?

if(element==highlightElement) { // If it’s already highlighted

return; // we are done

}

// The element under the cursor is not highlighted

g2D = (Graphics2D)getGraphics(); // Get graphics context

// Un-highlight any old highlighted element

if(highlightElement!=null) { // If an element is highlighted

highlightElement.setHighlighted(false);// un-highlight it and

highlightElement.draw(g2D); // draw it normal color

}

element.setHighlighted(true); // Set highlight for new element

highlightElement = element; // Store new highlighted element

element.draw(g2D); // Draw it highlighted

g2D.dispose(); // Release graphic context resources

g2D = null;

return;

}

}

// Here there is no element under the cursor so...

if(highlightElement!=null) { // If an element is highlighted

g2D = (Graphics2D)getGraphics(); // Get graphics context

highlightElement.setHighlighted(false);// ...turn off highlighting

highlightElement.draw(g2D); // Redraw the element

highlightElement = null; // No element highlighted

g2D.dispose(); // Release graphic context resources

g2D = null;

}

}

To check that highlighting works, recompile Sketcher and run it again. If you draw a few elements, you
should see them change color as the cursor moves over them.

How It Works
This method is a fair amount of code so let’s work through it step by step. The first statement saves the
current cursor position in the local variable currentCursor. You use a collection-based for loop to iter-
ate over all the elements in the model. In the loop, you obtain the bounding rectangle for each element
by calling its getBounds() method, and then call the contains() method for the rectangle that is
returned with the current cursor position as the argument. This will return true if the rectangle encloses
the point, and false if it doesn’t. When you find an element under the cursor, it is quite possible that
the element is already highlighted because the element was found the last time the mouseMoved()
method was called. This will occur when you move the cursor within the rectangle bounding an ele-
ment. In this case you don’t need to do anything, so you return from the method.

1047

Extending the GUI

If the element found is not the same as last time, you obtain a graphics context object for the view
because you definitely need it to draw the new element you have found under the cursor in the high-
light color. You then check that the variable highlightElement is not null— it will be null if the cur-
sor newly entered the rectangle for an element and previously none were highlighted. If
highlightElement is not null, you must restore the normal color to the old element before you high-
light the new one. To do this you call its setHighlighted() method with the argument false, and
then call its draw() method. You don’t need to involve the paint() method for the view here since you
are not adding or removing elements — you are simply redrawing an element that is already displayed.
To highlight the new element, you call its setHighlighted() method with the argument true, and
then store a reference to the element in highlightElement and call its draw() method to get it drawn
in the highlight color. Finally, you release the graphics context resources by calling the dispose()
method for g2D, set the variable back to null, and return.

The next block of code in the method executes if you exit the for loop because no element is under the
cursor. In this case you must check if there was an element highlighted last time around. If there was,
you un-highlight it, redraw it in its normal color, and reset highlightElement to null.

Defining the Other Context Menu
You already have the menu defined in SketchFrame for when the cursor is not over an element. It’s sen-
sible to keep it there because the menu items are a subset of those from the application windows menus.
The context menu when the cursor is over an element will have a new set of menu items, specific to
operating on individual elements, so it can be defined in the view. All you need is the code to define the
new context menu — plus the code to decide which menu to display when isPopupTrigger() returns
true for a mouse event.

You already know that you will have four menu items in the element context menu:

❑ Move — This moves the element under the cursor to a new position. This operation works by
dragging it with the left mouse button down (button 1).

❑ Delete — This operation will delete the element under the cursor.

❑ Rotate — This operation will allow you to rotate the element under the cursor about the top-left
corner of its bounding rectangle by dragging it while holding button 1 (normally the left mouse
button) down.

❑ Send-to-back — This operation overcomes the problem of an element not being accessible,
never highlighted that is, because it is masked by the bounding rectangle of another element.

Since you highlight an element by searching the list from the beginning, an element towards the end
may never be highlighted if the rectangle for an earlier element completely encloses it. Moving the ear-
lier element that is hogging the highlighting to the end of the list will allow the formerly masked ele-
ment to be highlighted, so this is what the Send-to-back operation will do.

Try It Out Creating Context Menus
First, add the data members to the SketchView class that will store the element pop-up reference and
the JMenuItem objects that will be the pop-up menu items:

private JPopupMenu elementPopup = new JPopupMenu(“Element”);

private JMenuItem moveItem, deleteItem,rotateItem, sendToBackItem;

1048

Chapter 20

You must also add import statements for JPopupMenu and JMenuItem:

import javax.swing.JPopupMenu;

import javax.swing.JMenuItem;

You can create the elementPopup context menu in the SketchView constructor:

public SketchView(Sketcher theApp) {

this.theApp = theApp;

MouseHandler handler = new MouseHandler(); // create the mouse listener

addMouseListener(handler); // Listen for button events

addMouseMotionListener(handler); // Listen for motion events

// Add the pop-up menu items

moveItem = elementPopup.add(new JMenuItem(“Move”));

deleteItem = elementPopup.add(new JMenuItem(“Delete”));

rotateItem = elementPopup.add(new JMenuItem(“Rotate”));

sendToBackItem = elementPopup.add(new JMenuItem(“Send-to-back”));

// Add the menu item listeners

moveItem.addActionListener(this);

deleteItem.addActionListener(this);

rotateItem.addActionListener(this);

sendToBackItem.addActionListener(this);

}

You add the menu items using the add() method that accepts a JMenuItem argument, and returns a ref-
erence to the JMenuItem object that it creates. You create each JMenuItem object in the expression that is
the argument to the add() method. You then use the references to the JMenuItem objects to add the
view object as the listener for all the menu items in the pop-up.

You must make the SketchView class implement the ActionListener interface:

class SketchView extends JComponent

implements Observer, ActionListener {

You can add to SketchView the actionPerformed() method, which will handle action events from the
menu items:

// Handle context menu events

public void actionPerformed(ActionEvent e) {

Object source = e.getSource();

if(source == moveItem) {

// Process a move...

} else if(source == deleteItem) {

// Process a delete...

} else if(source == rotateItem) {

As with the new data members above, be careful to add this to the SketchView class
and not inside the inner MouseHandler class by mistake!

1049

Extending the GUI

// Process a rotate

} else if(source == sendToBackItem) {

// Process a send-to-back...

}

}

Of course, you’ll need two more import statements in the SketchView.java file:

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

To pop the menu you need to modify the code in the processPopupTrigger() method of the
MouseHandler inner class a little:

public void processPopupTrigger(MouseEvent e) {

start = e.getPoint(); // Save the cursor position in start

if(highlightElement == null) {

theApp.getWindow().getPopup().show((Component)e.getSource(),

start.x, start.y);

} else {

elementPopup.show((Component)e.getSource(), start.x, start.y);

}

start = null;

}

This just adds an if–else to display the element dialog when an element is highlighted. If you recom-
pile Sketcher you should get a different context menu depending on whether an element is under the
cursor or not.

How It Works
The processPopupTrigger() method in the MouseHandler inner class now pops one or other of the
two pop-ups you have, depending on whether the reference in highlightElement is null or not. The
processPopupTrigger() method will be called either by the mousePressed() method or the
mouseReleased() method, depending on how the pop-up trigger is defined in your environment. You
can select items from the general pop-up to set the color or the element type, but the element pop-up
menu does nothing at present. It just needs a few lines of code somewhere to do moves and rotations
and stuff. Don’t worry — it’ll be like falling off a log — but not so painful.

Deleting Elements
Let’s take the easiest one first — deleting an element. All that’s involved here is calling remove() for the
model object from the actionPerformed() method in SketchView. Let’s give it a try.

Try It Out Deleting Elements
The code you need to add to actionPerformed() in the SketchView class looks like this:

public void actionPerformed(ActionEvent e) {

Object source = e.getSource();

1050

Chapter 20

if(source == moveItem) {

// Process a move...

} else if(source == deleteItem) {

if(highlightElement != null) { // If there’s an element

theApp.getModel().remove(highlightElement); // then remove it

highlightElement = null; // Remove the reference

}

} else if(source == rotateItem) {

// Process a rotate

} else if(source == sendToBackItem) {

// Process a send-to-back...

}

}

This is a cheap operation requiring only six lines. Recompile, create a few elements, and then watch
them disappear before your very eyes with a right button click.

How It Works
After verifying in the actionPerformed() method that highlightElement is not null, you call the
remove() method that you added in the SketchModel class way back. This will delete the element from
the list, so when the view is repainted, it will no longer be displayed. The repaint occurs automatically
because the update() method for the view — the method that you implemented for the Observer inter-
face — will be called because the model has changed. Of course, you must remember to set
highlightElement to null too; otherwise, it could get drawn by a mouse handler even though it is no
longer in the model.

Let’s do another easy one — send-to-back.

Implementing the Send-to-Back Operation
The send-to-back operation is really an extension of the delete operation. You can move an element from
wherever it is in the list by deleting it and then adding it again at the end of the list.

Try It Out The Send-to-Back Operation
The actionPerformed() method in the SketchView class has the job of removing the highlighted ele-
ment from wherever it is in the model and then adding it back at the end:

public void actionPerformed(ActionEvent e) {

Object source = e.getSource();

if(source == moveItem) {

// (Process a move...)

} else if(source == deleteItem) {

// Code as inserted here earlier...

} else if(source == rotateItem) {

// (Process a rotate)

} else if(source == sendToBackItem) {

1051

Extending the GUI

if(highlightElement != null) {

theApp.getModel().remove(highlightElement);

theApp.getModel().add(highlightElement);

highlightElement.setHighlighted(false);

highlightElement = null;

repaint();

}

}

}

A little harder this time — eight lines of code. You can try this by drawing a few concentric circles, with
the outermost drawn first. An outer circle will prevent an inner circle from being highlighted, but apply-
ing send-to-back to the outer circle will make the inner circle accessible.

How It Works
This uses the remove() method in SketchModel to remove the highlighted element, and then calls the
add() method to put it back — it will automatically be added to the end of the elements in the list. You
switch off the highlighting of the element to indicate that it’s gone to the back of the queue, and reset
highlightElement back to null. You call repaint() for the view object to get the highlighted element
that you have reset drawn in its normal color.

You have run out of easy operations. You must now deal with a not quite so easy one — the move opera-
tion. To handle this you must look into a new topic — transforming the user coordinate system. If you
are not of a mathematical bent, some of what I’ll discuss here can sound complicated. But even if your
math is very rusty, you should not have too many problems. Like a lot of things, it’s the unfamiliarity of
the jargon that makes it seem more difficult than it is.

Transforming the User Coordinate System
I said when you started learning how to draw on a component that the drawing operations are specified
in a user coordinate system, and the user coordinates are converted to a device coordinate system. The
conversion of coordinates from the user system to the device system is taken care of by the methods in
the graphics context object that you use to do the drawing, and they do this by applying a transforma-
tion to the user coordinates. The term transformation refers to the computational operations that perform
the conversion.

By default, the origin, the (0, 0) point in the user coordinate system, corresponds to the (0, 0) point in the
device coordinate system. The axes are also coincident, too, with positive x heading from left to right,
and positive y from top to bottom. However, you can move the origin of the user coordinate system rela-
tive to its default position. Such a move is called a translation, and this is illustrated in Figure 20-15.

A fixed value, deltaX, say, is added to each x coordinate, and another value, deltaY, say, is added to
every y coordinate, and the effect of this is to move the origin of the user coordinate system relative to
the device coordinate system: Everything will be shifted to the right and down compared to where it
would have been without the translation. Of course, the deltaX and deltaY values can be negative, in
which case it would shift things to the left and up.

1052

Chapter 20

Figure 20-15

A translation is one kind of affine transformation. (Affine is a funny word. Some say it goes back to
Laurel and Hardy where Ollie says, “This is affine mess you’ve got us into,” but I don’t subscribe to
that.) An affine transformation is actually a linear transformation that leaves straight lines still straight
and parallel lines still parallel. As well as translations, there are other kinds of affine transformation that
you can define:

❑ Rotation — The user coordinates system is rotated through a given angle about its origin.

❑ Scale — The x and y coordinates are each multiplied by a scaling factor, and the multipliers for x
and y can be different. This enables you to enlarge or reduce something in size. If the scale factor
for one coordinate axis is negative, then objects will be reflected in the other axis. Setting the
scale factor for x coordinates to –1, for example, will make all positive coordinates negative and
vice versa, so everything is reflected in the y axis.

❑ Shear — This is perhaps a less familiar operation. It adds to each x coordinate a value that
depends on the y coordinate, and adds to each y coordinate a value that depends on the x coor-
dinate. You supply two values to specify a shear, sX and sY, say, and they change the coordi-
nates in the following way:

Each x coordinate becomes (x + sX * y)

Each y coordinate becomes (y + sY * x)

Device Coordinates

deltaY

here
deltaX

y

y

x

x

Device Coordinates

y

x

User Coordinates

Default mapping

y

x

User Coordinates

User Coordinates Translated by deltaX, deltaY

y

x

here

This appears…

This appears…

Default Mapping

1053

Extending the GUI

The effect of this can be visualized most easily if you first imagine a rectangle that is drawn nor-
mally. A shearing transform can squash it by tilting the sides — rather like when you flatten a
carton — but keep opposite sides straight and parallel. Figure 20-16 illustrates the three affine
transformations that I’ve just described.

Figure 20-16

Figure 20-16 shows:

❑ A rotation of -π/4 radians, which is the same as a rotation of –45 degrees. Rotation angles are
expressed in radians, and a positive angle rotates everything from the positive x-axis toward the
positive y-axis — therefore clockwise. The rotation in the illustration is negative and therefore
counterclockwise.

❑ A scaling transformation corresponding to an x scale of 2.5 and a y scale of 1.5

❑ A shearing operation where only the x coordinates have a shear factor. The factor for the y coor-
dinates is 0 so they are unaffected, and the transformed shape is the same height as the original.

The AffineTransform Class
In Java, the AffineTransform class in the java.awt.geom package represents an affine transformation.
Every Graphics2D graphics context has one. The default AffineTransform object in a graphics context
is the identity transform, which leaves user coordinates unchanged. It is applied to the user coordinate
system anyway for everything you draw, but all the coordinates for an entity that is displayed are unal-
tered by default. You can retrieve a copy of the current transform for a graphics context object by calling
its getTransform() method. For example:

Device Coordinates
x

y

Device CoordinatesUse
r C

oo
rd

ina
te

s

x

y

x

y

Device Coordinates
x

y
User Coordinates

What was like this
could appear like

this

What was here
now appears here What was like this

could appear like
this

ScalingRotation Shearing

x

y

User Coordinates
x

y

1054

Chapter 20

AffineTransform at = g2D.getTransform(); // Get current transform

While this retrieves a copy of the current transform for a graphics context, you can also replace it by
another transform object:

g2D.setTransform(at);

You can retrieve the transform currently in effect with getTransform(), set it to some other operation
before you draw some shapes, and then restore the original transform later with setTransform() when
you’re finished. The fact that getTransform() returns a reference to a copy, rather than a reference to
the original transform object, is important. It means you can alter the existing transform and then restore
the copy later.

Although the default transform object for a graphics context leaves everything unchanged, you could set
it to do something by calling one of its member functions. All of these have a return type of void, so
none of them return anything:

Transform Default Description

setToTranslation(This method makes the transform a translation of deltaX in x and
double deltaX, deltaY in y. This replaces whatever the previous transform was
double deltaY) for the graphics context. You could apply this to the transform for

a graphics context with the statements:

// Save current transform and set a new one

AffineTransform at = g2D.getTransform();

at.setToTranslation(5.0, 10.0);

The effect of the new transform will be to shift everything that is
drawn in the graphics context g2D 5.0 to the right and down by
10.0. This will apply to everything that is drawn in g2D subse-
quent to the statement that sets the new transform.

setToRotation(You call this method for a transform object to make it a rotation of
double angle) angle radians about the origin. This replaces the previous trans-

form. To rotate the axes 30 degrees clockwise, you could write:

g2D.getTransform().setToRotation(30*Math.PI/180);

This statement gets the current transform object for g2D and sets it
to be the rotation specified by the expression 30*Math.PI/180.
Since (radians is 180 degrees, this expression produces the equiv-
alent of 30 degrees measured in radians.

Table continued on following page

1055

Extending the GUI

Transform Default Description

setToRotation(This method defines a rotation of angle radians about the point
double angle, deltaX,deltaY. It is equivalent to three successive transform
double deltaX, operations — a translation by deltaX, deltaY, then a rotation
double deltaY) through angle radians about the new position of the origin, and

then a translation back by -deltaX,-deltaY to restore the previ-
ous origin point.

You could use this to draw a shape rotated about the shape’s ref-
erence point. For example, if the reference point for a shape were
at shapeX,shapeY, you could draw the shape rotated through (/3
radians with the following:

g2D.getTransform().setToRotation(Math.PI/3,

shapeX, shapeY);

// Draw the shape...

The coordinate system has been rotated about the point
shapeX,shapeY and will remain so until you change the transfor-
mation in effect. You would probably want to restore the original
transform after drawing the shape rotated.

setToScale(This method sets the transform object to scale the x coordinates by
double scaleX, scaleX, and the y coordinates by scaleY. To draw everything
double scaleY) half scale you could set the transformation with the following

statement:

g2D.getTransform().setToScale(0.5, 0.5);

setToShear(The x coordinates are converted to x+shearX*y, and the
double shearX, y coordinates are converted to y+shearY*x.
double shearY)

All of the methods that I’ve discussed here replace the transform in an AffineTransform object. You
can modify the existing transform object in a graphics context, too.

Modifying the Transformation for a Graphics Context
Modifying the current transform for a Graphics2D object involves calling a method for the Graphics2D
object. The effect in each case is to add whatever transform you are applying to whatever the transform
did before. You can add each of the four kinds of transforms that I discussed before by using the follow-
ing methods that are defined in the Graphics2D class:

translate(double deltaX, double deltaY)

translate(int deltaX, int deltaY)

rotate(double angle)

rotate(double angle, double deltaX, double deltaY)

1056

Chapter 20

scale(double scaleX, double scaleY)

shear(double shearX, double shearY)

Each of these adds or concatenates the transform specified to the existing transform object for a
Graphics2D object. Therefore, you can cause a translation of the coordinate system followed by a rota-
tion about the new origin position with the following statements:

g2D.translate(5, 10); // Translate the origin

g2D.rotate(Math.PI/3); // Clockwise rotation 60 degrees

g2D.draw(line); // Draw in translate and rotated space

Of course, you can apply more than two transforms to the user coordinate system — as many as you like.
However, it is important to note that the order in which you apply the transforms matters. To see why,
look at the example shown in Figure 20-17.

Figure 20-17

This shows just two transforms in effect, but it should be clear that the sequence in which they are
applied makes a big difference. This is because the second transform is always applied relative to the
new position of the coordinate system after the first transform has been applied. If you need more con-
vincing that the order in which you apply transforms matters, you can apply some transforms to your-
self. Stand with your back to any wall in the room. Now apply a translation — take three steps forward.
Next apply a rotation — turn through 45 degrees clockwise. Make a mental note of where you are. If you
now go back and stand with your back to the wall in the original position and first turn through 45
degrees before you take the three steps forward, you will clearly be in quite a different place in the room
from the first time around.

Next on your affine tour — how you can create completely new AffineTransform objects.

Device Coordinates

Translate by 0,deltaY
Rotate –pi/4

x

y

x

y

Use
r C

oo
rd

ina
te

s

Device Coordinates

Rotate –pi/4
Translate by 0,deltaY

x

y

x

y

Use
r C

oo
rd

ina
te

s

1057

Extending the GUI

Creating AffineTransform Objects
Of course, there are constructors for AffineTransform objects: the default “identity” constructor and a
number of other constructors, but I don’t have space to go into them here. The easiest way to create
transform objects is to call a static member of the AffineTransform class. There are four static meth-
ods corresponding to the four kinds of transforms that I discussed earlier:

getTranslateInstance(double deltaX, double deltaY)

getRotateInstance(double angle)

getScaleInstance(double scaleX, double scaleY)

getShearInstance(double shearX, double shearY)

Each of these returns an AffineTransform object containing the transform that you specify by the argu-
ments. To create a transform to rotate the user space by 90 degrees, you could write:

AffineTransform at = AffineTransform.getRotateInstance(Math.PI/2);

Once you have an AffineTransform object, you can apply it to a graphics context by passing it as an
argument to the setTransform() method. It has another use, too: You can use it to transform a Shape
object. The createTransformedShape() method for the AffineTransform object does this. Suppose
you define a Rectangle object with the following statement:

Rectangle rect = new Rectangle(10, 10, 100, 50);

You now have a rectangle that is 100 wide by 50 high, at position (10, 10). You can create a transform
object with the statement:

AffineTransform at = getTranslateInstance(25, 30);

This is a translation in x of 25, and a translation in y of 30. You can create a new Shape object from the
original rectangle with the statement:

Shape transRect = at.createTransformedShape(rect);

The new transRect object will look the same as the original rectangle but translated by 25 in x and 30
in y, so its top-left corner will now be at (35, 40). Figure 20-18 illustrates this operation.

However, although it will still look like a rectangle, it will not be a Rectangle object. The
createTransformedShape() method always returns a GeneralPath object since it has to work with
any transform. This is because some transformations will deform a shape — applying a shear to a rectan-
gle, for example, results in a shape that is no longer a rectangle. The method also has to be able to apply
any transform to any Shape object, and returning a GeneralPath shape makes this possible.

Let’s try some of this out. A good place to do this is with the Sketcher shape classes. At the moment you
draw each shape or text element in the place where the cursor happens to be. Let’s use a translation to
change how this works. You can redefine each nested class to Element so that it translates the user coor-
dinate system to where the shape should be and then draws the shape that it represent at the origin,
(0, 0). You could try to implement this yourself as an exercise before reading on. You just need to apply
some of the transform methods I have been discussing.

1058

Chapter 20

Figure 20-18

Try It Out Translation
To make this work you’ll need to save the position for each element that is passed to the element
constructor — this is the start point recorded in the mousePressed() method — and use this to create a
translation transform in the draw() method for the element. Since you are going to store the position of
every class object that has Element as a base, you might as well store the location in a data member of
the base class. You can modify the Element class to do this:

// import statements as before...

public abstract class Element {

public Element(Color color) {

this.color = color;

}

public Color getColor(){

return color;

}

// Set or reset highlight color

public void setHighlighted(boolean highlighted) {

this.highlighted = highlighted;

}

User Coordinates

rect

100

25
50

10,10

3
0

AffineTransform at = getTranslateInstance(25, 30);

Shape transRect = at.createNewShape(rect);

x

y

35,40

transRect

1059

Extending the GUI

// Get the current position of the element

public Point getPosition() {

return position;

}

public abstract java.awt.Rectangle getBounds();

public abstract void modify(Point start, Point last);

public abstract void draw(Graphics2D g2D);

protected Color color; // Color of a shape

protected boolean highlighted = false; // Highlight flag

final static Point origin = new Point(); // Point 0,0

protected Point position; // Element position

// Definitions for the shape classes...

}

You might consider passing the start point to the Element constructor, but this wouldn’t always work.
This is because you need to figure out what the reference point is in some cases — for rectangles, for
example. The position of a rectangle will always be the top-left corner, but this is not necessarily the start
point. A method to retrieve the position of an element has been added, as I’m sure you are going to need
it. You also have added another member, origin, which is the point (0, 0). This will be useful in all the
derived classes, as you’ll now draw every element at that point. Since you only need one, it is static,
and since you won’t want to change it, it is final.

Let’s start with the nested class, Line.

Translating Lines
You need to update the constructor first of all:

public Line(Point start, Point end, Color color) {

super(color);

position = start;

line = new Line2D.Double(origin, new Point(end.x – position.x,

end.y – position.y));

}

You’ve saved the point start in position and created the Line2D.Double shape as the origin. Of
course, you have to adjust the coordinates of the end point so that it is relative to (0, 0).

You can now implement the draw() method to use a transform to move the coordinate system to where
the line should be drawn. You can economize on the code in the element classes a little by thinking about
this because a lot of the code is essentially the same. Here’s how you would implement the method for
the Element.Line class directly:

public void draw(Graphics2D g2D) {

g2D.setPaint(highlighted ? Color.MAGENTA : color); // Set the line color

AffineTransform old = g2D.getTransform(); // Save the current transform

g2D.translate(position.x, position.y); // Translate to position

g2D.draw(line); // Draw the line

g2D.setTransform(old); // Restore original transform

}

1060

Chapter 20

Before you expedite this, let’s cover what it does. To draw the line in the right place, you have to apply a
translation to the coordinate system before the draw() operation. Saving a copy of the old transform is
most important, as that enables you to restore the original scheme after you’ve drawn the line. If you
don’t do this, subsequent draw operations in the same graphics context will have more and more trans-
lations applied cumulatively, so objects get further and further away from where they should be. Only
one line of code here involves the element itself, however, and that is the following statement:

g2D.draw(line); // Draw the line

All the rest will be common to most of the types of shapes — text being the sole exception. You could
add an overloaded draw() method to the base class Element that you can define like this:

protected void draw(Graphics2D g2D, Shape element) {

g2D.setPaint(highlighted ? Color.MAGENTA : color); // Set the element color

AffineTransform old = g2D.getTransform(); // Save the current transform

g2D.translate(position.x, position.y); // Translate to position

g2D.draw(element); // Draw the element

g2D.setTransform(old); // Restore original transform

}

You’ll need to add an import for java.awt.geom.AffineTransform. This draw() method will draw
any Shape object after applying a translation to the point position. You can now call this method from
the draw() method in the Element.Line class:

public void draw(Graphics2D g2D) {

draw(g2D, line); // Call base draw method

}

You can now go ahead and implement the draw() method in exactly the same way for all the nested
classes to Element, with the exception of the Element.Text class. Just pass the underlying Shape refer-
ence for each class as the second argument to the overloaded draw() method. You can’t use the base
class helper method in the Element.Text class because text is not a Shape object. You’ll have to treat
the class defining text as a special case, but let’s complete the process for drawing the geometric shapes
first.

You must think about the bounding rectangle for a line now. You don’t want the bounding rectangle for
a line to be at (0, 0). You want it to be defined in terms of the coordinate system before it is translated.
This is because no transforms are in effect when you use it for highlighting. For highlighting of elements
to work, the bounding rectangle must be in the same reference frame.

This means that for a line, for example, you must apply the translation to the bounding rectangle that
corresponds to the Line2D.Double shape. A base class helper method will come in handy here, too:

protected java.awt.Rectangle getBounds(java.awt.Rectangle bounds) {

AffineTransform at = AffineTransform.getTranslateInstance(position.x,

position.y);

return at.createTransformedShape(bounds).getBounds();

}

Add the definition of this method to the code for the Element class.

1061

Extending the GUI

You first create an AffineTransform object that applies a translation to the point position. Then you
apply the createTransformedShape() method to the rectangle that is passed as the argument —
which will be the bounding rectangle for a shape at (0, 0); this produces a corresponding shape
translated to its proper position. Even though you get a GeneralPath object back from the
createTransformedShape() method, you can get a rectangle from that quite easily by calling
its getBounds() method. Thus our helper method accepts a reference to an object of type
java.awt.Rectangle and returns a reference to the rectangle that results from translating this to the
point position. This is precisely what you want to do with the bounding rectangles you get with the
shapes defined at the origin. You can now use this to implement the getBounds() method for the
Element.Line class:

public java.awt.Rectangle getBounds() {

return getBounds(line.getBounds());

}

You just pass the reference to the line member of the class as the argument to the base class version of
getBounds() and return the rectangle that is returned by that method. The getBounds() methods for
the nested classes Rectangle, Circle, and Curve will be essentially the same — just change the argu-
ment to the base class getBounds() call to the Shape reference corresponding to each class.
Implementing the getBounds() method for the Text class is slightly different, but still easy; you can
just pass the bounds member of that class as the argument to the base class getBounds() method.

You must also update the modify() method, and this is going to be specific to each class. To adjust the
end point of a line so that it is relative to the start point at the origin, you must change the method in the
Element.Line class as follows:

public void modify(Point start, Point last) {

line.x2 = last.x – position.x;

line.y2 = last.y – position.y;

}

That’s the Element.Line class complete. You can apply essentially the same thing to all the other
classes in the Element class.

Translating Rectangles
Here are the changes to the Element.Rectangle constructor:

public Rectangle(Point start, Point end, Color color) {

super(color);

position = new Point(Math.min(start.x, end.x),

Math.min(start.y, end.y));

rectangle = new Rectangle2D.Double(origin.x,

origin.y,

Math.abs(start.x – end.x), // Width

Math.abs(start.y – end.y)); // & height

}

The expressions for the coordinates of the point position ensure that you set it as the location of the
top-left corner. The rectangle object is defined with its top-left corner at the origin, and its width and
height as before.

1062

Chapter 20

You have to adjust the modify() method so that it adjusts the location stored in position and leaves
the rectangle defined at the origin:

public void modify(Point start, Point last) {

position.x = Math.min(start.x, last.x);

position.y = Math.min(start.y, last.y);

rectangle.width = Math.abs(start.x – last.x);

rectangle.height = Math.abs(start.y – last.y);

}

You should already have added the revised version of the draw() and getBounds() methods for an
Element.Rectangle object essentially the same as that for lines.

Translating Circles
The Element.Circle class constructor is also very easy:

public Circle(Point center, Point circum, Color color) {

super(color);

// Radius is distance from center to circumference

double radius = center.distance(circum);

position = new Point(center.x – (int)radius,

center.y – (int)radius);

circle = new Ellipse2D.Double(origin.x, origin.y, // Position – top-left

2.*radius, 2.*radius); // Width & height

}

The radius is calculated as before, and you make the top-left corner of the Ellipse2D.Double object
the origin point. Thus position is calculated as for the top-left corner in the previous version of the
constructor.

You can adjust the modify() method for the Element.Circle class to record the new coordinates of
position:

public void modify(Point center, Point circum) {

double radius = center.distance(circum);

position.x = center.x – (int)radius;

position.y = center.y – (int)radius;

circle.width = circle.height = 2*radius;

}

The draw() and getBounds() methods are already done, so it’s curves next.

Translating Curves
The Element.Curve class is just as simple:

public Curve(Point start, Point next, Color color) {

super(color);

curve = new GeneralPath();

1063

Extending the GUI

position = start;

curve.moveTo(origin.x, origin.y);

curve.lineTo(next.x – position.x,

next.y – position.y);

}

You store the start point in position, and create the curve starting at (0, 0). The end point has to be
adjusted so that it is defined relative to (0, 0).

Adding a new segment in the modify() method also has to be changed to take into account the new ori-
gin for the curve relative to the start point:

public void modify(Point start, Point next) {

curve.lineTo(next.x – start.x,

next.y – start.y);

}

You just subtract the coordinates of the original start point that you saved in position from the coordi-
nates of the point next. The methods for drawing the curve and getting the bounding rectangle have
already been updated, so the last piece is the Element.Text class.

Translating Text
The first step is to remove the declaration for the member position from this class, as you’ll now be
using the member of the same name that is inherited from the base class.

The only changes you need to make to the constructor are as follows:

public Text(Font font, String text, Point position,

Color color, java.awt.Rectangle bounds) {

super(color);

this.font = font;

this.position = position;

this.position.y -= (int)bounds.getHeight();

this.text = text;

this.bounds = new java.awt.Rectangle(origin.x, origin.y,

bounds.width, bounds.height);

}

The bounding rectangle for the text object now has its top-left corner at the origin. The point position
that defines where the text is to be drawn is set to correspond to the top-left corner of the rectangle
bounding the text, to be consistent with the way it is defined for the other elements. You’ll need to take
account of this in the implementation of the draw() method because the drawString() method expects
the position for the text to be the bottom-left corner:

public void draw(Graphics2D g2D) {

g2D.setPaint(highlighted ? Color.MAGENTA : color);

Font oldFont = g2D.getFont(); // Save the old font

g2D.setFont(font); // Set the new font

1064

Chapter 20

AffineTransform old = g2D.getTransform(); // Save the current transform

g2D.translate(position.x, position.y); // Translate to position

g2D.drawString(text, origin.x, origin.y+(int)bounds.getHeight());

g2D.setTransform(old); // Restore original transform

g2D.setFont(oldFont); // Restore the old font

}

The transformation that you apply in the draw() method here is essentially the same as for the other
classes. You now add the height of the bounding rectangle to the y coordinate of position in the argu-
ment to drawString(). This specifies the bottom-left corner of the first text character.

You can now recompile Sketcher for another trial. If you have done everything right it should still work
as before.

How It Works
All the classes defining elements now create the elements at the origin and store their location in a mem-
ber, position, that is inherited from the base class, Element. The draw methods all apply a transform
to move the coordinate system to the point stored in position before drawing the element. The draw()
methods then restore the original transform to leave the graphics context unchanged. Each of the
getBounds() methods returns a bounding rectangle in the original untransformed coordinate system,
because that is the context in which it will be used. You are now ready to try moving elements around.

Moving an Element
Now you can implement the move operation that you provided for in the context menu. Taking the trou-
ble to define all the elements relative to the origin and using a transform to position them correctly really
pays off when you want to apply other transformations to the elements. You can add a move() method
to the base class Element that will move any element, and the body of the method is just two lines of
code:

// Move an element

public void move(int deltax, int deltay) {

position.x += deltax;

position.y += deltay;

}

Let’s review the process that you be implementing to move an element. From a user’s point of view, to
move an element you just click on the Move menu item in the context menu and then drag the high-
lighted element to where you want it to be with button 1 held down.

In programming terms, moving an element will be initiated in the actionPerformed() method in
SketchView that responds to a menu selection. When the Move menu item is clicked, you’ll set the
operating mode to what you’ll define as MOVE mode, so that you can detect this in the mouse handler
methods that will expedite a move. The Rotate menu will work in exactly the same way by setting a
ROTATE mode. To accommodate this you’ll add a new member, mode, of type int to the SketchView
class that will store the current operating mode. By default, it will be NORMAL.

Add the following member declaration to SketchView:

private int mode = NORMAL;

1065

Extending the GUI

You’ll add the definitions of the constants that identify these operating modes to the
SketcherConstants class in the Constants package by adding the following statements:

// Operating modes

public final static int NORMAL = 0;

public final static int MOVE = 1;

public final static int ROTATE = 2;

When you set the operating mode to other than NORMAL, the methods that deal with mouse events will
need to know to which element the mode applies, so you’ll add another member to SketchView to
record this:

private Element selectedElement;

Now you can change the actionPerformed() method in the SketchView class as follows:

public void actionPerformed(ActionEvent e) {

Object source = e.getSource();

if(source == moveItem) {

mode = MOVE;

selectedElement = highlightElement;

} else if(source == deleteItem) {

if(highlightElement != null) { // If there’s an element

theApp.getModel().remove(highlightElement); // then remove it

highlightElement = null; // Remove the reference

}

} else if(source == rotateItem) {

mode = ROTATE;

selectedElement = highlightElement;

} else if(source == sendToBackItem) {

if(highlightElement != null) {

theApp.getModel().remove(highlightElement);

theApp.getModel().add(highlightElement);

highlightElement.setHighlighted(false);

highlightElement = null;

repaint();

}

}

All moving of the highlighted element will be managed in the mouseDragged() method in the
MouseHandler inner class to SketchView. Figure 20-19 illustrates how it will work.

Each move will be from the previous cursor position stored in start to the current cursor position when
the MOUSE_DRAGGED event occurred. The current cursor position will be obtained by calling the
getPoint() method for the event object passed to the mouseDragged() method. Once each mouse
move has been processed, the current cursor position will then be stored in the variable start, ready for
the next event. For each MOUSE_DRAGGED event, you’ll move the element the distance between succes-
sive cursor positions.

1066

Chapter 20

Figure 20-19

Try It Out Moving Elements
Since the element classes are equipped to move, and you have kitted out SketchView to handle
the menu item action, you just need to add the code to the methods in MouseHandler. The
mousePressed() method records the start point for a move, and it also sets up the XOR mode for
drawing. That’s precisely what you’ll need to move or rotate elements; geometric elements are okay.
However, you also want to move or rotate text, and for this to work the mousePressed() method will
have to set XOR mode for a TEXT element, too. This is simple to fix:

public void mousePressed(MouseEvent e) {

if(e.isPopupTrigger()) {

processPopupTrigger(e);

} else if((button1Down = (e.getButton() == MouseEvent.BUTTON1))) {

start = e.getPoint(); // Save the cursor position in start

g2D = (Graphics2D)getGraphics(); // Get graphics context

g2D.setXORMode(getBackground()); // Set XOR mode

}

}

All that was necessary was to remove the test for TEXT mode in the else if condition. Now XOR mode
is set whenever button 1 is pressed.

Move operation
ends here

last point
start point

start point
last point

last point

deltaY

deltaXdeltaX

deltaY

For each mouse
dragged event

deltaX is last.x - start.x
deltaY is last.y - start.y

and

start is set to last for
the next event.

mouseDragged()

mouseDragged()

mouseDragged()

Initial position
start

1067

Extending the GUI

You have to test for the setting of mode in the mouseDragged() method, and in principle, execute differ-
ent code depending on what it is. You have three possibilities: NORMAL, where you do as you did before;
MOVE, where you’ll execute a move operation; and ROTATE, where you’ll execute a rotate operation,
which I’ll come to later. Here’s the new version of mouseDragged() to accommodate moving elements:

public void mouseDragged(MouseEvent e) {

last = e.getPoint(); // Save cursor position

if(button1Down && (theApp.getWindow().getElementType() != TEXT)

&& (mode == NORMAL)) {

if(tempElement == null) { // Is there an element?

tempElement = createElement(start, last); // No, so create one

} else {

tempElement.draw(g2D); // Yes – draw to erase it

tempElement.modify(start, last); // Modify it

}

tempElement.draw(g2D); // and draw it

} else if(button1Down && mode == MOVE && selectedElement != null) {

selectedElement.draw(g2D); // Draw to erase the element

selectedElement.move(last.x-start.x, last.y-start.y); // Move it

selectedElement.draw(g2D); // Draw in its new position

start = last; // Make start current point

}

}

Now the method only executes the previous code in NORMAL mode. For MOVE mode, if button 1 is down
and there is an element selected to move, you move it by erasing it at the current position, moving the
element by calling its move() method, and drawing it at the new position. The current last will be
start for the next MOUSE_DRAGGED event.

The final alterations to the code occur in the mouseReleased() method:

public void mouseReleased(MouseEvent e) {

if(e.isPopupTrigger()) {

processPopupTrigger(e);

} else if((e.getButton()==MouseEvent.BUTTON1) &&

(theApp.getWindow().getElementType() != TEXT) && mode == NORMAL) {

button1Down = false; // Reset the button 1 flag

if(tempElement != null) {

theApp.getModel().add(tempElement); // Add element to the model

tempElement = null; // No temporary element now stored

}

} else if((e.getButton()==MouseEvent.BUTTON1) &&

(mode == MOVE || mode == ROTATE)) {

button1Down = false; // Reset the button 1 flag

if(selectedElement != null) {

repaint();

}

mode = NORMAL;

}

if(g2D != null) {

1068

Chapter 20

g2D.dispose(); // Release graphic context resource

g2D = null; // Set it to null

}

start = last = null; // Remove the points

selectedElement = tempElement = null; // Reset elements

}

The last block of code is not entirely new — some of it has been relocated from earlier in the code for the
previous version. You have an extra condition in the original if expression to check for NORMAL mode.
The next if tests for MOVE mode or ROTATE mode because in either case you will have changed an ele-
ment by dragging it around, so the view will need to be redrawn. This is the one place where you must
do this explicitly because the model is not aware of these changes. If selectedElement is not null, you
call repaint() for the view to get it redrawn, and you restore NORMAL mode. Outside of all the ifs you
reset everything back to null.

If you recompile Sketcher and rerun it, you can now produce sketches like the one shown of Figure 20-20.

Figure 20-20

How It Works
Using a transform to position each element means that expediting a move operation consists of just
altering the position member of an element. The move operation depends on setting a MOVE mode for
the mouse event-handling methods to respond to. A move for each element is the same: drawing the ele-
ment in XOR mode in its original position to erase it, moving it, and then drawing it again in the new
position. You may see pixels left behind as you move elements, particularly text.

This is due to rounding in the floating-point operations mapping user coordinates to device coordinates.
They all disappear when the move is complete and the whole picture is redrawn.

Now that you have made Move work, Rotate will be a piece of cake.

1069

Extending the GUI

Rotating Elements
Clearly you are going to make use of another transform to implement this. You know how to create a
rotation transform, so all you need to figure out is the mechanics of how the user accomplishes the rota-
tion of an element.

The first step is already in place — the actionPerformed() method in SketchView already sets
ROTATE mode in response to the Rotate menu action. The user will then drag the element to the angle
required with the mouse, while holding button 1 down. You need to work out the rotation angle for each
MOUSE_DRAGGED event. Figure 20-21 shows what happens when the mouse is dragged for a rotation.

Figure 20-21

The angle in Figure 20-21 is exaggerated so you can see what is going on. The mousePressed() method
is called when the button is first pressed at some arbitrary position, and the cursor position is recorded
in start. When the mouseDragged() method is called, you record the cursor position in last, and you
now need to calculate angle. You must apply a little high school math to get this, which you can ignore
if your recall of trigonometry is nonexistent.

You can get the length of the perpendicular from the point start in Figure 20-21 to the line extending
from position to last by using a static method in the Line2D class:

double perp = Line2D.ptLineDist(position.x, position.y,

last.x, last.y,

start.x, start.y);

mousePressed()

last

start

angle
angle

position

mouseDragged()
sin(angle) = perp/hypotenuse

angle = sin–1 (perp/hypotenuse)

Therefore:

pe
rp

hypotenuse

1070

Chapter 20

The ptLineDist() method calculates the perpendicular distance of the point specified by the last two
arguments to the line specified by the first four arguments — the first pair of arguments being the coor-
dinates of the beginning of the line, and the second pair being the coordinates of the end point.

You know how to get the distance from position to start. You just apply the distance() method
that is defined in the Point class:

double hypotenuse = position.distance(start);

From Figure 20-21 you can see that you can calculate angle as:

sin-1(perp/hypotenuse)

This comes from the definition of what the sine of an angle is. The Math class provides a method to cal-
culate sin-1 values (also called arcsine values), so you can calculate angle as:

double angle = Math.asin(perp/hypotenuse);

The asin() method returns an angle in radians between -(/2 and (/2, which is fine for the situation you
are dealing withh. You are unlikely to create an angle outside this range for a mouseDragged() event
unless there is something seriously awry with your PC.

Of course, you need to know which way the rotation is going, clockwise or counterclockwise. Another
static method in the Line2D class can help out here. The relativeCCW() method determines where a
point lies with respect to a line. If you have to rotate the line clockwise to reach the point, the method
returns –1, and if you have to rotate the line counterclockwise, it returns +1. You can use this method to
test whether the point last is clockwise or counterclockwise with respect to the line from position to
start. Since angles rotating the coordinate system clockwise are positive, you can calculate a suitably
signed value for angle with the following statement:

double angle = -Line2D.relativeCCW(position.x, position.y,

start.x, start.y,

last.x, last.y)*Math.asin(perp/hypotenuse);

The minus sign is necessary because the method returns –1 when last is clockwise with respect to the
line from position to start. That’s all the math you need. Let’s do it.

Try It Out Rotating Elements
To deal with ROTATE mode in the mouseDragged() method, you can add an extra else if clause after
the one you added for MOVE:

} else if(button1Down && mode == ROTATE && selectedElement != null) {

selectedElement.draw(g2D); // Draw to erase the element

selectedElement.rotate(getAngle(selectedElement.getPosition(),

start, last));

selectedElement.draw(g2D); // Draw in its new position

start = last; // Make start current point

}

After drawing the element to erase it, you call its rotate() method to rotate it and then redraw it in the
new position. You’ll add the definition for the rotate() method to the Element class in a moment.

1071

Extending the GUI

The argument to the rotate() method is the angle in radians through which the element is to be
rotated, and that is returned by a helper method, getAngle(). You can add that to the MouseHandler
class as:

// Helper method for calculating the rotation angle

double getAngle(Point position, Point start, Point last) {

// Get perpendicular distance from last to the line from position to start

double perp = Line2D.ptLineDist(position.x, position.y,

last.x, last.y, start.x, start.y);

// Get the distance from position to start

double hypotenuse = position.distance(start);

if(hypotenuse == 0.0) { // Make sure it’s

hypotenuse = 1.0; // non-zero

}

// Angle is the arc sine of perp/hypotenuse. Clockwise is positive angle

return -Line2D.relativeCCW(position.x, position.y,

start.x, start.y,

last.x, last.y)*Math.asin(perp/hypotenuse);

}

This is basically just an assembly of the code fragments calculating the angle in the last section. You’ll
need an import statement for Line2D in the source file for SketchView:

import java.awt.geom.Line2D;

You completed the mouseReleased() method when you dealt with MOVE mode, so there’s nothing fur-
ther to add there.

Now you must empower the Element objects to rotate themselves. You’ll add a data member to the base
class to store the rotation angle and a method to rotate the element:

public abstract class Element {

public Element(Color color) {

this.color = color; }

public Color getColor() {

return color; }

// Set or reset highlight color

public void setHighlighted(boolean highlighted) {

this.highlighted = highlighted;

}

public Point getPosition() {

return position;

}

protected void draw(Graphics2D g2D, Shape element) {

g2D.setPaint(highlighted ? Color.MAGENTA : color); // Set the element color

AffineTransform old = g2D.getTransform(); // Save the current transform

g2D.translate(position.x, position.y); // Translate to position

1072

Chapter 20

g2D.rotate(angle); // Rotate about position

g2D.draw(element); // Draw the element

g2D.setTransform(old); // Restore original transform

}

protected java.awt.Rectangle getBounds(java.awt.Rectangle bounds) {

AffineTransform at = AffineTransform.getTranslateInstance(

position.x, position.y);

at.rotate(angle);

return at.createTransformedShape(bounds).getBounds();

}

public void move(int deltax, int deltay) {

position.x += deltax;

position.y += deltay;

}

// Increment the element rotation angle

public void rotate(double angle) {

this.angle += angle;

}

public abstract Rectangle getBounds();

public abstract void draw(Graphics2D g2D);

public abstract void modify(Point start, Point last);

protected Color color; // Color of a shape

protected boolean highlighted = false; // Highlight flag

final static Point origin = new Point(); // Point 0,0

protected Point position; // Element position

protected double angle = 0.0; // Rotation angle

// inner shape classes defined here...

}

All the rotate() method does is add the angle that is passed to it as the argument to the current value
of angle. The value of angle is assumed to be in radians. Naturally, when you create an element the
value of angle will be zero. You have modified the draw() method in the base class to apply a rotation
through angle radians about the point position. It is important that you apply the rotation after the
translation; otherwise, the translation would be applied in the rotated coordinate system, which would
give quite a different result from what you require. Since you now have the possibility of rotated shapes,
the getBounds() method also has to take account of this, so you apply a rotation here, too. You must
also remember that the draw() method in the Element.Text class is a special case. You need to add a
line to this method to apply the rotation:

public void draw(Graphics2D g2D) {

g2D.setPaint(highlighted ? Color.MAGENTA : color);

Font oldFont = g2D.getFont(); // Save the old font

g2D.setFont(font); // Set the new font

AffineTransform old = g2D.getTransform(); // Save the current transform

g2D.translate(position.x, position.y); // Translate to position

1073

Extending the GUI

g2D.rotate(angle); // Rotate about position

g2D.drawString(text, origin.x, origin.y+(int)bounds.getHeight());

g2D.setTransform(old); // Restore original transform

g2D.setFont(oldFont); // Restore the old font

}

Recompile all the stuff you have changed and try out the new context menus. Having a rotate capability
adds flexibility, and with the move operation giving you much more precision in positioning elements
relative to one another, this should enable a massive leap forward in the quality of your artwork. Figure
20-22 shows the sort of standard you might be able to achieve.

Figure 20-22

How It Works
Rotating elements just involves adding an extra transform before each element is drawn. Because you
draw each element at the origin, rotating an element becomes relatively simple.

Choosing Custom Colors
You made provision in the status bar for showing a custom color. It would be a shame not to make use of
this, so let’s add a dialog to enable any color to be chosen. This is going to be a lot easier than you imagine.

1074

Chapter 20

To keep it simple, you’ll implement this as a facility on the general pop-up menu, although in practice
you would probably want it accessible from the main menu and the toolbar. You can add a member to
the SketchFrame class for the menu item:

private JMenuItem customColorItem;

You should add this to the pop-up and add an action listener for it. This requires two statements in the
SketchFrame constructor:

customColorItem = popup.add(new JMenuItem(“Custom Color...”)); // Add the item

customColorItem.addActionListener(this); // and add its listener

You can add these statements following the others that set up the pop-up menu. Selecting this menu
item will now cause the actionPerformed() method in the SketchFrame class to be called so you will
implement the custom color choice in there. Let’s put that together and try it out.

Try It Out Choosing a Custom Color
You’ll use the facilities provided by the javax.swing.JColorChooser class that does precisely what
you want. Here’s how you can use it in the actionPerformed() method:

// Handle About menu action events

public void actionPerformed(ActionEvent e) {

if(e.getSource() == aboutItem) {

// Create about dialog with the menu item as parent

JOptionPane.showMessageDialog(this, // Parent

“Sketcher Copyright Ivor Horton 2004”, // Message

“About Sketcher”, // Title

JOptionPane.INFORMATION_MESSAGE); // Message type

} else if(e.getSource() == fontItem) { // Set the dialog window position

Rectangle bounds = getBounds();

fontDlg.setLocation(bounds.x + bounds.width/3, bounds.y + bounds.height/3);

fontDlg.setVisible(true); // Show the dialog

} else if(e.getSource() == customColorItem) {

Color color = JColorChooser.showDialog(this, “Select Custom Color”,

elementColor);

if(color != null) {

elementColor = color;

statusBar.setColorPane(color);

}

}

}

1075

Extending the GUI

With the JColorChooser class imported, recompile and rerun Sketcher and select the Custom Color...
menu item from the general pop-up. You will see the dialog shown in Figure 20-23.

Figure 20-23

How It Works
The JColorChooser class defines a complete color choosing facility that you can use in your own dia-
log, or you can create a complete modal dialog by calling the static method showDialog() as you
have done here. The arguments to showDialog() are a reference to the parent component for the dialog,
the title for the dialog, and the initial color selection. You can choose a color using any of the three tabs,
which provide different mechanisms for defining the color that you want. When you click OK, the color
that you chose is returned as type Color. If you exit the dialog by any means other than selecting the
OK button, the dialog returns null. You just store the color that is returned in elementColor and set it
in the status bar pane. Subsequent sketching operations will be in the custom color.

Summary
In this chapter you’ve learned how to use dialogs to manage data input. You have also learned how to
implement context menus, which can bring a professional feel to the GUI in your applications. You have
applied scrollbars to varying data values as well as scrolled a window, so you should be in a position to
use them in whatever context you need.

The important points I have covered in this chapter are:

❑ A modal dialog blocks input from other windows in the same application as long as it is
displayed.

1076

Chapter 20

❑ A non-modal dialog does not block input to other windows. You can switch the focus between a
non-modal dialog and other windows in the application whenever necessary.

❑ The JOptionPane class provides static methods for creating simple dialogs.

❑ A pop-up menu is a menu that can be displayed at any point within the coordinate system of a
component.

❑ A context menu is a pop-up menu that is specific to what lies at the point where the menu is
displayed — so the contents of the menu depend on the context.

❑ A context menu is displayed as a result of a pop-up trigger, which is usually a right mouse-
button click for a right-handed mouse setup.

❑ The AffineTransform class defines an affine transformation that can be applied to a graphics
context and to a Shape object.

❑ A Graphic2D object always contains an AffineTransform object, and the default transform
leaves coordinates unchanged.

❑ The transform for a graphics context is applied immediately before user coordinates for a shape
are converted to device coordinates.

❑ You can create four kinds of transforms: translations, rotations, scaling, and shearing.

❑ You can combine any number of transformations in a single AffineTransform object.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Implement a dialog initiated from a toolbar button to select the current element color.

2. Add a menu item to the Element context menu that will display information about the element
at the cursor in a dialog — what it is and its basic defining data.

3. Display a special context menu when the cursor is over a TEXT object that provides a menu
option to edit the text through a dialog.

4. Change the implementations of the element classes to make use of the combined translate and
rotate operation.

5. Add a toolbar button to switch highlighting on and off. The same button should turn it on when
it is off and vice versa, so you need to change the button label appropriately.

6. Add a Scale menu item to the element context menu that will allow a geometric element to be
scaled by dragging the mouse cursor.

7. Implement a main menu item and a toolbar button for choosing a custom color.

1077

Extending the GUI

21
Filing and Printing

Documents

In this chapter you’ll explore serializing and printing documents in an application and adding
these as the finishing touches to the Sketcher program. These capabilities are not available to an
untrusted applet for security reasons, so everything I’ll cover here applies only to applications and
trusted applets. Although you have already covered serialization in Chapter 12, you’ll find that
there is quite a difference between understanding how the basic methods for object input and out-
put work and applying them in a practical context.

In this chapter you’ll learn:

❑ How to use the JFileChooser class

❑ How to save a sketch in a file as objects

❑ How to implement the Save As menu mechanism

❑ How to open a sketch stored in a file and integrate it into the application

❑ How to create a new sketch and integrate it into the application

❑ How to ensure that the current sketch is saved before the application is closed or a new
sketch is loaded

❑ How printing in Java works

❑ How to print in landscape orientation rather than portrait orientation

❑ How to implement multipage printing

❑ How to output components to your printer

Serializing the Sketch
The Sketcher program can be considered to be a practical application only if you can save sketches in a
file and retrieve them later — in other words, you need to implement serialization for a SketchModel
object and use that to make the File menu work. Ideally, you want to be able to write the model for a
sketch to a file and be able to read it back at a later date and reconstruct exactly the same model object.
One obvious way to do this is to use serialization because the primary purpose of serialization is the
accurate storage and retrieval of objects, so that’s what you’ll implement in this chapter. In Chapter 23
you’ll explore another possibility — saving sketches in Extensible Markup Language (XML).

You’ve seen how to serialize objects back in Chapter 12. All you have to do to serialize a sketch docu-
ment in our Sketcher program is to apply what you learned there. Of course, quite a few classes are
involved in a sketch document but it will be remarkably easy considering the potential complexity of a
sketch — I promise!

Putting in place the graphical user interface (GUI) functionality for saving a sketch on disk and reading
it back from a file will be significantly more work than implementing serialization for the model. The
logic of opening and saving files so as not to lose anything accidentally can get rather convoluted. Before
you get into that, there is a more fundamental point I should address — a sketch doesn’t have a name.
You should at least make provision for assigning a file name to a sketch, and maybe displaying the name
of the current sketch in the title bar of the application window.

Try It Out Assigning a Document Name
Since the sketch is going to have a name because you intend to store it somewhere, let’s define a default
directory to hold sketches. Add the following lines to the end of the SketcherConstants class
(SketcherConstants.java) that you defined in the Constants package:

public final static File DEFAULT_DIRECTORY = new File(“C:/Sketches”);

public final static String DEFAULT_FILENAME = “Sketch.ske”;

If you want to store your sketches in a different directory you can set the definition of DEFAULT_DIRECTORY
to suit your needs. The file extension .ske to identify sketches is also arbitrary. You can change this if
you would prefer to use a different extension. Since you reference the File class here, you must add an
import statement to the SketcherConstants source file to get at it:

import java.io.File;

You’ll want to store information related to saving a sketch, and the application window object is a suit-
able repository for it so add the following data members to the SketchFrame class definition:

private String frameTitle; // Frame title

private String filename = DEFAULT_FILENAME; // Current model file name

private File modelFile; // File for the current sketch

The frameTitle member specifies the basic title for the Sketcher application window. You’ll append the
file name for the sketch to it and display the result in the title bar. The modelFile member will hold a ref-
erence to the File object identifying the file containing the current sketch, once the sketch has been saved.

You can arrange for the frameTitle field to be initialized and the default file name to be appended to
the basic window title in the SketchFrame constructor. You can also make sure that DEFAULT_DIRECTORY
exists and is valid. The following code will do this:

1080

Chapter 21

public SketchFrame(String title, Sketcher theApp) {

frameTitle = title + “: “;

setTitle(frameTitle + filename);

if(!DEFAULT_DIRECTORY.exists()) {

if(!DEFAULT_DIRECTORY.mkdirs()) {

JOptionPane.showMessageDialog(this,

“Error creating default directory”,

“Directory Creation Error”,

JOptionPane.ERROR_MESSAGE);

System.exit(1);

}

}

this.theApp = theApp; // Save application object

// Rest of the code in the constructor as before...

}

If the default directory is found not to exist, you try to create it by calling the mkdirs() method for the
DEFAULT_DIRECTORY object. If that fails, something is seriously wrong, so you pop a dialog with an
error message and terminate the program.

Since you’ll be implementing the event handling for the File menu, you can remove or comment out the
statements from the constructor that disable the actions for this:

// Disable actions

//saveAction.setEnabled(false);

//closeAction.setEnabled(false);

//printAction.setEnabled(false);

If you recompile Sketcher and run it, you should now see the default file name for a sketch displayed in
the title bar, as Figure 21-1 shows. All the toolbars buttons are enabled, too.

Figure 21-1

1081

Filing and Printing Documents

You now have a name assigned to the document, but there’s another point to consider if you’re prepar-
ing to store a sketch. When you close the application, there should be a means of checking whether the
sketch needs to be saved. Otherwise, it will be all too easy to close Sketcher and lose the brilliant sketch
that you have just spent 3 hours crafting. Checking whether the sketch needs to be saved isn’t difficult.
You just need to record the fact that the model has changed.

Try It Out Recording Changes to a Sketch
To provide the means of recording whether or not a sketch has been changed you can add a boolean
field to the SketchFrame class that you’ll set to true when the SketchModel object changes, and false
when it is in a new and original condition — as is the case when it has just been loaded or saved in a file.
Add the following data member definition to the SketchFrame class:

private boolean sketchChanged = false; // Model changed flag

This sort of variable is sometimes referred to as a “dirty” flag for the model because it records when
something has been done to sully the pristine state of the model data. The flag is false by default
because the sketch is empty and therefore unchanged by definition. Any change that the user makes to
the model should result in the flag being set to true, and whenever the model is written to a file, the
flag should be reset to false. By checking the state of this flag you’ll be able to avoid unnecessary save
operations while the sketch in memory remains unchanged.

You already have in place the means to signal changes to a sketch, since the SketchModel class has
Observable as a base class. As you know, an Observable object can automatically notify any registered
Observer objects when a change takes place. All you need to do is to make the SketchFrame class
implement the Observer interface and register the application window as an observer of the sketch
object:

public class SketchFrame extends JFrame implements ActionListener, Observer {

// Method called by SketchModel object when it changes

public void update(Observable o, Object obj) {

sketchChanged = true;

}

// Rest of the class as before...

}

The Observer interface and the Observable class are defined in the java.util package, so you must
import them into the SketchFrame.java file with the following statements:

import java.util.Observer;

import java.util.Observable;

You can register the application window as an observer for the SketchModel object by adding one state-
ment to the createGUI() method in the Sketcher class:

private void creatGUI() {

// Code as before...

sketch = new SketchModel(); // Create the model

view = new SketchView(this); // Create the view

1082

Chapter 21

sketch.addObserver(view); // Register view with the model

sketch.addObserver(window); // Register window with the model

window.getContentPane().add(view, BorderLayout.CENTER);

window.setVisible(true);

}

The window field in the Sketcher object stores a reference to the application window. Whenever an ele-
ment is added to the sketch, or deleted from it, the application window object will be notified. You can
now press ahead with serializing the model for a sketch.

Implementing the Serializable Interface
As I hope you still remember, the fundamental step in making objects serializable is to implement the
Serializable interface in every class that defines objects you want written to a file. You need a
methodical approach here, so how about top-down — starting with the SketchModel class.

Try It Out Serializing SketchModel Objects
This is where you get a great deal from astonishingly little effort. To implement serialization for the
SketchModel class you must first modify the class definition header to:

class SketchModel extends Observable implements Iterable<Element>, Serializable {

The Serializable interface is defined in the java.io package, so you need to add the following
import statement to the beginning of the SketchModel.java file:

import java.io.Serializable;

The Serializable interface declares no methods — so that’s it so far as the SketchModel class is
concerned!

Is that enough to serialize a sketch? Not quite. For a class to be serializable, all its data members
must be serializable or declared as transient. If this is not the case, then an exception of type
NotSerializableException will be thrown when you try to serialize an object. To avoid this you
must trawl through the data elements of the SketchModel class, and if any of these are your own
classes, you must make sure they either implement the Serializable interface or are declared as
transient.

You also cannot assume that objects of a standard class type are serializable because some most defi-
nitely are not. It’s a fairly quick fishing trip though, because the SketchModel class has only one data
member — the linked list of elements that make up the sketch. If the SketchModel object is to be serial-
izable you simply need to make sure the elements field is serializable.

Serializing the List of Elements
If you look through the Java Development Kit (JDK) documentation, you’ll see that the LinkedList<>
generic class implements the Serializable interface, so all you need to worry about are the list ele-
ments themselves. You can make the base class for the shapes in a sketch serializable by declaring that
the Element class implements the Serializable interface:

1083

Filing and Printing Documents

public abstract class Element implements Serializable {

Don’t forget that you now need an import statement for the Serializable interface in Element.java:

import java.io.Serializable;

The data members of the Element class that are object references are of type java.awt.Color or of type
java.awt.Point, and since both of these classes are serializable, as you can verify from the JDK docu-
mentation, the Element class is serializable. Now you need to look at the subclasses of Element.

Subclasses of Element will inherit the implementation of the Serializable interface, so they are all
declared to be serializable by default; however, there is a tiny snag. At the time of writing, none of the
classes in the java.awt.geom package that implement the java.awt.Shape interface are serializable,
and you’ve been using them all over the place.

You’re not completely scuppered, though. Remember that you can always implement the
readObject() and writeObject() methods in a class and then implement your own serialization.
You can take the data that you need to re-create the required Shape object and serialize that in your
implementation of the writeObject() method. You’ll then be able to reconstruct the object from the
data you get back from a file in the readObject() method. Let’s start with the Element.Line class.

Serializing Lines
Just to remind you of one of the things I discussed way back in the I/O chapters, the writeObject()
method that serializes objects must have the following form:

private void writeObject(ObjectOutputStream out) throws IOException {

// Code to serialize the object...

}

Our Element.Line objects are always drawn from (0, 0) so there’s no sense in saving the start point in a
line — it’s always the same. You just need to serialize the end point, so add the following implementa-
tion of the writeObject() method to the Element.Line class:

// Method to serialize a line

private void writeObject(ObjectOutputStream out) throws IOException {

out.writeDouble(line.x2);

out.writeDouble(line.y2);

}

You don’t need to worry about exceptions that might be thrown by the writeDouble() method at this
point. These will be passed on to the method that calls writeObject(). You’ll need import statements
for the IOException and ObjectOutputStream class name in Element.java:

import java.io.IOException;

import java.io.ObjectOutputStream;

The coordinates that you pass to the writeDouble() method are public members of the
Line2D.Double object so you can reference them directly to write them to the stream. The rest of the
data relating to a line is stored in the base class, Element, and as I said earlier, they are all taken care of.
The base class members will be serialized automatically when an Element.Line object is written to a
file. You just need the means to read it back.

1084

Chapter 21

To recap what you already know, the readObject() method to deserialize an object is also of a stan-
dard form:

private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException {

// Code to deserialize an object...

}

For the Element.Line class, the readObject() implementation will read the coordinates of the end
point of the line and reconstitute line— the Line2D.Double member of the class. Adding the follow-
ing method to the Element.Line class will do that:

// Method to deserialize a line

private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException {

double x2 = in.readDouble();

double y2 = in.readDouble();

line = new Line2D.Double(0,0,x2,y2);

}

This calls for another import statement in Element.java:

import java.io.ObjectInputStream;

That’s lines serialized. It looks as though it’s going to be easy. You can do rectangles next.

Serializing Rectangles
A rectangle is always drawn with its top-left corner at the origin, so you need to write only the width
and height to the file:

// Method to serialize a rectangle

private void writeObject(ObjectOutputStream out) throws IOException {

out.writeDouble(rectangle.width);

out.writeDouble(rectangle.height);

}

The width and height members of the Rectangle2D.Double object are public, so you can access them
directly to write them to the stream.

Deserializing an Element.Rectangle object is almost identical to the way you deserialized a line:

// Method to deserialize a rectangle

private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException {

double width = in.readDouble();

double height = in.readDouble();

rectangle = new Rectangle2D.Double(0,0,width,height);

}

Don’t forget that the base class fields such as the color and position of an object are all taken care of auto-
matically. You only have to worry about the fields that belong specifically to the subclasses of Element.

1085

Filing and Printing Documents

You may be surprised and delighted to hear that serializing an Element.Circle object is actually going
to be easier.

Serializing Circles
A circle is drawn as an ellipse with the top-left corner of the bounding rectangle at the origin. Therefore,
the only item of data that you need to reconstruct a circle is the diameter:

// Method to serialze a circle

private void writeObject(ObjectOutputStream out) throws IOException {

out.writeDouble(circle.width);

}

The diameter is recorded in the width member (and also in the height member) of the
Ellipse2D.Double object. You just write it to the file.

You can read a circle back from a file with the following code:

// Method to deserialize a circle

private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException {

double width = in.readDouble();

circle = new Ellipse2D.Double(0,0,width,width);

}

This reconstitutes the circle using the diameter that was written to the file.

Serializing Curves
Curves are a little trickier. One complication is that you create a curve as a GeneralPath object, and you
have no idea how many segments make up the curve. You can obtain a special iterator object of type
PathIterator for a GeneralPath object that will make available all the information you need to create
the GeneralPath object. PathIterator is an interface that declares methods for retrieving details of
the segments that make up a GeneralPath object, so a reference to an object of type PathIterator
encapsulates all the data defining that path.

The getPathIterator() method for a GeneralPath object returns a reference of type PathIterator.
The argument to getPathIterator() is an AffineTransform object that is applied to the path. This is
based on the assumption that a single GeneralPath object may be used to create a number of different
appearances on the screen simply by applying different transformations to the same object. You might
have a GeneralPath object that defines a complicated object, a boat, for example. You could draw sev-
eral boats on the screen simply by applying a transform before you draw each boat to set its position and
orientation and use the same GeneralPath object for all. This avoids the overhead of creating multiple
instances of what are essentially identical objects. That’s why the getPathIterator() method enables
you to obtain an iterator for a particular transformed instance of a GeneralPath object. However, in
Sketcher you want an iterator for the unmodified path to get the basic data that you need, so you pass a
default AffineTransform object, which does nothing.

The PathIterator interface declares four methods:

1086

Chapter 21

Method Description

currentSegment(double[] coords) Returns the current segment. See the text following
this table for a detailed description.

currentSegment(float[] coords)

getWindingRule() Returns a value of type int that identifies the wind-
ing rule in effect. The value can be WIND_EVEN_ODD
or WIND_NON_ZERO.

next() Moves the iterator to the next segment as long as
there is another segment.

isDone() Returns true if the iteration is complete, and false
otherwise.

The array argument coords that you pass to either version of the currentSegment() method is used to
store data relating to the current segment and should have six elements to record the coordinates of one,
two, or three points, depending on the current segment type.

The currentSegment() method returns a value of type int that indicates the type of the segment, and
can be one of the following values:

Segment Type Description

SEG_MOVETO The segment corresponds to a moveTo() operation.
The coordinates of the point moved to are returned
as the first two elements of the array coords.

SEG_LINETO The segment corresponds to a lineTo() operation.
The coordinates of the end point of the line are
returned as the first two elements of the array
coords.

SEG_QUADTO The segment corresponds to a quadTo() operation.
The coordinates of the control point for the
quadratic segment are returned as the first two ele-
ments of the array coords, and the end point is
returned as the third and fourth elements.

SEG_CUBICTO The segment corresponds to a curveTo() operation.
The array coords will contain coordinates of the
first control point, the second control point, and the
end point of the cubic curve segment.

SEG_CLOSE The segment corresponds to a closePath() opera-
tion. The segment closes the path by connecting the
current point to the first point in the path. No values
are returned in the coords array.

1087

Filing and Printing Documents

You have all the tools you need to get the data on every segment in the path. You just need to get a
PathIterator reference and use the next() method to go through the segments in the path. The case
for an Element.Curve object is simple: You have only a single moveTo() segment that is always (0, 0),
and this is followed by one or more lineTo() segments. You’ll still test the return type though, to show
how it’s done, and in case there are errors. You’re going to end up with an array of coordinates with an
unpredictable number of elements: It sounds like a case for a Vector<> container, particularly since
Vector<> objects are serializable.

The coordinates you’ll get for each segment in a general path will be of type float, so you can use a
container of type Vector<Float> to store them, and the automatic boxing and unboxing of the values
will take care of conversions to and from type Float. The first segment is a special case. It is always a
move to (0, 0), whereas all the others will be lines. Thus the procedure will be to get the first segment
and discard it after verifying it is a move and then get the remaining segments in a loop. Here’s the code:

// Method to serialize a curve

private void writeObject(ObjectOutputStream out) throws IOException {

PathIterator iterator = curve.getPathIterator(new AffineTransform());

Vector<Float> coords = new Vector<Float>();

int maxCoordCount = 6;

float[] temp = new float[maxCoordCount]; // Stores segment data

int result = iterator.currentSegment(temp); // Get first segment

assert(result == iterator.SEG_MOVETO);

iterator.next(); // Next segment

while(!iterator.isDone()) { // While there are segments

result = iterator.currentSegment(temp); // Get the segment data

assert(result == iterator.SEG_LINETO);

coords.add(temp[0]); // Add x coordinate to Vector

coords.add(temp[1]); // Add y coordinate

iterator.next(); // Go to next segment

}

out.writeObject(coords); // Save the Vector

}

You’ll also need to add two more import statements to Element.java:

import java.awt.geom.PathIterator;

import java.util.Vector;

You obtain a PathIterator object for the Element.Curve object that you use to extract the segment
data for the curve. You create a Vector<Float> object in which you will store the coordinate data, and
you’ll serialize this vector in the serialization of the curve. You also create an array of type float[] to
hold the numerical coordinate values for a segment. All six elements are used when the segment is a
cubic Bézier curve. In our case fewer are used but you must still supply an array with six elements as an
argument to the currentSegment() method because that’s what the method expects to receive.

After verifying that the first segment is a move-to segment, you use the path iterator to extract the seg-
ment data that defines the curve. You store the coordinates in the Vector<> object coords. The assertion
is there to make sure that the curve consists only of line segments after the initial move-to.

1088

Chapter 21

It’s worth considering how you might handle a GeneralPath object that consisted of a variety of differ-
ent segments in arbitrary sequence. For the case where the path consisted of a set of line, quad, or cubic
segments, you could use a vector of type Vector<float[]>. Don’t forget, arrays are objects too, so
there’s nothing to prevent you from using a type argument that is an array type. If you arrange to store
the coordinate values in an array of a suitable length for the segment type, you could deduce the type of
segment from the number of coordinates you have stored in each array for a segment, since line, cubic,
and quad segments each require a difference number of points. In the general case you would need to
define classes to represent the segments of various types, plus moves, of course. If these had a common
base class, Segment, say, then you could store all the objects for a path in a vector of type
Vector<Segment>. Of course, you would need to make sure your segment classes were serializable, too.

To deserialize a curve, you just have to read the Vector<Float> object from the file and recreate the
GeneralPath object for the Element.Curve class:

// Method to deserialize a curve

private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException {

Vector<Float> coords = (Vector<Float>)in.readObject(); // Read vector

curve = new GeneralPath(); // Create a path

curve.moveTo(0,0); // Move to the origin

for(int i = 0 ; i<coords.size() ; i += 2) { // For each pair of elements

curve.lineTo(coords.get(i), coords.get(i+1)); // Create a line segment

}

}

This should be very easy to follow. You read the data that you wrote to the stream — the vector of Float
objects. The readObject() method returns the vector object as type Object, so you must cast it to the
appropriate type, which is Vector<Float>. Because this cast is unchecked, you’ll get a warning mes-
sage from the compiler.

The first segment is always a move to the origin, so you insert that into the GeneralPath object you
have created. All the succeeding segments are lines specified by pairs of elements from the Vector<>.
Automatic unboxing takes care of converting the Float objects that you retrieve from the vector to the
parameter type float for the lineTo() method.

Serializing Text
Element.Text is the last element type you have to deal with. Fortunately, Font, String, and
java.awt.Rectangle objects are all serializable already, which means that Element.Text is serializ-
able by default, and you have nothing further to do. You can now start implementing the listener opera-
tions for the File menu.

Supporting the File Menu
To support the menu items in the File menu, you must add some code to the actionPerformed()
method in the FileAction class. You can try to put a skeleton together but a problem presents itself
immediately: The ultimate source of an event will be either a toolbar button (a JButton object) or a

1089

Filing and Printing Documents

menu item (a JMenuItem object) that was created from a FileAction object. How do you figure out
what action originated the event? You only have one definition of the actionPerformed() method
shared amongst all FileAction class objects so you need a way to determine which particular
FileAction object originated the event. That way you can decide what you should do in response to
the event.

Each FileAction object stores a String object that was passed to the constructor as the name argu-
ment, and this string was then passed on to the base class constructor. If only you had thought of saving
it, you could compare the name for the current object with the name for each of the FileAction objects
in the SketchFrame class. Then you could determine for which object the actionPerformed() method
was called.

All is not lost though. You can call the getValue() method for the ActionEvent object to retrieve the
name for the action object that caused the event. You’ll be able to compare that with the name for each of
the FileAction objects that you store as members of the SketchFrame class. You can therefore imple-
ment the actionPerformed() member of the FileAction inner class like this:

public void actionPerformed(ActionEvent e) {

String name = (String)getValue(NAME);

if(name.equals(saveAction.getValue(NAME))) {

// Code to handle file Save operation...

} else if(name.equals(saveAsAction.getValue(NAME))) {

// Code to handle file Save As operation...

} else if(name.equals(openAction.getValue(NAME))) {

// Code to handle file Open operation...

} else if(name.equals(newAction.getValue(NAME))) {

// Code to handle file New operation...

} if(name.equals(printAction.getValue(NAME))) {

// Code to handle Print operation..

}

}

Calling getValue() with the argument as the NAME key that is defined in the Action interface returns
the String object that was stored for the FileAction object when it was created. If the name for the
current object matches that of a particular FileAction object, then that must be the action to which the
event applies, so you know what to do. You have one if or else–if block for each action, and you’ll
develop the code for these one by one.

Many of these operations will involve dialogs. You’ll want to get at the file system and display the list of
directories and files to choose from, for an Open operation for instance. It sounds like a lot of work, and
it certainly would be, if it weren’t for a neat facility provided by the javax.swing.JFileChooser class.

Using a File Chooser
The JFileChooser class in the javax.swing package provides an easy-to-use mechanism for creating
file dialogs for opening and saving files. You can use a single object of this class to create all the file
dialogs you need, so add a member to the SketchFrame class to store a reference to a JFileChooser
object that you’ll create in the constructor:

private JFileChooser files; // File chooser dialog

1090

Chapter 21

While you’re about it, you can add an import for the JFileChooser class name, too. There are several
JFileChooser constructors, but I’ll discuss only a couple of them here. The default constructor creates
an object with the current directory as the default directory, but that won’t quite do for our purposes.
What you want is for the default directory to be the DEFAULT_DIRECTORY, which you defined in the
SketcherConstants class, so you’ll use the constructor that accepts an argument of type File that
specifies the directory containing the files that the dialog will display initially. Add the following state-
ment to the SketchFrame constructor, following the statements that you added earlier that verified
DEFAULT_DIRECTORY actually existed on the hard drive:

files = new JFileChooser(DEFAULT_DIRECTORY);

The dialog that the files object encapsulates will display the contents of the directory specified by
DEFAULT_DIRECTORY. You can now use the files object to implement the event handling for the File
menu. There are a considerable number of methods in the JFileChooser class, so rather than trying to
summarize them all, which would take many pages of text and be incredibly boring, let’s try out the
ones that you can apply to Sketcher to support the File menu.

File Save Operations
In most cases you’ll want to display a modal file save dialog when the Save menu item or toolbar button
is selected. As luck would have it, the JFileChooser class has a showSaveDialog() method that does
precisely what you want. All you have to do is call the method with a reference to the Component object
that will be the parent for the dialog to be displayed as the argument. The method returns a value indi-
cating how the dialog was closed. You could display a save dialog in a method for a FileAction object
with the following statement:

int result = files.showSaveDialog(SketchFrame.this);

This will automatically create a file save dialog with the SketchFrame object as parent, and with Save
and Cancel buttons. The SketchFrame.this notation is used to refer to the this member for the
SketchFrame object from within a method of an inner class object of type FileAction. To reference the
this variable for an outer class object from a non-static inner class object, you just qualify this with the
outer class name. The file chooser dialog will be displayed centered in the parent component, which is
the SketchFrame object here. If you specify the parent component as null, the dialog will be centered
on the screen. This also applies to all the other methods I’ll discuss that display file chooser dialogs.

When you need a file open dialog, you can call the showOpenDialog() member of a JFileChooser
object. Don’t be fooled here though. A save dialog and an open dialog are essentially the same. They dif-
fer only in minor details — the title bar and one of the button labels. The sole purpose of both dialogs is
simply to select a file — for whatever purpose. If you wanted to be perverse, you could pop up a save
dialog to open a file and vice versa!

You can also display a customized dialog from a JFileChooser object. Although it’s not strictly neces-
sary for the Sketcher application — the standard file dialogs are quite adequate — you’ll adopt a custom
approach as it will give you some experience of using a few more JFileChooser methods.

You can display a custom dialog by calling the showDialog() method for the JFileChooser object
supplying two arguments. The first argument is the parent component for the dialog window, and the
second is the approve button text — the approve button being the button that you click on to expedite

1091

Filing and Printing Documents

the operation rather than cancel it. You could display a dialog with a Save button with the following
statement:

int result = files.showDialog(SketchFrame.this, “Save”);

If you pass null as the second argument here, the button text will be whatever was set previously —
possibly the default.

Before you display a custom dialog, though, you would normally do a bit more customizing of what is
to be displayed. You’ll be using the following JFileChooser methods to customize the dialogs for
Sketcher:

Method Description

setDialogTitle(String text) The String object that you pass as the
argument is set as the dialog’s title bar
text.

setApproveButtonText(String text) The String object that you pass as the
argument is set as the approve button
label.

setApproveButtonToolTipText(String text) The String object that you pass as the
argument is set as the approve button
tooltip.

A file chooser can be set to select files, directories, or both. You can determine what can be selected in a
dialog by calling the setFileSelectionMode() method. The argument must be one of the constants
FILES_ONLY, DIRECTORIES_ONLY, and FILES_AND_DIRECTORIES that are defined as static members of
the JFileChooser class; FILES_ONLY is the default. You also have the getFileSelectionMode()
method with which you can determine what selection mode is set. To allow multiple selections to be
made from the list in the file dialog, you call the setMultiSelectionEnabled() method for your
JFileChooser object with the argument true.

If you want the dialog to have a particular file selected when it opens, you can pass a File object speci-
fying that file to the setSelectedFile() method for the JFileChooser object. This will pre-select the
file in the file list for the dialog if the file already exists, and insert the name in the file name field if it
doesn’t. The file list is created when the JFileChooser object is created, but naturally files may be
added or deleted over time, and when this occurs you will need to reconstruct the file list. Calling the
rescanCurrentDirectory() method before you display the dialog will do this for you. You can
change the current directory at any time by passing a File object specifying the directory you want to
make current to the setCurrentDirectory() method.

That’s enough detail for now. Let’s put the customizing code together.

Try It Out Creating a Customized File Dialog
You’ll first add a method to the SketchFrame class to create the customized file dialog and return the
File object encapsulating the file that has been selected, or null if a file was not selected:

1092

Chapter 21

// Display a custom file save dialog

private File showDialog(String dialogTitle,

String approveButtonText,

String approveButtonTooltip,

File file) { // Current file – if any

files.setDialogTitle(dialogTitle);

files.setApproveButtonText(approveButtonText);

files.setApproveButtonToolTipText(approveButtonTooltip);

files.setFileSelectionMode(files.FILES_ONLY);

files.rescanCurrentDirectory();

files.setSelectedFile(file);

int result = files.showDialog(SketchFrame.this, null); // Show the dialog

return (result == files.APPROVE_OPTION) ? files.getSelectedFile() : null;

}

This method accepts four arguments that are used to customize the dialog — the dialog title, the button
label, the button tooltip, and the File object representing the file for the current sketch. Each of the
options is set using one of the methods for the JFileChooser object that I discussed earlier. The last
argument is used to select a file in the file list initially. If it is null, no file will be selected from the file list.

Note that you reconstruct the file list for the dialog by calling the rescanCurrentDirectory()
method. This is to ensure that you always display an up-to-date list of files. If you didn’t do this, the dia-
log would always display the list of files that were in the directory when you created the JFileChooser
object. Any changes to the contents of the directory since then would not be taken into account.

The value that is returned by the showDialog() member of the JFileChooser object indicates whether
the approve button was selected or not. If it was, you return the File object from the file chooser that
represents the selected file; otherwise, you return null. A method that calls your showDialog()
method to display the dialog can determine whether or not a file was chosen by testing the return value
for null.

You can now use this method when you implement handling of a Save menu item action event. A save
operation is a little more complicated than you might imagine at first sight, so let’s consider it in a little
more detail.

Implementing the Save Operation
First of all, what happens in a save operation depends on whether the current file has been saved before.
If it has, the user won’t want to see a dialog every time. Once it has been saved the first time, the user
will want it written away without displaying the dialog. You can use the modelFile member of the
SketchFrame class to determine whether you need to display a dialog or not. You added this earlier to
hold a reference to the File object for the sketch. Before a sketch has been saved, this will be null, so if
it is not null you can conclude that the sketch has been saved previously and you don’t want to show
the dialog. When the sketch has been saved, you’ll store a reference to the File object in modelFile, so
this file will generally hold a reference to the file that holds the last version of the sketch that was saved.

Secondly, if the sketch is unchanged — which will be indicated by the sketchChanged member being
false — either because it is new and therefore empty or because it hasn’t been altered since it was last
saved, you really don’t need to save it at all.

1093

Filing and Printing Documents

You can package up these checks for when you need to save and for when you should display the dialog
in another method in the SketchFrame class. You can call it saveOperation() and make it a private
member of the SketchFrame class:

// Save the sketch if it is necessary

private void saveOperation() {

if(!sketchChanged) {

return;

}

File file = modelFile;

if(file == null) {

file = showDialog(“Save Sketch”,

“Save”,

“Save the sketch”,

new File(files.getCurrentDirectory(), filename));

if(file == null || (file.exists() && // Check for existence

JOptionPane.NO_OPTION == // Overwrite warning

JOptionPane.showConfirmDialog(SketchFrame.this,

file.getName()+” exists. Overwrite?”,

“Confirm Save As”,

JOptionPane.YES_NO_OPTION,

JOptionPane.WARNING_MESSAGE)))

return; // No selected file

}

saveSketch(file);

}

You first check the sketchChanged flag. If the flag is false, either the sketch is empty or it hasn’t been
changed since the last save. Either way, there’s no point in writing it to disk, so you return immediately
from the method. If the flag is true you initialize the local variable file with the reference stored in
modelFile. If modelFile was not null, then you skip the entire if that displays the dialog and just
call the saveSketch() method to write the sketch to the file specified by modelFile— I’ll get to the
detail of the saveSketch() method in a moment.

The condition tested in the nested if looks rather complicated, but this is primarily due to the plethora
of arguments in the showConfirmDialog() call. You can break the condition down into its component
parts quite easily. The condition comprises two logical expressions separated by the || operator, so if
either expression is true, then you execute a return. The first expression just checks for file being
null, so if this is the case, you return immediately. If the first expression is false, file is not null, and
the second expression will be evaluated.

The second expression will be true if file references a file that already exists and the value returned
from the showConfirmDialog() method is JOptionPane.NO_OPTION. The confirm dialog just warns
of the overwrite potential, so if JOptionPane.NO_OPTION is returned, then the user has elected not to
overwrite the file. Remember that with the || operator, if the left operand is true, then the right
operand will not be evaluated. Similarly, with the && operator, if the left operand is false, then the right
operand will not be evaluated. This means that the showConfirmDialog() method will be executed
only if file is not null, which implies the left operand for the || operation is false, and file refer-
ences a file that does already exist, so the left operand for the && operation is true. If you don’t execute
the return statement, then you fall through the if to call the helper method saveSketch() with file as
the argument.

1094

Chapter 21

Writing a Sketch to a File
Writing a sketch to a file just involves making use of what you learned about writing objects to a file.
You have already made sure that a SketchModel object is serializable, so you can write the sketch to an
ObjectOutputStream with the following method in the SketchFrame class:

// Write a sketch to outFile

private void saveSketch(File outFile) {

try {

ObjectOutputStream out = new ObjectOutputStream(

new BufferedOutputStream(

new FileOutputStream(outFile)));

out.writeObject(theApp.getModel()); // Write the sketch to the stream

out.close(); // Flush & close it

} catch(IOException e) {

System.err.println(e);

JOptionPane.showMessageDialog(SketchFrame.this,

“Error writing a sketch file.”,

“File Output Error”,

JOptionPane.ERROR_MESSAGE);

return; // Serious error - return

}

if(outFile != modelFile) { // If we are saving to a new file

// we must update the window

modelFile = outFile; // Save file reference

filename = modelFile.getName(); // Update the file name

setTitle(frameTitle + modelFile.getPath()); // Change the window title

}

sketchChanged = false; // Set as unchanged

}

You’ll need some more import statements in SketchFrame.java:

import java.io.ObjectOutputStream;

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

import java.io.IOException;

The saveSketch() method writes the current SketchModel object to the object output stream that you
create from the File object that is passed to it. If an error occurs, an exception of type IOException will
be thrown, in which case you write the exception to the standard error output stream and pop up a dia-
log indicating that an error has occurred. You assume that the user might want to retry the operation, so
you just return from the method rather than terminating the application.

If the write operation succeeds, then you need to consider whether the data members in the window
object that relate to the file need to be updated. This will be the case when the File object reference that
was passed to the saveSketch() method is not the same as the reference stored in modelFile. If this is
so, you update the modelFile and file name members of the window object, and set the window title to
reflect the new file name and path. In any event, the sketchChanged flag is reset to false, as the sketch
is now safely stored away in the file.

You can now put together the code that will handle the Save menu item event.

1095

Filing and Printing Documents

Try It Out Saving a Sketch
The code to handle the Save menu item event will go in the actionPerformed() method of the inner
class FileAction. You have done all the real work, so it amounts to just one statement:

public void actionPerformed(ActionEvent e) {

String name = (String)getValue(NAME);

if(name.equals(saveAction.getValue(NAME))) {

saveOperation();

} else if(name.equals(saveAsAction.getValue(NAME))) {

// Code to handle file Save As operation...

} else if(name.equals(openAction.getValue(NAME))) {

// Code to handle file Open operation...

} else if(name.equals(newAction.getValue(NAME))) {

// Code to handle file New operation...

} if(name.equals(printAction.getValue(NAME))) {

// Code to handle Print operation..

}

}

You can recompile Sketcher and run it again. The Save menu item and toolbar button should now be
working. When you select either of them, you should get the dialog displayed in Figure 21-2.

Figure 21-2

All the buttons in the dialog are fully operational. Go ahead and try them out and then save the sketch
using the default name. Next time you save the sketch, the dialog won’t appear. Be sure to check out the
button tooltips.

Once you have created a few sketch files, you should get the warning shown in Figure 21-3 if you
attempt to overwrite an existing sketch file with a new one.

1096

Chapter 21

Figure 21-3

You can now save any sketch in a file — regardless of its complexity — with protection against accidentally
overwriting existing files. I hope you agree that the save operation was remarkably easy to implement.

How It Works
This just calls the saveOperation() method for the SketchFrame object that is the parent of the
FileAction object containing the actionPerformed() method. This carries out the save operation that
writes the SketchModel object to a file.

Creating a File Filter
One customizing option you haven’t used but might like to try is to supply a file filter for the sketch
files. The default file filter in a JFileChooser object accepts any file or directory, but you can add filters
of your own that are of a type that has the javax.swing.filechooser.FileFilter class as a super-
class. Two abstract methods are declared in the FileFilter class that your filter class will have to
implement:

Method Description

accept(File file) Returns true if the file represented by the object file is accepted by
the file filter, and false otherwise

getDescription() Returns a String object describing the filter — for example, “Sketch
files”

Note that there is also a FileFilter interface defined in the java.io package that declares just one
method, accept(), which has essentially the same function as the method in the FileFilter class.
Objects of classes that implement the FileFilter interface are for use with the listFiles() method
that is defined in the File class, not for JFileChooser objects, so make sure you don’t confuse the
FileFilter class with the FileFilter interface.

You can define your own file filter class for use with the Sketcher program as follows:

import javax.swing.filechooser.FileFilter;

import java.io.File;

public class ExtensionFilter extends FileFilter {

public ExtensionFilter(String ext, String descr) {

extension = ext.toLowerCase(); // Store the extension as lower case

description = descr; // Store the description

}

1097

Filing and Printing Documents

public boolean accept(File file) {

return(file.isDirectory()||file.getName().toLowerCase().endsWith(extension));

}

public String getDescription() {

return description;

}

private String description; // Filter description

private String extension; // File extension

}

To create a filter for files with the extension .ske you could write:

ExtensionFilter sketchFilter = new ExtensionFilter(“.ske”, “Sketch files (*.ske)”);

If you add the ExtensionFilter.java source file to the Sketcher program directory, you could try this
out by adding a little code to the showDialog() method in the SketchFrame class.

Try It Out Using a File Filter
You need to add only three lines of code:

private File showDialog(String dialogTitle,

String approveButtonText,

String approveButtonTooltip,

File file) { // Current file – if any

files.setDialogTitle(dialogTitle);

files.setApproveButtonText(approveButtonText);

files.setApproveButtonToolTipText(approveButtonTooltip);

files.setFileSelectionMode(files.FILES_ONLY);

ExtensionFilter sketchFilter = new ExtensionFilter(“.ske”,

“Sketch files (*.ske)”);

files.addChoosableFileFilter(sketchFilter); // Add the filter

files.setFileFilter(sketchFilter); // and select it

files.rescanCurrentDirectory();

files.setSelectedFile(file);

int result = files.showDialog(SketchFrame.this, null);

return(result == files.APPROVE_OPTION) ? files.getSelectedFile() : null;

}

Now when you display a file save dialog, it will use the Sketcher file filter by default, and will display
only directories or files with the extension .ske. The user can override this by selecting the All Files
option in the dialog, whereupon all files in the current directory will be displayed.

1098

Chapter 21

How It Works
The file filter sketchFilter that you create is added to the list of available filters in the JFileChooser
object by passing a reference to the addChoosableFileFilter() method. You then set this filter as the
one in effect by calling the setFileFilter() method. The JFileChooser object will check each file in
the file list by passing each File object to the accept() method for the file filter object that is in effect.
The new file filter you have created will return true only for directories or files with the extension .ske,
so only those files will be displayed in the dialog. The description of the filter is obtained by the
JFileChooser object calling the getDescription() method for the Sketcher FileFilter object and
this description is displayed in the dialog.

Of course, the available list of file filters will include the “accept all” filter that is there by default. You
might want to suppress this in some situations, and there is a method defined in the JFileChooser
class to do this:

files.setAcceptAllFileFilter(false); // Remove ‘all files’ filter

Of course, passing an argument of true to this method will restore the filter to the list. You can also dis-
cover whether the all-files filter is used by calling the isAcceptAllFileFilterUsed() method, which
will return true if it is or false if it isn’t.

You can also remove specific FileFilter objects from the list maintained by the JFileChooser object.
This allows you to adapt a JFileChooser object to suit circumstances at different points in a program.
To remove a filter just pass a FileFilter reference to the removeChoosableFileFilter() method for
your file chooser object. For example:

files.removeChoosableFileFilter(sketchFilter); // Removes our filter

This would remove the filter you have defined for Sketcher files.

File Save As Operations
For Save As... operations, you’ll always want to display a save dialog, regardless of whether the file has
been saved before and ignoring the state of the dirty flag. Apart from that and some cosmetic differences
in the dialog itself, the operation is identical to the Save menu item event handling. With the
showDialog() method that you have added to the SketchFrame class, the implementation becomes
almost trivial.

Try It Out File Save As Operations
The code in the else if block in the actionPerformed() method in the FileAction class for this
operation will be:

else if(name.equals(saveAsAction.getValue(NAME))) {

File file = showDialog(“Save Sketch As”,

“Save”,

“Save the sketch”,

modelFile == null ? new File(files.getCurrentDirectory(),filename): modelFile);

if(file != null) {

1099

Filing and Printing Documents

if(file.exists() && !file.equals(modelFile))

if(JOptionPane.NO_OPTION == // Overwrite warning

JOptionPane.showConfirmDialog(SketchFrame.this,

file.getName()+” exists. Overwrite?”,

“Confirm Save As”,

JOptionPane.YES_NO_OPTION,

JOptionPane.WARNING_MESSAGE))

return; // No file selected

saveSketch(file);

}

return;

}

Recompile Sketcher with these additions and you will have a working Save As... option on the File
menu, with a file filter in action, too!

How It Works
Most of this is the same as the code for the saveOperation() method that implements the Save menu.
You have a fancy expression as the last argument to the showDialog() method. This is because the
Save As... operation could be used with a sketch that has been saved previously or with a sketch that has
never been saved. The expression passes modelFile as the argument if it is not null and creates a new
File object as the argument from the current directory and file name if modelFile is null. If you get a
non-null File object back from the showDialog() method, then you check for a potential overwrite of
an existing file. This will be the case if the selected file exists and is also different from modelFile. In
this instance you display a YES/NO dialog warning of this, just to verify that overwriting the existing
file really is intended. If the user closes the dialog by selecting the No button, you just return from the
method; otherwise, you save the current sketch in the file.

Since you have sketches written to disk, let’s now look at how you can implement the operation for the
Open menu item so you can try reading them back.

File Open Operations
Supporting the file/open operation is in some ways a little more complicated than save. You have to
consider the currently displayed sketch first of all. Opening a new sketch will replace it, so does it need
to be saved before the file open operation? If it does, you must deal with that before you can read a new
sketch from the file. Fortunately, most of this is already done by the saveOperation() method that you
implemented in the SketchFrame class. You just need to add a prompt for the save operation when nec-
essary. You could put this in a checkForSave() method that you can implement in the SketchFrame
class as:

// Prompt for save operation when necessary

public void checkForSave() {

if(sketchChanged && JOptionPane.YES_OPTION ==

JOptionPane.showConfirmDialog(SketchFrame.this,

“Current file has changed. Save current file?”,

“Confirm Save Current File”,

JOptionPane.YES_NO_OPTION,

JOptionPane.WARNING_MESSAGE)) {

saveOperation();

}

}

1100

Chapter 21

This method will be useful outside the SketchFrame class a little later on, so you have declared it as a
public member of the class. If the sketchChanged flag is true, the expression that is the right operand
for the && operator will be evaluated. This will pop up a confirm dialog to verify that the sketch needs to
be saved. If it does, you call the saveOperation() method to do just that. Of course, if sketchChanged
has the value false, the right operand to the && operator will not be evaluated and so the dialog won’t
be displayed.

When you get to the point of reading a sketch from the file, some further slight complications arise. You
must replace the existing SketchModel object and its view in the application with a new SketchModel
object and its view.

With those few thoughts, you are now ready to make it happen.

Try It Out Implementing the Open Menu Item Operation
The file open process is similar to a save operation, but instead of writing the file, it will read it. You’ll
add another helper method, openSketch(), to the SketchFrame class that will do the reading, given a
File object identifying the source of the data. Using this method, the code to handle the Open menu
item event in the actionPerformed() method for the FileAction class will be:

} else if(name.equals(openAction.getValue(NAME))) {

checkForSave();

// Now open a sketch file

File file = showDialog(

“Open Sketch File”, // Dialog window title

“Open”, // Button lable

“Read a sketch from file”, // Button tooltip text

null); // No file selected

if(file != null) { // If a file was selected

openSketch(file); // then read it

}

}

You can implement the openSketch() method in the SketchFrame class as follows:

// Method for opening file

public void openSketch(File inFile) {

try {

ObjectInputStream in = new ObjectInputStream(new BufferedInputStream(

new FileInputStream(inFile)));

theApp.insertModel((SketchModel)in.readObject());

in.close();

modelFile = inFile;

filename = modelFile.getName(); // Update the file name

setTitle(frameTitle+modelFile.getPath()); // Change the window title

sketchChanged = false; // Status is unchanged

} catch(Exception e) {

System.out.println(e);

JOptionPane.showMessageDialog(SketchFrame.this,

“Error reading a sketch file.”,

“File Input Error”,

JOptionPane.ERROR_MESSAGE);

1101

Filing and Printing Documents

}

}

Of course, you need three more import statements in SketchFrame.java:

import java.io.ObjectInputStream;

import java.io.BufferedInputStream;

import java.io.FileInputStream;

The SketchModel object that is read from the file is passed to a new method in the Sketcher class,
insertModel(). This method has to replace the current sketch with the new one that is passed as the
argument. You can implement the method like this:

// Insert a new sketch model

public void insertModel(SketchModel newSketch) {

sketch = newSketch; // Store the new sketch

sketch.addObserver(view); // Add the view as observer

sketch.addObserver(window); // Add the app window as observer

view.repaint(); // Repaint the view

}

After you have loaded the new model, you update the window title bar and record the status as
unchanged in the SketchFrame object. If you compile Sketcher once more, you can give the file open
operation a workout. The Open dialog should be as shown in Figure 21-4.

Figure 21-4

Don’t forget to try out the tooltip for the Open button.

1102

Chapter 21

How It Works
After dealing with saving the current sketch in the actionPerformed() member of the FileAction
class, you use the showDialog() method that you defined in the SketchFrame class to display a file
open dialog. The showDialog() method is all-purpose — you can put any kind of label on the button or
title in the title bar so you can use it to display any of the dialogs you need for file operations.

If a File object was selected in the dialog, you pass this to the openSketch() member of the
SketchFrame object to read a new sketch from the file. The openSketch() method creates an
ObjectInputStream object from the File object that was passed as an argument and reads a
SketchModel object from the stream by calling the readObject() method. The object returned by the
readObject() method has to be cast to the appropriate type —SketchModel in this case. You pass this
SketchModel object to the insertModel() method for the application object. This replaces the current
sketch reference in the sketch member of the application object with a reference to the new sketch and
then sets the view and the application window as observers. Calling repaint() for the view object dis-
plays the new sketch, since the paint() method for the view object obtains a reference to the current
model by calling the getModel() member of the application object, which will return the reference to
the new model.

Starting a New Sketch
The File ➪ New menu item simply starts a new sketch. This is quite similar to the open operation except
that you must create an empty sketch rather than read a new one from disk. The processes of checking
for the need to save the current sketch and inserting the new SketchModel object into the application
will be the same.

Try It Out Implementing the New Operation
You need to place the code to create a new empty sketch in the else–if block corresponding to the
newAction object event. This is in the actionPerformed() method in the FileAction inner class:

else if(name.equals(newAction.getValue(NAME))) {

checkForSave();

theApp.insertModel(new SketchModel()); // Insert new empty sketch

modelFile = null; // No file for it

filename = DEFAULT_FILENAME; // Default name

setTitle(frameTitle + files.getCurrentDirectory() + “\\” + filename);

sketchChanged = false; // Not changed yet

}

Now you can create a new sketch.

How It Works
All the saving of the existing sketch is dealt with by the checkForSave() method that you added to the
SketchFrame class. The new part is the last five lines of the highlighted code above. You call the
SketchModel constructor to create a new empty sketch, and pass it to the insertModel() method for
the application object. This will insert the new sketch into the application and get the view object to dis-
play it. You then update the data members of the window that record information about the file for the
current sketch and its status. You also set the sketchChanged flag to false, as it’s an empty sketch.

1103

Filing and Printing Documents

Preventing Data Loss on Close
At the moment you’re still not calling checkForSave() when you close the application with the win-
dow icon. This means you could lose hours of work in an instant. But the solution is very simple. You
just need to get the event handler for the window closing event to call the checkForSave() method for
the window object.

Try It Out Prompting for Save on Close
To implement this you can use the WindowListener object for the application window that you have
already added in the Sketcher class. This listener receives notification of events associated with open-
ing and closing the window as well as minimizing and maximizing it. You just need to add some code to
the body of the windowClosing() method for the listener. You require one extra line in the Sketcher
class definition:

// Handler class for window events

class WindowHandler extends WindowAdapter {

// Handler for window closing event

public void windowClosing(WindowEvent e) {

window.checkForSave();

}

}

The WindowHandler class is a subclass of the WindowAdapter class. In the subclass you just define the
methods you are interested in to override the empty versions in the adapter class. The WindowListener
interface declares the following seven methods corresponding to various window events:

Method Description

windowActivated(WindowEvent e) Called when the window receives the focus and
becomes the currently active window

windowDeactivated(WindowEvent e) Called when the window ceases to be the currently
active window

windowIconified(WindowEvent e) Called when the window is minimized

windowDeiconified(WindowEvent e) Called when the window returns to its normal
state from a minimized state

windowOpened(WindowEvent e) Called the first time a window is made visible

windowClosed(WindowEvent e) Called when a window has been closed by calling
its dispose() method

windowClosing(WindowEvent e) Called when the user selects the close icon or the
Close item from the system menu for the window

Clearly, using the WindowAdapter class as a base saves a lot of time and effort. Without it you would
have to define all seven of the methods declared in the interface in our class. Because the
WindowHandler class is an inner class its methods can access the fields of the Sketcher class, so the

1104

Chapter 21

windowClosing() method you have defined can call the checkForSave() method for the window
member of the Sketcher class object.

Now if you close the application window without having saved your sketch, you will be prompted to
save it.

Defining the WindowHandler inner class with just one method is not necessary. You could choose to use
an anonymous class, as the method is so simple. First, delete the WindowHandler inner class to the
Sketcher class. Next, replace the statement that adds the window listener for the window object with the
following statement:

window.addWindowListener(new WindowAdapter() {// Add window listener

public void windowClosing(WindowEvent e) {

window.checkForSave();

}

});

You define an anonymous class derived from the WindowHandler class in the expression that is the
argument to the addWindowListener() method. The syntax is exactly the same as if you were defining
an anonymous class that implements an interface. The class defines just one method, the
windowClosing() method that you defined previously in the WindowHandler class.

If you recompile the Sketcher program, you should find that it works just as well as before.

How It Works
This makes use of the code that you implemented for the save operation, packaged in the
checkForSave() method. This does everything necessary to enable the sketch to be saved before the
application window is closed. Defining methods judiciously makes for economical coding.

This still leaves you with the now redundant File | Close button to tidy up. As it’s not really any differ-
ent from the File | New function, let’s change it to an application Exit button and reposition it at the bot-
tom of the File menu. First, delete the statements that create the closeAction object and add it to the
File menu. Next you can insert statements for an else if block corresponding to the closeAction
object event in the actionPerformed() method for the FileAction inner class to SketchFrame that
will provide the close action functionality — checking to see whether the file should be saved before exit-
ing the program:

} if(name.equals(printAction.getValue(NAME))) {

// Code to handle Print operation..

} else if(name.equals(closeAction.getValue(NAME))) {

checkForSave();

System.exit(0);

}

Then you can redo the menu layout in the File menu constructor and add the mnemonic key Ctrl-X for
the Exit menu item:

// Create the action items for the file menu

newAction = new FileAction(“New”,

KeyStroke.getKeyStroke(‘N’, CTRL_DOWN_MASK), “Create new sketch”);

1105

Filing and Printing Documents

openAction = new FileAction(“Open”,

KeyStroke.getKeyStroke(‘O’, CTRL_DOWN_MASK),”Open existing sketch”);

saveAction = new FileAction(“Save”,

KeyStroke.getKeyStroke(‘S’, CTRL_DOWN_MASK), “Save sketch”);

saveAsAction = new FileAction(“Save As...”);

printAction = new FileAction(“Print”,

KeyStroke.getKeyStroke(‘P’, CTRL_DOWN_MASK), “Print sketch”);

closeAction = new FileAction(“Exit”,

KeyStroke.getKeyStroke(‘X’, CTRL_DOWN_MASK), “Exit Sketcher”);

// Construct the file drop-down menu

fileMenu.add(new JMenuItem(newAction));

fileMenu.add(new JMenuItem(openAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(saveAction));

fileMenu.add(new JMenuItem(saveAsAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(printAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(closeAction));

All but one of the file actions are now operable. To complete the set you just need to get printing up and
running.

Printing in Java
Printing is always a messy business — inevitably so, because you have to worry about tedious details
such as the size of a page, the margin sizes, and how many pages you’re going to need for your output.
As you might expect, the process for printing an image is different from printing text, and you may also
have the added complication of several printers with different capabilities being available, so with cer-
tain types of documents you need to select an appropriate printer. The way through this is to take it one
step at a time. Let’s understand the general principles first.

There are five packages dedicated to supporting printing capabilities in Java:

Package Description

javax.print Defines classes and interfaces that enable you to deter-
mine what printers are available and what their capa-
bilities are. It also enables you to identify types of
documents to be printed.

javax.print.attribute Defines classes and interfaces supporting the definition
of sets of printing attributes. For example, you can
define a set of attributes required by a particular docu-
ment when it is printed, such as color output and two-
sided printing.

1106

Chapter 21

Package Description

javax.print.attribute.standard Defines classes that identify a set of standard printing
attributes.

javax.print.event Defines classes that identify events that can occur while
printing and interfaces that identify listeners for print-
ing events.

java.awt.print Defines classes and attributes for expediting the print-
ing of 2D graphics and text.

The first four of these packages make up what is called the Print Service API. This allows printing on all
Java platforms and has facilities for discovering and using multiple printers with varying capabilities.
Since in all probability you have just a single printer available, you’ll concentrate in the first instance on
understanding the classes and interfaces defined in the java.awt.print package that carry out print
operations on a given printer, and stray into classes and interfaces from the other packages when
necessary.

Four classes are defined in the java.awt.print package, and you’ll be using all of them eventually:

PrinterJob An object of this class type controls printing to a partic-
ular print service (such as a printer or fax capability).

PageFormat An object of this class type defines the size and orienta-
tion of a page that is to be printed.

Paper An object of this class type defines the size and print-
able area of a sheet of paper.

Book An object of this class type defines a multipage docu-
ment where pages may have different formats and
require different rendering processes.

The PrinterJob class drives the printing process. Don’t confuse this with the PrintJob class in the
java.awt package — this is involved in the old printing process that was introduced in Java 1.1, and the
PrinterJob class now supersedes this. A PrinterJob class object provides the interface to a printer in
your environment, and you use PrinterJob class methods to set up and initiate the printing process for
a particular document. You start printing off one or more pages in a document by calling the print()
method for the PrinterJob object.

A PageFormat object encapsulates information about a page, such as its dimensions, margin sizes, and
orientation. An object of type Paper describes the characteristics of a physical sheet of paper that will be
part of a PageFormat object. A Book object encapsulates a document consisting of a collection of pages
that are typically processed in an individual way. You’ll be getting into the details of how you work with
these a little later in this chapter.

1107

Filing and Printing Documents

There are three interfaces in the java.awt.print package:

Printable Implemented by a class to print a single page

Pageable Implemented by a class to print a multipage document, where each
page may be printed by a different Printable object

PrinterGraphics Declares a method for obtaining a reference to the PrinterJob
object for use in a method that is printing a page

When you print a page, an object of a class that implements the Printable interface determines what is
actually printed. Such an object is referred to as a page painter. Figure 21-5 illustrates the basics of how
the printing process works.

Figure 21-5

The Printable interface defines only one method, print(), which is called by a PrinterJob object
when a page should be printed. Therefore, the print() method from the Printable interface does the
printing of a page. Note that I have mentioned two print() methods, one defined in the PrinterJob
class that you call to starting the printing process and another declared in the Printable interface that
you implement in your class that is to do the printing legwork for a single page.

The printing operation that you must code when you implement the print() method declared in the
Printable interface works through a graphics context object that provides the means for writing data
to your printer. The first argument passed to your print() method when it is called by a PrinterJob
object is a reference of type Graphics that represents the graphics context for the printer. The object that
it references is actually of type Graphics2D, which parallels the process you are already familiar with
for drawing on a component that is displayed on the screen. Just as with writing to the screen, you use
the methods defined in the Graphics and Graphics2D classes to print what you want, and the basic
mechanism for printing 2D graphics or text on a page is identical to drawing on a component. The
Graphics object for a printer also happens to implement the PrinterGraphics interface (not to be con-
fused with the PrintGraphics interface in the java.awt package!) that declares just one method,
getPrinterJob(). You call this method to obtain a reference to the object that is managing the print
process. You would do this if you need to call PrinterJob methods to extract information about the
print job, such as the job name or the user name.

Calling the print()
method for this object
starts printing a set of

pages.

supplies Graphics objects
for the printer

when it calls your print()
method to print a page

Basic Printing Operation

class YourClass implements Printable

public int print(Graphics g...){

// Your code to print...
}

PrinterJob Object

1108

Chapter 21

A class that implements the Pageable interface defines an object that represents a set of pages to be
printed rather than a single page. You would implement this interface for more complicated printing sit-
uations in which a different page painter may print each page using an individual PageFormat object.
It’s the job of the Pageable object to supply information to the PrinterJob object about which page
painter and PageFormat object should be used to print each page. The Pageable interface declares
three methods:

getNumberOfPages() Returns the number of pages to be printed as type int,
or the constant value UNKNOWN_NUMBER_OF_PAGES if the
number of pages is not known. This constant is defined
as a value of type int in the Pageable interface.

getPageFormat(int pageIndex) Returns a PageFormat object describing the size and ori-
entation of the page specified by the argument. An
exception of type IndexOutOfBoundsException will be
thrown if the page does not exist.

getPrintable(int pageIndex) Returns a reference to the Printable object responsible
for printing the page specified by the argument. An
exception of type IndexOutOfBoundsException will be
thrown if the page does not exist.

A Book object also encapsulates a document that consists of a number of pages, each of which may be
processed individually for printing. The difference between this and an object of a class that implements
the Pageable interface is that you can add individual pages to a Book object programmatically, whereas
a class that implements Pageable encapsulates all the pages. You’ll look at how both of these options
work later in this chapter.

Creating and Using PrinterJob Objects
Because the PrinterJob class encapsulates and manages the printing process for a given physical
printer that is external to the Java Virtual Machine (JVM), you can’t create an object of type PrinterJob
directly using a constructor. You obtain a reference to a PrinterJob object for the default printer on a
system by calling the static method getPrinterJob() that is defined in the PrinterJob class:

PrinterJob printJob = PrinterJob.getPrinterJob(); // For the default printer

The printJob object provides the interface to the default printer and controls each print job that you
send to it.

A printer is encapsulated by a javax.print.PrintService object, and you can obtain a reference of
type PrintService to an object encapsulating the printer that will be used by a PrinterJob object by
calling its getPrintService() method:

PrintService printer = printJob().getPrintService();

You can query the object that is returned for information about the capabilities of the printer and the
kinds of documents it can print, but I won’t divert down that track for the moment. One point you
should keep in mind is that sometimes a printer may not be available on the machine on which your

1109

Filing and Printing Documents

code is running. In this case the getPrintService() method will return null, so it’s a good idea to call
the method and test the reference that is returned, even if you don’t want to obtain details of the printer.

If multiple print services are available, such as several printers or perhaps a fax capability, you can
obtain an array of PrintService references for them by calling the static lookupPrintServices()
method that is defined in the PrinterJob class. For example:

PrintService[] printers = PrinterJob.lookupPrintServices();

The printers array will have one element for each print service that is available. If no print services are
available, the array will have zero length. If you want to select a specific printer for the PrinterJob
object to work with, you just pass the array element corresponding to the print service of your choice to
the setPrintService() method for the PrinterJob object. For example:

if(printers.length>0) {

printJob.setPrintService(printers[0]);

}

The if statement checks that there are some print services before attempting to set the print service.
Without this you could get an IndexOutOfBoundsException exception if the printers array has no
elements. Of course, more realistically you would use methods defined in the PrintService interface
to query the printers, and use the results to decide which printer to use.

Displaying a Print Dialog
When you want to provide the user with control over the printing process, you can display a print dia-
log by calling the printDialog() method for a PrinterJob object. This method displays the modal
dialog that applies to your particular print facility. There are two versions of the printDialog()
method for a PrinterJob object. The version without arguments will display the native dialog if the
PrinterJob object is printing on a native printer, so I’ll introduce that first and return to the other ver-
sion later.

If the dialog is closed using the button that indicates printing should proceed, the printDialog()
method will return true; otherwise, it will return false. The method will throw an exception of type
java.awt.HeadlessException if there is no display attached to the system. Thus, to initiate printing,
you can call the printDialog() method to put the decision to proceed in the hands of the user, and if
the method returns true, call the print() method for the PrinterJob object to start printing. Note
that the print() method will throw an exception of type java.awt.print.PrinterException if an
error in the printing system causes the operation to be aborted.

Of course, the PrinterJob object has no prior knowledge of what you want to print, so you have to call
a method to tell the PrinterJob object where the printed pages are coming from before you initiate
printing. The simplest way to do this is to call the setPrintable() method and pass a reference to an
object of a class that implements the Printable interface as the argument.

In Sketcher, the obvious candidate to print a sketch is the SketchView object (a reference to which is
stored in the view member of the application object). Thus, you could provide for the possibility of
sketches being printed by making the SketchView class implement the Printable interface. That done,
you could then set the source of the printed output just by passing a reference to the view to the
setPrintable() method for a PrinterJob object. You might consider the SketchModel object to be a

1110

Chapter 21

candidate to do the printing, but printing is not really related to a sketch, any more than plotting or dis-
playing a sketch on the screen is. The model is the input to the printing process, not the owner of it. It is
generally better to keep the model dedicated to encapsulating the data that represents the sketch.

Starting the Printing Process
Let’s use what you now know about printing to add some code to the actionPerformed() method in
the FileAction class. This will handle the event for the printAction object in the SketchFrame class:

if(name.equals(printAction.getValue(NAME))) {

// Get a printing object

PrinterJob printJob = PrinterJob.getPrinterJob();

PrintService printer = printJob.getPrintService();

if(printer == null) { // See if there is a printer

JOptionPane.showMessageDialog(SketchFrame.this,

“No default printer available.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

return;

}

// The view is the page source

printJob.setPrintable(theApp.getView());

if(printJob.printDialog()) { // Display print dialog

try { // and if true is returned...

printJob.print(); // ...then print

} catch(PrinterException pe) {

System.out.println(pe);

JOptionPane.showMessageDialog(SketchFrame.this,

“Error printing a sketch.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

}

}

} else if(name.equals(closeAction.getValue(NAME))) {

checkForSave();

System.exit(0);

}

The code here obtains a PrinterJob object, and after verifying that there is a printer to print on, sets the
view as the printable source. You don’t need access to the PrinterService object to print, but it’s one
way of verifying that a printer is available. The expression for the second if will display a print dialog,
and if the return value from the printDialog() method call is true, you call the print() method for
the printJob object to start the printing process. This is one of two overloaded print() methods that
the PrinterJob class defines. You’ll look into the other one when you try out the alternative
printDialog() method a little later in this chapter.

Three more import statements are needed in the SketchFrame.java file:

import javax.print.PrintService;

import java.awt.print.PrinterJob;

import java.awt.print.PrinterException;

1111

Filing and Printing Documents

The SketchFrame class still won’t compile at the moment, as you haven’t made the SketchView class
implement the Printable interface yet.

Printing Pages
The class object that you pass to the setPrintable() method is responsible for all the details of the
printing process. This class must implement the Printable interface, which implies defining the
print() method in the class. You can make the SketchView class implement the Printable interface
like this:

import javax.swing.*; // For various Swing components

// Import statements as before...

import java.awt.print.Printable;

import java.awt.print.PageFormat;

import java.awt.print.PrinterException;

class SketchView extends JComponent

implements Observer, ActionListener, Printable {

// Method to print the sketch

public int print(Graphics g, // Graphics context for printing

PageFormat pageFormat, // The page format

int pageIndex) // Index number of current page

throws PrinterException {

// Code to do the printing...

}

// Rest of the class definition as before...

}

The code that you added to the actionPerformed() method in the FileAction inner class to
SketchFrame identified the SketchView object to the PrinterJob object as responsible for executing the
printing of a page. The PrinterJob object will therefore call the print() method that you have defined
here for each page to be printed. This process starts when you call the print() method for the
PrinterJob object that has overall control of the printing process; this occurs in the actionPerformed()
method in the FileAction class. You can see that the print() method in SketchView can throw an
exception of type PrinterException. If you identify a problem within your print() method code, the
way to signal the problem to the PrinterJob object is to throw an exception of this type.

Keep in mind that you should not assume that the PrinterJob object will call the print() method
for your Printable object just once per page. In general, the print() method is likely to be called
several times for each page, as the output destined for the printer is buffered within the Java printing
system, and the buffer will not necessarily be large enough to hold a complete page. You don’t need to
worry about this unduly. Just don’t build any assumptions into your code about how often print() is
called for a given page.

Of course, the PrinterJob object in the actionPerformed() method code has no way of knowing
how many pages need to be printed. When you call the PrinterJob object’s print() method, it will
continue calling the SketchView object’s print() method until the value returned indicates there are
no more pages to be printed. You can return one of two values from the print() method in the
Printable interface — either PAGE_EXISTS, to indicate you have rendered a page, or NO_SUCH_PAGE if

1112

Chapter 21

there are no more pages to be printed. Both of these constants are defined in the Printable interface.
The PrinterJob object will continue calling the print() method for the Printable object until the
method returns the value NO_SUCH_PAGE. If you don’t make sure the print() method returns this value
at some point, you’ll have an indefinite loop in the program.

You can see that three arguments are passed to the print() method in the Printable interface. The
first is the graphics context that you must use to write to the printer. The reference passed to the method
is actually of type Graphics2D, so you will typically cast it to this type before using it — just as you did
within the paint() method for a component to draw on the screen. In the print() method in our view
class, you could draw the sketch on the printer with the following statements:

public int print(Graphics g, // Graphics context for printing

PageFormat pageFormat, // The page format

int pageIndex) // Index number of current page

throws PrinterException {

Graphics2D g2D = (Graphics2D) g;

paint(g2D);

return PAGE_EXISTS;

}

This will work after a fashion, but you have more work to do before you can try this out. At the moment,
it will print the same page over and over, indefinitely, so let’s take care of that as a matter of urgency!

It’s the third argument that carries an index value for the page. The first page in a print job will have
index value 0, the second will have index value 1, and so on for as long as there are more pages to be
printed. If you intend to print our sketch on a single page, you can stop the printing process by checking
the page index:

public int print(Graphics g, // Graphics context for printing

PageFormat pageFormat, // The page format

int pageIndex) // Index number of current page

throws PrinterException {

if(pageIndex>0) {

return NO_SUCH_PAGE;

}

Graphics2D g2D = (Graphics2D) g;

paint(g2D); // Draw the sketch

return PAGE_EXISTS;

}

You want to print only one page, so if the value passed as the third parameter is greater than 0, you
return NO_SUCH_PAGE to stop the printing process.

While at least you won’t now print endlessly, you still won’t get an output formatted the way you want
it. You must look into how you can use the information provided by the second argument that is passed
to the print() method, the PageFormat object, to position the output properly on the paper.

1113

Filing and Printing Documents

The PageFormat Class
The PageFormat reference that is passed as the second argument to the print() method for a page pro-
vides details of the page size, the position and size of the printable area on the page, and the orientation
— portrait or landscape.

Perhaps the most important pieces of information you can get are where the top-left corner of the print-
able area (or imageable area to use the terminology of the method names) is on the page, and its width
and height, since this is the area you have available for printing your output. The printable area on a
page is simply the area within the current margins that are defined for your printer. The position of
the printable area is returned by the methods getImageableX() and getImageableY() for the
PageFormat object. These return the x and y coordinates of the top-left corner of the printable area in
user coordinates for the printing context as values of type double, which happen to be in units of
1/72 of an inch, which, as luck would have it, corresponds to a point — as in point size for a font.
The width and height of the printable area on the page are returned in the same units by the
getImageableWidth() and getImageableHeight() methods for the PageFormat object.

The origin of the page coordinate system, the point (0,0), corresponds initially to the top-left corner of
the paper. If you want the output to be placed in the printable area on the page, the first step will be to
move the origin of the graphics context that you will use for writing to the printer to the position of the
top-left corner of the printable area. Figure 21-6 illustrates the way you do this.

Figure 21-6

Boundary of the
printable area

Original axes
position

The top left of the printable area on the page:

g2D.translate(pageFormat.getImageableX(),pageFormat.getImageableY());

moves the coordinate system's origin from the top left corner
of the paper to the top-left of the printable area

x is pageFormat.getImageableX()
y is pageFormat.getImageableY()

0,0

0,0

New axes
position

The paper

1114

Chapter 21

You know how to do this; it’s exactly what you have been doing in the draw() method for each of our
element classes. You call the translate() method for the graphics context to move the origin for the
user coordinate system. Here’s how this would work for the print() method in the SketchView class:

public int print(Graphics g, // Graphics context for printing

PageFormat pageFormat, // The page format

int pageIndex) // Index number of current page

throws PrinterException {

if(pageIndex>0) {

return NO_SUCH_PAGE;

}

Graphics2D g2D = (Graphics2D) g;

// Move origin to page printing area corner

g2D.translate(pageFormat.getImageableX(), pageFormat.getImageableY());

paint(g2D); // Draw the sketch

return PAGE_EXISTS;

}

Calling the translate() method for the Graphics2D object moves the user coordinate system so that
the (0,0) point is positioned at the top-left corner of the printable area on the page.

Let’s see if that works in practice.

Try It Out Printing a Sketch
You should have added the code you saw earlier to the actionPerformed() method to handle the Print
menu item event and the code to SketchView to implement the Printable interface that you have
evolved. Don’t forget the import statements for the classes in the java.awt.print package. If you
compile and run Sketcher, you should be able to print a sketch.

On my system, when I select the toolbar button to print, I get the dialog shown in Figure 21-7.

Figure 21-7

1115

Filing and Printing Documents

This is the standard dialog for my printer under Windows XP. In your environment you will get a dialog
for your default printer. The reason why the dialog indicates that there are 9999 pages to be printed is
that you haven’t specified how many, so the maximum is assumed.

How It Works
The code in the actionPerformed() method in the FileAction class executes when you click the tool-
bar button or menu item to print a sketch. This first displays the print dialog by calling the
printDialog() method for the PrinterJob object that you obtain. Clicking the OK button causes the
dialog to close and the print() method for the PrinterJob object to be called. This in turn causes the
print() method in the SketchView class to be called one or more times for each page that is to be
printed, and one more time to end the process. The number of pages that are printed is determined by
the print() method in the SketchView class. Only when this method returns the value NO_SUCH_PAGE
will the PrinterJob object cease calling the method.

In the print() method in SketchView, you adjust the origin of the user coordinate system for the
graphics context so that its position is at the top-left corner of the printable area on the page. Only one
page is printed because you return NO_SUCH_PAGE when the page index value that is passed to the
print() method is greater than 0. Incidentally, if you want to see how many times the print() method
is called for a page, just add a statement at the beginning of the method to output some trace informa-
tion to the console.

I used the print facility to print the sketch shown in Figure 21-8, and frankly, I was disappointed.

Figure 21-8

The picture that I get printed on the paper is incomplete. There are only two flowers in view, and that
interesting cross between a rabbit and a cat has lost its tail.

The boulder on the left appears only in part. I know it’s not all on the screen, but it’s all in the model, so I
was hoping to see the picture in its full glory. If you think about it, though, it’s very optimistic to believe

1116

Chapter 21

that you could automatically get the whole sketch printed. First of all, neither the PrinterJob object
nor the view object has any idea how big the sketch is. That’s a fairly fundamental piece of data if you
want a complete sketch printed. Another consideration is that the left extremity of the boulder on the left
of the sketch is to the left of the y axis, but I’d rather like to see it in the picture. It would be nice if you
could take account of that too. Let’s see how you might do it.

Note that material change to the Element subclasses will cause problems in retrieving old sketches.
Sketches that were serialized before the changes will not deserialize afterwards because the class defini-
tion you use to read the data is different from the class definition when you wrote it.

Printing the Whole Sketch
A starting point is to figure out the extent of the sketch. Ideally you need a rectangle that encloses all the
elements in the sketch. It’s really surprisingly easy to get that. Every element has a getBounds()
method that returns a java.awt.Rectangle object enclosing the element. As you saw in Chapter 17,
the Rectangle class also defines an add() method that combines the Rectangle object that you pass as
the argument with the Rectangle object for which you called the method, and returns the smallest
Rectangle object that encloses both; this is referred to as the union of the two rectangles. With these
two bits of information and by accessing the elements in the list in the SketchModel object, you can get
a rectangle that encloses the entire sketch by implementing the following method in the SketchModel
class:

// Get the rectangle enclosing an entire sketch

Rectangle getModelExtent() {

Rectangle rect = new Rectangle(); // An empty rectangle

for(Element element : elements) { // Go through the list

rect.add(element.getBounds()); // Expand union

}

if(rect.width == 0) { // Make sure width

rect.width = 1; // is non-zero

}

if(rect.height == 0) { // and the height

rect.height = 1;

}

return rect;

}

Don’t forget to add an import statement for the Rectangle class name to the SketchModel source file:

import java.awt.Rectangle;

Using the collection-based for loop to iterate over the elements in the list, you generate the union of the
bounding rectangles for all the elements, so you end up with a rectangle that bounds everything in the
sketch. A zero width or height for the rectangle is unlikely, but you want to be sure it can’t happen
because you’ll use these values as divisors later.

You can see from Figure 21-9 how the rectangle returned by the getModelExtent() method is simply
the rectangle that encloses all the bounding rectangles for the individual elements. If you visualize the
origin of the user coordinate system being placed at the top-left corner of the printable area on the page,
you can appreciate that a section of the sketch in the illustration will be hanging out to the left outside

1117

Filing and Printing Documents

the printable area. This can arise quite easily in Sketcher — when you are drawing a circle with the cen-
ter close to either of the axes, for example, or if you move a shape so this is the case. You can avoid miss-
ing part of the sketch from the printed output by first translating the origin of the coordinate system to
the top-left corner of rect and then translating the origin of the graphics context at this position to the
top-left corner of the printable area on the page.

Figure 21-9

The following code in the print() method in the SketchView class will do this:

public int print(Graphics g, // Graphics context for printing

PageFormat pageFormat, // The page format

int pageIndex) // Index number of current page

throws PrinterException {

if(pageIndex>0) {

return NO_SUCH_PAGE;

}

Graphics2D g2D = (Graphics2D) g;

// Get sketch bounds

Rectangle rect = theApp.getModel().getModelExtent();

// Move origin to page printing area corner

g2D.translate(pageFormat.getImageableX(), pageFormat.getImageableY());

// Move origin to rect top left

g2D.translate(-rect.x, -rect.y);

rect.width

User Coordinates

Finding the Rectangle Enclosing a Sketch

0, 0
x

y

rect.x, rect.y

rect Produced as the union of
the rectangles for all of the
sketch elements

re
ct

.h
ei

gh
t

1118

Chapter 21

paint(g2D); // Draw the sketch

return PAGE_EXISTS;

}

You get the rectangle bounding the sketch by calling the getModelExtent() method that you put
together just now. You move the origin for the graphics context so that it corresponds to the top-left cor-
ner of the printable area on the page. You then use rect in the second statement that calls translate()
for the Graphics2D object to position the top-left corner of rect at the origin. You could have combined
these two translations into one, but it’s better in this instance to keep them separate, first to make it eas-
ier to see what is going on, and second because you’ll later be adding some other transformations in
between these translations. There is a potentially puzzling aspect to the second translation — why are
the arguments to the translate() method negative?

To understand this, it is important to be clear about what you are doing. It’s easy to get confused by this,
so I’ll take it step by step. First of all, remember that the paper is a physical entity with given dimen-
sions, and its coordinate system just defines where each point will end up on the paper when you print
something. Of course, you can move the coordinate system about in relation to the paper, and you can
scale or even rotate it to get something printed where you want.

Now consider our sketch. The point (rect.x, rect.y) is the top-left corner of the rectangle bounding
our sketch, the area you want to transfer to the page, and this point is fixed — you can’t change it to
make it the origin, for instance. With the current paper coordinates at the top-left corner of the printable
area, it might print something like that shown in Figure 21-10.

Figure 21-10

The paper

The printable
area on the page

Initial Position of Paper Coordinates

The sketch

rect.x,rect.y

0.0

1119

Filing and Printing Documents

When you print a sketch you really want the point (rect.x, rect.y) to end up at the top-left corner of
the printable area on the page. In other words, you have to move the origin of the coordinate system for
the paper so that the point (rect.x, rect.y) in the new coordinate system is the top-left corner of the
printable area. To do this you must move the origin to the new position shown in Figure 21-11.

Figure 21-11

Thus a translation of the origin to the point (-rect.x, -rect.y) does the trick.

You have the sketch in the right place on the page, but it won’t necessarily fit into the space available on
the paper. You must scale the sketch so that it doesn’t hang out beyond the right side or below the bot-
tom of the printable page area.

Scaling the Sketch to Fit
You saw earlier that you can get the width and height of the printable area on a page by calling the
getImageableWidth() and getImageableHeight() methods for the PageFormat object that is
passed to the print() method. You also have the width and height of the rectangle that encloses the
entire sketch. This provides the information that you need to scale the sketch to fit on the page. There are
a couple of tricky aspects that you need to think about, though. Figure 21-12 shows what happens when
you scale up by a factor of 2, for example.

First, note that when you scale a coordinate system, a unit of length along each of the axes changes in
size, so things move relative to the origin as well as relative to one another. When you scale up with a
factor greater than 1, everything moves away from the origin. You can see in Figure 21-12 how scaling
up by a factor of 2 causes the dimensions of the rectangle to double, but the distances of the new rectan-
gle from each of the axes are also doubled.

0.0

The paperrect.x,rect.y

New Position of Paper Coordinates

Origin was moved by -rect.x in the x direction
and -rect.y in the y direction

The sketch

The printable
area on the page

1120

Chapter 21

Figure 21-12

The reverse happens with scale factors less than 1. You want to make sure that you scale the sketch to fit
the page while keeping its top-left corner at the top left of the printable area. This means that you can’t
just apply the scaling factor necessary to make the sketch fit the page in the new coordinate system I
showed in the previous illustration. If you were to scale with this coordinate system, the sketch would
move in relation to the origin, away from it if you are scaling up as is the case in Figure 21-12, or towards
it if you are scaling down. As a consequence, the top-left corner of the sketch would no longer be at the
top left of the printable area. Thus you must apply the scaling operation to make the sketch fit on the
page after you have translated the paper origin to the top-left corner of the printable area, but before you
translate this origin point to make the top-left corner of the sketch appear at the top-left corner of the
printable area. This ensures that the sketch is scaled to fit the page and the top-left corner of the sketch
stays at the top-left corner of the printable area on the page and doesn’t move to some other point.

Secondly, you want to make sure that you scale x and y by the same factor. If you apply different scales
to the x and y axes in the user coordinate system, the relative proportions of a sketch will not be main-
tained and circles will become ellipses and squares will become rectangles.

You can calculate the scale factors you need to apply to get the sketch to fit within the printable area of
the page with the following statements:

// Calculate the x and y scales to fit the sketch to the page

double scaleX = pageFormat.getImageableWidth()/rect.width ;

double scaleY = pageFormat.getImageableHeight()/rect.height;

You are using variables of type double for the scale factors here because the getImageableWidth()
and getImageableHeight() methods return values of type double. The scale factor for the x-axis
needs to be such that when you multiply the width of the sketch, rect.width, by the scale factor, the
result is the width of the printable area on the page returned by getImageableWidth(), and similarly
for scaling the y-axis. Since you want to apply the same scale to both axes, you should calculate the

4

2

6

7 12

Scaled by 28

Original

Scaling up by a factor of 2

4

14

y

x

1121

Filing and Printing Documents

minimum of the scale factors scaleX and scaleY. If you then apply this minimum to both axes, the
sketch will fit within the width and height of the page and still be in proportion.

Try It Out Printing the Whole Sketch
You just need to add some code to the print() method in SketchView to calculate the required scale
factor and then use the scale() method for the Graphics2D object to apply the scaling transformation:

public int print(Graphics g, // Graphics context for printing

PageFormat pageFormat, // The page format

int pageIndex) // Index number of current page

throws PrinterException {

if(pageIndex>0) {

return NO_SUCH_PAGE;

}

Graphics2D g2D = (Graphics2D) g;

// Get sketch bounds

Rectangle rect = theApp.getModel().getModelExtent();

// Calculate the scale to fit sketch to page

double scaleX = pageFormat.getImageableWidth()/rect.width;

double scaleY = pageFormat.getImageableHeight()/rect.height;

// Get minimum scale factor

double scale = Math.min(scaleX, scaleY);

// Move origin to page printing area corner

g2D.translate(pageFormat.getImageableX(), pageFormat.getImageableY());

g2D.scale(scale, scale); // Apply scale factor

g2D.translate(-rect.x, -rect.y); // Move origin to rect top left

paint(g2D); // Draw the sketch

return PAGE_EXISTS;

}

If you compile and run Sketcher with these changes, you should now be able to print each sketch within
a page. Note that you need to create a new sketch. Any sketches that you created before these changes
will not be readable because of the changes you have made to the SketchModel class definition.

How It Works
You calculate the scaling factors for each axis as the ratio of the dimension of the printable area on the
page to the corresponding dimension of the rectangle enclosing the sketch. You then take the minimum
of these two scale factors as the scale to be applied to both axes. As long as the scale transformation is
applied after the translation of the coordinate system to the top-left corner of the printable page area,
one or other dimension of the sketch will fit exactly within the printable area of the page.

The output is now fine, but if the width of the sketch is greater than the height, you waste a lot of space
on the page. Ideally in this situation you would want to print with a landscape orientation rather than
the default portrait orientation. Let’s see what possibilities you have for doing that.

1122

Chapter 21

Printing in Landscape Orientation
You can easily determine when a landscape orientation would be preferable by comparing the width of a
sketch with its height. If the width is larger than the height, a landscape orientation will make better use
of the space on the paper and you will get a larger-scale picture.

You can set the orientation of the output in relation to the page by calling the setOrientation()
method for the PageFormat object. You can pass one of three possible argument values to this method,
which are defined within the PageFormat class:

Argument Value Description

PORTRAIT The origin is at the top-left corner of the page, with the positive
x-axis running from left to right and the positive y-axis running
from top to bottom. This is the MS Windows and Postscript
portrait definition.

LANDSCAPE The origin is at the bottom-left corner of the page, with the
positive x-axis running from bottom to top and the positive
y-axis running from left to right.

REVERSE_LANDSCAPE The origin is at the top-right corner of the page, with the
positive x-axis running from top to bottom and the positive
y-axis running from right to left. This is the Apple Macintosh
landscape definition.

In each case the long side of the paper is in the same orientation as the y-axis, but note that a Macintosh
landscape specification has the origin at the top-right corner of the page rather than the top-left or
bottom-left.

You might think that you can incorporate LANDSCAPE orientation into the print() method in
SketchView by changing the PageFormat object:

public int print(Graphics g, // Graphics context for printing

PageFormat pageFormat, // The page format

int pageIndex) // Index number of current page

1123

Filing and Printing Documents

throws PrinterException {

if(pageIndex>0) {

return NO_SUCH_PAGE;

}

Graphics2D g2D = (Graphics2D) g;

// Get sketch bounds

Rectangle rect = theApp.getModel().getModelExtent();

// If the width is more than the height, set landscape

if(rect.width>rect.height) {

pageFormat.setOrientation(pageFormat.LANDSCAPE);

}

// Rest of the code as before...

}

Having set the orientation for the PageFormat object, the methods returning the coordinates for the
position of the printable area and the width and height all return values consistent with the orientation.
Thus the width of the printable area will be greater than the height if the orientation has been set to
LANDSCAPE. Everything looks fine until you try it out. It just doesn’t work. The PageFormat object that
is passed to the print() method here is a carrier of information — the information that the PrinterJob
method used when it created the graphics context object. The coordinate system in the graphics context
has already been set up with whatever paper orientation was set in the PageFormat object, and chang-
ing it here is too late. The solution is to make sure the PrinterJob object that controls the printing pro-
cess works with a PageFormat object that has the orientation set the way that you want.

If you had known ahead of time back in the actionPerformed() method in the FileAction inner
class to SketchFrame, you could have set up the PageFormat object for the print job before the
print() method for the view object ever gets called. This can be done by modifying the code that initi-
ates printing in the actionPerformed() method like this:

// Get a printing object

PrinterJob printJob = PrinterJob.getPrinterJob();

PrintService printer = printJob.getPrintService();

if(printer == null) {

JOptionPane.showMessageDialog(SketchFrame.this,

“No default printer available.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

return;

}

PageFormat pageFormat = printJob.defaultPage();

Rectangle rect = theApp.getModel().getModelExtent(); // Get sketch bounds

// If the sketch width is greater than the height, print landscape

if(rect.width>rect.height) {

pageFormat.setOrientation(pageFormat.LANDSCAPE);

}

printJob.setPrintable(theView, pageFormat);

1124

Chapter 21

Calling the defaultPage() method for a PrinterJob object returns a reference to the default page for
the current printer. You can then change that to suit the conditions that you want to apply in the printing
operation and pass the reference to an overloaded version of the setPrintable() method. The call to
setPrintable() here makes the printJob object use the view object as the Printable object, and
supply the PageFormat object specified by the second argument when it calls the print() method for
the view. With this code you don’t need to worry about the orientation in the print() method for the
Printable object. It is taken care of before print() ever gets called. You’ll need an import statement
for the PageFormat class name in the SketchFrame.java file for this to compile.

If you recompile and try printing a sketch that is wider than it is long, it should come out perfectly in
landscape orientation. While everything works, the way printing has been implemented could be better.
The PrinterJob and PrintService objects are recreated every time the event handler executes. This
has a detrimental effect on the performance of the printing event handler in the FileAction class, and
what’s more, it’s not necessary. You’ll fix this in the next section.

Improving the Printing Facilities
Of course, there are many situations where choosing the best orientation from a paper usage point of
view may not be what the user wants. Instead of automatically setting landscape or portrait orientation
based on the dimensions of a sketch, you could leave it to the user with a dialog to select the page setup
parameters in the print dialog that you display. The mechanism for the user to set the job parameters is
already in place in Sketcher. Clicking the Properties button on the dialog usually displays an additional
dialog in which you can set the parameters for the print job, including whether the output is portrait or
landscape. Whatever is set in the print dialog will override the orientation that you determine program-
matically in the actionPerformed() method in the FileAction class.

However, the printing facilities in Sketcher are not implemented in the way that is usual for an applica-
tion. For one thing, the toolbar button and the File | Print menu item do exactly the same thing, but typ-
ically it’s the menu item that pops a print dialog, and the toolbar button just initiates printing of the
current document. For another, there’s often a separate menu item that allows the page to be set up for
printing, independent of the process of printing a document. You can fix that without too much diffi-
culty though.

In the actionPerformed() method in the FileAction class, you’ll need to be able to determine
whether it was the toolbar button or the menu item that initiated the event. You can get a reference to the
object that originated the event by calling the getSource() method for the ActionEvent object that is
passed to the actionPerformed() method. All you need then is a reference to the toolbar button or the
menu item for print operations — either will do.

First, add a field to the SketchFrame class to store a reference to the toolbar button for printing:

private JButton printButton; // Toolbar button for printing

The addToolbarButton() method in the SketchFrame class returns a reference to the button that it
creates. You can use this to initialize the printButton field in the SketchFrame constructor:

// Add file buttons

toolBar.addSeparator(); // Space at the start

addToolBarButton(newAction);

1125

Filing and Printing Documents

addToolBarButton(openAction);

addToolBarButton(saveAction);

printButton = addToolBarButton(printAction);

Now you can compare the reference returned by the getSource() method for the ActionEvent object
with printButton, and if they are one and the same, it was the button the originated the event.
Otherwise it was the menu item. You can now update the code in the actionPerformed() method in
the FileAction inner class so you get the print dialog displayed only when the menu item is selected:

// The view is the page source

printJob.setPrintable(theApp.getView(), pageFormat);

boolean printIt = true;

if(e.getSource() != printButton) { // If it’s not the toolbar button

printIt = printJob.printDialog(); // ...display the print dialog

}

if(printIt) { // If printIt is true...

try {

printJob.print(); // ...then print

} catch(PrinterException pe) {

System.out.println(pe);

JOptionPane.showMessageDialog(SketchFrame.this,

“Error printing a sketch.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

}

}

The value of the printIt flag you have defined is true by default. It can get reset to false by the value
returned by the printDialog() method. This method only gets called when the menu item caused the
event for printing, not for the toolbar button, so you only get the print dialog displayed for the menu
item.

If you’ve completed all the changes I’ve described, recompile Sketcher and run it again. You should now
get different behavior depending on whether you use the toolbar button or the menu item for printing.

Implementing Page Setup
You can add a menu item to the File menu to provide for setting up the printer page. First, add a field to
store a reference to the menu item:

private JMenuItem printSetupItem;

Since you are not going to add a toolbar button for this, you don’t need to use an Action object. Action
objects carry more overhead that a simple component, so it’s best not to use them unless you need the
capability they provide.

Add the shaded code to the SketchFrame constructor to create the JMenuItem object for the new menu
item and add the menu item to the File menu:

1126

Chapter 21

printSetupItem = new JMenuItem(“Print Setup...”);

printSetupItem.addActionListener(this);

// Construct the file drop-down menu

fileMenu.add(new JMenuItem(newAction));

fileMenu.add(new JMenuItem(openAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(saveAction));

fileMenu.add(new JMenuItem(saveAsAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(printAction));

fileMenu.add(printSetupItem);

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(closeAction));

There’s no provision for an accelerator for the print setup menu item, but you could add one by calling
the setAccelerator() method for the JMenuItem object and passing a reference to an appropriate
KeyStroke object as the argument. The listener for the new menu item is the SketchFrame object, so
you must put the code that will handle events for this menu item in the actionPerformed() method in
the SketchFrame class. The only thing you need to decide is what this code is going to do.

A PrinterJob object will help because it provides a pageDialog() method that displays a dialog
specifically for printing page setup. Data from the PageFormat object you supply as the argument is
used to set the values in controls in the dialog. The method stores the user selections from the dialog in a
new PageFormat object that it creates and returns a reference to it, so you must save it. A reference to
the PageFormat object that you pass to the method will be returned only if the user does not change any
page parameters. Of course, you’ll need to arrange to preserve the PageFormat object that the
pageDialog() method returns so that it can be used when you call the print() method for a
PrinterJob object to initiate a print operation. It would therefore be a good idea to create fields in the
SketchFrame class that will store the PrinterJob object for the printer you’ll use and a PageFormat
object to go with it. Then you just need to update the PageFormat object in the event handlers when
necessary.

Add the following fields to the SketchFrame class:

PrinterJob printJob; // The current printer job

PageFormat pageFormat; // The printing page format

PrintService printer; // The printer to be used

You can initialize the first two fields in the SketchFrame constructor. Add the following statements at
the end of the existing code in the constructor:

PrinterJob printJob = PrinterJob.getPrinterJob(); // Get a printing object

PageFormat pageFormat = printJob.defaultPage(); // Get the page format

printer = printJob.getPrintService(); // Get the default printer

Of course, the fields concerned with printing are accessible through the SketchFrame class code, includ-
ing the inner classes such as the FileAction class.

1127

Filing and Printing Documents

You’ll need to change the code in the actionPerformed() method in the FileAction class to make
use of the fields you have just added to the SketchFrame class and to initialize the PrintService field:

} if(name.equals(printAction.getValue(NAME))) {

// Verify there is a default printer

if(printer == null) {

JOptionPane.showMessageDialog(SketchFrame.this,

“No default printer available.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

return;

}

// The view is the page source

printJob.setPrintable(theApp.getView(), pageFormat);

boolean printIt = true;

if(e.getSource() != printButton) { // If it’s not the toolbar button

printIt = printJob.printDialog(); // ...display the print dialog

}

if(printIt) { // If printIt is true...

try {

printJob.print(); // ...then print

} catch(PrinterException pe) {

System.out.println(pe);

JOptionPane.showMessageDialog(SketchFrame.this,

“Error printing a sketch.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

}

}

} else if(name.equals(closeAction.getValue(NAME))) {

checkForSave();

System.exit(0);

}

You no longer need to set up the PrinterJob object or the PrinterService object here as it’s already
done in the SketchFrame class constructor. You only need to check that the printer field in the
SketchFrame class is not null before you print. If it is, you pop up a message dialog and return imme-
diately. I’ve removed the code that sets the page orientation based on the extent of the sketch, because it
overrides the effect of the page setup dialog that you’ll add in a moment.

You can now update the actionPerformed() method in the SketchFrame class to respond to events
for the Print Setup... menu item:

public void actionPerformed(ActionEvent e) {

Object source = e.getSource();

if(source == aboutItem) {

// Create about dialog with the menu item as parent

JOptionPane.showMessageDialog(this, // Parent

“Sketcher Copyright Ivor Horton 2004”, // Message

“About Sketcher”, // Title

JOptionPane.INFORMATION_MESSAGE); // Message type

1128

Chapter 21

} else if(e.getSource() == fontItem) { // Set the dialog window position

Rectangle bounds = getBounds();

fontDlg.setLocation(bounds.x + bounds.width/3, bounds.y + bounds.height/3);

fontDlg.setVisible(true); // Show the dialog

} else if(source == customColorItem) {

Color color = JColorChooser.showDialog(this, “Select Custom Color”,

elementColor);

if(color != null) {

elementColor = color;

statusBar.setColorPane(color);

}

} else if(source == printSetupItem) {

pageFormat = printJob.pageDialog(pageFormat); // update the page format

}

}

As you now are handling events from three different sources in the method, you now obtain the refer-
ence to the source of the event and store it in a local variable. Servicing the event for the
printSetupItem object just involves calling the pageDialog() method for the printJob object that is
stored as a field in the SketchFrame object. You pass a reference to pageFormat that holds the current
page settings as the argument to the method. You store the PageFormat reference that the method
returns in the pageFormat field. This will either be a reference to the original object you passed as the
argument or a new object containing updated data relating to the page.

On my system, the pageDialog() method displays the dialog shown in Figure 21-13.

Figure 21-13

1129

Filing and Printing Documents

As you can see, with my printer I can select the paper size and the source tray. I can also set the margin
sizes as well as select portrait or landscape orientation. The bottom-right button has provision for select-
ing an alternative printer, but this information will not be recorded in the PageFormat object. When the
dialog is closed normally with the OK button, the method returns a new PageFormat object that incor-
porates the values set by the user in the dialog. If the Cancel button is used to close the dialog, the origi-
nal reference that was passed as an argument is returned. The printing operations that are initiated in
the actionPerformed() method in the FileAction class will use the updated PageFormat object. You
achieve this by passing pageFormat as the second argument to the overloaded setPrintable()
method with two parameters. The first argument is the object that implements the Printable interface
and thus carries out the printing.

Using the Java Print Dialog
The overloaded version of the printDialog() method that I sidestepped earlier generates a Java-based
print dialog rather than using the native dialog. This method requires a single argument of type
PrintRequestAttributeSet. This interface type is defined in the javax.print.attribute package
and declares methods for adding attributes relating to a print request to a set of such attributes. These
attributes specify things such as the number of copies to be printed, the orientation of the image on the
paper, or the media or media tray to be selected for the print job. The HashPrintRequestAttributeSet
class that is defined in the same package implements this interface and encapsulates a set of print
request attributes stored as a hash map. It will be useful if you can define a set of attributes that have
some persistence in Sketcher so they can be carried forward from one print request to the next. You can
add an initially empty set of print request attributes to the SketchFrame class like this:

private HashPrintRequestAttributeSet printAttr =

new HashPrintRequestAttributeSet();

There are other HashPrintRequestAttributeSet class constructors that will create non-empty
attribute sets, but this will suffice for Sketcher. You’ll need an import statement for the class in the
SketchFrame.java file:

import javax.print.attribute.HashPrintRequestAttributeSet;

Now you have a print request attribute set object; you can modify the actionPerformed() method in
the FileAction inner class to use the Java print dialog:

// Verify there is a default printer

if(printer == null) {

JOptionPane.showMessageDialog(SketchFrame.this,

“No default printer available.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

1130

Chapter 21

return;

}

// The view is the page source

printJob.setPrintable(theApp.getView(), pageFormat);

boolean printIt = true;

if(e.getSource() != printButton) { // If it’s not the toolbar button

printIt = printJob.printDialog(printAttr); // ...display the print dialog

}

if(printIt) { // If printIt is true...

try {

printJob.print(printAttr); // ...then print

} catch(PrinterException pe) {

System.out.println(pe);

JOptionPane.showMessageDialog(SketchFrame.this,

“Error printing a sketch.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

}

}

Note that you also use an overloaded version of the print() method for the PrinterJob object to
which you pass the print request attribute set. Thus the print operation will use whatever attributes
were set or modified in the print dialog displayed by the printDialog() method.

As you are using print attributes when printing, you should make the page dialog that is displayed in
response to the Print Setup... menu item use them, too. There’s a slight complication in that the behavior
of the pageDialog() method that has a parameter of type PrintRequestAttributeSet is different
from that of the method with a parameter of type PageFormat when the Cancel button in the dialog is
clicked. The former version returns null, whereas the latter version returns a reference to the
PageFormat object that was passed as the argument. If you don’t take account of this, canceling the
page setup dialog will cause printing to fail because the pageFormat field in SketchFrame will be set to
null. You therefore must modify the code in the actionPerformed() method in the SketchFrame
class like this:

} else if(source == printSetupItem) {

PageFormat pf = printJob.pageDialog(printAttr);

if(pf != null) {

pageFormat = pf; // update the page format

}

}

Now you update pageFormat only if the return value from the pageDialog() method is not null.

1131

Filing and Printing Documents

If you run Sketcher with these changes you should see a dialog with three tabs, similar to that shown in
Figure 21-14, when you print a sketch:

Figure 21-14

Now you have the ability to set attributes on any of the tabs in the dialog and the attributes will be
stored in the PrintAttr member of the SketchFrame class that you passed to the printDialog()
method. Since you also pass this reference to the print() method for the PrinterJob object, the print
request will be executed using these attributes. This is accomplished by passing a PageFormat object to
the Printable object, which prints a page that has its size, orientation, and other attributes set from the
print request attributes defined by PrintAttr. You can see that the page count has been set to 1 by
default in this dialog. You can set attributes related to a print job and store them in the
PrintRequestAttributeSet object that you pass to the printDialog() method. Let’s explore that a
little further.

Setting Print Request Attributes Programmatically
Print request attributes are specifications of the kinds of options displayed in the dialog you just saw.
They specify things like the number of copies, whether printing is in color or monochrome, the page
margin sizes, and so on. Each print request attribute is identified by a class that implements the
PrintRequestAttribute interface, and the javax.print.attributes.standard package defines a
series of classes for standard print request attributes, as well as classes for other types of print attributes.
There is a large number of standard classes for print request attributes, and I don’t have the space to go
into the details of them all here. So I will just pick one to show how you can query and set them.

All the classes that implement the PrintRequestAttribute interface are identified in the interface
documentation. You can use the Copies class in the javax.print.attributes.standard package
that specifies the number of printed copies to be produced.

1132

Chapter 21

You’ll be adding an instance of the Copies class to our PrintAttr object to specify the number of
copies to be printed, and this will be displayed by the print dialog. You can create an object specifying
the number of copies to be produced by extending the code relating to printer setup in the SketchFrame
constructor, like this:

// Set up the printer and page format objects

printJob = PrinterJob.getPrinterJob(); // Get a printing object

pageFormat = printJob.defaultPage(); // Get the page format

printer = printJob.getPrintService(); // Get the default printer

Copies twoCopies = new Copies(2);

if (printer.isAttributeCategorySupported(twoCopies.getCategory())) {

printAttr.add(twoCopies);

}

The argument to the Copies class constructor specifies the number of copies to be produced. Our object
specifies just two copies but you can go for more if you have the paper, the time, and the inclination.

Before you add this object to the print request attribute set though, you verify that the printer does actu-
ally support the production of multiple copies. Obviously, it only makes sense to set an attribute for a
printer that has the appropriate capability — you won’t be able to print in color on a monochrome
printer, for instance. You can call the isAttributeCategorySupported() method for the
PrintService object that you obtained from the PrinterJob object to do this.

The isAttributeCategorySupported() method requires an argument of type Class to identify the
attribute category that you are querying, and you obtain this by calling the getCategory() method for
the Copies object. If the attribute is supported, you add the twoCopies object to the set encapsulated by
printAttr by calling its add() method.

You should add an import statement for the Copies class to SketchFrame.java:

import javax.print.attribute.standard.Copies;

If you recompile and run Sketcher once more, the print dialog should come up with two copies set
initially.

Of course, setting things like margin sizes and page orientation once and for all for every page in a docu-
ment may not be satisfactory in many cases. It is easy to envisage situations where you may want to
print some pages in a document in portrait orientation while others, perhaps containing illustrations, are
printed in landscape orientation. You’ll look next at how you can handle that in Java, but before going
any further, delete the following code from the SketchFrame constructor:

Copies twoCopies = new Copies(2);

if (printer.isAttributeCategorySupported(twoCopies.getCategory())) {

printAttr.add(twoCopies);

}

You can remove the import statement for the Copies class name, too.

1133

Filing and Printing Documents

Multipage Document Printing
If you need to print a document that contains multiple pages in a print job, you can include code for
accommodating this possibility in the implementation of the print() method declared in the
Printable interface. The PrinterJob object will continue to call this method until the value
NO_SUCH_PAGE is returned. However, this won’t be convenient in every case. In a more complicated
application than Sketcher, as well as having different page orientations, you may want to have different
class objects printing different kinds of pages — rendering the same data as graphical or textual output,
for instance. You can’t do this conveniently with just one class implementing the Printable interface.
You also need something more flexible than just passing a class object that does printing to the
PrinterJob object by calling its setPrintable() method.

The solution is to implement the Pageable interface in a class, and call the setPageable() method for
the PrinterJob object instead of setPrintable(). The essential difference between the Printable
and Pageable interfaces is that a Printable object is intended to encapsulate a single page to be
printed, whereas a Pageable object encapsulates multiple pages. Each of the pages to be printed by a
Pageable object is encapsulated by a Printable object though.

Implementing the Pageable Interface
A class that implements the Pageable interface defines a set of pages to be printed. A Pageable object
must be able to supply the PrinterJob object with a count of the number of pages for a job, a reference
of type Printable for the object that is to print each page, plus a PageFormat object defining the for-
mat of each page. The PrinterJob object acquires this information by calling the three methods
declared in the Pageable interface:

Method Description

getNumberOfPages() Must return a value of type int that specifies
the number of pages to be printed. If the number
of pages cannot be determined then the value
UNKNOWN_NUMBER_OF_PAGES can be returned.
This value is defined in the Pageable interface.

getPageFormat(int pageIndex) This method must return a PageFormat object for the
page specified by the page index that is passed to it.

getPrintable(int pageIndex) This method must return a reference of type Printable
to the object responsible for printing the page specified
by the page index that is passed to it.

1134

Chapter 21

At the start of a print job that was initiated by a call to the setPageable() method for a PrinterJob
object, the PrinterJob object will call the getNumberOfPages() method for the Pageable object to
determine how many pages are to be printed. If you return the value UNKNOWN_NUMBER_OF_PAGES, then
the process relies on a Printable object returning NO_SUCH_PAGE at some point to stop printing. It is
therefore a good idea to supply the number of pages when it can be determined.

The PrinterJob object assumes each page in a print job is associated with a page index value, with the
first page being index 0, the second being index 1, and so on. For each page index, the PrinterJob object
will call the getPageFormat() method to obtain the PageFormat object to be used to print the page, and
it will then call the getPrintable() method for the Pageable object to obtain a reference to the
Printable object that will do the printing. Of course, just because you can supply a different Printable
object for each page doesn’t mean that you must. You could use as many or as few as you need for your
application and control how different pages are printed by making the getPageFormat() method for the
Pageable object return different PageFormat objects. Remember, though, that the print() method for a
Printable object may be called more than once by the PrinterJob object to print a particular page, and
the same page should be rendered each time the same page index is passed as an argument to the
print() method, so you must not code the method in a way that presumes otherwise.

Creating PageFormat Objects
As you saw earlier, you can get the default PageFormat object for the print service you are using by call-
ing the defaultPage() method for the PrinterJob object. The default PageFormat class constructor
can also be used to create an object that is portrait-oriented, but in this case you have no guarantee that it
is compatible with the current print service. A PageFormat object encapsulates information about the size
of the paper and the margins in effect, so the object produced by the default constructor may not corre-
spond with your printer setup. If you want to go this route, you can pass a reference to a PageFormat
object to the validatePage() method for a PrinterJob object. For example:

// Object for current printer

PrinterJob printJob = PrinterJob.getPrinterJob();

// Validated page

PageFormat pageFormat = printJob.validatePage(new PageFormat());

Note that the validatePage() method does not return the same reference that you pass as the argu-
ment. The method clones the object that was passed to it and returns a reference to the clone, which will
have been modified where necessary to suit the current printer. Since it does not modify the object in
place, you always need to store the reference that is returned. This is obviously well suited to multipage
printing because you can create a series of distinct PageFormat objects from the same argument.

1135

Filing and Printing Documents

Fundamentally, a PageFormat object encapsulates all the information needed to print on a page, as
Figure 21-15 illustrates.

Figure 21-15

Once you have a PageFormat object, you can modify the orientation of the page by calling its
setOrientation() method as you know, the possible values for the argument being LANDSCAPE,
PORTRAIT, or REVERSE_LANDSCAPE. The PageFormat class defines several methods to retrieve informa-
tion about the paper — you have seen that you can get the position and size of the printable area on the
page, for instance, by calling the getImageableX(), getImageableY(), getImageableWidth(), and
getImageableHeight() methods. You also have getWidth() and getHeight() methods in the
PageFormat class that return the overall width and height of the page, respectively. These are all proper-
ties of the paper itself, which is represented by an object of the java.awt.print.Paper class that is
associated with a PageFormat object. You can also work with the Paper object for a PageFormat object
directly.

Dealing with Paper
The Paper class encapsulates the size of the paper and the size and position of the printable area on the
page. The default constructor for the Paper class creates an American letter-sized sheet with one-inch

top margin

0.0
getWidth()

getImageableWidth()

getImageHeight()
Length and Width are in
units of 1/72 of an inch

PageFormat Methods and the Paper

getImageableX(),getImageable()
right m

argin

left m
argin

bottom margin

ge
tH

ei
gh

t(
)

1136

Chapter 21

margins — the printable area being the area inside the margins. You can change the size of the paper by
calling the setSize() method for the Paper object, as you’ll see in a moment.

Rather than creating an independent Paper object, you would normally retrieve a reference to the Paper
object for a PageFormat object by calling its getPaper() method. If you then want to change the size of
the paper, or the printable area — the page margins, in other words — you can call the setSize() or the
setImageableArea() method for the Paper object. You can restore the paper details by passing an
object of type Paper back to the PageFormat object by calling its setPaper() method with a reference
to the Paper object as the argument.

The setSize() method for a Paper object has two parameters of type double that specify the width
and height of the paper in units of 1/72 of an inch. If you use A4 paper, you could specify the size of the
paper for a PageFormat object with the following statements:

Paper paper = pageFormat.getPaper();

final double MM_TO_PAPER_UNITS = 72.0/25.4; // 25.4 mm to an inch

double widthA4 = 210*MM_TO_PAPER_UNITS;

double heightA4 = 297*MM_TO_PAPER_UNITS;

paper.setSize(widthA4, heightA4);

If you use letter size paper that is 8.5 by 11 inches, it’s somewhat simpler:

Paper paper = pageFormat.getPaper();

double widthLetterSize = 72.0*8.5;

double heightLetterSize = 72.0*11.0;

paper.setSize(widthLetterSize, heightLetterSize);

The setImageableArea() method expects you to supply four arguments of type double. The first two
are the coordinates of the top-left corner of the printable area and the next two are the width and the
height. All these values are in units of 1/72 of an inch. To set 20 mm margins on your A4 sheet you could
write:

double marginSize = 20.0* MM_TO_PAPER_UNITS; // 20 mm wide

paper.setImageableArea(marginSize, marginSize, // Top left

widthA4-2.0*marginSize, // Width

heightA4-2.0*marginSize); // Height

If you are printing on letter-size paper, a one-inch margin might be more appropriate, so you would
write:

double marginSize = 72.0; // 1 inch wide

paper.setImageableArea(marginSize, marginSize, // Top left

widthLetterSize-2.0*marginSize, // Width

heightLetterSize-2.0*marginSize); // Height

Of course, there’s no reason why a class that implements the Pageable interface cannot also implement
Printable, so you could do this in Sketcher, just to get a feel for the Pageable interface in action.

1137

Filing and Printing Documents

Try It Out Using the Pageable Interface
You’ll just print two pages in a print job in Sketcher, a cover page with a title for the sketch plus the
sketch itself, which may be portrait or landscape, of course. You could produce both pages in
SketchView, but to make it more interesting, let’s define a separate class to represent a Printable
object for the cover page:

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Color;

import java.awt.Font;

import java.awt.geom.GeneralPath;

import java.awt.geom.Rectangle2D;import java.awt.print.Printable;

import java.awt.print.PageFormat;

import java.awt.print.PrinterException;

class SketchCoverPage implements Printable {

public SketchCoverPage(Sketcher theApp) {

this.theApp = theApp;

}

// Print the cover page

public int print(Graphics g,

PageFormat pageFormat,

int pageIndex)

throws PrinterException {

// If it’s page 0 print the cover page...

}

private Sketcher theApp;

}

The sole reason for having the Sketcher field in the class is so you can get at the name of the sketch to
print on the cover page. Since the need has come up, you should add a getSketchName() method to
the SketchFrame class that will supply a reference to the String object containing the file name:

// Method to return the name of the current sketch

public String getSketchName() {

return filename;

}

You can use this method in the implementation of the print() method in the SketchCoverPage class.
The print() method needs to recognize when it is being called to print the first page — that is, when
the page index is zero — and then print the cover page. You could do whatever you like here to produce
a fancy cover page, but I’ll just put the code to draw a line border inset from the page and put the sketch
file name in the middle in a box. Here’s how you could do that:

public int print(Graphics g,

PageFormat pageFormat,

int pageIndex)

throws PrinterException {

1138

Chapter 21

if(pageIndex>0) {

return NO_SUCH_PAGE;

}

Graphics2D g2D = (Graphics2D) g;

float x = (float)pageFormat.getImageableX();

float y = (float)pageFormat.getImageableY();

GeneralPath path = new GeneralPath();

path.moveTo(x+1, y+1);

path.lineTo(x+(float)pageFormat.getImageableWidth()-1, y+1);

path.lineTo(x+(float)pageFormat.getImageableWidth()-1,

y+(float)pageFormat.getImageableHeight()-1);

path.lineTo(x+1, y+(float)pageFormat.getImageableHeight()-1);

path.closePath();

g2D.setPaint(Color.red);

g2D.draw(path);

// Get a 12 pt bold version of the default font

Font font = g2D.getFont().deriveFont(12.f).deriveFont(Font.BOLD);

g2D.setFont(font); // Set the new font

String sketchName = theApp.getWindow().getSketchName();

Rectangle2D textRect = new java.awt.font.TextLayout(sketchName, font,

g2D.getFontRenderContext()).getBounds();

double centerX = pageFormat.getWidth()/2;

double centerY = pageFormat.getHeight()/2;

Rectangle2D.Double surround = new Rectangle2D.Double(

centerX-textRect.getWidth(),

centerY-textRect.getHeight(),

2*textRect.getWidth(),

2*textRect.getHeight());

g2D.draw(surround);

// Draw text in the middle of the printable area

g2D.setPaint(Color.blue);

g2D.drawString(sketchName, (float)(centerX-textRect.getWidth()/2),

(float)(centerY+textRect.getHeight()/2));

return PAGE_EXISTS;

}

To center the file name on the page you need to know the width and height of the text string when it is
printed. The getStringBounds() method in the Font class returns the rectangle bounding the string.
The second argument is a reference to an object of type FontRenderContext that is returned by the
getFontRenderContext() method you have called here for g2D. A FontRenderContext object con-
tains all the information the getStringBounds() method needs to figure out the rectangle bounding
the text when it is printed. This includes information about the size of the font as well as the resolution
of the output device — the printer, in our case.

You can now implement the Pageable interface in the SketchView class. You must add three methods
to the class: getNumberOfPages(), which returns the number of pages to be printed, getPrintable(),
which returns a reference to a Printable object that will print a page with a given index, and

1139

Filing and Printing Documents

getPageFormat(), which returns a reference to a PageFormat object corresponding to a particular
page:

// Import statements as before...

import java.awt.print.Pageable;

import java.awt.print.Paper;

class SketchView extends JComponent

implements Observer, ActionListener, Printable, Pageable {

// Method to return page count - always two pages

public int getNumberOfPages() {

return 2;

}

// Method to return the Printable object that will render the page

public Printable getPrintable(int pageIndex) {

if(pageIndex == 0) // For the first page

return new SketchCoverPage(theApp); // return the cover page

else

return this;

}

public PageFormat getPageFormat(int pageIndex) {

// Code to define the PageFormat object for the page...

}

// Method to print the sketch

public int print(Graphics g, // Graphics context for printing

PageFormat pageFormat, // The page format

int pageIndex) // Index number of current page

throws PrinterException {

// Code to test pageIndex removed...

Graphics2D g2D = (Graphics2D) g;

// Get sketch bounds

Rectangle rect = theApp.getModel().getModelExtent();

// Rest of the code as before...

}

// Plus the rest of the class as before...

}

The first two methods are already fully defined here. You will always print two pages, the first page
being printed by a SketchCoverPage object and the second page by the view object. The print()
method should now print the page when called without testing the pageIndex value for zero. The page
with index 0 will be printed by the SketchCoverPage object.

Let’s see how you can produce the PageFormat object for a page. You’ll want to use the PageFormat
object that’s stored as a field in the application window, so add a method to the SketchFrame class to
make it accessible:

// Method to return a reference to the current PageFormat object

public PageFormat getPageFormat() {

return pageFormat;

}

1140

Chapter 21

To make use of some of the methods in the Paper class that I’ve discussed, you’ll arbitrarily double the
size of the margins for the cover page but leave the margins for the other page at their default sizes. You
also set the cover page to landscape orientation, but leave the second page as whatever is set in the
pageFormat field of the application object. Here’s the code to do that:

public PageFormat getPageFormat(int pageIndex) {

if(pageIndex==0) { // If it’s the cover page...

// ...make the margins twice the size

// Create a duplicate of the current page format

PageFormat pageFormat = (PageFormat)

(theApp.getWindow().getPageFormat().clone());

Paper paper = pageFormat.getPaper();

// Get top and left margins - x & y coordinates of top-left corner

// of imageable area are the left & top margins

double leftMargin = paper.getImageableX();

double topMargin = paper.getImageableY();

// Get right and bottom margins

double rightMargin = paper.getWidth()-paper.getImageableWidth()-leftMargin;

double bottomMargin = paper.getHeight()-paper.getImageableHeight()-topMargin;

// Double the margin sizes

leftMargin *= 2.0;

rightMargin *= 2.0;

topMargin *= 2.0;

bottomMargin *= 2.0;

// Set new printable area for the paper

paper.setImageableArea(leftMargin, topMargin,

paper.getWidth()-leftMargin-rightMargin,

paper.getHeight()-topMargin-bottomMargin);

pageFormat.setPaper(paper); // Restore the paper

pageFormat.setOrientation(PageFormat.LANDSCAPE);

return pageFormat; // Return the page format

}

// For pages after the first, use the object from the app window

return theApp.getWindow().getPageFormat();

}

You don’t want to mess up the PageFormat object from the application window for use when you are
printing the cover page, so you duplicate it by calling its clone() method. The PageFormat class
specifically overrides the clone() method that it inherits from the Object class with a public member
to allow the PageFormat object to be cloned. The clone() method always returns a reference of type
Object, so you must cast it to the correct type. The left and top margins correspond to the x and y coor-
dinates of the top-left corner of the imageable area for the page, so you call the methods for the Paper
object to retrieve these values. You calculate the size of the right margin by subtracting the width of the
imageable area and the value for the left margin from the overall width of the page. You produce the
value for the size of the bottom margin in a similar way. After doubling the margin sizes, you redefine
the position and size of the imageable area for the Paper objects from these, and then restore the modi-
fied Paper object in the PageFormat object.

1141

Filing and Printing Documents

If it’s not the cover page, you just return a reference to the PageFormat object that is stored in the appli-
cation window object.

The last thing you need to do is alter the code in the actionPerformed() method for the inner class
FileAction in SketchFrame. You must replace the setPrintable() method call with a
setPageable() call:

} if(name.equals(printAction.getValue(NAME))) {

// Verify there is a default printer

if(printer == null) {

JOptionPane.showMessageDialog(SketchFrame.this,

“No default printer available.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

return;

}

// The view is the page source

printJob.setPageable(theApp.getView());

boolean printIt = true;

if(e.getSource() != printButton) { // If it’s not the toolbar button

printIt = printJob.printDialog(); // ...display the print dialog

}

if(printIt) { // If printIt is true...

try {

printJob.print(printAttr); // ...then print

} catch(PrinterException pe) {

System.out.println(pe);

JOptionPane.showMessageDialog(SketchFrame.this,

“Error printing a sketch.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

}

}

} else if(name.equals(closeAction.getValue(NAME))) {

checkForSave();

System.exit(0);

}

This code is the earlier version that uses the printDialog() method without an argument to show the
effect in this context. If you comment out the most recent code, you can try both versions by juggling the
commented out code. On my system, the print dialog now shows that pages numbered from 1 to 2
should be printed, courtesy of the Pageable interface implementation that you added to Sketcher. You
can see my print dialog in Figure 21-16.

1142

Chapter 21

Figure 21-16

How It Works
The PrinterJob object now calls methods in the Pageable interface that you have implemented in the
SketchView class that defines the view object. The number of pages in the document is now determined
by the getNumberOfPages() method, and the PageFormat and Printable objects are now obtained
individually for each page.

If you switch the code back to using the printDialog() and print() methods with an argument of
type PrintRequestAttributeSet, the print operation will run in the same way. The print attributes
passed to the print() method will not override those specified in the PageFormat object returned by
the getPageFormat() method for the Pageable object. If the attribute set passed to the print method
includes attributes not determined by the Pageable object — such as a Copies attribute object — these
will have an effect on the printing process. Similarly, if you set the page orientation to landscape using
the dialog displayed by the Print Setup... menu item, the second page that contains the sketch will print
in landscape orientation.

Printing Using a Book
A Book object is a repository for a collection of pages where the pages may be printed using different for-
mats. The page painter for a page in a book is represented by a Printable object and each Printable
object within a book can print one or possibly several pages with a given format. Figure 21-17 shows an
example of a Book object that uses three Printable objects to print a total of seven pages.

1143

Filing and Printing Documents

Figure 21-17

Because the Book class implements the Pageable interface, you print a book in the same way as you
print a Pageable object. Once you have assembled all the pages you want in a Book object, you just pass
a reference to it to the setPageable() method for your PrinterJob object. Let’s take it from the top.

The Book class has only a default constructor, and that creates an empty book. Thus, you create a book
like this:

Book sketchBook = new Book();

You add a page to a book by calling the append() method for the Book object. There are two overloaded
versions of append(): one to add a Printable object that represents a single page, and the other to add
a Printable object that represents several pages. In the latter case, all the pages are printed using the
same PageFormat object.

The first version of append() accepts two arguments: a reference to the Printable object and a refer-
ence to an associated PageFormat object. Suppose you wanted to create a Book object for Sketcher, and
the object would be created in the SketchFrame object somewhere. You could add the cover page of a
sketch just as in the previous example to the sketchBook object like this:

PageFormat pageFormat = pageFormat.clone();

Paper paper = pageFormat.getPaper();

double leftMargin = paper.getImageableX(); // Top left corner is indented

double topMargin = paper.getImageableY(); // by the left and top margins

double rightMargin = paper.getWidth()-paper.getImageableWidth()-leftMargin;

double bottomMargin = paper.getHeight()-paper.getImageableHeight()-topMargin;

All pages produced by a given
Printable object in a book will use

the same PageFormat Object

Printable Object Printable Object

Book Object

Page 1

Page 2

Page 3

Page 4

Printable Object

Page 5

Page 6

Page 0

1144

Chapter 21

leftMargin *= 2.0; // Double the left margin...

rightMargin *= 2.0; // ...and the right...

topMargin *= 2.0; // ...and the top...

bottomMargin *= 2.0; // ...and the bottom

paper.setImageableArea(leftMargin, topMargin, // Set new printable area

paper.getWidth()-leftMargin-rightMargin,

paper.getHeight()-topMargin-bottomMargin);

pageFormat.setPaper(paper); // Restore the paper

sketchBook.append(new SketchCoverPage(theApp), pageFormat);

Apart from the first statement and the last statement that appends the Printable object that represents
the page painter, all this code is essentially the same as the code in the previous example for creating the
PageFormat object for the cover page.

To add the second page of the sketch to the Book object, you could write:

sketchBook.append(theApp.getView(), pageFormat);

The arguments to the append() method specify that the view object will print the page, and that the
PageFormat object that should be used is the one stored in the pageFormat field in the SketchFrame
class.

Now that you have assembled the book containing the two pages for the print job, you can tell the
PrinterJob object that you want to print the book:

printJob.setPageable(sketchBook); // The book is the source of pages

Now all you need to do is call the print() method for the PrinterJob object to start printing. To expe-
dite printing, the PrinterJob object will communicate with the Book object to get the number of pages
to be printed and to get the page painter and page format appropriate to print each page. The total
number of pages is returned by the getNumberOfPages() method for the Book object. In this case it
would always return 2. A reference to the Printable object for a given page index is returned by the
getPrintable() method for the Book object, and the PageFormat object for a given page index is
returned by the getPageFormat() method. Obviously, in the case of Sketcher, using a Book object
doesn’t offer much advantage over the Pageable object that you used in the previous example. In situa-
tions where you have more complex documents with a lot of pages with diverse formats it can make
things much easier.

You use the other version of append() for a Book object to add a given number of pages to a book that
will be produced by a single Printable object, and where all the pages have the same format. Here’s an
example:

Book book = new Book();

book.append(painter, pageFormat, pageCount);

Here the painter argument is a reference of type Printable that will print pageCount pages all with
the same format, pageFormat. A typical instance where you might use this might be a long text docu-
ment. The document could consist of many pages, but they all are printed with the same page format.
The view object for the document would typically provide a method to figure out the number of pages
that are necessary to output the document.

1145

Filing and Printing Documents

Printing Swing Components
Printing components is easier than you might think. Swing components are particularly easy to print
because they already know how to draw themselves. You should not call a Swing component’s paint()
method when you want to print it though. Rendering of Swing components is buffered by default to
improve the efficiency of displaying them but printing one by calling its paint() method adds a lot of
unnecessary overhead to the printing operation. Instead you should call the print() method that is
defined in the JComponent class. This will render the component directly to the graphics context that is
passed as an argument, so there is no buffering of the output. The method automatically prints any child
components that the component contains, so you need to call print() directly only for a top-level
component.

The print() method for a Swing component that has JComponent as a base calls three protected meth-
ods to actually carry out the printing:

printComponent(Graphics g) Prints the component

printBorder(Graphics g) Prints the component border

printChildren(Graphics g) Prints components that are children of the component

If you want to customize how a Swing component is printed, you can subclass the component and over-
ride any or all of these. This doesn’t apply to a JFrame component though. The JFrame class is a sub-
class of Frame and does not have JComponent as a superclass. However, you can still call the print()
method for a JFrame component to print it. In this case it’s inherited from the Container class.

Let’s implement a capability to print the Sketcher application window to see how this can be done.

Try It Out Printing the Sketcher Window
First you can add a field in the SketchFrame class to store a reference to a new menu item that you’ll
add to the File menu in Sketcher to print the window:

private JMenuItem printWindowItem;

Next you can add a statement to the SketchFrame contructor that will create the menu item and add the
application window as the event listener:

printSetupItem = new JMenuItem(“Print Setup...”);

printSetupItem.addActionListener(this);

printWindowItem = new JMenuItem(“Print Window”);

printWindowItem.addActionListener(this);

To install the menu item in the File menu you need to add another statement in the constructor:

// Construct the file drop-down menu

fileMenu.add(new JMenuItem(newAction));

fileMenu.add(new JMenuItem(openAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(saveAction));

1146

Chapter 21

fileMenu.add(new JMenuItem(saveAsAction));

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(printAction));

fileMenu.add(printSetupItem);

fileMenu.add(printWindowItem);

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(closeAction));

You can add the code to handle events for the new menu item to the actionPerformed() method in
the SketchFrame class:

} else if(source == printSetupItem) {

PageFormat pf = printJob.pageDialog(printAttr);

if(pf != null) {

pageFormat = pf; // update the page format

}

} else if(source == printWindowItem) {

if(printer == null) {

JOptionPane.showMessageDialog(this,

“No default printer available.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

return;

}

// The app window is the page source

printJob.setPrintable(this, pageFormat);

try {

printJob.print(); // ...then print

} catch(PrinterException pe) {

System.out.println(pe);

JOptionPane.showMessageDialog(SketchFrame.this,

“Error printing the application window.”,

“Printer Error”,

JOptionPane.ERROR_MESSAGE);

}

}

The application window, which is the SketchFrame object window, is responsible for printing the win-
dow because it is obviously best placed to do this, so you must make the SketchFrame class implement
the Printable interface. Change the first line of the class definition to:

public class SketchFrame extends JFrame

implements ActionListener, Observer, Printable {

Now you can add the definition of the print() method to the SketchFrame class:

// Print the window

public int print(Graphics g,

PageFormat pageFormat,

int pageIndex)

throws PrinterException {

if(pageIndex>0) // Only one page page 0 to be printed

1147

Filing and Printing Documents

return NO_SUCH_PAGE;

// Scale the component to fit

Graphics2D g2D = (Graphics2D) g;

// Calculate the scale factor to fit the window to the page

double scaleX = pageFormat.getImageableWidth()/getWidth();

double scaleY = pageFormat.getImageableHeight()/getHeight();

double scale = Math.min(scaleX,scaleY); // Get minimum scale factor

// Move paper origin to page printing area corner

g2D.translate(pageFormat.getImageableX(), pageFormat.getImageableY());

g2D.scale(scale,scale); // Apply the scale factor

print(g2D); // Draw the component

return PAGE_EXISTS;

}

The getWidth() and getHeight() methods you are calling here are inherited in the SketchFrame
class from the Component class and they return the width and height of the window, respectively.

Make sure you have the necessary additional imports:

import java.awt.print.Printable;

import java.awt.Graphics;

import java.awt.Graphics2D;

If you recompile and run Sketcher once more, the File | Print window menu item should be operational.

How It Works
The menu operation and the printing mechanism function as I have already discussed. The
SketchFrame object is the page painter for the window so the print() method is where it all happens.
After checking the page index value and casting the Graphics reference passed to the method to
Graphics2D, you calculate the scaling factor to fit the window to the page. The getWidth() and
getHeight() methods inherited in our SketchFrame class return the width and height of the window,
respectively. You then apply the scale just as you did for printing a sketch. The coordinates of the top-left
corner of the window are at (0, 0) so you can just print it once you have applied the scaling factor.
Calling the inherited print() method with g2D as the argument does this.

I’m sure you will have noticed that the output has deficiencies. The title bar and window boundary are
missing. Of course, a JFrame object is a top-level window, and since it is derived from the Frame class, it
is a heavyweight component with its appearance determined by its native peer, which is outside the Java
code. The print() method for the JFrame object that you call to print the window does not include the
peer-created elements of the window. The printAll() method that the JFrame class inherits from the
Component class does though. Modify the code in the print() method to call printAll() rather than
print(), like this:

printAll(g2D); // Draw the component

return PAGE_EXISTS;

Now you should get the whole application window printed.

1148

Chapter 21

Summary
In this chapter you have added full support for the File menu to the Sketcher application for both sketch
storage and retrieval and for printing. You should find that the techniques that you have used here are
readily applicable in other Java applications. The approach to saving and restoring a model object is not
usually dependent on the kind of data it contains. Of course, if your application is a word processor, you
will have a little more work to do taking care that the number of lines printed on each page is a whole
number of lines. In other words, you will have to make sure you avoid having the top half of a line of
text on one page and the bottom half on the next. There are other Java classes to help with that, however,
and I don’t really have the space to discuss them here — but look them up — the javax.swing.text
package is a veritable gold mine for text handling!

If you have been following all the way with Sketcher, you now have an application that consists of well
over 1500 lines of code, so you should be pretty pleased with yourself. And you’re not finished with
Sketcher yet — you’ll add the capability to export and import sketches in XML over the next two chapters.

The important points I’ve covered in this chapter are:

❑ You can implement writing your model object to a file and reading it back by making it
serializable.

❑ The JFileChooser class provides a generalized way for displaying a dialog to enable a file to
be chosen.

❑ A printing operation is initiated by creating a PrinterJob object. This object encapsulates the
interface to your printer and is used to manage the printing process.

❑ A PrintService object encapsulates a printer.

❑ A PageFormat object defines the format for a page, and methods for this object can provide
information on the paper size and orientation and the printable area on the page.

❑ An object of type Paper defines a page.

❑ You can display a print dialog by calling the printDialog() method for a PrinterJob object.
The no-argument version of printDialog() will display the native print dialog, whereas the
version accepting a single argument of type PrintRequestAttributeSet displays a Java print
dialog.

❑ Printing a page is always done by an object of a class that implements the Printable interface.

❑ You print a page by calling methods for the Graphics object passed to the print() method in
the Printable interface by the PrinterJob object.

❑ You can manage multipage print jobs by implementing the Pageable interface in a class. This
will enable different types of class objects to be used to print different pages.

❑ A Book object can encapsulate a series of pages to be printed. Each Printable object that is
appended to a book prints one or more pages in a given format.

1149

Filing and Printing Documents

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Modify the Sketcher program to print the title at the top of the page on which the sketch is
printed.

2. Modify the printing of a sketch so that a solid black boundary line is drawn around the sketch
on the page.

3. Modify Sketcher to print a single sketch laid out on four pages. The sketch should be enlarged
to provide the best fit on the four pages without distorting circles — that is, the same scale
should be applied to the x and y axes.

4. Use a Book object to print a cover page plus the sketch spread over four pages as in the previous
exercise.

1150

Chapter 21

22
Java and XML

The Java Development Kit (JDK) includes capabilities within the standard set of class libraries for
processing Extensible Markup Language (XML) documents. The classes that support XML pro-
cessing are collectively referred to as JAXP, the Java API for XML Processing (JAXP). In this chap-
ter and the next you’ll be exploring not only how you can read XML documents, but also how you
can create and modify them. This chapter provides a brief outline of XML and some related topics,
plus a practical introduction to reading XML documents from within your Java programs using
one of the two available mechanisms for this. In the next chapter I’ll discuss the second approach
to reading XML documents, as well as how you modify them and how you create new XML docu-
ments programmatically. Inevitably, I can only skim the surface in a lot of areas because XML itself
is a huge topic. However, you should find enough in this chapter and the next to give you a good
feel for what XML is about and how you can handle XML documents in Java.

In this chapter you’ll learn:

❑ What a well-formed XML document is

❑ What constitutes a valid XML document

❑ What the components in an XML document are and how they are used

❑ What a DTD is and how it is defined

❑ What namespaces are and why you use them

❑ What the SAX and DOM APIs are and how they differ

❑ How you read documents using SAX

XML
XML, or the Extensible Markup Language to give it its full title, is a system- and hardware-inde-
pendent language for defining data and its structure within an XML document. An XML docu-
ment is a Unicode text file that contains data together with markup that defines the structure of
the data. Because an XML document is a text file, you can create XML using any plaintext editor,

although an editor designed for creating and editing XML will obviously make things easier. The precise
definition of XML is in the hands of the World Wide Web Consortium (W3C), and if you want to consult
the current XML specifications, you can find them at http://www.w3.org/XML.

The term markup derives from a time when the paper draft of a document to be printed was marked up by
hand to indicate to the typesetter how the printed form of the document should look. Indeed the ances-
try of XML can be traced back to a system that was originally developed by IBM in the 1960s to auto-
mate and standardize markup for system reference manuals for IBM hardware and software products.
XML markup looks similar to HTML in that it consists of tags and attributes added to the text in a file.
However, the superficial appearance is where the similarity between XML and HTML ends. XML and
HTML are profoundly different in purpose and capability.

Firstly, although an XML document can be created, read, and understood by a person, XML is primarily
for communicating data from one computer to another. XML documents will therefore more typically be
generated and processed by computer programs. An XML document defines the structure of the data it
contains so a program that receives it can properly interpret it. Thus XML is a tool for transferring infor-
mation and its organization between computer programs. The purpose of HTML, on the other hand, is
solely the description of how data should look when it is displayed or printed. The only structuring
information that generally appears in an HTML document relates to the appearance of the data as a visi-
ble image. The purpose of HTML is data presentation.

Secondly, HTML provides you with a set of tags that is essentially fixed and geared to the presentation of
data. XML is a language in which you can define new sets of tags and attributes to suit different kinds of
data — indeed to suit any kind of data including your particular data. Because XML is extensible, it is often
described as a meta-language — a language for defining new languages, in other words. The first step in
using XML to exchange data is to define the language that you intend to use for that purpose in XML.

Of course, if I invent a set of XML markup to describe data of a particular kind, you will need to know
the rules for creating XML documents of this type if you want to create, receive, or modify them. As
you’ll see, the definition of the markup that has been used within an XML document can be included as
part of the document. It also can be provided as a separate entity, in a file identified by a URI, for exam-
ple, that can be referenced within any document of that type. The use of XML has already been stan-
dardized for very diverse types of data. XML languages exist for describing the structures of chemical
compounds and musical scores, as well as plain old text such as in this book.

The Java API for XML Processing (JAXP) provides you with the means for reading, creating, and modi-
fying XML documents from within your Java programs. To understand and use this application program
interface (API) you need to be reasonably familiar with two basic topics:

❑ What an XML document is for and what it consists of

❑ What a DTD is and how it relates to an XML document

You also need to be aware of what an XML namespace is, if only because JAXP has methods relating to
handling these. You can find more information on JAXP at
http://java.sun.com/xml/jaxp/index.jsp.

Just in case you are new to XML, I’ll introduce the basic characteristics of XML and DTDs before explain-
ing how you apply the classes and methods provided by JAXP to process XML documents. I’ll also
briefly explore what XML namespaces are for. If you are already comfortable with these topics you can

1152

Chapter 22

skip most of this chapter and pick up where I start talking about SAX. Let’s start by looking into the gen-
eral organization of an XML document.

XML Document Structure
An XML document basically consists of two parts, a prolog and a document body:

❑ The prolog provides information necessary for the interpretation of the contents of the docu-
ment body. It contains two optional components, and since you can omit both, the prolog itself
is optional. The two components of the prolog, in the sequence in which they must appear, are
as follows:

❑ An XML declaration that defines the version of XML that applies to the document and
may also specify the particular Unicode character encoding used in the document and
whether the document is standalone or not. Either the character encoding or the stan-
dalone specification can be omitted from the XML declaration, but if they do appear,
they must be in the given sequence.

❑ A document type declaration specifying an external Document Type Definition
(DTD) that identifies markup declarations for the elements used in the body of the doc-
ument, or explicit markup declarations, or both.

❑ The document body contains the data. It comprises one or more elements where each element
is defined by a begin tag and an end tag. The elements in the document body define the struc-
ture of the data. There is always a single root element that contains all the other elements. All of
the data within the document is contained within the elements in the document body.

Processing instructions (PI) for the document may also appear at the end of the prolog and at the end of
the document body. Processing instructions are instructions intended for an application that will process
the document in some way. You can include comments that provide explanations or other information
for human readers of the XML document as part of the prolog and as part of the document body.

When an XML document is said to be well-formed, it just means that it conforms to the rules for writing
XML as defined by the XML specification. Essentially, an XML document is well-formed if its prolog and
body are consistent with the rules for creating these. In a well-formed document there must be only one
root element, and all elements must be properly nested. I will summarize more specifically what is
required to make a document well-formed a little later in this chapter, after you have looked into the
rules for writing XML.

An XML processor is a software module that is used by an application to read an XML document and
gain access to the data and its structure. An XML processor also determines whether an XML document
is well-formed or not. Processing instructions are passed through to an application without any checking
or analysis by the XML processor. The XML specification describes how an XML processor should
behave when reading XML documents, including what information should be made available to an
application for various types of document content.

Here’s an example of a well-formed XML document:

<proverb>Too many cooks spoil the broth.</proverb>

1153

Java and XML

The document just consists of a root element that defines a proverb. There is no prolog, and formally,
you don’t have to supply one, but it would be much better if the document did include at least the XML
version that is applicable, like this:

<?xml version=”1.0”?>

<proverb>Too many cooks spoil the broth.</proverb>

The first line is the prolog, and it consists of just an XML declaration, which specifies that the document
is consistent with XML version 1.0. The XML declaration must start with <?xml with no spaces within
this five character sequence. You could also include an encoding declaration following the version speci-
fication in the prolog that specifies the Unicode encoding used in the document. For example:

<?xml version=”1.0” encoding=”UTF-8”?>

<proverb>Too many cooks spoil the broth.</proverb>

The first line states that as well as being XML version 1.0, the document uses the “UTF-8” Unicode
encoding. If you omit the encoding specification, “UTF-8” or “UTF-16” will be assumed, and because
“UTF-8” includes ASCII as a subset, you don’t need to specify an encoding if all you are using is ASCII
text. The version and the character encoding specifications must appear in the order shown. If you
reverse them you have broken the rules, so the document would no longer be well-formed.

If you want to specify that the document is not dependent on any external definitions of markup, you
can add a standalone specification to the prolog like this:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

<proverb>Too many cooks spoil the broth.</proverb>

Specifying the value for standalone as “yes” indicates to an XML processor that the document is self-
contained. A value of “no” would indicate that the document is dependent on an external definition of
the markup used.

Valid XML Documents
A valid XML document is a well-formed document that has an associated Document Type Definition, or
DTD (you will learn more about DTDs later in this chapter). In a valid document the DTD must be con-
sistent with the rules for creating a DTD and the document body must be consistent with the DTD. A
DTD essentially defines a markup language for a given type of document and is identified in the DOC-
TYPE declaration in the document prolog. It specifies how all the elements that may be used in the docu-
ment can be structured, and the elements in the body of the document must be consistent with it.

The previous example is well-formed, but not valid, because it does not have an associated DTD that
defines the <proverb> element. Note that there is nothing wrong with an XML document that is not
valid. It may not be ideal, but it is a perfectly legal XML document. Valid in this context is a technical
term that means only that a document has a DTD.

An XML processor may be validating or non-validating. A validating XML processor will check that an
XML document has a DTD and that its contents are correctly specified. It will also verify that the docu-
ment is consistent with the rules expressed in the DTD and report any errors that it finds. A non-validat-
ing XML processor will not check that the document body is consistent with the DTD. As you’ll see, you

1154

Chapter 22

can usually choose whether the XML processor that you use to read a document is validating or non-
validating simply by switching the validating feature on or off.

Here’s a variation on the example from the previous section with a document type declaration added:

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<!DOCTYPE proverb SYSTEM “proverb.dtd”>

<proverb>Too many cooks spoil the broth.</proverb>

A document type declaration always starts with <!DOCTYPE so it is easily recognized. The name that
appears in the DOCTYPE declaration, in this case proverb, must always match that of the root element for
the document. I have specified the value for standalone as “no”, but it would still be correct if I left it
out because the default value for standalone is “no” if there are external markup declarations in the doc-
ument. The DOCTYPE declaration indicates that the markup used in this document can be found in the
DTD at the URI proverb.dtd. You’ll see a lot more about the DOCTYPE declaration later in this chapter.

Having an external DTD for documents of a given type does not eliminate all the problems that may
arise when exchanging data. Obviously confusion may arise when several people independently create
DTDs for the same type of document. My DTD for documents containing sketches created by Sketcher is
unlikely to be the same as yours. Other people with sketching applications may be inventing their ver-
sions of a DTD for representing a sketch, so the potential for conflicting definitions for markup is consid-
erable. To obviate the difficulties that this sort of thing would cause, standard markup languages are
being developed in XML that can be used universally for documents of common types. For example, the
Mathematical Markup Language (MathML) is a language defined in XML for mathematical documents,
and the Synchronized Multimedia Integration Language (SMIL) is a language for creating documents
that contain multimedia presentations. There is also the Scalable Vector Graphics (SVG) language for
representing 2D graphics such as design drawings or even sketches created by Sketcher.

Let’s understand a bit more about what XML markup consists of.

Elements in an XML Document
XML markup divides the contents of a document into elements by enclosing segments of the data
between tags. As I said, there will always be one root element that contains all the other elements in a
document. In the example above, the following is an element:

<proverb> Too many cooks spoil the broth.</proverb>

In this case, this is the only element and is therefore the root element. A start tag, <proverb>, indicates
the beginning of an element, and an end tag, </proverb>, marks its end. The name of the element,
proverb in this case, always appears in both the start and end tags. The text between the start and end
tags for an element is referred to as element content and in general may consist of just data, which is
referred to as character data; other elements, which is described as markup; or a combination of charac-
ter data and markup; or it may be empty. An element that contains no data and no markup is referred to
as an empty element.

When an element contains plain text, the content is described as parsed character data (PCDATA). This
means that the XML processor will parse it — it will analyze it, in other words — looking to see if it can
be broken down further. In fact, PCDATA allows for a mixture of ordinary data and other elements,

1155

Java and XML

referred to as mixed content, so a parser will be looking for the characters that delimit the start and end
of markup tags. Consequently, ordinary text must not contain characters that might cause it to be recog-
nized as a tag. Thus you can’t include < or & characters explicitly as part of the text within an element,
for example. Since it could be a little inconvenient to completely prohibit such characters within ordi-
nary text, you can include them by using predefined entities when you need to. XML recognizes the fol-
lowing predefined entities that represent characters that would otherwise be recognized as part of
markup:

Character Predefined Entity

& &

‘ '

“ "

< <

> >

Here’s an element that makes use of a predefined entity:

<text> This is parsed character data within a <text> element.</text>

The content of this element is the following string:

This is parsed character data within a <text> element.

Here’s an example of an XML document containing several elements:

<?xml version=”1.0”?>

<address>

<buildingnumber>29</buildingnumber>

<street> South Lasalle Street</street>

<city>Chicago</city>

<state>Illinois</state>

<zip>60603</zip>

</address>

This document evidently defines an address. Each tag pair identifies and categorizes the information
between the tags. The data between <address> and </address> is an address, which is a composite of
five further elements that each contain character data that forms part of the address. You can easily iden-
tify what each of the components of the address is from the tags that enclose each sub-unit of the data.

Rules for Tags
The tags that delimit an element have a precise form. Each element start tag must begin with < and end
with >, and each element end tag must start with </ and end with >. The tag name — also known as the
element type name — identifies the element and differentiates it from other elements. Note that the ele-
ment name must immediately follow the opening < in the case of a start tag and the </ in the case of an
end tag. If you insert a space here it is incorrect and will be flagged as an error by an XML processor.

1156

Chapter 22

Since the <address> element contains all of the other elements that appear in the document, this is the
root element. When one element encloses another, it must always do so completely if the document is to
be well-formed. Unlike HTML, where a somewhat cavalier use of the language is usually tolerated, XML
elements must never overlap. For example, you can’t have:

<address><zip>60603</address></zip>

An element that is enclosed by another element is referred to as the child of the enclosing element, and
the enclosing element is referred to as the parent of the child element. In the earlier example of a docu-
ment that defined an address, the <address> element is the parent of the other four because it directly
encloses each of them, and the enclosed elements are child elements of the <address> element. In a
well-formed document, each start tag must always be matched by a corresponding end tag, and vice
versa. If this isn’t the case, the document is not well-formed.

Don’t forget that there must be only one root element that encloses all the other elements in a document.
This implies that you cannot have an element of the same type as the root element as a child of any ele-
ment in the document.

Empty Elements
You already know that an element can contains nothing at all, so just a start tag immediately followed by
an end tag is an empty element. For example:

<commercial></commercial>

You have an alternative way to represent empty elements. Instead of writing a start and end tag with
nothing between them, you can write an empty element as a single tag with a forward slash immedi-
ately following the tag name:

<commercial/>

This is equivalent to a start tag followed by an end tag. There must be no spaces between the opening <
and the element name, or between the / and the > marking the end of the tag.

You may be thinking at this point that an empty element is of rather limited use, whichever way you
write it. Although by definition an empty element has no content, it can and often does contain addi-
tional information that is provided within attributes that appear within the tag. You’ll see how you add
attributes to an element a little later in this chapter. Additionally, an empty element can be used as a
marker or flag to indicate something about the data within its parent. For example, you might use an
empty element as part of the content for an <address> element to indicate that the address corresponds
to a commercial property. Absence of the <commercial/> element would indicate a private residence.

Document Comments
When you create an XML document using an editor, it is often useful to add explanatory text to the doc-
ument. You can include comments in an XML document like this:

<!-- Prepared on 14th January 2004 –->

1157

Java and XML

Comments can go just about anywhere in the prolog or the document body, but not inside a start tag or
an end tag, or within an empty element tag. You can spread a comment over several lines if you wish,
like this:

<!--

Eeyore, who is a friend of mine,

has lost his tail.

-->

For compatibility with SGML from which XML is derived, the text within a comment should not contain
a sequence of two or more hyphens and it must not end with a hyphen. A comment that ends with --->
is not well-formed and will be rejected by an XML processor. While an XML processor of necessity scans
comments to distinguish them from markup and document data, they are not part of the character data
within a document. XML processors need not make comments available to an application, although
some may do so.

Element Names
If you’re going to be creating elements, then you’re going to have to give them names, and XML is very
generous in the names you’re allowed to use. For example, there aren’t any reserved words to avoid in
XML, as there are in most programming languages, so you do have a lot of flexibility in this regard.
However, there are certain rules that you must follow. The names you choose for elements must begin
with either a letter or an underscore and can include digits, periods, and hyphens. Here are some exam-
ples of valid element names:

net_price Gross-Weight _sample clause_3.2 pastParticiple

In theory you can use colons within a name but because colons have a special purpose in the context of
names, as you’ll see later, you should not do so. Since XML documents use the Unicode character set,
any national language alphabets defined within that set may be used for names. HTML users need to
remember that tag names in XML are case-sensitive, so <Address> is not the same as <address>.

Note also that names starting with uppercase or lowercase x followed by m followed by l are reserved,
so you must not define names that begin xml or XmL or any of the other six possible sequences.

Defining General Entities
There is a frequent requirement to repeat a given block of parsed character data in the body of a docu-
ment. An obvious example of this is some kind of copyright notice that you may want to insert in vari-
ous places. You can define a named block of parsed text like this:

<!ENTITY copyright “(c) 2004 Ivor Horton”>

This is an example of declaration of a general entity. You can put declarations of general entities within
a DOCTYPE declaration in the document prolog or within an external DTD. We will describe how a little
later in this chapter. The block of text that appears between the double quotes in the entity declaration is
identified by the name copyright. You could equally well use single quotes as delimiters for the string.
Wherever you want to insert this text in the document, you just need to insert the name delimited by an
& at the beginning and ; at the end, thus:

©right;

1158

Chapter 22

This is called an entity reference. This is exactly the same notation as the predefined entities represent-
ing markup characters that you saw earlier. It will cause the equivalent text to be inserted at this point
when the document is parsed. Of course, since a general entity is parsed text, you need to take care that
the document is still well-formed and valid after the substitution has been made.

An entity declaration can include entity references. For example, we could declare the copyright entity
like this:

<!ENTITY copyright “(c) 2004 Ivor Horton &documentDate;”>

The text contains a reference to a documentDate entity. Entity references may appear in a document
only after their corresponding entity declarations, so the declaration for the documentDate entity must
precede the declaration for the copyright entity:

<!ENTITY documentDate “24th January 2004”>

<!ENTITY copyright “(c) 2004 Ivor Horton &documentDate;”>

Entity declarations can contain nested entity references to any depth, so the declaration for the
documentDate entity could contain other entity references. Substitutions for entity references will be
made recursively by the XML processor until all references have been resolved. An entity declaration
must not directly or indirectly contain a reference to itself though.

You can also use general entities that are defined externally. You use the SYSTEM keyword followed by
the URL for where the text is stored in place of the text in the ENTITY declaration. For example:

<!ENTITY usefulstuff SYSTEM “http://www.some-server.com/inserts/stuff.txt”>

The reference &usefulstuff; represents the contents of the file stuff.txt.

CDATA Sections
It is possible to embed unparsed character data (CDATA) anywhere in a document where character data
can occur. You do this by placing the unparsed character data in a CDATA section, which begins with
<![CDATA[and ends with]]>. The data is described as unparsed because the XML processor will not
analyze it in any way, but will make it available to an application. The data within a CDATA section can
be anything at all — it can even be binary data. You can use a CDATA section to include markup in a doc-
ument that you don’t want to have parsed. For example:

<explanation> A typical circle element is written as:

<![CDATA[

<circle radius=”15”>

<position x=”30” y=”50”/>

</circle>

]]>

</explanation>

The lines shown shaded are within a CDATA section, and although they look suspiciously like markup,
an XML processor looking for markup will not scan them. I have used some of the reserved characters in
here without escaping them, but since the data in a CDATA section is not parsed, they will not be identi-
fied as markup.

1159

Java and XML

Element Attributes
You can put additional information within an element in the form of one or more attributes. An attribute
is identified by an attribute name, and the value is specified as a string between single or double quotes.
For example:

<elementname attributename=”Attribute value”> ... </elementname>

As I said earlier, empty elements frequently have attributes. Here’s an example of an empty element
with three attributes:

<color red=”255” green=”128” blue=”64”></color>

This would normally be written in the shorthand form, like this:

<color red=”255” green=”128” blue=”64” />

You can also use single quotes to delimit an attribute value if you wish.

The names of the three attributes here are red, green, and blue, which identify the primary compo-
nents of the color, and the values between 0 and 255 represent the contribution of each primary color to
the result. Attribute names are defined using the same rule as element names. The attributes in an ele-
ment follow the element name in the start tag (or the only tag in the case of an empty element) and are
separated from it by at least one space. If a tag has multiple attributes, they must be separated by spaces.
You can also put spaces on either side of the = sign, but it is clearer without, especially where there are
several attributes. HTML fans should note that a comma separator between attributes is not allowed in
XML and will be reported as an error.

A string that is an attribute value must not contain a delimiting character explicitly within the string, but
you can put a double quote as part of the value string if you use single quotes as delimiters, and vice
versa. For example, you could write the following:

<textstuff answer=”it’s mine” explanation=’He said”It is mine”’/>

The value for the answer attribute uses double quotes as delimiters, so it can contain a single quote
explicitly; thus the value is it’s mine. Similarly, the value for the second attribute uses single quotes so
the string can contain a double quote, so its value is He said “It is mine”. Of course, someone is
bound to want both a single quote and a double quote as part of the value string. Easy, just use an escape
sequence within the value for the one that is a delimiter. For example, you could rewrite the previous
example as:

<textstuff answer=’it's mine’ explanation=”He said"It’s mine"”/>

In general, it’s easiest to stick to a particular choice of delimiter for strings and always escape occur-
rences of the delimiter within a string.

In the Sketcher program, you can create circles that are specified by a radius and a position. You can easily
define a circle in XML — in fact, there are many ways in which you could do this. Here’s one example:

<circle radius=”15”>

<position x=”30” y=”50”/>

</circle>

1160

Chapter 22

The radius attribute for the <circle> tag specifies the radius, and its position is specified by an empty
<position/> tag, with the x and y coordinates of the circle’s position specified by attributes x and y. A
reasonable question to ask is whether this is the best way of representing a circle. I should therefore
explore the options in this context a little further.

Attributes versus Elements
Obviously you could define a circle without using attributes, maybe like this:

<circle>

<radius>15</radius>

<position>

<x-coordinate>30</x-coordinate>

<y-coordinate>50</y-coordinate>

</position>

</circle>

This is the opposite extreme. There are no attributes here, only elements. Where the content of an ele-
ment is one or more other elements — as in the case of the <circle> and <position> elements here —
it is described as element content. A document design in which all the data is part of element content
and no attributes are involved is described as element-normal.

Of course, it is also possible to represent the data defining a circle just using attributes within a single
element:

<circle positionx=”30” positiony=”50” radius=”15”/>

Now you have just one element defining a circle with all the data defined by attribute values. Where all
the data in a document is defined as attribute values, it is described as attribute-normal.

An element can also contain a mixture of text and markup — so-called mixed content — so you have a
further way in which you could define a circle in XML, like this:

<circle>

<position>

<x-coordinate>30</x-coordinate>

<y-coordinate>50</y-coordinate>

</position>

15

</circle>

Now the value for the radius just appears as text as part of the content of the <circle> element along
with the position element. The disadvantage of this arrangement is that it’s not obvious what the text is,
so some information about the structure has been lost compared to the previous example.

So which is the better approach, to go for attributes or elements? Well, it can be either, or both, if you see
what I mean. It depends on what the structure of the data is, how the XML is generated, and how it will
be used. One overriding consideration is that an attribute is a single value. It has no inner structure, so
anything that does have substructure must be expressed using elements. Where data is essentially hierar-
chical, representing family trees in XML, for example, you will want to use nested elements to reflect the
structure of the data. Where the data is serial or tabular, temperature and rainfall or other weather data
over time, for example, you may well use attributes within a series of elements within the root element.

1161

Java and XML

If you are generating an XML document interactively using an editor, then readability is an important
consideration since poor readability will encourage errors. You’ll lean towards whatever makes the edit-
ing easier — and for the most part elements are easier to find and edit than attributes. Attribute values
should be short for readability, so this limits the sort of data that you can express as an attribute. You
probably would not want to see the soliloquy from Shakespeare’s Hamlet appearing as an attribute
value, for example. That said, if the XML is computer-generated and is not primarily intended for
human viewing, the choice is narrowed down to the most efficient way to handle the data in the com-
puter. Attributes and their values are readily identified in a program, so documents are likely to make
use of attributes wherever the structure of the data does not require otherwise. You’ll see how this works
out in practice when you get to use the Java API for processing XML.

Whitespace and Readability
The indentation shown in the examples so far have been included just to provide you with visual cues to
the structure of the data. It is not required, and an XML processor will ignore the whitespace between
elements. When you are creating XML in an editor, you can use whitespace generally between elements
to present the XML document visually so that it is easier for a human reader to understand. Whitespace
can consist of spaces, tabs, carriage returns, and linefeed characters. You can see that a circle expressed
without whitespace, as shown below, would be significantly less readable:

<circle><position><x-coordinate>30</x-coordinate><y-coordinate>50</

y-coordinate></position>15</circle>

Having said that, you don’t have complete freedom in deciding where you put whitespace within a tag,
as you have already seen. The tag name must immediately follow the opening < or </ in a tag, and there
can be no space within an opening </ delimiter, or a closing /> delimiter in the case of an empty ele-
ment. You must also separate an attribute from the tag name or from another attribute with at least one
space. Beyond that you can put additional spaces within a tag wherever you like.

Data Structure in XML
The ability to nest elements is fundamental to defining the structure of the data in a document.
We can easily represent the structure of the data in our XML fragment defining an address, as shown
in Figure 22-1.

Figure 22-1

housenumber street city

address

state zip

29 South Lasalle Street Chicago Illinois 60603

1162

Chapter 22

The structure follows directly from the nesting of the elements. The <address> element contains all of
the others directly, so the nested elements are drawn as subsidiary or child elements of the <address>
element. The items that appear within the tree structure — the elements and the data items — are
referred to as nodes.

Figure 22-2 shows the structure of the first circle definition in XML that you saw in the previous section.
Even though there’s an extra level of elements in this diagram, there are strong similarities to the struc-
ture shown in Figure 22-1.

Figure 22-2

You can see that both structures have a single root element, <address> in the first example and <cir-
cle> in the second. You can also see that each element contains either other elements or some data that
is a segment of the document content. In both diagrams all the document content lies at the bottom.
Nodes at the extremities of a tree are referred to as leaf nodes.

In fact an XML document always has a structure similar to this. Each element in a document can contain
other elements, or text, or elements and text, or it can be empty.

Document Type Definitions
You have seen several small examples of XML and in each case it was fairly obvious what the content
was meant to represent, but where are the rules that ensure such data is represented consistently and
correctly in different documents? Do the <radius> and <position> elements have to be in that
sequence in a <circle> element and could you omit either of them?

Clearly there has to be a way to determine what is correct and what is incorrect for any particular ele-
ment in a document. As I mentioned earlier, a Document Type Definition (DTD) defines how valid ele-
ments are constructed for a particular type of document, so the XML for purchase order documents in a
company could be defined by one DTD, and sales invoice documents by another. The Document Type

x-coordinate y-coordinate

position

circle

radius

30 50

15

1163

Java and XML

Definition for a document is specified in a document type declaration — commonly known as a DOC-
TYPE declaration — that appears in the document prolog following any XML declaration. A DTD essen-
tially defines a vocabulary for describing data of a particular kind — the set of elements that you use to
identify the data, in other words. It also defines the possible relationships between these elements —
how they can be nested. The contents of a document of the type identified by a particular DTD must be
defined and structured according to rules that make up the DTD. Any document of a given type can be
checked for validity against its DTD.

A DTD can be an integral part of a document, but it is usually, and more usefully, defined separately.
Including a DTD in an XML document makes the document self-contained, but it does increase its bulk.
It also means that the DTD has to appear within every document of the same type. A separate DTD that
is external to a document avoids this and provides a single reference point for all documents of a partic-
ular type. An external DTD also makes maintenance of the DTD for a document type easier as it only
needs to be changed in one place for all documents that make use of it. Let’s look at how you identify
the DTD for a document and then investigate some of the ways in which elements and their attributes
can be defined in a DTD.

Declaring a DTD
You use a document type declaration (a DOCTYPE declaration) in the prolog of an XML document to
specify the DTD for the document. An XML 1.0 document can have only one DOCTYPE declaration. You
can include the markup declarations for elements used in the document explicitly within the DOCTYPE
statement, in which case the declarations are referred to as the internal subset. You can also specify a
URI that identifies the DTD for the document, usually in the form of a URL. In this case the set of decla-
rations is referred to as the external subset. If you include explicit declarations as well as a URI referenc-
ing an external DTD, the document has both an internal and an external subset. Here is an example of an
XML document that has an external subset:

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “http://docserver/dtds/AddressDoc.dtd”>

<address>

<buildingnumber> 29 </buildingnumber>

<street> South Lasalle Street</street>

<city>Chicago</city>

<state>Illinois</state>

<zip>60603</zip>

</address>

The name following the DOCTYPE keyword must always match the root element name in the document,
so the DOCTYPE declaration here indicates that the root element in the document has the name address.
The declaration also indicates that the DTD in which this and the other elements in the document are
declared is an external DTD located at the URI following the SYSTEM keyword. This URI, which is
invariably a URL, is called the system ID for the DTD.

In principle you can also specify an external DTD by a public ID using the keyword PUBLIC in place of
SYSTEM. A public ID is just a unique public name that identifies the DTD — a Uniform Resource Name
(URN), in other words. As you probably know, the idea behind URNs is to get over the problem of
changes to URLs. Public IDs are intended for DTDs that are available as public standards for documents
of particular types, such as SVG. However, there is a slight snag. Since there is no mechanism defined for

1164

Chapter 22

resolving public IDs to find the corresponding URL, if you specify a public ID, you still have to supply a
system ID with a URL so the XML processor can find it, so you won’t see public IDs in use much.

If the file containing the DTD is stored on the local machine, you can specify its location relative to the
directory containing the XML document. For example, the following DOCTYPE declaration implies that
the DTD is in the same directory as the document itself:

<!DOCTYPE address SYSTEM “AddressDoc.dtd”>

The AddressDoc.dtd file includes definitions for the elements that may be included in a document con-
taining an address. In general, a relative URL is assumed to be relative to the location of the document
containing the reference.

Defining a DTD
In looking at the details of how we put a DTD together I’ll use examples in which the DTD is an internal
subset, but the declarations in an external DTD are exactly the same. Here’s an example of a document
with an integral DTD:

<?xml version=”1.0”?>

<!DOCTYPE proverb [<!ELEMENT proverb (#PCDATA)>]>

<proverb>A little knowledge is a dangerous thing.</proverb>

All the internal definitions for elements used within the document appear between the square brackets
in the DOCTYPE declaration. In this case just one element is declared, the root element, and the element
content is PCDATA— parsed character data.

You could define an external DTD in a file with the name proverbDoc.dtd in the same directory as the
document. The file would contain just a single line:

<!ELEMENT proverb (#PCDATA)>

The XML document would then be:

<?xml version=”1.0”?>

<!DOCTYPE proverb SYSTEM “proverbDoc.dtd”>

<proverb>A little knowledge is a dangerous thing.</proverb>

The DTD is referenced by a relative URI that is relative to the directory containing the document.

When you want both an internal and external subset, you just put both in the DOCTYPE declaration, with
the external DTD reference appearing first. Entities from both are available for use in the document, but
where there is any conflict between them, the entities defined in the internal subset take precedence over
those declared in the external subset.

The syntax for defining elements and their attributes is rather different from the syntax for XML
markup. It also can get quite complex, so I won’t be able to go into it comprehensively here. However,
you do need to have a fair idea of how a DTD is put together in order to understand the operation of the
Java API for XML, so let’s look at some of the ways in which you can define elements in a DTD.

1165

Java and XML

Defining Elements in DTDs
The DTD will define each type of element that can appear in the document using an ELEMENT type dec-
laration. For example, the <address> element could be defined like this:

<!ELEMENT address (buildingnumber, street, city, state, zip)>

This defines the element with the name address. The information between the parentheses specifies
what can appear within an <address> element. The definition states that an <address> element contains
exactly one each of the elements <buildingnumber>, <street>, <city>, <state>, and <zip>, in that
sequence. This is an example of element content since only elements are allowed within an <address>
element. Note the space that appears between the element name and the parentheses enclosing the con-
tent definition. This is required, and a parser will flag the absence of at least one space here as an error.
The ELEMENT identifier must be in capital letters and must immediately follow the opening “<!”.

The preceding definition of the <address> element makes no provision for anything other than the five
elements shown, and in that sequence. Thus, any whitespace that you put between these elements in a
document is not part of the content and will be ignored by a parser; therefore, it is known as ignorable
whitespace. That said, you can still find out if there is whitespace there when the document is parsed, as
you’ll see.

You can define the <buildingnumber> element like this:

<!ELEMENT buildingnumber (#PCDATA)>

This states that the element can contain only parsed character data, specified by #PCDATA. This is just
ordinary text, and since it will be parsed, it cannot contain markup. The # character preceding the word
PCDATA is necessary just to ensure it cannot be confused with an element or attribute name — it has no
other significance. Since element and attribute names must start with a letter or an underscore, the # pre-
fix to PCDATA ensures that it cannot be interpreted as such.

The PCDATA specification does provide for markup — child elements — to be mixed in with ordinary
text. In this case you must specify the names of the elements that can occur mixed in with the text. If you
wanted to allow a <suite> element specifying a suite number to appear alongside the text within a
<buildingnumber> element, you could express it like this:

<!ELEMENT buildingnumber (#PCDATA|suite)*>

This indicates that the content for a <buildingnumber> element is parsed character data, and the text
can be combined with <suite> elements. The | operator here has the same meaning as the | operator
you met in the context of regular expressions in Chapter 15. It means one or other of the two operands
but not both. The * following the parentheses is required here and has the same meaning as the * opera-
tor that you also met in the context of regular expressions. It means that the operand to the left can
appear zero or more times.

If you want to allow several element types to be optionally mixed in with the text, you separate them by
|. Note that it is not possible to control the sequence in which mixed content appears.

The other elements used to define an address are similar, so you could define the whole document with
its DTD like this:

1166

Chapter 22

<?xml version=”1.0”?>

<!DOCTYPE address

[

<!ELEMENT address (buildingnumber, street, city, state, zip)>

<!ELEMENT buildingnumber (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

]>

<address>

<buildingnumber> 29 </buildingnumber>

<street> South Lasalle Street</street>

<city>Chicago</city>

<state>Illinois</state>

<zip>60603</zip>

</address>

Note that you have no way to constrain the text in an element definition. It would be nice to be able to
specify that the building number had to be numeric, for example, but the DTD grammar and syntax pro-
vide no way to do this. This is a serious limitation of DTDs and one of the driving forces behind the
development of XML Schema, which is an XML-based description language that supports data types
and offers an alternative to DTDs. I’ll introduce XML Schemas a little later in this chapter.

If you were to create the DTD for an address document as a separate file, the file contents would just
consist of the element definitions:

<!ELEMENT address (buildingnumber, street, city, state, zip)>

<!ELEMENT buildingnumber (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

The DOCTYPE declaration identifies the DTD for a particular document, so it is not part of the DTD. If the
preceding DTD were stored in the AddressDoc.dtd file in the same directory as the document, the
DOCTYPE declaration in the document would be:

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “AddressDoc.dtd”>

<address>

<buildingnumber> 29 </buildingnumber>

<street> South Lasalle Street</street>

<city>Chicago</city>

<state>Illinois</state>

<zip>60603</zip>

</address>

Of course, the DTD file would also include definitions for element attributes, if there were any. These
will be useful later, so save the DTD as AddressDoc.dtd, and the preceding XML file (as Address.xml
perhaps) in your Beg Java Stuff directory.

1167

Java and XML

One further possibility you need to consider is that in many situations it is desirable to allow some child
elements to be omitted. For example, <buildingnumber> may not be included in some cases. The
<zip> element, while highly desirable, might also be left out in practice. We can indicate that an element
is optional by using the cardinality operator, ?. This operator expresses the same idea as the equivalent
regular expression operator, and it indicates that a child element may or may not appear. The DTD
would then look like this:

<!DOCTYPE address

[

<!ELEMENT address (buildingnumber?, street, city, state, zip?)>

<!ELEMENT buildingnumber (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

]>

The ? operator following an element indicates that the element may be omitted or may appear just once.
This is just one of three cardinality operators that you use to specify how many times a particular
child element can appear as part of the content for the parent. The cardinality of an element is simply the
number of possible occurrences for the element. The other two cardinality operators are *, which you
have already seen, and +. In each case the operator follows the operand to which it applies. You now
have four operators that you can use in element declarations in a DTD, and they are each similar in
action to their equivalent in the regular expression context:

+ This operator indicates that there can be one or more occurrences of its operand. In
other words, there must be at least one occurrence, but there may be more.

* This operator indicates that there can be zero or more occurrences of its operand. In
other words, there can be none or any number of occurrences of the operand to which
it applies.

? This indicates that its operand may appear once or not at all.

| This operator indicates that there can be an occurrence of either its left operand or its
right operand, but not both.

You might want to allow a building number or a building name in an address, in which case the DTD
could be written:

<!ELEMENT address ((buildingnumber | buildingname), street, city, state, zip?)>

<!ELEMENT buildingnumber (#PCDATA)>

<!ELEMENT buildingname (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

The DTD now states that either <buildingnumber> or <buildingname> must appear as the first ele-
ment in <address>. But you might want to allow neither, in which case you would write the third line as:

<!ELEMENT address ((buildingnumber | buildingname)?, street, city, state, zip?)>

1168

Chapter 22

The ? operator applies to the parenthesized expression (buildingnumber | buildingname), so it
now states that either <buildingnumber> or <buildingname> may or may not appear, so you allow
one, or the other, or none.

Of course, you can use the | operator repeatedly to express a choice between any number of elements, or
indeed, sub-expressions between parentheses. For example, given that you have defined elements
Linux, Solaris, and Windows, you might define the element operatingsystem as:

<!ELEMENT operatingsystem (Linux | Solaris | Windows)>

If you wanted to allow an arbitrary operating system to be identified as a further alternative, you could
write:

<!ELEMENT operatingsystem (AnyOS | Linux | Solaris | Windows)>

<!ELEMENT AnyOS (#PCDATA)>

You can combine the operators you’ve seen to produce definitions for content of almost unlimited com-
plexity. For example:

<!ELEMENT breakfast ((tea|coffee), orangejuice?,

((egg+, (bacon|sausage)) | cereal) , toast)>

This states that <breakfast> content is either a <tea> or <coffee> element, followed by an optional
<orangejuice> element, followed by either one or more <egg> elements and a <bacon> or <sausage>
element, or a <cereal> element, with a mandatory <toast> element bringing up the rear. However,
while you can produce mind-boggling productions for defining elements, it is wise to keep things as
simple as possible.

After all this complexity, you mustn’t forget that an element may also be empty, in which case it can be
defined like this:

<!ELEMENT position EMPTY>

This states that the <position> element has no content. Elements can also have attributes so let’s take a
quick look at how they can be defined in a DTD.

Defining Element Attributes
You use an ATTLIST declaration in a DTD to define the attributes for a particular element. As you know,
attributes are name-value pairs associated with a particular element, and values are typically, but not
exclusively, text. Where the value for an attribute is text, it is enclosed between quotation marks, so it is
always unparsed character data. Attribute values that consist of text are therefore specified just as
CDATA. No preceding # character is necessary in this context since there is no possibility of confusion.

You could declare the elements for a document containing circles as follows:

<?xml version=”1.0”?>

<!DOCTYPE circle

[

<!ELEMENT circle (position)>

<!ATTLIST circle

1169

Java and XML

radius CDATA #REQUIRED

>

<!ELEMENT position EMPTY>

<!ATTLIST position

x CDATA #REQUIRED

y CDATA #REQUIRED

>

]>

<circle radius=”15”>

<position x=”30” y=”50”/>

</circle>

Three items define each attribute — the attribute name, the type of value (CDATA), and whether or not the
attribute is mandatory. This third item may also define a default value for the attribute, in which case
this value will be assumed if the attribute is omitted. The #REQUIRED specification against an attribute
name indicates that it must appear in the corresponding element. You specify the attribute as #IMPLIED
if it need not be included. In this case the XML processor will not supply a default value for the attribute.
An application is expected to have a default value of its own for the attribute value that is implied by the
attribute’s omission.

Save this XML in your /Beg Java Stuff directory with a suitable name such as
“circle with DTD.xml”; it will come in handy later.

You specify a default value for an attribute between double quotes. For example:

<!ATTLIST circle

radius CDATA “1”

>

This indicates that the value of radius will be 1 if the attribute is not specified for a <circle> element.

You can also insist that a value for an attribute must be one of a fixed set. For example, suppose you had
a color attribute for your circle that could be only red, blue, or green. You could define it like this:

<!ATTLIST circle

color (red|blue|green) #IMPLIED

>

The value for the color attribute in a <circle> element must be one of the options between the paren-
theses. In this case the attribute can be omitted because it is specified as #IMPLIED, and an application
processing it will supply a default value. To make the inclusion of the attribute mandatory, we would
define it as:

<!ATTLIST circle

color (red|blue|green) #REQUIRED

>

1170

Chapter 22

An important aspect of defining possible attribute values by an enumeration like this is that an XML edi-
tor can help the author of a document by prompting with the list of possible attribute values from the
DTD when the element is being created.

An attribute that you declare as #FIXED must always have the default value. For example:

<!ATTLIST circle

color (red|blue|green) #REQUIRED

line_thickness medium #FIXED

>

Here the XML processor will supply an application only with the value medium for the thickness
attribute. If you were to specify this attribute for the <circle> element in the body of the document you
can use only the default value; otherwise, it is an error.

Defining Parameter Entities
You will often need to repeat a block of information in different places in a DTD. A parameter entity
identifies a block of parsed text by a name that you can use to insert the text at various places within a
DTD. Note that parameter entities are for use only within a DTD. You cannot use parameter entity refer-
ences in the body of a document. You declare general entities in the DTD when you want to repeat text
within the document body.

The form for a parameter entity is very similar to what you saw for general entities except that a % char-
acter appears between ENTITY and the entity name, separated from both by a space. For example, it is
quite likely that you would want to repeat the x and y attributes that you defined in the <position>
element in the previous section in other elements. You could define a parameter entity for these
attributes and then use that wherever these attributes should appear in an element declaration. Here’s
the parameter entity declaration:

<!ENTITY % coordinates “x CDATA #REQUIRED y CDATA #REQUIRED”>

Now you can use the entity name to insert the x and y attribute definitions in an attribute declaration:

<!ATTLIST position %coordinates; >

A parameter entity declaration must precede its use in a DTD.

The substitution string in a parameter entity declaration is parsed and can include parameter and gen-
eral entity references. As with general entities, a parameter entity can also be defined by a reference to a
URI containing the substitution string.

Other Types of Attribute Value
There are a further eight possibilities for specifying the type of the attribute value. I won’t go into detail
on these, but so you can recognize them, they are as follows:

1171

Java and XML

ENTITY An entity defined in the DTD. An entity here is a name identifying an unparsed
entity defined elsewhere in the DTD by an ENTITY tag. The entity may or may
not contain text. An entity could represent something very simple such as <,
which refers to a single character, or it could represent something more substan-
tial such as an image.

ENTITIES A list of entities defined in the DTD, separated by spaces.

ID An ID is a unique name identifying an element in a document. This is to enable
internal references to a particular element from elsewhere in the document.

IDREF A reference to an element elsewhere in a document via its ID.

IDREFS A list of references to IDs, separated by spaces.

NMTOKEN A name conforming to the XML definition of a name. This just says that the value
of the attribute will be consistent with the XML rules for a name.

NMTOKENS A list of name tokens, separated by spaces.

NOTATION A name identifying a notation — which is typically a format specification for an
entity such as a JPEG or PostScript file. The notation will be identified elsewhere
in the DTD using a NOTATION tag that may also identify an application capable of
processing an entity in the given format.

A DTD for Sketcher
With what you know of XML and DTDs, you can have a stab at putting together a DTD for storing
Sketcher files as XML. As I said before, an XML language has already been defined for representing and
communicating two-dimensional graphics. This is called Scalable Vector Graphics, and you can find it at
http://www.w3.org/TR/SVG/. While this would be the choice for transferring 2D graphics as XML
documents in a real-world context, the objective here is to exercise your knowledge of XML and DTDs,
so you’ll reinvent your own version of this wheel, even though it will have fewer spokes and may wob-
ble a bit.

First, let’s consider what the general approach is going to be. Since the objective is to define a DTD that
will enable you to exercise the Java API for XML with Sketcher, you’ll define the language to make it an
easy fit to Sketcher, rather than worry about the niceties of the best way to represent each geometric ele-
ment. Since Sketcher itself was a vehicle for trying out various capabilities of the Java class libraries, it
evolved in a somewhat topsy-like fashion with the result that the classes defining geometric entities are
not necessarily ideal. However, you’ll just map these directly in XML to avoid the mathematical jiggery-
pokery that would be necessary if you adopted a more formal representation of geometry in XML.

A sketch is a very simple document. It’s basically a sequence of lines, circles, rectangles, curves, and text.
You can therefore define the root element <sketch> in the DTD as:

<!ELEMENT sketch (line|circle|rectangle|curve|text)*>

This just says that a sketch consists of zero or more of any of the elements between the parentheses. You
now need to define each of these elements.

1172

Chapter 22

A line is easy. It is defined by its location, which is its start point and an end point. It also has an
orientation — its rotation angle — and a color. You could define a <line> element like this:

<!ELEMENT line (color, position, endpoint)>

<!ATTLIST line

angle CDATA #REQUIRED

>

A line is fully defined by two points, but the Line class includes a rotation field, so you have included
that, too. Of course, a position is also a point, so it would be possible to use a <point> element for this,
but differentiating the position for a geometric element will make it a bit easier for a human reader to
read an XML document containing a sketch.

You could define color by a color attribute to the <line> element with a set of alternative values, but
to allow the flexibility for lines of any color, it would be better to define a <color> element with three
attributes for RGB values. In this case you can define the <color> element as:

<!ELEMENT color EMPTY>

<!ATTLIST color

R CDATA #REQUIRED

G CDATA #REQUIRED

B CDATA #REQUIRED

>

You must now define the <position> and <endpoint> elements. These are both points defined by an
(x, y) coordinate pair, so you would sensibly define them consistently. Empty elements with attributes
are the most economical way here, and you can use a parameter entity for the attributes:

<!ENTITY % coordinates “x CDATA #REQUIRED y CDATA #REQUIRED”>

<!ELEMENT position EMPTY>

<!ATTLIST position %coordinates;>

<!ELEMENT endpoint EMPTY>

<!ATTLIST endpoint %coordinates;>

A rectangle will be defined very similarly to a line since it is defined by its position, which corresponds
to the top-left corner, plus the coordinates of the bottom-right corner. It also has a color and a rotation
angle. Here’s how this will look in the DTD:

<!ELEMENT rectangle (color, position, bottomright)>

<!ATTLIST rectangle

angle CDATA #REQUIRED

>

<!ELEMENT bottomright EMPTY>

<!ATTLIST bottomright %coordinates;>

You don’t need to define the <color> and <position> elements because you have already defined
these earlier for the <line> element.

The <circle> element is no more difficult. Its position is the center, and it has a radius and a color. It
also has a rotation angle. You can define it like this:

1173

Java and XML

<!ELEMENT circle (color, position)>

<!ATTLIST circle

radius CDATA #REQUIRED

angle CDATA #REQUIRED

>

The <curve> element is a little more complicated because it’s defined by an arbitrary number of points,
but it’s still quite easy:

<!ELEMENT curve (color, position, point+)>

<!ATTLIST curve angle CDATA #REQUIRED>

<!ELEMENT point EMPTY>

<!ATTLIST point %coordinates;>

The start point of the curve is defined by the <position> element, and it includes at least one <point>
element, which is specified by the + operator.

Lastly, you have the element that defines a text element in Sketcher terms. You need to allow for the font
name and its style and point size, a rotation angle for the text, and a color — plus the text itself, of
course, and its position. A Text element is also a little different from the other elements, as its bounding
rectangle is required to construct it, so you must also include that. You have some options as to how you
define this element. You could use mixed element content in a <text> element, combining the text
string with and <position> elements, for example.

The disadvantage of this is that you cannot limit the number of occurrences of the child elements and
how they are intermixed with the text. You can make the definition more precisely controlled by enclos-
ing the text in its own element. Then you can define the <text> element as having element content —
like this:

<!ELEMENT text (color, position, font, string)>

<!ATTLIST text angle CDATA #REQUIRED>

<!ELEMENT font EMPTY>

<!ATTLIST font

fontname CDATA #REQUIRED

fontstyle (plain|bold|italic) #REQUIRED

pointsize CDATA #REQUIRED

>

<!ELEMENT string (#PCDATA|bounds)*>

<!ELEMENT bounds EMPTY>

<!ATTLIST point

width CDATA #REQUIRED

height CDATA #REQUIRED

>

The <string> element content will be a <bounds> element defining the height and width of the bound-
ing rectangle plus the text to be displayed. The element provides the name, style, and size of the
font as attribute values, and since nothing is required, beyond that it is an empty element. Children of
the <text> element that you have already defined specify the color and position of the text.

1174

Chapter 22

That’s all you need. The complete DTD for Sketcher documents will be:

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT sketch (line|circle|rectangle|curve|text)*>

<!ELEMENT color EMPTY>

<!ATTLIST color

R CDATA #REQUIRED

G CDATA #REQUIRED

B CDATA #REQUIRED

>

<!ENTITY % coordinates “x CDATA #REQUIRED y CDATA #REQUIRED”>

<!ELEMENT position EMPTY>

<!ATTLIST position %coordinates;>

<!ELEMENT endpoint EMPTY>

<!ATTLIST endpoint %coordinates;>

<!ELEMENT line (color, position, endpoint)>

<!ATTLIST line

angle CDATA #REQUIRED

>

<!ELEMENT rectangle (color, position, bottomright)>

<!ATTLIST rectangle

angle CDATA #REQUIRED

>

<!ELEMENT bottomright EMPTY>

<!ATTLIST bottomright %coordinates;>

<!ELEMENT circle (color, position)>

<!ATTLIST circle

radius CDATA #REQUIRED

angle CDATA #REQUIRED

>

<!ELEMENT curve (color, position, point+)>

<!ATTLIST curve angle CDATA #REQUIRED>

<!ELEMENT point EMPTY>

<!ATTLIST point %coordinates;>

<!ELEMENT text (color, position, font, string)>

<!ATTLIST text angle CDATA #REQUIRED>

<!ELEMENT font EMPTY>

<!ATTLIST font

fontname CDATA #REQUIRED

fontstyle (plain|bold|italic|bold-italic) #REQUIRED

pointsize CDATA #REQUIRED

>

1175

Java and XML

<!ELEMENT string (#PCDATA|bounds)*>

<!ELEMENT bounds EMPTY>

<!ATTLIST bounds

width CDATA #REQUIRED

height CDATA #REQUIRED

>

You can use this DTD to represent any sketch in XML. Stash it away in your Beg Java Stuff directory
as sketcher.dtd. You’ll try it out later.

Rules for a Well-Formed Document
Now that you know a bit more about XML elements and what goes into a DTD, I can formulate what
you must do to ensure your XML document is well-formed. The rules for a document to be well-formed
are quite simple:

1. If the XML declaration appears in the prolog, it must include the XML version. Other specifica-
tions in the XML document must be in the prescribed sequence — character encoding followed
by standalone specification.

2. If the document type declaration appears in the prolog, the DOCTYPE name must match that of
the root element, and the markup declarations in the DTD must be according to the rules for
writing markup declarations.

3. The body of the document must contain at least one element, the root element, which contains
all the other elements, and an instance of the root element must not appear in the content of
another element. All elements must be properly nested.

4. Elements in the body of the document must be consistent with the markup declarations identi-
fied by the DOCTYPE declaration.

The rules for writing an XML document are absolutely strict. Break one rule and your document is not
well-formed and will not be processed. This strict application of the rules is essential because you are
communicating data and its structure. If any laxity were permitted, it would open the door to uncer-
tainty about how the data should be interpreted. HTML used to be quite different from XML in this
respect. Until recently, the rules for writing HTML were only loosely applied by HTML readers such as
web browsers.

For example, even though a paragraph in HTML should be defined using a start tag, <p>, and an end
tag, </p>, you can usually get away with omitting the end tag, and you can use both capital and lower-
case p, and indeed close a capital P paragraph with a lowercase p, and vice versa. You can often have
overlapping tags in HTML and get away with that, too. While it is not to be recommended, a loose appli-
cation of the rules for HTML is not so harmful since HTML is concerned only with data presentation.
The worst that can happen is that the data does not display quite as you intended.

1176

Chapter 22

In 2000, the W3C released the XHTML 1.0 standard that makes HTML an XML language, so you can
expect more and more HTML documents to conform to this. The enduring problem is, of course, that the
Internet has accumulated a great deal of material over many years that is still very useful but that will
never be well-formed XML, so browsers may never be fully XML-compliant.

XML Namespaces
Even though they are very simple, XML namespaces can be very confusing. The confusion arises because
it is so easy to make assumptions about what they imply when you first meet them. Let’s look briefly at
why you have XML namespaces in the first place, and then see what an XML namespace actually is.

You saw earlier that an XML document can have only one DOCTYPE declaration. This can identify an
external DTD by a URI or include explicit markup declarations, or it may do both. What happens if you
want to combine two or more XML documents that each has its own DTD into a single document? The
short answer is that you can’t — not easily anyway. Since the DTD for each document will have been
defined without regard for the other, element name collisions are a real possibility. It may be impossible
to differentiate between different elements that share a common name, and in this case major revisions
of the documents’ contents as well as a new DTD will be necessary to deal with this. It won’t be easy.

XML namespaces are intended to help deal with this problem. They enable names used in markup to be
qualified so that you can make duplicate names that are used in different markup unique by putting
them in separate namespaces. An XML namespace is just a collection of element and attribute names
that is identified by a URI. Each name in an XML namespace is qualified by the URI that identifies the
namespace. Thus, different XML namespaces may contain common names without causing confusion
since each name is notionally qualified by the unique URI for the namespace that contains it.

I say “notionally qualified” because you don’t usually qualify names using the URI directly, although
you could. Normally, in the interests of not making the markup overly verbose, you use another name
called a namespace prefix whose value is the URI for the namespace. For example, I could have a
namespace that is identified by the URI http://www.wrox.com/Toys and a namespace prefix toys
that contains a declaration for the name rubber_duck. I could have a second namespace with the URI
http://www.wrox.com/BathAccessories and the namespace prefix bathAccessories that also
defines the name rubber_duck. The rubber_duck name from the first namespace is referred to as
toys:rubber_duck and that from the second namespace is bathAccessories:rubber_duck, so there
is no possibility of confusing them. The colon is used in the qualified name to separate the namespace
prefix from the local name, which is why I said earlier in the chapter that you should avoid the use of
colons in ordinary XML names.

Let’s come back to the confusing aspects of namespaces for a moment. There is a temptation to imagine
that the URI that identifies an XML namespace also identifies a document somewhere that specifies the
names in the namespace. This is not required by the namespace specification. The URI is just a unique
identifier for the namespace and a unique qualifier for a set of names. It does not necessarily have any
other purpose, or even have to refer to a real document; it only needs to be unique. The definition of
how names within a given namespace relate to one another and the rules for markup that uses them is
an entirely separate question. This may be provided by a DTD or some other mechanism such as an
XML Schema.

1177

Java and XML

Namespace Declarations
A namespace is associated with a particular element in a document, which of course can be, but does not
have to be, the root element. A typical namespace declaration in an XML document looks like this:

<sketcher:sketch xmlns:sketcher=”http://www.wrox.com/dtds/sketches”>

A namespace declaration uses a special reserved attribute name, xmlns, within an element, and in this
instance the namespace applies to the <sketch> element. The name sketcher that is separated from
xmlns by a colon is the namespace prefix, and it has the value
http://www.wrox.com/dtds/sketches. You can use the namespace prefix to qualify names within
the namespace, and since this maps to the URI, the URI is effectively the qualifier for the name. The URL
that I’ve given here is hypothetical — it doesn’t actually exist, but it could. The sole purpose of the URI
identifying the namespace is to ensure that names within the namespace are unique, so it doesn’t matter
whether it exists or not. You can add as many namespace declarations within an element as you want,
and each namespace declared in an element is available within that element and its content.

With the namespace declared with the sketcher prefix, you can use the <circle> element that is
defined in the sketcher namespace like this:

<sketcher:sketch xmlns:sketcher=”http://www.wrox.com/dtds/sketches”>

<sketcher:circle radius=”15” angle=”0”>

<sketcher:color R=”150” G=”250” B=”100”/>

<sketcher:position x=”30” y=”50”/>

</sketcher:circle>

</sketcher:sketch>

Each reference to the element name is qualified by the namespace prefix sketcher. A reference in the
same document to a <circle> element that is defined within another namespace can be qualified by the
prefix specified in the declaration for that namespace. By qualifying each element name by its names-
pace prefix, you avoid any possibility of ambiguity.

A namespace has scope — a region of an XML document over which the namespace declaration is visi-
ble. The scope of a namespace is the content of the element within which it is declared, plus all direct or
indirect child elements. The preceding namespace declaration applies to the <sketch> element and all
the elements within it. If you declare a namespace in the root element for a document, its scope is the
entire document.

You can declare a namespace without specifying a prefix. This namespace then becomes the default
namespace in effect for this element, and its content and unqualified element names are assumed to
belong to this namespace. Here’s an example:

<sketch xmlns=”http://www.wrox.com/dtds/sketches”>

There is no namespace prefix specified so the colon following xmlns is omitted. This namespace
becomes the default, so you can use element and attribute names from this namespace without qualifica-
tion and they are all implicitly within the default namespace. For example:

1178

Chapter 22

<sketch xmlns=”http://www.wrox.com/dtds/sketches”>

<circle radius=”15” angle=”0”>

<color R=”150” G=”250” B=”100”/>

<position x=”30” y=”50”/>

</circle>

</sketch>

This markup is a lot less cluttered than the earlier version that used qualified names, which makes it
much easier to read. It is therefore advantageous to declare the namespace that you use most extensively
in a document as the default.

You can declare several namespaces within a single element. Here’s an example of a default namespace
in use with another namespace:

<sketch xmlns=”http://www.wrox.com/dtds/sketches”

xmlns:print=”http://www.wrox.com/dtds/printed”>

<circle radius=”15” angle=”0”>

<color R=”150” G=”250” B=”100”/>

<position x=”30” y=”50”/>

</circle>

<print:circle print:lineweight=”3” print:linestyle=”dashed”/>

</sketch>

Here the namespace with the prefix print contains names for elements relating to hardcopy presenta-
tion of sketch elements. The <circle> element in the print namespace is qualified by the namespace
prefix so it is distinguished from the element with the same name in the default namespace.

XML Namespaces and DTDs
For a document to be valid, you must still have a DTD, and the document must be consistent with it. The
way in which a DTD is defined has no specific provision for namespaces. The DTD for a document that
uses namespaces must therefore define the elements and attributes using qualified names and must also
make provision for the xmlns attribute with or without its prefix in the markup declaration for any ele-
ment in which it can appear. Because the markup declarations in a DTD have no specific provision for
accommodating namespaces, a DTD is a less than ideal vehicle for defining the rules for markup when
namespaces are used. The XML Schema specification provides a much better solution, and overcomes a
number of other problems associated with DTDs.

XML Schemas
Because of the limitations of DTDs that I mentioned earlier, the W3C has developed the XML Schema
language for defining the content and structure of sets of XML documents, and this language is now a
W3C standard. You use the XML Schema Definition language to create descriptions of particular kinds
of XML documents in a similar manner to the way you use DTDs, and such descriptions are themselves
referred to as XML Schemas and fulfill the same role as DTDs. The XML Schema language is itself
defined in XML and is therefore implicitly extensible to support new capabilities when necessary.
Because the XML Schema language enables you to specify the type and format of data within an XML
document, it provides a way for you to define and create XML documents that are inherently more pre-
cise, and therefore safer than documents described by a DTD.

1179

Java and XML

It’s easy to get confused when you are working with XML Schemas. One primary source of confusion is
the various levels of language definition you are involved with. At the top level, you have XML — every-
thing you are working with in this context is defined in XML. At the next level you have the XML
Schema Definition language — defined in XML of course — and you use this language to define an XML
Schema, which is a specification for a set of XML documents. At the lowest level you define an XML doc-
ument — such as a document describing a Sketcher sketch — and this document is defined according to
the rules you have defined in your XML Schema for Sketcher documents. Figure 22-3 shows the relation-
ships between these various XML documents.

Figure 22-3

The XML Schema language is sometimes referred to as XSD, from XML Schema Definition language.
The XML Schema namespace is usually associated with the prefix name xsd, and files containing a defi-
nition for a class of XML documents often have the extension .xsd. You’ll also often see the prefix xs
used for the XML Schema namespace, but in fact you can use anything you like. A detailed discussion of
the XML Schema language is a substantial topic that really requires a whole book to do it justice, so I’ll
just give you enough of a flavor of how you define your own XML documents schemas so that you’re
able to how it differs from a DTD.

XML Schema
for Sketcher Documents

XML Sketch

XML Sketch

All these documents
are defined in XML.

XML Sketch

XML Schema Definition Language

XML was used to define a language in
which you can define XML Schema.

You define an XML Schema for XML
documents that define Sketcher sketches.

Sketcher sketches can be stored and
retrieved or otherwise communicated as

long as they conform to the XML Schema.

XML

1180

Chapter 22

Defining a Schema
The elements in a schema that defines the structure and content of a class of XML documents are orga-
nized in a similar way to the elements in a DTD. A schema has a single root element that is unique, and
all other elements must be contained within the root element and must be properly nested. Every
schema consists of a schema root element with a number of nested sub-elements. Let’s look at a simple
example.

Here’s a possible schema for XML documents that contain an address:

<?xml version=”1.0” ?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:annotation>

<xsd:documentation>

This schema defines documents that contain an address.

</xsd:documentation>

</xsd:annotation>

<!--This declares document content. -->

<xsd:element name=”address” type=”AddressType”/>

<!--This defines an element type that is used in the declaration of content. -->

<xsd:complexType name=”AddressType”>

<xsd:sequence>

<xsd:element name=”buildingnumber” type=”xsd:positiveInteger”/>

<xsd:element name=”street” type=”xsd:string”/>

<xsd:element name=”city” type=”xsd:string”/>

<xsd:element name=”state” type=”xsd:string”/>

<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

You might like to contrast this schema with the DTD you saw earlier that defined XML documents with
similar content. This schema defines documents that consist of an <address/> root element that con-
tains a sequence of child elements with the names, buildingnumber, street, city, state, and zip.

The root element in the schema definition is the xsd:schema element, and that has an attribute with the
name xmlns that identifies an XML namespace. The value you specify for the xmlns attribute is a URI
that is the namespace name for the content document, and since the current document is a schema, the
namespace is the one corresponding to elements in the XML Schema Definition language. The xsd that
follows the colon is the prefix that will be used to identify element names from the
“http://www.w3.org/2001/XMLSchema” namespace, so xsd is shorthand for the full namespace
name. Thus schema, complexType, sequence, and element are all names of elements in a namespace
defined for the XML Schema Definition language. The root element for every XML Schema will be a
schema element. Don’t lose sight of what a schema is; it’s a definition of the form of XML documents of
a particular type, so it declares the elements that can be used in such a document and how they may be
structured. A document that conforms to a particular schema does not have to identify the schema, but it
can. I’ll come back to how you reference a schema when you are defining an XML document a little later
in this chapter.

1181

Java and XML

The example uses an <annotation/> element to include some simple documentation in the schema
definition. The text that is the documentation appears within a child <documentation/> element. You
can also use an <appInfo/> child element within a <annotation/> element to reference information
located at a given URI. Of course, you can also use XML comments, <!--comment-->, within a schema,
as the example shows.

In an XML Schema, a declaration specifies an element that is content for a document, whereas a defini-
tion defines an element type. The xsd:element element is a declaration that the content of a document
consists of an <address/> element. Contrast this with the xsd:complexType element, which is a defi-
nition of the AddressType type for an element and does not declare document content. The xsd:ele-
ment element in the schema declares that the address element is document content and happens to be
of type AddressType, which is the type defined by the xsd:complexType element.

Now let’s take a look at some of the elements that you use to define a document schema in a little more
detail.

Defining Elements
As I said, the xsd:complexType element in the sample schema defines a type of element, not an ele-
ment in the document. A complex element is simply an element that contains other elements, or that has
attributes, or both. Any elements that are complex elements will need a xsd:complexType definition in
the schema to define a type for the element. You place the definitions for child elements for a complex
element between the complexType start and end tags. You also place the definitions for any attributes
for a complex element between the complexType start and end tags. You can define a simple type using
an xsd:simpleType definition in the schema. You would use a simple type definition to constrain
attribute values or element content in some way. You’ll see examples of this a little later in this chapter.

In the example you specify that any element of type AddressType contains a sequence of simple ele-
ments — a buildingnumber element, a street element, a city element, a state element, and a zip
element. A simple element is an element that does not have child elements or attributes; it can contain
only data, which can be of a variety of standard types or of a type that you define. The definition of each
simple element that appears within an element of type AddressType uses an xsd:element element in
which the name attribute specifies the name of the element being defined and the type attribute defines
the type of data that can appear within the element. You can also control the number of occurrences of
an element by specifying values for two further attributes within the xsd:element tag, as follows:

Attribute Description

minOccurs The value defines the minimum number of occurrences of the element and
must be a positive integer (which can be 0). If this attribute is not defined,
then the minimum number of occurrences of the element is 1.

maxOccurs The value defines the maximum number of occurrences of the element and
can be a positive integer or the value unbounded. If this attribute is not
defined, then the maximum number of occurrences of the element is 1.

Thus, if both of these attributes are omitted, as is the case with the child element definitions in the sam-
ple schema for elements of type AddressType, the minimum and maximum numbers of occurrences are

1182

Chapter 22

both one, so the element must appear exactly once. If you specify minOccurs as 0, then the element is
optional. Note that you must not specify a value for minOccurs that is greater than maxOccurs, and the
value for maxOccurs must not be less than minOccurs. You should keep in mind that both attributes
have default values of 1 when you specify a value for just one attribute.

Specifying Data Types
In the example, each of the definitions for the five simple elements within an address element has a type
specified for the data that it’ll contain, and you specify the data type by a value for the type attribute.
The data in a buildingnumber element is specified to be of type positiveInteger, and the others are
all of type string. These two types are relatively self-explanatory, corresponding to positive integers
greater than or equal to 0, and strings of characters. The XML Schema Definition language allows you to
specify many different values for the type attribute in an element definition. Here are a few other
examples:

Data Type Examples of Data

integer 25, -998, 12345, 0, -1

negativeInteger -1, -2, -3, -12345, and so on

nonNegativeInteger 0, 1, 2, 3, and so on

hexBinary 0DE7, ADD7

long 25, 123456789, -9999999

float 2.71828, 5E5, 500.0, 0, -3E2, -300.0, NaN, INF, -INF

double 3.1415265, 1E30, -2.5, NaN, -INF, INF

boolean true, false, 1, 0

date 2004-12-31

language en-US, en, de

The float and double types correspond to values within the ranges for 32-bit and 64-bit floating-point
values, respectively. There are many more standard types of data within the XML Schema Definition lan-
guage, and because this is extensible, you can also define data types of your own.

You can also define a default value for a simple element by using the default attribute within the defi-
nition of the element. For example, within an XML representation of a sketch you will undoubtedly need
to have an element defining a color. You might define this as a simple element like this:

<xsd:element name=”color” type=”xsd:string” default=”blue”/>

This defines a color element containing data that is a string and a default value for the string of “blue”.
In a similar way, you can define the content for a simple element to be a fixed value by specifying the
content as the value for the fixed attribute within the xsd:element tag.

1183

Java and XML

Defining Attributes for Complex Elements
You use the xsd:attribute tag to define an attribute for a complex element. Let’s take an example to
see how you do this. Suppose you decided that you would define a circle in an XML document for a
sketch using a <circle/> element, where the coordinates of the center, the radius, and the color are
specified by attributes. Within the document schema, you might define the type for an element repre-
senting a circle like this:

<xsd:complexType name=”CircleType”>

<xsd:attribute name=”x” type=”xsd:double”/>

<xsd:attribute name=”y” type=”xsd:double”/>

<xsd:attribute name=”radius” type=”xsd:double”/>

<xsd:attribute name=”color” type=”xsd:string”/>

</xsd:complexType>

The elements that define the attributes for the <circle/> element type appear within the complexType
element, just like child element definitions. You specify the attribute name and the data type for the
value in exactly the same way as for an element. The type specification is not mandatory. If you leave it
out, it just means that anything goes as a value for the attribute.

You can also specify in the definition for an attribute whether it is optional or not by specifying a value
for the use attribute within the xsd:attribute element. The value for the use attribute can be either
“optional” or “required”. For a circle element, none of the attributes are optional, so you might mod-
ify the complex type definition to the following:

<xsd:complexType name=”CircleType”>

<xsd:attribute name=”x” type=”xsd:double” use=”required”/>

<xsd:attribute name=”y” type=”xsd:double” use=”required”/>

<xsd:attribute name=”radius” type=”xsd:double” use=”required”/>

<xsd:attribute name=”color” type=”xsd:string” use=”required”/>

</xsd:complexType>

You might also want to restrict the values that can be assigned to an attribute. For example, the radius
certainly cannot be zero or negative, and the color may be restricted to standard colors. You could do
this by adding a simple type definition that defines restrictions on these values. For example:

<xsd:complexType name=”circle”>

<xsd:attribute name=”x” type=”xsd:double” use=”required”/>

<xsd:attribute name=”y” type=”xsd:double” use=”required”/>

<xsd:attribute name=”radius” use=”required”>

<xsd:simpleType>

<xsd:restriction base=”xsd:double”>

<xsd:minExclusive value=”0”/>

</xsd:restriction

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name=”color” use=”required”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”red”/>

<xsd:enumeration value=”blue”/>

<xsd:enumeration value=”green”/>

1184

Chapter 22

<xsd:enumeration value=”yellow”/>

</xsd:restriction

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

The radius and color attributes have restrictions on the values that can be assigned to them. The
simpleType element that appears within the xsd:attribute elements specifies the constraints on the
values for each attribute. You can also use the simpleType element with an xsd:element element defi-
nition to constrain the content for an element in a similar way. The xsd:restriction element defines
the constraints, and you have a considerable range of options for specifying them, many more than I can
possibly explain here. The base attribute in the xsd:restriction element defines the type for the
value that is being restricted, and this attribute specification is required.

I’ve used an xsd:minExclusive specification to define an exclusive lower limit for values of the
radius attribute, and this specifies that the value must be greater than “0”. Alternatively, you might
prefer to use xsd:minExclusive with a value of “1” to set a sensible minimum value for the radius.
You also have the option of specifying an upper limit on the values by specifying either maxInclusive
or maxExclusive values. For the color attribute definition, I’ve introduced a restriction that the value
must be one of a fixed set of values. Each value that is allowed is specified in an xsd:enumeration ele-
ment, and there can be any number of these. Obviously, this doesn’t just apply to strings; you can restrict
the values for numeric types to be one of an enumerated set of values. For the color attribute the value
must be one of the four string values specified.

Defining Groups of Attributes
Sometimes several different elements have the same set of attributes. To avoid having to repeat the defi-
nitions for the elements in such a set for each element that requires them, you can define an attribute
group. Here’s an example of a definition for an attribute group:

<xsd:attributeGroup name=”coords”>

<xsd:attribute name=”x” type=”xsd:double” use=”required”/>

<xsd:attribute name=”y” type=”xsd:double” use=”required”/>

</xsd:attributeGroup>

This defines a group of two attributes with names x and y that specify x and y coordinates for a point.
The name of this attribute group is coords. In general, an attribute group can contain other attribute
groups. You could use the coords attribute group within a complex type definition like this:

<xsd:complexType name=”PointType”>

<xsd:attributeGroup ref=”coords”/>

</xsd:complexType>

This defines the element type PointType as having the attributes that are defined in the coords attribute
group. The ref attribute in the xsd:attributeGroup element specifies that this is a reference to a named
attribute group. You can now use the PointType element type to define elements. For example:

<xsd:element name=”position” type=”PointType”/>

This declares a <point/> element to be of type PointType, and thus have the required attributes x and y.

1185

Java and XML

Specifying a Group of Element Choices
The xsd:choice element in the Schema Definition language enables you to specify that one out of a
given set of elements included in the choice definition must be present. This will be useful in specifying
a schema for Sketcher documents because the content is essentially variable — it can be any sequence of
any of the basic types of elements. Suppose that you have already defined types for the geometric and
text elements that can occur in a sketch. You could use an xsd:choice element in the definition of a
complex type for a <sketch/> element like this:

<xsd:complexType name=”SketchType”>

<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>

<xsd:element name=”line” type=”LineType”/>

<xsd:element name=”rectangle” type=”RectangleType”/>

<xsd:element name=”circle” type=”CircleType”/>

<xsd:element name=”curve” type=”CurveType”/>

<xsd:element name=”text” type=”TextType”/>

</xsd:choice>

</xsd:complexType>

This defines that an element of type SketchType contains zero or more elements that are each one of the
five types identified in the xsd:choice element. Thus, each element can be any of the types LineType,
RectangleType, CircleType, CurveType, or TextType, which are types for the primitive elements in
a sketch that will be defined elsewhere in the schema. Given this definition for SketchType, you can
declare the content for a sketch to be:

<xsd:element name=”sketch” type=”SketchType”/>

This declares the contents of an XML document for a sketch to be a <sketch/> element that has zero or
more elements of any of the types that appeared in the preceding xsd:choice element. This is exactly
what is required to accommodate any sketch, so this single declaration defines the entire contents of all
possible sketches. All you need is to fill in a few details for the element types. I think you know enough
about XML Schema to put together a schema for Sketcher documents.

A Schema for Sketcher
As I noted when I discussed a DTD for Sketcher, an XML document that defines a sketch can have a very
simple structure. Essentially, it can consist of a <sketch/> element that contains a sequence of zero or
more elements that define lines, rectangles, circles, curves, or text. These child elements may be in any
sequence, and there can be any number of them. To accommodate the fact that any given child element
must be one of five types of elements, you could use some of the XML fragments from earlier sections to
make an initial stab at an outline of a Sketcher schema like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<!--The entire document content -->

<xsd:element name=”sketch” type=”SketchType”/>

<!--Type for a sketch root element -->

<xsd:complexType name=”SketchType”>

<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>

1186

Chapter 22

<xsd:element name=”line” type=”LineType”/>

<xsd:element name=”rectangle” type=”RectangleType”/>

<xsd:element name=”circle” type=”CircleType”/>

<xsd:element name=”curve” type=”CurveType”/>

<xsd:element name=”text” type=”TextType”/>

</xsd:choice>

</xsd:complexType>

<!--Other definitions that are needed... -->

</xsd:schema>

This document references the XML Schema language namespace, so it’s evidently a definition of a
schema. The documents that this schema defines have no namespace specified, so elements on docu-
ments conforming to this schema do not need to be qualified. The entire content of a Sketcher document
is declared to be an element with the name sketch that is of type SketchType. The <sketch/> element
is the root element, and because it can have child elements, it must be defined as a complex type. The
child elements within a <sketch/> element are the elements specified by the xsd:choice element,
which represents a selection of one of the five complex elements that can occur in a sketch. The
minOccurs and maxOccurs attribute values for the xsd:choice element determines that there may be
any number of such elements, including zero. Thus, this definition accommodates XML documents
describing any Sketcher sketch. All you now need to do is fill in the definitions for the possible varieties
of child elements.

Defining Line Elements
Let’s define the same XML elements in the schema for Sketcher as the DTD for Sketcher defines. On that
basis, a line element will have three child elements specifying the color, position, and end point for a
line, plus an attribute that specifies the rotation angle. You could define the type for a <line/> element
in the schema like this:

<xsd:complexType name=”LineType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

<xsd:element name=”endpoint” type=”PointType”/>

</xsd:sequence>

<xsd:attribute name=”angle” type=”xsd:double” use=”required”/>

</xsd:complexType>

This defines the type for a <line/> element in a sketch. An element of type LineType contains three
elements, <color/>, <position/>, and <endpoint/>. These are enclosed within a <sequence/>
schema definition element, so they must all be present and must appear in a sketch document in the
sequence in which they are specified here. The element type definition also specifies an attribute with
the name angle that must be included in any element of type LineType.

Of course, you now must define the types that you’ve used in the definition of the complex type,
LineType: the ColorType and PointType element types.

1187

Java and XML

Defining a Type for Color Elements
As I discussed in the context of the DTD for Sketcher, the data for a <color/> element will be supplied
by three attributes that specify the RGB values for the color. You can therefore define the element type
like this:

<xsd:complexType name=”ColorType”>

<xsd:attribute name=”R” type=”xsd:nonNegativeInteger” use=”required”/>

<xsd:attribute name=”G” type=”xsd:nonNegativeInteger” use=”required”/>

<xsd:attribute name=”B” type=”xsd:nonNegativeInteger” use=”required”/>

</xsd:complexType>

This is a relatively simple complex type definition. There are just the three attributes — R, G, and B —
that all have integer values that can be 0 or greater, and are all mandatory.

Defining a Type for Point Elements
You saw a definition for the PointType element type earlier:

<xsd:complexType name=”PointType”>

<xsd:attributeGroup ref=”coords”/>

</xsd:complexType>

This references the attribute group with the name coords, so this must be defined elsewhere in the
schema. You’ve also seen this attribute group definition before:

<xsd:attributeGroup name=”coords”>

<xsd:attribute name=”x” type=”xsd:double” use=”required”/>

<xsd:attribute name=”y” type=”xsd:double” use=”required”/>

</xsd:attributeGroup>

You’ll be able to use this attribute group in the definitions for other element types in the schema. The
definition of this attribute group must appear at the top level in the schema, within the root element;
otherwise, it will not be possible to refer to it from within an element declaration.

Defining a Rectangle Element Type
The definition of the type for a <rectangle/> element is almost identical to the LineType definition:

<xsd:complexType name=”RectangleType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

<xsd:element name=”bottomright” type=”PointType”/>

</xsd:sequence>

<xsd:attribute name=”angle” type=”xsd:double” use=”required”/>

</xsd:complexType>

This references the element types ColorType and PointType, and both of these have already been
defined. Note how you can declare two different elements, position and bottomright, to be of the
same element type.

1188

Chapter 22

Defining a Circle Element Type
There’s nothing new in the definition of CircleType:

<xsd:complexType name=”CircleType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

</xsd:sequence>

<xsd:attribute name=”radius” type=”xsd:double” use=”required”/>

<xsd:attribute name=”angle” type=”xsd:double” use=”required”/>

</xsd:complexType>

The child elements appear within a sequence element, so their sequence is fixed. You have the radius
and angle for a circle specified by attributes that both have values of type double, and are both
mandatory.

Defining a Curve Element Type
A type for the curve element does introduce something new because the number of child elements is
variable. A curve is defined by the origin plus one or more points, so the type definition must allow for
an unlimited number of child elements defining points. Here’s how you can accommodate that:

<xsd:complexType name=”CurveType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

<xsd:element name=”point” type=”PointType” minOccurs=”1”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”angle” type=”xsd:double” use=”required”/>

</xsd:complexType>

The flexibility in the number of <point/> elements is specified through the minOccurs and maxOccurs

attribute values. The value of 1 for minOccurs ensures that there will always be at least one, and the
unbounded value for maxOccurs allows an unlimited number of <point/> elements to be present.

Defining a Text Element Type
The type for <text/> elements is the odd one out, but it’s not difficult. It involves four child elements
for the color, the position, the font, and the text itself, plus an attribute to specify the angle. The type def-
inition will be as follows:

<xsd:complexType name=”TextType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

<xsd:element name=”font” type=”FontType”/>

<xsd:element name=”string” type=”xsd:string”/>

</xsd:sequence>

<xsd:attribute name=”angle” type=”xsd:double” use=”required”/>

</xsd:complexType>

1189

Java and XML

The text string itself is a simple <string/> element, but the font is a complex element that requires a
type definition:

<xsd:complexType name=”FontType”>

<xsd:attribute name=”fontname” type=”xsd:string” use=”required”/>

<xsd:attribute name=”fontstyle” use=”required”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”plain”/>

<xsd:enumeration value=”bold”/>

<xsd:enumeration value=”italic”/>

<xsd:enumeration value=”bold-italic”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

The style attribute for the element can be only one of four fixed values. You impose this con-
straint by defining an enumeration of the four possible string values within a simpleType definition for
the attribute value. The xsd:simpleType definition is implicitly associated with the style attribute
value because the type definition is a child of the xsd:attribute element.

The Complete Sketcher Schema
If you assemble all the fragments into a single file, you’ll have the following definition for the Sketcher
schema that defines XML documents containing a sketch:

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”sketch” type=”SketchType”/>

<!--Type for a sketch root element -->

<xsd:complexType name=”SketchType”>

<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>

<xsd:element name=”line” type=”LineType”/>

<xsd:element name=”rectangle” type=”RectangleType”/>

<xsd:element name=”circle” type=”CircleType”/>

<xsd:element name=”curve” type=”CurveType”/>

<xsd:element name=”text” type=”TextType”/>

</xsd:choice>

</xsd:complexType>

<!--Type for a line element -->

<xsd:complexType name=”LineType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

<xsd:element name=”endpoint” type=”PointType”/>

</xsd:sequence>

<xsd:attribute name=”angle” type=”xsd:double”/>

</xsd:complexType>

<!--Type for a rectangle element -->

<xsd:complexType name=”RectangleType”>

<xsd:sequence>

1190

Chapter 22

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

<xsd:element name=”bottomright” type=”PointType”/>

</xsd:sequence>

<xsd:attribute name=”angle” type=”xsd:double”/>

</xsd:complexType>

<!--Type for a circle element -->

<xsd:complexType name=”CircleType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

</xsd:sequence>

<xsd:attribute name=”radius” type=”xsd:double”/>

<xsd:attribute name=”angle” type=”xsd:double”/>

</xsd:complexType>

<!--Type for a curve element -->

<xsd:complexType name=”CurveType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

<xsd:element name=”point” type=”PointType” minOccurs=”1”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”angle” type=”xsd:double”/>

</xsd:complexType>

<!--Type for a text element -->

<xsd:complexType name=”TextType”>

<xsd:sequence>

<xsd:element name=”color” type=”ColorType”/>

<xsd:element name=”position” type=”PointType”/>

<xsd:element name=”font” type=”FontType”/>

<xsd:element name=”string” type=”xsd:string”/>

</xsd:sequence>

<xsd:attribute name=”angle” type=”xsd:double”/>

</xsd:complexType>

<!--Type for a font element -->

<xsd:complexType name=”FontType”>

<xsd:attribute name=”fontname” type=”xsd:string” use=”required”/>

<xsd:attribute name=”fontstyle” use=”required”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”plain”/>

<xsd:enumeration value=”bold”/>

<xsd:enumeration value=”italic”/>

<xsd:enumeration value=”bold-italic”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

<!--Type for elements representing points -->

<xsd:complexType name=”PointType”>

1191

Java and XML

<xsd:attributeGroup ref=”coords”/>

</xsd:complexType>

<!--Type for a color element -->

<xsd:complexType name=”ColorType”>

<xsd:attribute name=”R” type=”xsd:nonNegativeInteger” use=”required”/>

<xsd:attribute name=”G” type=”xsd:nonNegativeInteger” use=”required”/>

<xsd:attribute name=”B” type=”xsd:nonNegativeInteger” use=”required”/>

</xsd:complexType>

<!-- Attribute group specifying point coordinates -->

<xsd:attributeGroup name=”coords”>

<xsd:attribute name=”x” type=”xsd:double” use=”required”/>

<xsd:attribute name=”y” type=”xsd:double” use=”required”/>

</xsd:attributeGroup>

</xsd:schema>

This is somewhat longer than the DTD for Sketcher, but it does provide several advantages. All the data
in the document now has types specified so the document is more precisely defined. This schema is
XML, so the documents and the schema are defined in fundamentally the same way and are equally
communicable. There is no problem combining one schema with another because namespaces are sup-
ported, and every schema can be easily extended. You can save this as a file Sketcher.xsd.

A Document That Uses a Schema
A document that has been defined in accordance with a particular schema is called an instance docu-
ment for that schema. An instance document has to identify the schema to which it conforms, and this is
done using attribute values within the root element of the document. Here’s an XML document for a
sketch that identifies the location of the schema:

<sketch

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”file:/C:/Beg%20Java%20Stuff/Sketcher.xsd”>

<!-- Elements defined for the sketch... -->

</sketch>

The value for the xmlns attribute identifies the namespace name http://www.w3.org/2001/
XMLSchema-instance and specifies xsi as the prefix used to represent this namespace name. In an
instance document, the value for the noNamespaceSchemaLocation attribute in the xsi namespace is a
hint about the location where the schema for the document can be found. Here the value for
noNamespaceSchemaLocation is a URI for a file on the local machine, and the spaces are escaped
because this is required within a URI. The value you specify for the xsi:noNamespaceSchema
Location attribute is always regarded as a hint, so in principle an application or parser processing this
document is not obliged to take account of this. In practice though, this usually will be taken account of
when the document is processed, unless there is good reason to ignore it.

1192

Chapter 22

You define a value for the noNamespaceSchemaLocation attribute because a sketch document has no
namespace; if it had a namespace, you would define a value for the schemaLocation attribute that
includes two URIs separated by whitespace within the value specification — the URI for the namespace
and a URI that is a hint for the location of the namespace. Obviously, since one or more spaces separate
the two URIs, the URIs cannot contain unescaped spaces.

Programming with XML Documents
Right at the beginning of this chapter I introduced the notion of an XML processor as a module that is
used by an application to read XML documents. An XML processor parses the contents of a document
and makes the elements, together with their attributes and content, available to the application, so it is
also referred to as an XML parser. In case you haven’t met the term before, a parser is just a program
module that breaks down text in a given language into its component parts. A natural language proces-
sor would have a parser that identifies the grammatical segments in each sentence. A compiler has a
parser that identifies variables, constants, operators, and so on in a program statement. An application
accesses the content of a document through an API provided by an XML parser and the parser does the
job of figuring out what the document consists of.

Java supports two complementary APIs for processing an XML document:

❑ SAX, which is the Simple API for XML parsing

❑ DOM, which is the Document Object Model for XML

The support in JDK 5.0 is for DOM level 3 and for SAX version 2.0.2. JDK 5.0 also supports XSLT version
1.0, where XSL is the Extensible Stylesheet Language and T is Transformations — a language for trans-
forming one XML document into another, or into some other textual representation such as HTML.
However, I’ll concentrate on the basic application of DOM and SAX. XSLT is such an extensive topic that
there are several books devoted entirely to it.

Before I get into detail on these APIs, let’s look at the broad differences between SAX and DOM, and get
an idea of the circumstances in which you might choose to use one rather than the other.

SAX Processing
SAX uses an event-based process for reading an XML document that is implemented through a callback
mechanism. This is very similar to the way in which you handle GUI events in Java. As the parser reads a
document, each parsing event, such as recognizing the start or end of an element, results in a call to a par-
ticular method associated with that event. Such a method is often referred to as a handler. It is up to you

1193

Java and XML

to implement these methods to respond appropriately to the event. Each of your methods then has the
opportunity to react to the event, which will result in it being called in any way that you wish. In Figure 22-4
you can see the events that would arise from the XML document example that you saw earlier.

Figure 22-4

Each type of event results in a different method in your program being called. There are, for example,
different events for registering the beginning and end of a document. You can also see that the start and
end of each element results in two further kinds of events, and another type of event occurs for each seg-
ment of document data. Thus, this particular document will involve five different methods in your pro-
gram being called — some of them more than once, of course, so there is one method for each type of
event.

Because of the way SAX works, your application inevitably receives the document a piece at a time, with
no representation of the whole document. This means that if you need to have the whole document
available to your program with its elements and content properly structured, you have to assemble it
yourself from the information supplied piecemeal to your callback methods.

Of course, it also means that you don’t have to keep the entire document in memory if you don’t need it,
so if you are just looking for particular information from a document, all <phonenumber> elements, for
example, you can just save those as you receive them through the callback mechanism, and discard the
rest. As a consequence, SAX is a particularly fast and memory efficient way of selectively processing the
contents of an XML document.

First of all, SAX itself is not an XML document parser; it is a public domain definition of an interface to
an XML parser, where the parser is an external program. The public domain part of the SAX API is in
three packages that are shipped as part of the JDK:

XML Events in your Program

SAX Processing of XML

<?xml version="1.0">
<circle>
 <radius>
 15
 </radius>
 <position>
 <x-coordinate>
 30
 </x-coordinate>
 <y-coordinate>
 50
 </y-coordinate>
 </position>
</circle>

Start document
Start element
Start element
Characters
End element
Start element
Start element
Characters
End element
Start element
Characters
End element
End element
End element
End document

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

circle
radius
15
radius
position
x-coordinate
30
x-coordinate
y-coordinate
50
y-coordinate
position
circle

1194

Chapter 22

❑ org.xml.sax— This defines the Java interfaces specifying the SAX API and the InputSource
class that encapsulates a source of an XML document to be parsed.

❑ org.xml.sax.helpers— This defines a number of helper classes for interfacing to a SAX
parser.

❑ org.xml.sax.ext— This defines interfaces representing optional extensions to SAX2 to obtain
information about a DTD, or to obtain information about comments and CDATA sections in a
document.

In addition to these, the javax.xml.parsers package provides factory classes that you use to gain
access to a parser, and the javax.xml.transform package defines interfaces and classes for XSLT 1.0
processing of an XML document.

In Java terms there are several interfaces involved. The XMLReader interface defined in the
org.xml.sax package specifies the methods that the SAX parser will call, as it recognizes elements,
attributes, and other components of an XML document. You must provide a class that implements these
methods and responds to the method calls in the way that you want.

DOM Processing
DOM works quite differently than SAX. When an XML document is parsed, the whole document tree is
assembled in memory and returned to your application as an object of type Document that encapsulates
it, as Figure 22-5 illustrates.

Figure 22-5

x-coordinate y-coordinate

position

circle

Document Object

Returned to your Program

DOM Processing of XML

XML

radius

30 50

15

<?xml version="1.0">
<circle>
 <radius>
 15
 </radius>
 <position>
 <x-coordinate>
 30
 </x-coordinate>
 <y-coordinate>
 50
 </y-coordinate>
 </position>
</circle>

1195

Java and XML

Once you have the Document object available, you can call the Document object’s methods to navigate
through the elements in the document tree starting with the root element. With DOM, the entire docu-
ment is available for you to process as often and in as many ways as you want. This is a major advantage
over SAX processing. The downside to this is the amount of memory occupied by the document — there
is no choice, you get it all, no matter how big it is. With some documents the amount of memory
required may be prohibitively large.

DOM has one other unique advantage over SAX. It allows you to modify existing documents or create
new ones. If you want to create an XML document programmatically and then transfer it to an external
destination such as a file or another computer, DOM is the API for this since SAX has no direct provision
for creating or modifying XML documents. I will go into detail on how you can use a DOM parser in the
next chapter.

Accessing Parsers
The javax.xml.parsers package defines four classes supporting the processing of XML documents:

SAXParserFactory Enables you to create a configurable factory object that you can
use to create a SAXParser object encapsulating a SAX-based
parser

SAXParser Defines an object that wraps a SAX-based parser

DocumentBuilderFactory Enables you to create a configurable factory object that you can
use to create a DocumentBuilder object encapsulating a
DOM-based parser

DocumentBuilder Defines an object that wraps a DOM-based parser

All four classes are abstract. This is because JAXP is designed to allow different parsers and their factory
classes to be plugged in. Both DOM and SAX parsers are developed independently of the Java JDK so it
is important to be able to integrate new parsers as they come along. The Xerces parser that is currently
distributed with the JDK is controlled and developed by the Apache Project, and it provides a very com-
prehensive range of capabilities. However, you may want to take advantage of the features provided by
other parsers from other organizations, and JAXP allows for that.

These abstract classes act as wrappers for the specific factory and parser objects that you need to use for
a particular parser and insulate your code from a particular parser implementation. An instance of a fac-
tory object that can create an instance of a parser is created at run time, so your program can use a differ-
ent parser without changing or even recompiling your code. Now that you have a rough idea of the
general principles, let’s get down to specifics and practicalities, starting with SAX.

Using SAX
To process an XML document with SAX, you first have to establish contact with the parser that you want
to use. The first step toward this is to create a SAXParserFactory object like this:

SAXParserFactory spf = SAXParserFactory.newInstance();

1196

Chapter 22

The SAXParserFactory class is defined in the javax.xml.parsers package along with the SAXParser
class that encapsulates a parser. The SAXParserFactory class is abstract but the static newInstance()
method will return a reference to an object of a class type that is a concrete implementation of
SAXParserFactory. This will be the factory object for creating an object encapsulating a SAX parser.

Before you create a parser object, you can condition the capabilities of the parser object that the
SAXParserFactory object will create. For example, the SAXParserFactory object has methods for
determining whether the parser that it will attempt to create will be namespace aware or will validate
the XML as it is parsed:

isNamespaceAware() Returns true if the parser to be created is namespace aware, and
false otherwise

isValidating() Returns true if the parser to be created will validate the XML
during parsing, and false otherwise

You can set the factory object to produce namespace aware parsers by calling its setNamespaceAware()
method with an argument value of true. An argument value of false sets the factory object to produce
parsers that are not namespace aware. A parser that is namespace aware can recognize the structure of
names in a namespace — with a colon separating the namespace prefix from the name. A namespace
aware parser can report the URI and local name separately for each element and attribute. A parser that
is not namespace aware will report only an element or attribute name as a single name even when it con-
tains a colon. In other words, a parser that is not namespace aware will treat a colon as just another char-
acter that is part of a name.

Similarly, calling the setValidating() method with an argument value of true will cause the factory
object to produce parsers that can validate the XML as a document is parsed. A validating parser can
verify that the document body has a DTD or a schema, and that the document content is consistent with
the DTD or schema identified within the document.

You can now use the SAXParserFactory object to create a SAXParser object as follows:

SAXParser parser = null;

try {

parser = spf.newSAXParser();

}catch(SAXException e){

e.printStackTrace(System.err);

System.exit(1);

} catch(ParserConfigurationException e) {

e.printStackTrace(System.err);

System.exit(1);

}

The SAXParser object that you create here will encapsulate the parser supplied with the JDK. The
newSAXParser() method for the factory object can throw the two exceptions you are catching here. A
ParserConfigurationException will be thrown if a parser cannot be created consistent with the con-
figuration determined by the SAXParserFactory object, and a SAXException will be thrown if any
other error occurs. For example, if you call the setValidating() option and the parser does not have
the capability for validating documents, this exception would be thrown. This should not arise with the
parser supplied with the JDK though, because it supports both of these features.

1197

Java and XML

The ParserConfigurationException class is defined in the javax.xml.parsers package and the
SAXException class is in the org.xml.sax package. Now let’s see what the default parser is by putting
the code fragments you have looked at so far together in a working example.

Try It Out Accessing a SAX Parser
Here’s the code to create a SAXParser object and output some details about it to the command line:

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

public class TrySAX {

public static void main(String args[]) {

// Create factory object

SAXParserFactory spf = SAXParserFactory.newInstance();

System.out.println(“Parser will “+(spf.isNamespaceAware()?””:”not “) +

“be namespace aware”);

System.out.println(“Parser will “+(spf.isValidating()?””:”not “) +

“validate XML”);

SAXParser parser = null; // Stores parser reference

try {

parser = spf.newSAXParser(); // Create parser object

}catch(ParserConfigurationException e){// Thrown if a parser cannot be created

// that is consistent with the

e.printStackTrace(System.err); // configuration in spf

System.exit(1);

} catch(SAXException e) { // Thrown for any other error

e.printStackTrace(System.err);

System.exit(1);

}

System.out.println(“Parser object is: “+ parser);

}

}

When I ran this I got the following output:

Parser will not be namespace aware

Parser will not validate XML

Parser object is: com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl@118f375

How It Works
The output shows that the default configuration for the SAX parser produced by the SAXParserFactory
object spf will be neither namespace aware nor validating. The parser supplied with the JDK is the
Xerces parser from the XML Apache Project. This parser implements the W3C standard for XML, the de
facto SAX2 standard, and the W3C DOM standard. It also provides support for the W3C standard for
XML Schema. You can find detailed information on the advantages of this particular parser on the
http://xml.apache.org web site.

1198

Chapter 22

The code to create the parser works as I have already discussed. Once you have an instance of the fac-
tory method, you use that to create an object encapsulating the parser. Although the reference is
returned as type SAXParser, the object is of type SAXParserImpl, which is a concrete implementation
of the abstract SAXParser class for a particular parser.

The Xerces parser is capable of validating XML and can be namespace aware. All you need to do is spec-
ify which of these options you require by calling the appropriate method for the factory object. You can
set the parser configuration for the factory object spf so that you get a validating and namespace aware
parser by adding two lines to the program:

// Create factory object

SAXParserFactory spf = SAXParserFactory.newInstance();

spf.setNamespaceAware(true);

spf.setValidating(true);

If you compile and run the code again, you should get output something like:

Parser will be namespace aware

Parser will validate XML

Parser object is: com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl@867e89

You arrive at a SAXParser instance without tripping any exceptions, and you clearly now have a names-
pace aware and validating parser. By default the Xerces parser will validate an XML document with a
DTD. To get it to validate a document with an XML Schema, you need to set another option for the
parser, as I’ll discuss in the next section.

Using a Different Parser
You might like to try a different parser at some point. The simplest way to try out an alternative parser is
to include the path to the .jar file that contains the parser implementation in the -classpath option
on the command line. For example, suppose you have downloaded a newer version of the Xerces 2
parser from the Apache web site that you want to try. Once you have extracted the zip files and stored
them on your C:\ drive, say, you could run the example with the new Xerces parser with a command
similar to this:

java -classpath .;C:\xerces-2_6_2\xercesImpl.jar -enableassertions TrySAX

Don’t forget the period in the classpath definition that specifies the current directory. Without it the
TrySAX.class file will not be found. If you omit the –classpath option, the program will revert to
using the default parser. Of course, you can use this technique to select a particular parser when you
have several installed on your PC. Just add the path to the directory that contains the JAR for the parser
to the classpath.

Parser Features and Properties
Specific parsers, such as the Xerces parser that you get with the JDK, define their own features and prop-
erties that control and report on the processing of XML documents. A feature is an option in processing
XML that is either on or off, so a feature is set as a boolean value, either true or false. A property is a
parameter that you set to a particular object value, usually of type String. There are standard SAX2

1199

Java and XML

features and properties that may be common to several parsers, and non-standard features and proper-
ties that are parser-specific. Note that although a feature or property may be standard for SAX2, this
does not mean that a SAX2 parser will necessarily support it.

Querying and Setting Parser Features
Namespace awareness and validating capability are both features of a parser, and you already know
how you tell the parser factory object that you want a parser with these features turned on. In general,
each parser feature is identified by a name that is a fully qualified URI, and the standard features for
SAX2 parsing have names within the namespace http://xml.org/sax/features/. For example, the
feature specifying namespace awareness has the name http://xml.org/sax/features/namespaces.
Here are a few of the standard features that are defined for SAX2 parsers:

Feature Description

namespaces When true, the parser replaces prefixes to ele-
ment and attribute names with the correspond-
ing namespace URIs. If you set this feature to
true, the document must have a schema that
supports the use of namespaces. All SAX
parsers must support this feature.

namespace-prefixes When true, the parser reports the original pre-
fixed names and attributes used for namespace
declarations. The default value for this feature
is false. All SAX parsers must support this
feature.

validation When true, the parser will validate the docu-
ment and report any errors. The default value
for the validation feature is false.

external-general-entities When true, the parser will include general
entities.

string-interning When true, all element and attribute names,
namespace URIs, and local names use Java
string interning so each of these corresponds to
a unique object. This feature is always true for
the Xerces parser.

external-parameter-entities When true, the parser will include external
parameter entities and the external DTD subset.

lexical-handler/parameter-entities When true, the beginning and end of parame-
ter entities will be reported.

There are other non-standard features for the Xerces parser. Consult the documentation for the parser on
the Apache web site for more details. Apart from the namespaces and namespaces-prefixes features
that all SAX2 parsers are required to implement, there is no set collection of features for a SAX2 parser,
so a parser may implement any number of arbitrary features that may or may not be in the list of stan-
dard features.

1200

Chapter 22

You have two ways to query and set features for a parser. You can call the getFeature() and
setFeature() methods for the SAXParserFactory object to do this before you create the SAXParser
object. The parser that is created will then have the features switched on. Alternatively, you can create a
SAXParser object using the factory object and then obtain an org.sax.XMLReader object reference
from it by calling the getXMLReader() method. You can then call the getFeature() and
setFeature() methods for the XMLReader object. XMLReader is the interface that a concrete SAX2
parser implements to allow features and properties to be set and queried. The principle difference
in use between calling the factory object methods and calling the XMLReader object methods is
that the methods for a SAXParserFactory object can throw an exception of type
javax.xml.parsers.ParserConfigurationException if a parser cannot be created with the
feature specified.

Once you have created an XMLParser object, you can obtain an XMLReader object reference from the
parser like this:

XMLReader reader = null;

try{

reader = parser.getXMLReader();

} catch(org.xml.sax.SAXException e) {

System.err.println(e.getMessage());

}

The getFeature() method that the XMLReader interface declares for querying a feature expects
an argument of type String that identifies the feature you are querying. The method returns a
boolean value that indicates the state of the feature. The setFeature() method expects two argu-
ments; the first argument is of type String and identifies the feature you are setting, and the
second is of type boolean and specifies the state to be set. The setFeature() method can throw
exceptions of type org.xml.SAXNotRecognizedException if the feature is not found, or of type
org.xml.sax.SAXNotSupportedException if the feature name was recognized but cannot be set to
the boolean value you specify. Both exception types have SAXException as a base, so you can use
this type to catch either of them. Here’s how you might set the features for the Xerces parser so that it
will support namespace prefixes:

String nsPrefixesFeature = “http://xml.org/sax/features/namespace-prefixes”;

XMLReader reader = null;

try{

reader = parser.getXMLReader();

reader.setFeature(nsPrefixesFeature, true);

} catch(org.xml.sax.SAXException e) {

System.err.println(e.getMessage());

}

This sets the feature to make the parser report the original prefixed element and attribute names.

If you want to use the SAXParserFactory object to set the features before you create the parser object,
you could do it like this:

String nsPrefixesFeature = “http://xml.org/sax/features/namespace-prefixes”;

SAXParserFactory spf = SAXParserFactory.newInstance();

SAXParser parser = null;

try {

spf.setFeature(nsPrefixesFeature, true);

1201

Java and XML

parser = spf.newSAXParser();

System.out.println(“Parser object is: “+ parser);

}

catch(SAXException e) {

e.printStackTrace(System.err);

System.exit(1);

}

catch(ParserConfigurationException e) {

e.printStackTrace(System.err);

System.exit(1);

}

You must call the setFeature() method for the SAXParserFactory object in a try block because of
the exceptions it may throw. The catch block for exceptions of type SAXException will catch the
SAXNotRecognizedException and SAXNotSupportedException exceptions if they are thrown.

Setting Parser Properties
As I said at the outset, a property is a parser parameter with a value that is an object, usually a String
object. Some properties have values that you set to influence the parser’s operation, while the values for
other properties are set by the parser for you to retrieve to provide information about the parsing process.

You can set the properties for a parser by calling the setProperty() method for the SAXParser object
after you have created it. The first argument to the method is the name of the property as type String,
and the second argument is the value for the property. A property value can be of any class type, as the
parameter type is Object, but it is usually of type String. The setProperty() method will throw a
SAXNotRecognizedException if the property name is not recognized or a SAXNotSupported
Exception if the property name is recognized but not supported. Both of these exception classes are
defined in the org.xml.sax package. Alternatively, you can get and set properties using the XMLReader
object reference that you used to set features. The XMLReader interface declares the getProperty() and
setProperty() methods with the same signatures as those for the SAXParser object.

You can also retrieve the values for some properties during parsing to obtain additional information about
the most recent parsing event. You use the parser’s getProperty() method in this case. The argument to
the method is the name of the property, and the method returns a reference to the property’s value.

As with features, there is no defined set of parser properties, so you need to consult the parser documen-
tation for information on these. There are four standard properties for a SAX parser, none of which are
required to be supported by a SAX parser. Since these properties involve the more advanced features of
SAX parser operation, they are beyond the scope of this book, but if you are interested, they are docu-
mented in the description for the org.xml.sax package that you’ll find in the JDK documentation.

Parsing Documents with SAX
To parse a document using the SAXParser object you simply call its parse() method. You have to sup-
ply two arguments to the parse() method. The first identifies the XML document, and the second is a
reference of type DefaultHandler to a handler object that you will have created to process the contents
of the document. The DefaultHandler object must contain a specific set of public methods that the
SAXParser object expects to be able to call for each event, where each type of event corresponds to a
particular syntactic element it finds in the document.

1202

Chapter 22

The DefaultHandler class that is defined in the org.xml.sax.helpers package already contains do-
nothing definitions of all the callback methods that the SAXParser object expects to be able to call. Thus,
all you have to do is to define a class that extends the DefaultHandler class and then override the
methods in the DefaultHandler class for the events that you are interested in. But let’s not gallop too
far ahead. You need to look into the versions of the parse() method that you have available before you
get into handling parsing events.

The SAXParser class defines ten overloaded versions of the parse() method, but you’ll be interested in
only five of them. The other five use a deprecated handler type HandlerBase that was applicable to
SAX1, so you can ignore those and just look at the versions that relate to SAX2. All versions of the
method have a return type of void, and the five varieties of the parse() method that you’ll consider are
as follows:

parse(File aFile, Parses the document in the file specified by
DefaultHandler handler) aFile using handler as the object containing

the callback methods called by the parser. This
will throw an exception of type IOException
if an I/O error occurs, and of type
IllegalArgumentException if aFile is null.

parse(String uri, Parses the document specified by uri using
DefaultHandler handler) handler as the object defining the callback

methods. This will throw an exception of type
SAXException if uri is null, and an exception
of type IOException if an I/O error occurs.

parse(InputStream input, Parses input as the source of the XML
DefaultHandler handler) with handler as the event handler. This

will throw an exception of type IOException
if an I/O error occurs, and of type
IllegalArgumentException if input is null.

parse(InputStream input, Parses input as the previous method, but uses
DefaultHandler handler, systemID to resolve any relative URIs.
String systemID)

parse(InputSource source, Parses the document specified by source using
DefaultHandler handler) handler as the object providing the callback

methods to be called by the parser.

The InputSource class is defined in the org.xml.sax package. It defines an object that wraps a variety
of sources for an XML document that you can use to pass a document reference to a parser. You can cre-
ate an InputSource object from a java.io.InputStream object, a java.io.Reader object encapsulat-
ing a character stream, or a String specifying a URI — either a public name or a URL. If you specify the
document source as a URL, it must be fully qualified.

Implementing a SAX Handler
As I said, the DefaultHandler class in the org.xml.sax.helpers package provides a default
do-nothing implementation of each of the callback methods a SAX parser may call when parsing a

1203

Java and XML

document. These methods are declared in four interfaces that are all implemented by the
DefaultHandler class:

❑ The ContentHandler interface declares methods that will be called to identify the content of a
document to an application. You will usually want to implement all the methods defined in this
interface in your subclass of DefaultHandler.

❑ The EntityResolver interface declares one method, resolveEntity(), that is called by a
parser to pass a public and/or system ID to your application to allow external entities in the
document to be resolved.

❑ The DTDHandler interface declares two methods that will be called to notify your application of
DTD-related events.

❑ The ErrorHandler interface defines three methods that will be called when the parser has
identified an error of some kind in the document.

All four interfaces are defined in the org.xml.sax package. Of course, the parse() method for the
SAXParser object expects you to supply a reference of type DefaultHandler as an argument, so you
have no choice but to extend the DefaultHandler class in which you are defining your handler class.
This accommodates just about anything you want to do since you decide which base class methods you
want to override.

The methods that you must implement to deal with parsing events that relate to document content are
those declared by the ContentHandler interface so let’s concentrate on those first. All the methods have
a void return type, and they are as follows:

startDocument() Called when the start of a document is
recognized.

endDocument() Called when the end of a document is
recognized.

startElement(String uri, Called when the start of an element is
String localName, recognized. Up to three names may be
String qName, provided for the element:
Attributes attr)

uri is the namespace URI for the element
name. This will be an empty string if there is
no URI or if namespace processing is not
being done.

localName is the unqualified local name for
the element. This will be an empty string if
namespace processing is not being done. In
this case the element name is reported via
the qName parameter.

qName is the qualified name for the element.
This will be just the name if the parser is not
namespace aware. (A colon, if it appears, is
then just an ordinary character.)

1204

Chapter 22

The attr reference encapsulates the
attributes for the element that have explicit
values.

endElement(String uri, Called when the end of an element is
String localName, recognized. The references passed to the
String qName) method are as described for the startEle-

ment() method.

characters(char[] ch, Called for each segment of character data
int start, that is recognized. Note that a contiguous
int length) segment of text within an element can be

returned as several chunks by the parser via
several calls to this method. The characters
that are available are from ch[start] to
ch[start+length-1], and you must not try
to access the array outside these limits.

ignorableWhitespace(char[] ch, Called for each segment of ignorable
int start, whitespace that is recognized within the
int length) content of an element. Note that a contigu-

ous segment of ignorable whitespace within
an element can be returned as several chunks
by the parser via several calls to this method.
The whitespace characters are that available
are from ch[start] to ch[start+length-

1], and you must not try to access the array
outside these limits.

startPrefixMapping(String prefix, Called when the start of a prefix URI
String uri) namespace mapping is identified. Most of

the time you can disregard this method, as a
parser will automatically replace prefixes for
elements and attribute names by default.

endPrefixMapping(String prefix) Called when the end of a prefix URI names-
pace mapping is identified. Most of the time
you can disregard this method for the reason
noted in the preceding method.

processingInstruction(String target, Called for each processing instruction
String data) recognized.

skippedEntity(String name) Called for each entity that the parser skips.

setDocumentLocator(Locator locator) Called by the parser to pass a Locator object
to your code that you can use to determine
the location in the document of any SAX doc-
ument event. The Locator object can pro-
vide the public identifier, the system ID, the
line number, and the column number in the
document for any event. Just implement this
method if you want to receive this informa-
tion for each event.

1205

Java and XML

Your implementations of these methods can throw an exception of type SAXException if an error
occurs.

When the startElement() method is called, it receives a reference to an object of type
org.xml.sax.Attributes as the last argument. This object encapsulates information about all the
attributes for the element. The Attributes interface declares methods you can call for the object to
obtain details of each attribute name, its type, and its value. There are methods for obtaining this infor-
mation about an attribute using either an index value to select a particular attribute, or using an attribute
name — either a prefix qualified name or a name qualified by a namespace name. I’ll just describe the
methods relating to using an index because that’s what the code examples will use. Index values start
from 0. The methods that the Attributes interface declares for accessing attribute information using an
index are as follows:

getLength() Returns a count of the number of attributes encapsulated in the
object

getLocalName(int index) Returns a reference to a String object containing the local
name of the attribute for the index value passed as the argu-
ment

getQName(int index) Returns a reference to a String object containing the XML 1.0
qualified name of the attribute for the index value passed as
the argument

getType(int index) Returns a reference to a String object containing the type of
the attribute for the index value passed as the argument. The
type is returned as one of the following:

“CDATA”, “ID”, “IDREF”, “IDREFS”, “NMTOKEN”,
“NMTOKENS”, “ENTITY”, “ENTITIES”, “NOTATION”

getValue(int index) Returns a reference to a String object containing the value of
the attribute for the index value passed as the argument

getURI(int index) Returns a reference to a String object containing the
attribute’s namespace URI, or the empty string if no URI is
available

If the index value that you supply to any of the getXXX() methods here is out of range, then the method
returns null.

Given a reference, attr, of type Attributes, you can retrieve information about all the attributes with
the following code:

int attrCount = attr.getLength();

if(attrCount>0) {

System.out.println(“Attributes:”);

for(int i = 0 ; i<attrCount ; i++) {

System.out.println(“ Name : “ + attr.getQName(i));

System.out.println(“ Type : “ + attr.getType(i));

System.out.println(“ Value: “ + attr.getValue(i));

}

}

1206

Chapter 22

This is very straightforward. You look for data on attributes only if the value returned by the getLength()
method is greater than zero. You then retrieve information about each attribute in the for loop.

The DefaultHandler class is just like the adapter classes you have used for defining GUI event han-
dlers. All you have to do to implement your own handler is extend the DefaultHandler class and
define your own implementations for the methods you are interested in. The same caveat applies here
that applied with adapter classes — you must take care that the signatures of your methods are correct.
Otherwise, you are simply adding a new method rather than overriding one of the inherited methods. In
this case, your program will then do nothing for the given event since the original do-nothing version of
the method will execute, rather than your version. Let’s try implementing a handler class.

Try It Out Handling Parsing Events
Let’s first define a handler class to deal with document parsing events. You’ll just implement a few of the
methods from the ContentHandler interface in this — only those that apply to a very simple document —
and you won’t worry about errors for the moment. Here’s the code:

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.Attributes;

public class MySAXHandler extends DefaultHandler {

public void startDocument() {

System.out.println(“Start document: “);

}

public void endDocument() {

System.out.println(“End document: “);

}

public void startElement(String uri, String localName, String qname,

Attributes attr) {

System.out.println(“Start element: local name: “ + localName + “ qname: “

+ qname + “ uri: “+uri);

int attrCount = attr.getLength();

if(attrCount>0) {

System.out.println(“Attributes:”);

for(int i = 0 ; i<attrCount ; i++) {

System.out.println(“ Name : “ + attr.getQName(i));

System.out.println(“ Type : “ + attr.getType(i));

System.out.println(“ Value: “ + attr.getValue(i));

}

}

}

public void endElement(String uri, String localName, String qname) {

System.out.println(“End element: local name: “ + localName + “ qname: “

+ qname + “ uri: “+uri);

}

public void characters(char[] ch, int start, int length) {

System.out.println(“Characters: “ + new String(ch, start, length));

1207

Java and XML

}

public void ignorableWhitespace(char[] ch, int start, int length) {

System.out.println(“Ignorable whitespace: “ + new String(ch, start, length));

}

}

Each handler method just outputs information about the event to the command line.

Now you can define a program to use a handler of this class type to parse an XML document. You can
make the example read the name of the XML file to be processed from the command line. Here’s the
code:

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

import java.io.File;

import java.io.IOException;

public class TrySAXHandler {

public static void main(String args[]) {

if(args.length == 0) {

System.out.println(“No file to process. Usage is:”

+”\njava TrySax \”filename\” “);

return;

}

File xmlFile = new File(args[0]);

process(xmlFile);

}

private static void process(File file) {

SAXParserFactory spf = SAXParserFactory.newInstance();

SAXParser parser = null;

spf.setNamespaceAware(true);

spf.setValidating(true);

System.out.println(“Parser will “+(spf.isNamespaceAware()?””:”not “)

+ “be namespace aware”);

System.out.println(“Parser will “+(spf.isValidating()?””:”not “)

+ “validate XML”);

try {

parser = spf.newSAXParser();

System.out.println(“Parser object is: “+ parser);

} catch(SAXException e) {

e.printStackTrace(System.err);

System.exit(1);

} catch(ParserConfigurationException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.out.println(“\nStarting parsing of “+file+”\n”);

1208

Chapter 22

MySAXHandler handler = new MySAXHandler();

try {

parser.parse(file, handler);

} catch(IOException e) {

e.printStackTrace(System.err);

} catch(SAXException e) {

e.printStackTrace(System.err);

}

}

}

I created the circle.xml file with the following content:

<?xml version=”1.0”?>

<circle radius=”20” angle=”0”>

<color R=”255” G=”0” B=”0”/>

<position x=”10” y=”15”/>

</circle>

I saved this in my C:\Beg Java Stuff directory, but you can put it wherever you want and adjust the
command-line argument accordingly. If you put it in the same directory as the source file, you can just
use the file name as the command-line argument. The command to execute TrySAXHandler with this
file in the C:/Beg Java Stuff directory is:

java TrySAXHandler “C:/Beg Java Stuff/circle.xml”

On my computer the program produced the following output:

Parser will be namespace aware

Parser will validate XML

Parser object is: com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl@1d8957f

Starting parsing of circle.xml

Start document:

Start element: local name: circle qname: circle uri:

Attributes:

Name : radius

Type : CDATA

Value: 20

Name : angle

Type : CDATA

Value: 0

Characters:

Start element: local name: color qname: color uri:

Attributes:

Name : R

Type : CDATA

Value: 255

Name : G

Type : CDATA

1209

Java and XML

Value: 0

Name : B

Type : CDATA

Value: 0

End element: local name: color qname: color uri:

Characters:

Start element: local name: position qname: position uri:

Attributes:

Name : x

Type : CDATA

Value: 10

Name : y

Type : CDATA

Value: 15

End element: local name: position qname: position uri:

Characters:

End element: local name: circle qname: circle uri:

End document:

How It Works
Much of the code in the TrySAXHandler class is the same as in the previous example. The main()
method first checks for a command-line argument. If there isn’t one, you output a message and end the
program. You might want to add some code following the command-line argument check to make sure
the file does exist. You saw how to do this way back in the chapters on file I/O.

Next you call the static process() method with a reference to the File object for the XML document as
the argument. This method creates the XMLParser object in the way you’ve seen previously and then
creates a handler object of type MySAXHandler for use by the parser. The parsing process is started by
calling the parse() method for the parser object, parser, with the file reference as the first argument
and the handler reference as the second argument. This identifies the object whose methods will be
called for parsing events.

You have overridden six of the do-nothing methods that are inherited from DefaultHandler in the
MySAXHandler class and the output indicates which ones are called. Your method implementations just
output a message along with the information that is passed as arguments. You can see from the output
that there is no URI for a namespace in the document so the value for qname is identical to localname.

Note how you form a String object in the characters() method from the specified sequence of ele-
ments in the ch array. You must access only the length elements from this array that start with the ele-
ment ch(start).

The output also shows that the characters() method is sometimes called with just whitespace passed
to the method in the ch array. This whitespace is ignorable whitespace that appears between the ele-
ments, but the parser is not recognizing it as such. This is because there is no DTD to define how ele-
ments are to be constructed in this document so the parser has no way to know what can be ignored.

You can see that the output shows string values for both a local name and a qname. This is because you
have the namespace awareness feature switched on. If you comment out the statement that calls

1210

Chapter 22

setNamespaceAware() and recompile and re-execute the example, you’ll see that only a qname is
reported. Both the local name and URI outputs will be empty.

You get all the information about the attributes, too, so the processing of attributes works without a DTD
or a schema.

Processing a Document with a DTD
You can run the example again with the Address.xml file that you saved earlier in the
C:/Beg Java Stuff directory to see how using a DTD affects processing. This should have the follow-
ing contents:

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “AddressDoc.dtd”>

<address>

<buildingnumber> 29 </buildingnumber>

<street> South Lasalle Street</street>

<city>Chicago</city>

<state>Illinois</state>

<zip>60603</zip>

</address>

The AddressDoc.dtd file in the same directory as Address.xml should contain:

<!ELEMENT address (buildingnumber, street, city, state, zip)>

<!ELEMENT buildingnumber (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

If the path to the file contains spaces, you’ll need to specify the path between double quotes in the com-
mand-line argument. I got the following output:

Parser will be namespace aware

Parser will validate XML

Parser object is: com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl@1d8957f

Starting parsing of Address.xml

Start document:

Start element: local name: address qname: address uri:

Ignorable whitespace:

Start element: local name: buildingnumber qname: buildingnumber uri:

Characters: 29

End element: local name: buildingnumber qname: buildingnumber uri:

Ignorable whitespace:

Start element: local name: street qname: street uri:

Characters: South Lasalle Street

End element: local name: street qname: street uri:

Ignorable whitespace:

1211

Java and XML

Start element: local name: city qname: city uri:

Characters: Chicago

End element: local name: city qname: city uri:

Ignorable whitespace:

Start element: local name: state qname: state uri:

Characters: Illinois

End element: local name: state qname: state uri:

Ignorable whitespace:

Start element: local name: zip qname: zip uri:

Characters: 60603

End element: local name: zip qname: zip uri:

Ignorable whitespace:

End element: local name: address qname: address uri:

End document:

You can see that with a DTD, the ignorable whitespace is recognized as such, and is passed to your
ignorableWhitespace() method. A validating parser must call this method to report whitespace in
element content. Although the parser is validating the XML, you still can’t be sure that the document is
valid based on the output you are getting. If any errors are found, the default do-nothing error-handling
methods that are inherited from the DefaultHandler class will be called so there’s no indication of
when errors are found. You can fix this quite easily by modifying the MySAXHandler class, but let’s first
look at processing some other XML document flavors.

Processing a Document with Namespaces
You can convert the Address.xml file to use a namespace by modifying the root element like this:

<address xmlns=”http://www.wrox.com/AddressNamespace”>

With this change to the XML file, the URI for the default namespace is
http://www.wrox.com/AddressNamespace. This doesn’t really exist, but it doesn’t need to. It’s just a
unique qualifier for the names within the namespace.

You’ll also need to use a different DTD that takes account of the use of a namespace, so you must modify
the DOCTYPE declaration in the document:

<!DOCTYPE address SYSTEM “AddressNamespaceDoc.dtd”>

You can now save the revised XML document with the name AddressNamespace.xml.

You must also create the new DTD. This is the same as the previous one with the addition of a declara-
tion for the xmlns attribute for the <address> element:

<!ATTLIST address xmlns CDATA #IMPLIED>

If you run the previous example with this version of the XML document, you should see the URI in the
output. Since the namespace is the default, there is no prefix name, so the values for the localname and
qname parameters to the startElement() and endElement() methods are the same.

1212

Chapter 22

Using Qualified Names
You can change the document to make explicit use of the namespace prefix like this:

<?xml version=”1.0”?>

<!DOCTYPE addresses:address SYSTEM “AddressNamespaceDoc.dtd”>

<addresses:address xmlns:addresses=” http://www.wrox.com/AddressNamespace”>

<addresses:buildingnumber> 29 </addresses:buildingnumber>

<addresses:street> South Lasalle Street</addresses:street>

<addresses:city>Chicago</addresses:city>

<addresses:state>Illinois</addresses:state>

<addresses:zip>60603</addresses:zip>

</addresses:address>

Unfortunately, you also have to update the DTD. Otherwise, if the qualified names are not declared in
the DTD, they will be regarded as errors. You need to change the DTD to the following:

<!ELEMENT addresses:address (addresses:buildingnumber, addresses:street,

addresses:city, addresses:state, addresses:zip)>

<!ATTLIST addresses:address xmlns:addresses CDATA #IMPLIED>

<!ELEMENT addresses:buildingnumber (#PCDATA)>

<!ELEMENT addresses:street (#PCDATA)>

<!ELEMENT addresses:city (#PCDATA)>

<!ELEMENT addresses:state (#PCDATA)>

<!ELEMENT addresses:zip (#PCDATA)>

The namespace prefix is addresses, and each element name is qualified by the namespace prefix. You
can usefully add implementations for two further callback methods in the MySAXHandler class:

public void startPrefixMapping(String prefix, String uri) {

System.out.println(“Start \”” + prefix + “\” namespace scope. URI: “ + uri);

}

public void endPrefixMapping(String prefix) {

System.out.println(“End \”” + prefix + “\” namespace scope.”);

}

The parser won’t call these methods by default. You have to switch the http://xml.org/sax/
features/namespace-prefixes feature on to get this to happen. You can add a call to the
setFeature() method for the parser factory object to do this in the process() method that you
defined in the TrySAXHandler class, immediately before you create the parser object in the try block:

spf.setFeature(“http://xml.org/sax/features/namespace-prefixes”,true);

parser = spf.newSAXParser();

You place the statement here rather than after the call to the setValidating() method because the
setFeature() method can throw an exception of type ParserConfigurationException and it needs
to be in a try block. Now the parser will call the startPrefixMapping() method at the beginning of
each namespace scope, and the endPrefixMapping() method at the end. If you parse this document,
you will see that each of the qname values is the local name qualified by the namespace prefix. You
should also see that the start and end of the namespace scope are recorded in the output.

1213

Java and XML

Handling Other Parsing Events
I have considered only events arising from the recognition of document content, those declared in the
ContentHandler interface. In fact, the DefaultHandler class defines do-nothing methods declared in
the other three interfaces that you saw earlier. For example, when a parsing error occurs, the parser calls
a method to report the error. Three methods for error reporting are declared in the ErrorHandler inter-
face and are implemented by the DefaultHandler class:

warning(SAXParseException spe) Called to notify you of conditions that are not
errors or fatal errors. The exception object, spe,
that is passed to the method contains information
to enable you to locate the error in the original
document.

error(SAXParseException spe) Called to notify you that an error has been identi-
fied. An error is anything in a document that vio-
lates the XML specification but is recoverable and
allows the parser to continue processing the
document normally.

fatalError(SAXParseException spe) A fatal error is a non-recoverable error. After a
fatal error the parser will not continue normal
processing of the document.

Each of these methods is declared to throw an exception of type SAXException, but you don’t have to
implement them so that they do this. With the warning() and error() methods you’ll probably want
to output an error message and return to the parser so it can continue processing. Of course, if your
fatalError() method is called, processing of the document will not continue anyway, so it would be
appropriate to throw an exception in this case.

Obviously your implementation of any of these methods will want to make use of the information from
the SAXParseException object that is passed to the method. This object has four methods that you can
call to obtain additional information that will help you locate the error:

getLineNumber() Returns the line number of the end of the docu-
ment text where the error occurred as type int. If
this information is not available, –1 is returned.

getColumnNumber() Returns the line number within the document that
contains the end of the text where the error
occurred as type int. If this information is not
available, –1 is returned. The first column in a line
is column 1.

getPublicID() Returns the public identifier of the entity where the
error occurred as type String, or null if no public
identifier is available.

getSystemID() Returns the system identifier of the entity where
the error occurred as type String, or null if no
system identifier is available.

1214

Chapter 22

A simple implementation of the warning() method could be like this:

public void warning(SAXParseException spe) {

System.out.println(“Warning at line “+spe.getLineNumber());

System.out.println(spe.getMessage());

}

This outputs a message indicating the document line number where the error occurred. It also outputs
the string returned by the getMessage() method inherited from the base class, SAXException. This
will usually indicate the nature of the error that was detected.

You could implement the error() callback method similarly, but you might want to implement
fatalError() so that it throws an exception. For example:

public void fatalError(SAXParseException spe) throws SAXException {

System.out.println(“Fatal error at line “+spe.getLineNumber());

System.out.println(spe.getMessage());

throw spe;

}

Here you just rethrow the SAXParseException after outputting an error message indicating the line
number that caused the error. The SAXParseException class is a subclass of SAXException so you can
rethrow spe as the superclass type. Don’t forget the import statements in the MySAXHandler source file
for the SAXException and SAXParseException class names from the org.xml.sax package.

You could try these out with the previous example by adding these methods to the MySAXHandler class.
You could introduce a few errors into the XML file to get these methods called. Try deleting the DOCTYPE
declaration or deleting the forward slash on an element end tag or even just deleting one character in an
element name.

Parsing a Schema Instance Document
You can create a simple instance of a document the uses the Sketcher.xsd schema that you developed
earlier. Here’s the definition of the document contents:

<?xml version=”1.0” encoding=”UTF-8”?>

<sketch xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”file:/C:/Beg%20Java%20Stuff/Sketcher.xsd”>

<circle radius=”15” angle=”0”>

<color R=”255” G=”0” B=”0”/>

<position x=”10” y=”10”/>

</circle>

<line angle=”0”>

<color R=”0” G=”0” B=”255”/>

<position x=”10” y=”10”/>

<endpoint x=”30” y=”40”/>

</line>

<rectangle angle=”0”>

<color R=”255” G=”0” B=”0”/>

<position x=”30” y=”40”/>

<bottomright x=”50” y=”70”/>

</rectangle>

</sketch>

1215

Java and XML

This defines a sketch that consists of three elements: a circle, a line, and a rectangle. The location of the
schema is specified by the value for the noNamespaceSchemaLocation attribute, which here corre-
sponds to the Sketcher.xsd file in the C:/Beg Java Stuff directory.

An XML document may have the applicable schema identified by the value for the
noNamespaceSchemaLocation attribute, or the schema may not be identified explicitly in the docu-
ment. You have the means for dealing with both of these situations in Java.

A javax.xml.validation.Schema object encapsulates a schema. You create a Schema object by calling
methods for a javax.xml.validation.SchemaFactory object that you generate by calling the static
newInstance() method for the SchemaFactory class. It works like this:

SchemaFactory sf = SchemaFactory.newInstance(“http://www.w3.org/2001/XMLSchema”);

A SchemaFactory object compiles a schema from an external source in a given Schema Definition
Language into a Schema object that can subsequently be used by a parser. The argument to the static
newInstance() method in the SchemaFactory class identifies the schema language that the schema
factory will be able to process. The only possibility for this argument apart from that used in the exam-
ple to specify the XML Schema language is “http://relaxng.org/ns/structure/1.0”, which is
another schema language for XML. At the time of writing, Schema objects encapsulating DTDs are not
supported.

The javax.xml.XMLConstants class defines String constants for basic values required when you are
processing XML. The class defines a constant with the name W3C_XML_NS_URI that corresponds to the
URI for the Schema Definition Language, so you could use this as the argument to the newInstance()
method in the SchemaFactory class, like this:

SchemaFactory sf = SchemaFactory.newInstance(W3C_XML_NS_URI);

This statement assumes you have statically imported the names from the XMLConstants class.

Once you have identified the Schema Definition Language that will be used, you can create a Schema
object from a schema definition. Here’s an example of how you might do this:

File schemaFile = new File(“C:/Beg Java Stuff/sketcher.xsd”);

try {

Schema schema = sf.newSchema(schemaFile);

}catch(SAXException e) {

e.printStyackTrace(System.err);

System.exit(1);

}

The newSchema() method for the SchemaFactory object creates and returns a Schema object from the
file specified by the File object you pass as the argument. There are versions of the newSchema()
method with parameters of type java.net.URL and java.xml.transform.Source. An object that
implements the Source interface represents an XML source. There’s also a version of newSchema() that
accepts an argument that is an array of Source object references and generates a Schema object from the
input from all of the array elements.

1216

Chapter 22

Now that you have a Schema object, you can pass it to the SAXParserFactory object before you create
your SAXParser object to process XML documents:

SAXParserFactory spf = SAXParserFactory.newInstance();

spf.setSchema(schema);

The parser you create by calling the newSAXParser() method for the SAXParserFactory object will
validate documents using the schema you have specified. XML documents will be validated in this
instance, even when the isValidating() method returns false, so it’s not essential that you configure
the parser to validate documents.

In many situations the document itself will identify the schema to be used. In this case you call the
newSchema() method for the SchemaFactory object with no argument specified:

try {

Schema schema = sf.newSchema();

}catch(SAXException e) {

e.printStyackTrace(System.err);

System.exit(1);

}

A special Schema object is created by the newSchema() method that assumes the schema for the docu-
ment is identified by hints within the document. Note that you still need to call newSchema() within a
try block here because the method will throw an exception of type SAXException if the operation fails
for some reason. If the operation is not supported, an exception of type
UnsupportedOperationException will be thrown, but because this is a subclass of
RuntimeException, you are not obliged to catch it.

Try It Out Parsing a Schema Instance Document
Here’s a variation on the TrySAXHandler class that will parse a schema instance document:

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.validation.SchemaFactory;

import org.xml.sax.SAXException;

import java.io.File;

import java.io.IOException;

import static javax.xml.XMLConstants.*;

public class TryParsingSchemaInstance {

public static void main(String args[]) {

if(args.length == 0) {

System.out.println(“No file to process. Usage is:”

+”\n java TrySax \”xmlFilename\” “

+”\nor:\n java TrySaxHandler \”xmlFilename\” \”schemaFileName\” “);

return;

}

File xmlFile = new File(args[0]);

File schemaFile = args.length>1 ? new File(args[1]) : null;

1217

Java and XML

process(xmlFile, schemaFile);

}

private static void process(File file, File schemaFile) {

SAXParserFactory spf = SAXParserFactory.newInstance();

SAXParser parser = null;

spf.setNamespaceAware(true);

try {

SchemaFactory sf =

SchemaFactory.newInstance(W3C_XML_SCHEMA_NS_URI);

spf.setSchema(schemaFile == null ? sf.newSchema() : sf.newSchema(schemaFile));

parser = spf.newSAXParser();

} catch(SAXException e) {

e.printStackTrace(System.err);

System.exit(1);

} catch(ParserConfigurationException e) {

e.printStackTrace(System.err);

System.exit(1);

}

System.out.println(“\nStarting parsing of “+file+”\n”);

MySAXHandler handler = new MySAXHandler();

try {

parser.parse(file, handler);

} catch(IOException e) {

e.printStackTrace(System.err);

}

catch(SAXException e) {

e.printStackTrace(System.err);

}

}

}

You need to copy the MySAXHandler.java source file from the previous example to the folder you are
using for this example. You have the option of supplying an additional command-line argument when
you run the program. The first argument is the name of the XML file to be parsed, as in the
TrySAXHandler example; the second argument is the path to the schema that is to be used to parse the
file. When the second argument is present, the program will process the XML file using the specified
schema. If the second argument is absent, the XML file will be processed using the schema specified by
hints in the document.

I processed the sketch.xml file that I defined in the previous section with the following command:

java -ea TryParsingSchemaInstance sketch.xml

This resulted in the following output:

Starting parsing of sketch.xml

Start document:

Start element: local name: sketch qname: sketch uri:

Attributes:

Name : xsi:noNamespaceSchemaLocation

1218

Chapter 22

Type : CDATA

Value: file:/C:/Beg%20Java%20Stuff/Sketcher.xsd

Ignorable whitespace: 5 Characters.

Start element: local name: circle qname: circle uri:

Attributes:

Name : radius

Type : CDATA

Value: 15

Name : angle

Type : CDATA

Value: 0

Ignorable whitespace: 9 Characters.

followed by a lot more output that ends . . .

Start element: local name: rectangle qname: rectangle uri:

Attributes:

Name : angle

Type : CDATA

Value: 0

Ignorable whitespace: 9 Characters.

Start element: local name: color qname: color uri:

Attributes:

Name : R

Type : CDATA

Value: 255

Name : G

Type : CDATA

Value: 0

Name : B

Type : CDATA

Value: 0

End element: local name: color qname: color uri:

Ignorable whitespace: 9 Characters.

Start element: local name: position qname: position uri:

Attributes:

Name : x

Type : CDATA

Value: 30

Name : y

Type : CDATA

Value: 40

End element: local name: position qname: position uri:

Ignorable whitespace: 9 Characters.

Start element: local name: bottomright qname: bottomright uri:

Attributes:

Name : x

Type : CDATA

Value: 50

Name : y

Type : CDATA

Value: 70

End element: local name: bottomright qname: bottomright uri:

Ignorable whitespace: 5 Characters.

1219

Java and XML

End element: local name: rectangle qname: rectangle uri:

Ignorable whitespace: 1 Characters.

End element: local name: sketch qname: sketch uri:

End document:

Of course, you can also try the example specifying the schema location by the second argument on the
command line.

How It Works
The only significant difference from what you had in the previous example is the creation of the Schema
object to identify the schema to be used. When you supply a second command-line argument, a File
object encapsulating the schema file path is created and a reference to this is passed as the second argu-
ment to the process() method. The process() method uses the second argument that you pass to it to
determine how to create the Schema object that is passed to the setSchema() method for the
SAXParserFactory object:

SchemaFactory sf = SchemaFactory.newInstance(W3C_XML_SCHEMA_NS_URI);

spf.setSchema(schemaFile == null ? sf.newSchema() : sf.newSchema(schemaFile));

The argument to the newInstance() method is the constant from the XMLConstants class that defines
the URI for the Schema Definition Language. There’s a static import statement for the static names in
this class, so we don’t need to qualify the name of the constant. The Schema object is created either by
passing the non-null File reference schemaFile to the newSchema() method or by calling the
newSchema() method with no argument. In both cases the Schema object that is created is passed to the
setSchema() method for the parser factory object. The parser that is subsequently created by the
SAXParserFactory object will use the schema encapsulated by the Schema object to validate docu-
ments. In this way the program is able to process documents for which the schema is specified by hints
in the document as well as documents for which the schema is specified independently through the sec-
ond command-line argument.

Summary
In this chapter I have discussed the fundamental characteristics of XML and how Java supports the anal-
ysis and synthesis of XML documents. The key points I’ve covered include the following:

❑ XML is a language for describing data that is to be communicated from one computer to
another. Data is described in the form of text that contains the data plus markup that defines the
structure of the data.

❑ XML is also a meta-language because you can use XML to create new languages for defining
and structuring data.

❑ Markup consists of XML elements that may also include attributes, where an attribute is a
name-value pair.

❑ The structure and meaning of a particular type of document can be defined within a Document
Type Definition (DTD).

1220

Chapter 22

❑ A DTD can be defined in an external file or it can be part of a document.

❑ A DTD is identified by a DOCTYPE declaration in a document.

❑ The Schema Definition language provides a more flexible alternative to DTDs.

❑ An XML namespace defines a set of names qualified by a prefix that corresponds to a URI.

❑ The SAX API defines a simple event-driven mechanism for analyzing XML documents.

❑ A SAX parser is a program that parses an XML document and identifies each element in a docu-
ment by calling a particular method in your program. The methods that are called are those
defined by the SAX API.

Exercises
You can download the source code for the examples in the book and the solutions to the following
exercises from http://www.wrox.com.

1. Write a program using SAX that will count the number of occurrences of each element type in
an XML document and display them. The document file to be processed should be identified by
the first command-line argument.

2. Modify the program resulting from the previous exercise so that it will accept optional addi-
tional command-line arguments that are the names of elements. When there are two or more
command-line arguments, the program should count and report only on the elements identified
by the second and subsequent command-line arguments.

1221

Java and XML

23
Creating and Modifying

XML Documents

In this chapter you’ll be exploring what you can do with the Document Object Model (DOM)
application program interface (API). As I outlined in the previous chapter, DOM uses a mecha-
nism that is completely different to Simple API for XML (SAX). As well as providing an alternative
mechanism for parsing XML documents, DOM also adds the capability for you to modify them
and create new ones.

In this chapter you’ll learn:

❑ What a Document Object Model is

❑ How you create a DOM parser

❑ How you access the contents of a document using DOM

❑ How you create and update a new XML document

❑ How to modify Sketcher to read and write sketches as XML documents

The Document Object Model (DOM)
As you saw in the previous chapter, a DOM parser presents you with an object encapsulating the
entire XML structure. You can then call methods belonging to this object to navigate through the
document tree and process the elements and attributes in the document in whatever way you
want. This is quite different to SAX as I’ve already noted, but nonetheless there is quite a close
relationship between DOM and SAX.

The mechanism for getting access to a DOM parser is very similar to what you used to obtain a
SAX parser. You start with a factory object that you obtain like this:

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();

The newInstance() method is a static method in the javax.xml.parsers.DocumentBuilderFactory
class for creating factory objects. As with SAX, this approach of dynamically creating a factory object
that you then use to create a parser allows you to change the parser you are using without modifying or
recompiling your code. You use the factory object to create a javax.xml.parsers.DocumentBuilder
object that encapsulates a DOM parser:

DocumentBuilder builder = null;

try {

builder = builderFactory.newDocumentBuilder();

} catch(ParserConfigurationException e) {

e.printStackTrace();

}

As you’ll see, when a DOM parser reads an XML document, it makes it available in its entirety as an
object of type Document. The name of the class that encapsulates a DOM parser has obviously been cho-
sen to indicate that it can also build new Document objects. A DOM parser can throw exceptions of type
SAXException, and parsing errors in DOM are handled in essentially the same way as in SAX2. The
DocumentBuilderFactory, DocumentBuilder, and ParserConfigurationException classes are all
defined in the javax.xml.parsers package. Let’s jump straight in and try this out for real.

Try It Out Creating an XML Document Builder
Here’s the code to create a document builder object:

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

public class TryDOM {

public static void main(String args[]) {

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder builder = null;

try {

builder = builderFactory.newDocumentBuilder();

}

catch(ParserConfigurationException e) {

e.printStackTrace();

System.exit(1);

}

System.out.println(“Builder Factory = “ + builderFactory +”\nBuilder = “

+ builder);

}

}

I got the following output:

Builder Factory =

com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl@18a47e0

Builder = com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl@174cc1f

1224

Chapter 23

How It Works
The static newInstance() method in the DocumentBuilderFactory class returns a reference to a fac-
tory object. You call the newDocumentBuilder() method for the factory object to obtain a reference to a
DocumentBuilder object that encapsulates a DOM parser. This will be the default parser. If you want
the parser to validate the XML or provide other capabilities, you can set the parser features before you
create the DocumentBuilder object by calling methods for the DocumentBuilderFactory object.

You can see that you get a version of the Xerces parser as a DOM parser. Many DOM parsers are built on
top of SAX parsers, and this is the case with the Xerces parser.

Setting DOM Parser Features
The idea of a feature for a DOM parser is the same as with SAX — a parser option that can be either on or
off. The DocumentBuilderFactory object has the following methods for setting DOM parser features:

setNamespaceAware(boolean aware) Calling this method with a true argument sets
the parser to be namespace aware. The default
setting is false.

setValidating(boolean validating) Calling this method with a true argument sets
the parser to validate the XML in a document as
it is parsed. The default setting is false.

setIgnoringElementContentWhitespace(Calling this method with a true argument sets
boolean ignore) the parser to remove ignorable whitespace in

element content so the Document object pro-
duced by a parser will not contain ignorable
whitespace. The default setting is false.

setIgnoringComments(boolean ignore) Calling this method with a true argument sets
the parser to remove comments as the docu-
ment is parsed. The default setting is false.

setExpandEntityReferences(Calling this method with a true argument sets
boolean expand) the parser to expand entity references. The

default setting is true.

setCoalescing(boolean coalesce) Calling this method with a true argument sets
the parser to convert CDATA sections to text and
append it to any adjacent text. The default set-
ting is false.

There is a possibility that XML documents being processed by a parser could be a security risk.
There is a setSecureProcessing() method defined for DocumentBuilderFactory objects
that you use to enable secure processing of documents by the parser. You pass an object of type
javax.xml.SecureProcessing to the method that sets limits on processing actions such as the maxi-
mum entity expansion that can occur, and the maximum number of occurrences for an element in
Schema declarations. You can also inhibit the execution of arbitrary functions in transformations.

1225

Creating and Modifying XML Documents

As you see from the previous table, by default the parser that is produced is neither namespace aware
nor validating. You should at least set these two features before creating the parser. This is quite simple:

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();

builderFactory.setNamespaceAware(true);

builderFactory.setValidating(true);

If you add the shaded statements to the example, the newDocumentBuilder() method for the factory
object should now return a validating and namespace aware parser. With a validating parser, you should
define an ErrorHandler object that will deal with parsing errors. You identify the ErrorHandler object
to the parser by calling the setErrorHandler() method for the DocumentBuilder object:

builder.setErrorHandler(handler);

Here handler refers to an object that implements the three methods declared in the
org.xml.sax.ErrorHandler interface. I discussed these in the previous chapter in the context of SAX
parser error handling, and the same applies here. If you do create a validating parser, you should always
implement and register an ErrorHandler object. Otherwise, the parser may not work properly.

The factory object has methods corresponding to each of the setXXX() methods in the preceding table to
check the status of parser features. The checking methods all have corresponding names of the form
isXXX(), so to check whether a parser will be namespace aware, you call the isNamespaceAware()
method. Each method returns true if the parser to be created will have the feature set, and false
otherwise.

You can identify a schema to be used by a DOM parser when validating documents. You pass a reference
to a Schema object as an argument to the setSchema() method for the DocumentBuilderFactory
object. The parser that you create will then use the specified schema when validating a document.

Parsing a Document
Once you have created a DocumentBuilder object, you just call its parse() method with a document
source as an argument to parse a document. The parse() method will return a reference of type
Document to an object that encapsulates the entire XML document. The Document interface is defined in
the org.w3c.dom package.

There are five overloaded versions of the parse() method that provide various options for you to iden-
tify the source of the XML document. They all return a reference to a Document object:

parse(File file) Parses the document in the file identified by file.

parse(String uri) Parses the document at the URI uri.

parse(InputSource source) Parses the document from source.

parse(InputStream stream) Parses the document read from the input stream stream.

parse(InputStream stream, Parses the document read from the input stream stream.
String systemID) The second argument, systemID, is used to resolve rela-

tive URIs.

1226

Chapter 23

All five versions of the parse() method can throw three types of exception. An exception of type
IllegalArgumentException will be thrown if you pass null to the method for the parameter that
identifies the document source. The method will throw an exception of type IOException if any I/O
error occurs, and of type SAXException in the event of a parsing error. Both these last exceptions must
be caught. Note that it is a SAXException that can be thrown here. Exceptions of type DOMException
arise only when you are navigating the element tree for a Document object.

You could parse() a document using the DocumentBuilder object builder like this:

File xmlFile = new File(“D:/Beg Java Stuff/circlewithDTD.xml”);

Document xmlDoc = null;

try {

xmlDoc = builder.parse(xmlFile);

}

catch(SAXException e) {

e.printStackTrace();

System.exit(1);

}

catch(IOException e) {

e.printStackTrace();

System.exit(1);

}

This code fragment requires imports for the File and IOException classes in the java.io package as
well as the org.w3c.dom.Document class name. Once this code executes, you can call methods for the
xmlDoc object to navigate through the elements in the document tree structure. Let’s look at what the
possibilities are.

Navigating a Document Object Tree
The Node interface that is defined in the org.w3c.dom package is fundamental to all objects that encap-
sulate components of an XML document, and this includes the Document object itself. It represents a
type that encapsulates a node in the document tree. Node is also a super-interface of a number of
other interfaces that declare methods relating to access document components of various kinds. The
sub-interfaces of Node that identify components of a document are:

Element Represents an XML element.

Attr Represents an attribute for an element.

Text Represents text that is part of element content. This interface is a
sub-interface of CharacterData, which in turn is a sub-interface
of Node. References of type Text will therefore have methods
from all three interfaces.

CDATASection Represents a CDATA section — unparsed character data.

Comment Represents a document comment. This interface also extends the
CharacterData interface.

DocumentType Represents the type of a document.

Table continued on following page

1227

Creating and Modifying XML Documents

Document Represents the entire XML document.

DocumentFragment Represents a lightweight document object that is used to encapsu-
late a sub-tree of a document.

Entity Represents an entity that may be parsed or unparsed.

EntityReference Represents a reference to an entity.

Notation Represents a notation declared in the DTD for a document. A
notation is a definition of an unparsed entity type.

ProcessingInstruction Represents a processing instruction for an application.

Each of these interfaces declares its own set of methods and inherits the method declared in the Node
interface. Every XML document will be modeled as a hierarchy of nodes that are accessible as one or
other of the interface types in the table above. At the top of the node hierarchy for a document will be
the Document node that is returned by the parse() method. Each type of node may or may not have
child nodes in the document hierarchy, and those that do can have only certain types of child nodes. The
types of nodes in a document that can have children are as follows:

Node Type Possible Children

Document Element (only 1), DocumentType (only 1), Comment,
ProcessingInstruction

Element Element, Text, Comment, CDATASection, EntityReference,
ProcessingInstruction

Attr Text, EntityReference

Entity Element, Text, Comment, CDATASection, EntityReference,
ProcessingInstruction

EntityReference Element, Text, Comment, CDATASection, EntityReference,
ProcessingInstruction

Of course, what each node may have as children follows from the XML specification, not just the DOM
specification. There is one other type of node that extends the Node interface —DocumentFragment. This
is not formally part of a document in the sense that a node of this type is a programming convenience. It is
used to house a fragment of a document — a sub-tree of elements — for use when moving fragments of a
document around, for example, so it provides a similar function to a Document node but with less over-
head. A DocumentFragment node can have the same range of child nodes as an Element node.

The starting point for exploring the entire document tree is the root element for the document. You can
obtain a reference to an object that encapsulates the root element by calling the getDocumentElement()
method for the Document object:

Element root = xmlDoc.getDocumentElement();

This method returns the root element for the document as type Element. You can also get the node cor-
responding to the DOCTYPE declaration as type DocumentType like this:

1228

Chapter 23

DocumentType doctype = xmlDoc.getDoctype();

If there is no DOCTYPE declaration or the parser cannot find the DTD for the document, the
getDocType() method will return null. If the value returned is not null, you can obtain the contents
of the DTD as a string by calling the getDocumentElement() method for the DocumentType object:

System.out.println(“Document type:\n” + doctype.getInternalSubset());

This statement will output the contents of the DTD for the document.

Once you have an object encapsulating the root element for a document, the next step is to obtain its
child nodes. You can use the getChildNodes() method that is defined in the Node interface for this.
This method returns a NodeList reference that encapsulates all the child elements for that element. You
can call this method for any node that has children, including the Document node if you wish. You can
therefore obtain the child elements for the root element with the following statement:

NodeList children = root.getChildNodes();

A NodeList reference encapsulates an ordered collection of Node references, each of which may be one
or other of the possible node types for the current node. So with an Element node, any of the Node refer-
ences in the list that is returned can be of type Element, Text, Comment, CDATASection,
EntityReference, or ProcessingInstruction. Note that if there are no child nodes, the
getChildNodes() method will return a NodeList reference that is empty, not null. You call the
getChildNodes() method to obtain a list of child nodes for any node type that can have them.

The NodeList interface declares just two methods:

getLength() Returns the number of nodes in the list as type int

item(int index) Returns a reference of type Node to the object at position index in
the list

You can use these methods to iterate through the child elements of the root element, perhaps like this:

Node[] nodes = new Node[children.getLength()];

for(int i = 0 ; i<nodes.getLength() ; i++) {

nodes[i] = children.item(i);

}

You allocate sufficient elements in the nodes array to accommodate the number of child nodes and then
populate the array in the for loop.

Node Types
Of course, you will normally be interested in the specific types of nodes that are returned so you will
want to extract them as specific types or at least determine what they are before processing them. This is
not difficult. One possibility is to test the type of any node using the instanceof operator. Here’s one
way you could extract just the child nodes that are of type Element:

1229

Creating and Modifying XML Documents

java.util.Vector<Element> elements = new java.util.Vector<Element>();

Node node = null;

for(int i = 0 ; i<nodes.getLength() ; i++) {

node = children.item(i);

if(node instanceof Element) {

elements.add(node);

}

}

Another possibility is provided by the getNodeType() method that is declared in the Node interface.
This method returns a value of type short that will be one of the following constants defined in the
Node interface:

DOCUMENT_NODE DOCUMENT_TYPE_NODE

DOCUMENT_POSITION_FOLLOWING DOCUMENT_POSITION_
PRECEDING

DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC DOCUMENT_
FRAGMENT_NODE

DOCUMENT_POSITION_CONTAINED_BY DOCUMENT_POSITION_
CONTAINS

PROCESSING_INSTRUCTION_NODE DOCUMENT_POSITION_
DISCONNECTED

COMMENT_NODE CDATA_SECTION_NODE

NOTATION_NODE TEXT_NODE

ENTITY_NODE ENTITY_REFERENCE_NODE

ELEMENT_NODE ATTRIBUTE_NODE

The advantage of using the getNodeType() method is that you can test for the node type using a switch
statement with the constants in the preceding table as case values. This makes it easy to farm out pro-
cessing for nodes of various types to separate methods.

A simple loop like the one in the previous code fragment is not a very practical approach to navigating a
document. In general, you will have no idea of the level to which elements are nested in a document,
and this loop examines only one level. You need an approach that will allow any level of nesting. This is
a job for recursion. Let’s put together a working example to illustrate how you can do this.

Try It Out Listing a Document
You can extend the previous example to list the nodes in a document. You’ll add a static method to the
TryDOM class to list child elements recursively. You’ll also add a helper method that will identify what
each node is. The program will output details of each node followed by its children. Here’s the code:

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

1230

Chapter 23

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.ErrorHandler;

import org.w3c.dom.Node;

import org.w3c.dom.Document;

import org.w3c.dom.DocumentType;

import org.w3c.dom.NodeList;

import java.io.File;

import java.io.IOException;

import static org.w3c.dom.Node.*; // For node type constants

public class TryDOM implements ErrorHandler {

public static void main(String args[]) {

if(args.length == 0) {

System.out.println(“No file to process.”+

“Usage is:\njava TryDOM \”filename\””);

System.exit(1);

}

File xmlFile = new File(args[0]);

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();

builderFactory.setNamespaceAware(true); // Set namespace aware

builderFactory.setValidating(true); // and validating parser feaures

DocumentBuilder builder = null;

try {

builder = builderFactory.newDocumentBuilder(); // Create the parser

builder.setErrorHandler(new TryDOM()); //Error handler is instance of TryDOM

} catch(ParserConfigurationException e) {

e.printStackTrace();

System.exit(1);

}

Document xmlDoc = null;

try {

xmlDoc = builder.parse(xmlFile);

} catch(SAXException e) {

e.printStackTrace();

} catch(IOException e) {

e.printStackTrace();

}

DocumentType doctype = xmlDoc.getDoctype(); // Get the DOCTYPE node

if(doctype == null) { // If it’s not null...

System.out.println(“DOCTYPE is null”);

} else { // ...output it

System.out.println(“DOCTYPE node:\n” + doctype.getInternalSubset());

}

System.out.println(“\nDocument body contents are:”);

listNodes(xmlDoc.getDocumentElement(),””); // Root element & children

}

1231

Creating and Modifying XML Documents

// output a node and all its child nodes

static void listNodes(Node node, String indent) {

// List the current node

String nodeName = node.getNodeName();

System.out.println(indent+” Node: “ + nodeName);

System.out.println(indent+” Node Type: “ + nodeType(node.getNodeType()));

NodeList list = node.getChildNodes(); // Get the list of child nodes

if(list.getLength() > 0) { // As long as there are some...

System.out.println(indent+” Child Nodes of “+nodeName+” are:”);

for(int i = 0 ; i<list.getLength() ; i++) {//...list them & their children...

listNodes(list.item(i),indent+” “); // by calling listNodes() for each

}

}

}

// Method to identify the node type

static String nodeType(short type) {

switch(type) {

case ELEMENT_NODE: return “Element”;

case DOCUMENT_TYPE_NODE: return “Document type”;

case ENTITY_NODE: return “Entity”;

case ENTITY_REFERENCE_NODE: return “Entity reference”;

case NOTATION_NODE: return “Notation”;

case TEXT_NODE: return “Text”;

case COMMENT_NODE: return “Comment”;

case CDATA_SECTION_NODE: return “CDATA Section”;

case ATTRIBUTE_NODE: return “Attribute”;

case PROCESSING_INSTRUCTION_NODE: return “Attribute”;

}

return “Unidentified”;

}

public void fatalError(SAXParseException spe) throws SAXException {

System.out.println(“Fatal error at line “+spe.getLineNumber());

System.out.println(spe.getMessage());

throw spe;

}

public void warning(SAXParseException spe) {

System.out.println(“Warning at line “+spe.getLineNumber());

System.out.println(spe.getMessage());

}

public void error(SAXParseException spe) {

System.out.println(“Error at line “+spe.getLineNumber());

System.out.println(spe.getMessage());

}

}

I have removed the statement that outputs details of the parser to reduce the output a little. Run this
with a document file AddressWithDTD.xml that has the following contents:

<?xml version=”1.0”?>

<!DOCTYPE address

[

1232

Chapter 23

<!ELEMENT address (buildingnumber, street, city, state, zip)>

<!ATTLIST address xmlns CDATA #IMPLIED>

<!ELEMENT buildingnumber (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

]>

<address>

<buildingnumber> 29 </buildingnumber>

<street> South Lasalle Street</street>

<city>Chicago</city>

<state>Illinois</state>

<zip>60603</zip>

</address>

This is the Address.xml document from the previous chapter with the DTD now included in the docu-
ment. If you store this file in the same directory as the source file, you can just put the file name as the
command-line argument, like this:

java TryDOM AddressWithDTD.xml

The program produces quite a lot of output starting with:

DOCTYPE node:

<!ELEMENT address (buildingnumber,street,city,state,zip)>

<!ATTLIST address xmlns CDATA #IMPLIED>

<!ELEMENT buildingnumber (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

Document body contents are:

Node: address

Node Type: Element

Child Nodes of address are:

Node: #text

Node Type: Text

Node: buildingnumber

Node Type: Element

Child Nodes of buildingnumber are:

Node: #text

Node Type: Text

and so on down to the last few lines:

Node: zip

Node Type: Element

Child Nodes of zip are:

Node: #text

Node Type: Text

Node: #text

Node Type: Text

1233

Creating and Modifying XML Documents

How It Works
Since you have set the parser configuration in the factory object to include validating the XML, you have
to provide an org.xml.sax.ErrorHandler object for the parser. The TryDOM class implements the
warning(), error(), and fatalError() methods declared by the ErrorHandler interface, so an
instance of this class takes care of it.

You call the getDoctype() method for the Document object to obtain the node corresponding to the
DOCTYPE declaration:

DocumentType doctype = xmlDoc.getDoctype(); // Get the DOCTYPE node

if(doctype == null) { // If it’s not null...

System.out.println(“DOCTYPE is null”);

} else { // ...output it

System.out.println(“DOCTYPE node:\n” + doctype.getInternalSubset());

}

You can see from the output that you get the complete text of the DTD from the document.

After outputting a header line showing where the document body starts, you output the contents, start-
ing with the root element. The listNodes() method does all the work. You pass a reference to the root
element that you obtain from the Document object with the following statement:

listNodes(xmlDoc.getDocumentElement(),””); // Root element & children

The first argument to listNodes() is the node to be listed, and the second argument is the current
indent for output. On each recursive call of the method, you append a couple of spaces. This results in
each nested level of nodes being indented in the output by two spaces relative to the parent node
output.

The first step in the listNodes() method is to get the name of the current node by calling its
getNodeName() method:

String nodeName = node.getNodeName(); // Get name of this node

The next statement outputs the node itself:

System.out.println(indent+” “ + nodeName);

You then output the type of the current node with the following statement:

System.out.println(indent+” Node Type: “ + nodeType(node.getNodeType()));

The indent parameter defines the indentation for the current node. Calling getNodeType() for the
node object returns a value of type short that identifies the node type. You then pass this value to the
nodeType() helper method that you’ve added to the TryDOM class. The code for the helper method is
just a switch statement with the constants from the Node interface that identify the types of nodes as
case values. I just included a representative set in the code, but you can add case labels for all 18 con-
stants if you wish.

1234

Chapter 23

The remainder of the listNodes() code iterates through the child nodes of the current node if it has any:

NodeList list = node.getChildNodes(); // Get the list of child nodes

if(list.getLength() > 0) { // As long as there are some...

System.out.println(indent+”Child Nodes of “+nodeName+” are:”);

for(int i = 0 ; i<list.getLength() ; i++) { //...list them & their children...

listNodes(list.item(i),indent+” “); // by calling listNodes() for each

}

The for loop simply iterates through the list of child nodes obtained by calling the getChildNodes()
method. Each child is passed as an argument to the listNodes() method, which will list the node and
iterate through its children. In this way the method will work through all the nodes in the document.
You can see that you append an extra couple of spaces to indent in the second argument to the
listNodes() call for a child node. The indent parameter in the next level down will reference a string
that is two spaces longer. This ensures that the output for the next level of nodes will be indented rela-
tive to the current node.

Ignorable Whitespace and Element Content
Some of the elements have multiple #text elements recorded in the output. The #text elements arise
from two things: text that represents element content and ignorable whitespace that is there to present
the markup in a readable fashion. If you don’t want to see the ignorable whitespace, you can get rid of it
quite easily. You just need to set another parser feature in the factory object:

builderFactory.setNamespaceAware(true); // Set namespace aware

builderFactory.setValidating(true); // and validating parser features

builderFactory.setIgnoringElementContentWhitespace(true);

Calling this method will result in a parser that will not report ignorable whitespace as a node, so you
won’t see it in the Document object. If you run the example again with this change, the #text nodes aris-
ing from ignorable whitespace will no longer be there.

That still leaves some other #text elements that represent element content, and you really do want to
access that and display it. In this case you can use the getWholeText() method for a node of type Text
to obtain all of the content as a single string. You could modify the code in the listNodes() method in
the example to do this:

static void listNodes(Node node, String indent) {

// List the current node

String nodeName = node.getNodeName();

System.out.println(indent+” Node: “+nodeName);

short type =node.getNodeType();

System.out.println(indent+” Node Type: “ + nodeType(type));

if(type == TEXT_NODE){

System.out.println(indent+” Content is: “+((Text)node).getWholeText());

}

// Now list the child nodes

NodeList list = node.getChildNodes(); // Get the list of child nodes

if(list.getLength() > 0) { // As long as there are some...

System.out.println(indent+” Child Nodes of “+nodeName+” are:”);

for(int i = 0 ; i<list.getLength() ; i++) {//...list them & their children...

listNodes(list.item(i),indent+” “); // by calling listNodes() for each

1235

Creating and Modifying XML Documents

}

}

}

Here you store the integer identifying the node type in a variable, type, that you test subsequently to
see if it is a text node. If it is, you get the contents by calling the getWholeText() method for the node.
You have to cast the node reference from type Node to type Text; otherwise, you would not be able to
call the getWholeText() method because it is declared in the Text interface, which is a sub-interface of
Node. If you run the example again with this further addition, you’ll get the contents of the nodes dis-
played, too. You’ll need to add an import statement for the org.w3c.dom.Text interface name.

Even though you have set the parser feature to ignore ignorable whitespace, you could still get #text
elements that contained just whitespace. The Text interface declares the
isElementContentWhitespace() method that you can use to check for this — when you don’t want to
display an empty line, for example.

Accessing Attributes
You’ll usually want to access the attributes for an element, but only if it has some. You can test whether
an element has attributes by calling its hasAttributes() method. This will return true if the element
has attributes and false otherwise, so you might use it like this:

short type =node.getNodeType();

if(type == ELEMENT_NODE && node.hasAttributes()) {

// Process the element with its attributes

} else {

// Process the element without attributes

}

The getAttributes() method for an element returns a NamedNodeMap reference that contains the
attributes, the NamedNodeMap interface being defined in the org.w3c.dom package. In general, a
NamedNodeMap object is a collection of Node references that can be accessed by name, or serially by iter-
ating through the collection. Since the nodes are attributes in this instance, the nodes will actually be of
type Attr. In fact, you can call the getAttributes() method for any node type, and it will return null
if an element has no attributes. Thus, you could omit the test for the element type in the if condition,
and the code will work just as well.

The NamedNodeMap interface declares the following methods for retrieving nodes from the collection:

item(int index) Returns the Node reference at index position
index

getLength() Returns the number of Node references in the
collection as type int

getNamedItem(String name) Returns the Node reference with the node name
name

getNamedItemNS(String uri, Returns the Node reference with the name
String localName) localName in the namespace at uri

1236

Chapter 23

Obviously the last two methods apply when you know what attributes to expect. You can apply the first
two methods to iterate through the collection of attributes in a NamedNodeMap:

if(node.hasAttributes()) {

NamedNodeMap attrs = node.getAttributes();

for(int i = 0 ; i<attrs.getLength() ; i++) {

Attr attribute = (Attr)attrs.item(i);

// Process the attribute...

}

}

You now are in a position to obtain each of the attributes for an element as a reference of type Attr. To
get at the attribute name and value you call the getName() and getValue() methods declared in the
Attr interface, respectively, both of which return a value of type String. You can put that into practice
in another example.

Try It Out Listing Elements with Attributes
You can modify the listNodes() method in the previous example to include attributes with the ele-
ments. Here’s the revised version:

static void listNodes(Node node) {

System.out.println(indent+” Node: “+nodeName);

short type =node.getNodeType();

System.out.println(indent+” Node Type: “ + nodeType(type));

if(type == TEXT_NODE){

System.out.println(indent+” Content is: “+((Text)node).getWholeText());

} else if(node.hasAttributes()) {

System.out.println(indent+” Element Attributes are:”);

NamedNodeMap attrs = node.getAttributes(); //...get the attributes

for(int i = 0 ; i<attrs.getLength() ; i++) {

Attr attribute = (Attr)attrs.item(i); // Get an attribute

System.out.println(indent+ “ “ + attribute.getName()

+ “ = “+attribute.getValue());

}

}

NodeList list = node.getChildNodes(); // Get the list of child nodes

if(list.getLength() > 0) { // As long as there are some...

System.out.println(indent+”Child Nodes of “+nodeName+” are:”);

for(int i = 0 ; i<list.getLength() ; i++){ //...list them & their children

listNodes(list.item(i),indent+” “); // by calling listNodes()

}

}

Don’t forget to update the import statements in the example. The complete set will now be:

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.ErrorHandler;

1237

Creating and Modifying XML Documents

import org.w3c.dom.Node;

import org.w3c.dom.Text;

import org.w3c.dom.Document;

import org.w3c.dom.DocumentType;

import org.w3c.dom.NodeList;

import org.w3c.dom.Attr;

import org.w3c.dom.NamedNodeMap;

import java.io.File;

import java.io.IOException;

import static org.w3c.dom.Node.*;

You can recompile the code with these changes and run the example with the circlewithDTD.xml file
that you created back when I was discussing DTDs. The content of this file is:

<?xml version=”1.0”?>

<!DOCTYPE circle

[

<!ELEMENT circle (position)>

<!ATTLIST circle

radius CDATA #REQUIRED

>

<!ELEMENT position EMPTY>

<!ATTLIST position

x CDATA #REQUIRED

y CDATA #REQUIRED

>

]>

<circle radius=”15”>

<position x=”30” y=”50”/>

</circle>

The output from the example processing this file should be:

DOCTYPE node:

<!ELEMENT circle (position)>

<!ATTLIST circle radius CDATA #REQUIRED>

<!ELEMENT position EMPTY>

<!ATTLIST position x CDATA #REQUIRED>

<!ATTLIST position y CDATA #REQUIRED>

Document body contents are:

Node: circle

Node Type: Element

Element Attributes are:

radius = 15

Child Nodes of circle are:

Node: position

1238

Chapter 23

Node Type: Element

Element Attributes are:

x = 30

y = 50

How It Works
All the new code to handle attributes is in the listNodes() method. After verifying that the current
node does have attributes, you get the collection of attributes as a NamedNodeMap object. You then iterate
through the collection extracting each node in turn. Nodes are indexed from zero, and you obtain the
number of nodes in the collection by calling its getLength() method. Since an attribute node is
returned by the item() method as type Node, you have to cast the return value to type Attr to call the
methods in this interface. You output the attribute and its value, making use of the getName() and
getValue() methods for the Attr object in the process of assembling the output string.

It isn’t used in the example, but the Attr interface also declares a getSpecified() method that returns
true if the attribute value was explicitly set in the document rather than being a default value from the
DTD. The Attr interface also declares a getOwnerElement() method that returns an Element refer-
ence to the element to which this attribute applies.

I’ll bet analyzing XML documents was a whole lot easier than you expected. You’ll now put DOM into
reverse and look into how you can synthesize XML documents.

Creating XML Documents
You can create an XML document in a file programmatically by a two-step process. You can first create a
Document object that encapsulates what you want in your XML document. Then you can use the
Document object to create the hierarchy of elements that has to be written to the file. You’ll first look at
how you create a suitable Document object.

The simplest way to create a Document object programmatically is to call the newDocument() method
for a DocumentBuilder object, and it will return a reference to a new empty Document object:

Document newDoc = builder.newDocument();

This is rather limited, especially since there’s no way to modify the DocumentType node to reflect a suit-
able DOCTYPE declaration because the DocumentType interface does not declare any.

There’s an alternative approach that provides a bit more flexibility, but it is not quite so direct. You first
call the getDOMImplementation() method for the DocumentBuilder object:

DOMImplementation domImpl = builder.getDOMImplementation();

This returns a reference of type DOMImplementation to an object that encapsulates the underlying
DOM implementation. This interface type is defined in the org.w3c.dom package.

1239

Creating and Modifying XML Documents

There are three methods you can call for a DOMImplementation object:

createDocument(String namespaceURI, Creates a Document object with the
String qualifiedName, root element having the name
DocumentType doctype) qualifiedName that is defined

in the namespace specified by
namespaceURI. The third
argument specifies the DOCTYPE
node to be added to the document.
If you don’t want to declare a
DOCTYPE, then doctype can be
specified as null.

This method will throw an excep-
tion of type DOMException if the
second argument is incorrect in
some way.

createDocumentType(String qualifiedName, Creates a node of type
String publicID, DocumentType that represents
String systemID) a DOCTYPE declaration. The first

argument is the qualified name
of the root element, the second
argument is the public ID of the
external subset of the DTD, and the
third argument is its system ID.
This method will also throw an
exception of type DOMException
if the first argument contains an
illegal character or is not of the
correct form.

hasFeature(String feature, Returns true if the DOM
String version) implementation has the feature

with the name feature. The sec-
ond argument specifies the DOM
version number of the feature and
can be either “1.0” or “2.0” with
DOM Level 2.

1240

Chapter 23

You can see from the first two methods here that there is a big advantage to using a
DOMImplementation object to create a document. First of all, you can create a DocumentType object by
calling the createDocumentType() method:

DocumentType doctype = null;

try {

doctype = domImpl.createDocumentType(“sketch”, null, “sketcher.dtd”);

} catch(DOMException e) {

// Handle the exception

}

This code fragment creates a DocumentType node for an external DOCTYPE declaration with the name
sketch, and with the system ID sketcher.dtd. There is no public ID in this case since you specified
the second argument as null. You can now use the DocumentType object in the creation of a document:

Document newDoc = null;

try {

doctype = domImpl.createDocumentType(“sketch”, null, “sketcher.dtd”);

newDoc = domImpl.createDocument(null, “sketch”, doctype);

}

catch(DOMException e) {

// Handle the exception

}

If you were creating a document without a DTD, you would just specify the third argument to the
createDocument() method as null.

The DOMException object that may be thrown by either the createDocumentType() or the
createDocument() method has a public field of type int that has the name code. This field stores an
error code identifying the type of error that caused the exception, so you can check the value of code to
determine the cause of the error. This exception can be thrown by a number of different methods that
you use to create nodes in a document, so the values that code can have are not limited to the two meth-
ods you have just used. There are 17 possible values for code that are defined in the DOMException
class, but obviously you would check only for those that apply to the code in the try block where the
exception may arise.

The possible values for code in a DOMException object are:

INVALID_CHARACTER_ERR The second argument specifying the root element name
contains an invalid character.

DOMSTRING_SIZE_ERR The specified range of text does not fit into a DOMString
value. A DOMString value is defined in the DOM Level 3
specification and is equivalent to a Java String type.

HIERARCHY_REQUEST_ERR You tried to insert a node where it doesn’t belong.

WRONG_DOCUMENT_ERR You tried to use a node in a different document from the
one that created it.

NO_DATA_ALLOWED_ERR You specified data for a node that does not support data.

1241

Creating and Modifying XML Documents

NO_MODIFICATION_ALLOWED_ERR You attempted to modify an object where modifications
are prohibited.

NOT_FOUND_ERR You tried to reference a node that does not exist.

NOT_SUPPORTED_ERR The object type or operation that you requested is not sup-
ported.

INUSE_ATTRIBUTE_ERR You tried to add an attribute that is in use elsewhere.

INVALID_STATE_ERR You tried to use an object that is not usable.

SYNTAX_ERR You specified an invalid or illegal string.

INVALID_MODIFICATION_ERR You tried to modify the type of the underlying object.

NAMESPACE_ERR You tried to create or modify an object such that it would
be inconsistent with namespaces in the document.

INVALID_ACCESS_ERR A parameter or operation is not supported by the
underlying object.

VALIDATION_ERR An operation to remove or insert a node relative to an
existing node would make the node invalid.

TYPE_MISMATCH_ERR The type of an object is not compatible with the expected
type of the parameter associated with the object.

WRONG_DOCUMENT_ERR The document does not support the DocumentType node
specified.

The createDocument() method can throw an exception of type DOMException with code set to
INVALID_CHARACTER_ERR, NAMESPACE_ERR, NOT_SUPPORTED_ERR, or WRONG_DOCUMENT_ERR. The
createDocumentType() method can also throw an exception of type DOMException with code set to
any of the first three values for createDocument().

You therefore might code the catch block in the previous fragment like this:

catch(DOMException e) {

switch(e.code) {

case DOMException.INVALID_CHARACTER_ERR:

System.err.println(“Qualified name contains an invalid character.”);

break;

case DOMException.NAMESPACE_ERR:

System.err.println(“Qualified name is malformed or invalid.”);

break;

case DOMException.WRONG_DOCUMENT_ERR:

System.err.println(“Document does not support this doctype”);

break;

case DOMException.NOT_SUPPORTED_ERR:

System.err.println(“Implementation does not support XML.”);

break;

}

System.err.println(e.getMessage());

}

1242

Chapter 23

Of course, you can also output the stack trace, return from the method, or even end the program here if
you want.

Adding to a Document
The org.w3c.Document interface declares methods for adding nodes to a Document object. You can cre-
ate nodes encapsulating elements, attributes, text, entity references, comments, CDATA sections, and pro-
cessing instructions, so you can assemble a Document object representing a complete XML document.
The methods declared by the Document interface are:

createElement(String name) Returns a reference to an Element
object encapsulating an element
with name as the tag name. The
method will throw an exception of
type DOMException with
INVALID_CHARACTER_ERR set if
name contains an invalid character.

createElementNS(String nsURI, Returns a reference to an Element
String qualifiedName) object encapsulating an element

with qualifiedName as the tag
name in the namespace nsURI. The
method will throw an exception of
type DOMException with
INVALID_CHARACTER_ERR set if
qualifiedName contains an invalid
character, or NAMESPACE_ERR if it
has a prefix “xml” and nsURI is not
http://www.w3.org/XML/1998/

namespace.

createAttribute(String name) Returns a reference to an Attr
object encapsulating an attribute
with name as the attribute name
and its value as “”. The method
will throw an exception of type
DOMException with
INVALID_CHARACTER_ERR set if
name contains an invalid character.

Table continued on following page

1243

Creating and Modifying XML Documents

createAttribute(String nsURI, Returns a reference to
String qualifiedName) an Attr object encapsulating an

attribute with qualifiedName as
the attribute name in the namespace
nsURI and its value as “”. The
method will throw an exception
of type DOMException with
INVALID_CHARACTER_ERR set if the
name contains an invalid character,
or NAMESPACE_ERR if the name con-
flicts with the namespace.

createTextNode(String text) Returns a reference to a Text node
containing the string text.

createComment(String comment) Returns a reference to a Comment
node containing the string
comment.

createCDATASection(String data) Returns a reference to a
CDATASection node with the value
data. Throws a DOMException if
you try to create this node if the
Document object encapsulates an
HTML document.

createEntityReference(String name) Returns a reference to an
EntityReference node with the
name specified. Throws a
DOMException with the code
INVALID_CHARACTER_ERR if name
contains invalid characters, and
NOT_SUPPORTED_ERR if the
Document object is an HTML
document.

1244

Chapter 23

createProcessingInstruction(String target, Returns a reference to
String name) a ProcessingInstruction node

with the specified name and target.
Throws a DOMException with the
code INVALID_CHARACTER_ERR if
target contains illegal characters,
and NOT_SUPPORTED_ERR if the
Document object is an HTML
document.

createDocumentFragment() Creates an empty
DocumentFragment object.
You can insert a
DocumentFragment object into a
Document object using methods
that the Document interface (and
the DocumentFragment interface)
inherits from the Node interface.
You can use the same methods
to insert nodes into a
DocumentFragment object.

The references to HTML in the preceding table arise because a Document object can be used to encapsu-
late an HTML document. Our interest is purely XML, so I won’t be discussing this aspect further.

Of course, having a collection of nodes within a document does not define any structure. To establish the
structure of a document you have to associate each attribute node that you have created with the appro-
priate element, and you must also make sure that each element other than the root is a child of some ele-
ment. Along with all the other types of node, the Element interface inherits two methods from the Node
interface that enable you to make one node a child of another:

1245

Creating and Modifying XML Documents

appendChild(Node child) Appends the node child to the end of the
list of existing child nodes. This method
throws a DOMException with the code
HIERARCHY_REQUEST_ERR if the current
node does not allow children, the code
WRONG_DOCUMENT_ERR if child belongs
to another document, or the code
NO_MODIFICATION_ALLOWED_ERR if the
current node is read-only.

insertBefore(Node child, Insert child as a child node immediately
Node existing) before existing in the current list of

child nodes. This method can throw
DOMException with the same error codes
as above, plus NOT_FOUND_ERR if existing
is not a child of the current node.

The Element interface also declares four methods for adding attributes:

setAttributeNode(Attr attr) Adds the node attr to the element. If an
attribute node with the same name already
exists, it will be replaced by attr. The
method returns either a reference to an
existing Attr node that has been replaced
or null. The method can throw a
DOMException with the following codes:

WRONG_DOCUMENT_ERR if attr belongs to
another document

NO_MODIFICATION_ALLOWED_ERR if the ele-
ment is read-only

INUSE_ATTRIBUTE_ERR if attr already
belongs to another element

setAttributeNodeNS(Attr attr) As previous but applies to an element
defined within a namespace.

1246

Chapter 23

setAttribute(String name, Adds a new attribute node with the specified
String value) name and value. If the attribute has already

been added, its value is changed to value.
The method can throw DOMException with
the following codes:

INVALID_CHARACTER_ERR if name contains
an illegal character

NO_MODIFICATION_ALLOWED_ERR if the ele-
ment is read-only

setAttributeNS(String nsURI, As previous but with the attribute within the
String qualifiedName, namespace nsURI. In addition, this method
String value) can throw a DOMException with the code

NAMESPACE_ERR if qualifiedName is
invalid or not within the namespace.

Since you know enough about constructing a Document object to have a stab at putting together an
object encapsulating a real XML document, let’s have a stab at it.

Storing a Sketch as XML
You have already defined a DTD in the previous chapter that is suitable for defining a sketch. You can
see how you can put together the code to store a sketch as an XML document instead of as a serialized
object. Obviously you’ll use the DTD you already have, and you can create a Document object with a
DocumentType node via a DOMImplementation object from a DocumentBuilder object. You can do
this with two statements in a try block:

Document doc = null;

try {

DOMImplementation domImpl = DocumentBuilderFactory.newInstance()

.newDocumentBuilder()

.getDOMImplementation();

doc = domImpl.createDocument(null, “sketch”,

domImpl.createDocumentType(“sketch”, null, “sketcher.dtd”));

} catch(ParserConfigurationException e) {

e.printStackTrace(System.err);

// Display the error and terminate the current activity...

} catch(DOMException e) {

e.printStackTrace(System.err);

// Determine the kind of error from the error code,

// display the error, and terminate the current activity...

}

They are rather long statements since they accomplish in a single statement what you previously did in
several steps. However, they are quite simple. The first statement creates a DocumentBuilderFactory
object from which a DocumentBuilder object is created from which a reference DOMImplementation

1247

Creating and Modifying XML Documents

object is obtained and stored in domImpl. This is used in the next statement to create the Document
object for a sketch and its DocumentType object defining the DOCTYPE declaration for sketcher.dtd.
Eventually you will add this code to the SketchModel class, but let’s leave that to one side for the
moment while you look at how you can fill out the detail of the Document object from the objects repre-
senting elements in a sketch.

A sketch in XML is a simple two-level structure. The root node in an XML representation of a sketch will
be a <sketch> element, so to define the structure you need only to add an Element node to the content
for the root node for each element in the sketch. A good way to implement this would be to add a
method to each of the sketch Element classes that adds its own org.w3c.dom.Element node to the
Document object. This will make each object representing a sketch element able to create its own XML
representation.

The Sketcher classes you have to modify are the inner classes to the Element class, plus the Element
class itself. The inner classes are Element.Line, Element.Rectangle, Element.Circle,
Element.Curve, and Element.Text. The nodes that have to be added for each kind of geometric ele-
ment derive directly from the declaration in the DTD, so it will help if you have this in hand while you
go through these classes. If you typed it in when I discussed it in the last chapter, maybe you can print a
copy.

Adding Element Nodes
Polymorphism is going to be a big help in this, so let’s first define an abstract method in the Element
base class to add an element node to a document. You can add the declaration immediately after the dec-
laration for the abstract draw() method, like this:

public abstract void draw(Graphics2D g2D);

public abstract void addElementNode(Document document);

Each of the inner classes will need to implement this method since they are derived from the Element
class.

You will need a couple of import statements at the beginning of the Element.java file in Sketcher:

import org.w3c.dom.Document;

import org.w3c.dom.Attr;

Note that you definitely don’t want to use the * notation to import all of the names from this package. If
you do, you will get the Sketcher Element class confused with the Element interface in the
org.w3c.dom package. You are going to have to use qualified names wherever there is a potential clash.

The XML elements that you’ll create for geometric elements in a sketch will all need <position> and
<color> elements as children. If you define methods in the base class Element to create these, they will
be inherited in each of the subclasses of Element. Here’s how you can define a method in the Element
class to create a <color> element:

protected org.w3c.dom.Element createColorElement(Document doc) {

org.w3c.dom.Element colorElement = doc.createElement(“color”);

Attr attr = doc.createAttribute(“R”);

attr.setValue(String.valueOf(color.getRed()));

1248

Chapter 23

colorElement.setAttributeNode(attr);

attr = doc.createAttribute(“G”);

attr.setValue(String.valueOf(color.getGreen()));

colorElement.setAttributeNode(attr);

attr = doc.createAttribute(“B”);

attr.setValue(String.valueOf(color.getBlue()));

colorElement.setAttributeNode(attr);

return colorElement;

}

The method for creating the node for a <position> element will use essentially the same process, but
you have several nodes that represent points that are the same apart from their names. You can share the
code by putting it into a method that you call with the appropriate type name:

protected org.w3c.dom.Element createPointTypeElement(Document doc,

String name,

String xValue,

String yValue) {

org.w3c.dom.Element element = doc.createElement(name);

Attr attr = doc.createAttribute(“x”); // Create attribute x

attr.setValue(xValue); // and set its value

element.setAttributeNode(attr); // Insert the x attribute

attr = doc.createAttribute(“y”); // Create attribute y

attr.setValue(yValue); // and set its value

element.setAttributeNode(attr); // Insert the y attribute

return element;

}

This will create an element with the name specified by the second argument, so you can use this in
another method in the Element class to create a node for a <position> element:

protected org.w3c.dom.Element createPositionElement(Document doc) {

return createPointTypeElement(doc, “position”,

String.valueOf(position.getX()),

String.valueOf(position.getY()));

}

You’ll be able to create <endpoint>, <bottomright>, or <point> nodes in the same way in methods in
the subclasses of Element.

Adding a Line Node
The method to add a <line> node to the Document object will create a <line> element with an angle
attribute and then add three child elements: <color>, <position>, and <endpoint>. You can add the
following implementation of the addElementNode() method to the Element.Line class:

public void addElementNode(Document doc) {

org.w3c.dom.Element lineElement = doc.createElement(“line”);

// Create the angle attribute and attach it to the <line> node

1249

Creating and Modifying XML Documents

Attr attr = doc.createAttribute(“angle”);

attr.setValue(String.valueOf(angle));

lineElement.setAttributeNode(attr);

// Append the <color>, <position>, and <endpoint> nodes as children

lineElement.appendChild(createColorElement(doc));

lineElement.appendChild(createPositionElement(doc));

lineElement.appendChild(createEndpointElement(doc));

// Append the <line> node to the document root node

doc.getDocumentElement().appendChild(lineElement);

}

When you have a <Line> element in a sketch, calling this method with a reference to a Document object
as an argument will add a child node corresponding to the <line> element. To complete this you must
add the createEndpointElement() method to the Element.Line class:

private org.w3c.dom.Element createEndpointElement(Document doc) {

return createPointTypeElement(doc, “endpoint”,

String.valueOf(line.x2+position.x),

String.valueOf(line.y2+position.y));

}

This calls the createPointTypeElement() method that is inherited from the base class. Since the posi-
tion of a line is recorded in the base class and the end point of the line is relative to that point, you must
add the coordinates of position in the base class to the coordinates of the end point of the line in order
to get the original end point coordinates back.

Adding a Rectangle Node
The code to add a <rectangle> node to the Document object is almost the same as adding a <line> node:

public void addElementNode(Document doc) {

org.w3c.dom.Element rectElement = doc.createElement(“rectangle”);

// Create the angle attribute and attach it to the <rectangle> node

Attr attr = doc.createAttribute(“angle”);

attr.setValue(String.valueOf(angle));

rectElement.setAttributeNode(attr);

// Append the <color>, <position>, and <bottomright> nodes as children

rectElement.appendChild(createColorElement(doc));

rectElement.appendChild(createPositionElement(doc));

rectElement.appendChild(createBottomrightElement(doc));

doc.getDocumentElement().appendChild(rectElement);

}

1250

Chapter 23

You also must define the createBottomrightElement() method in the Element.Rectangle class:

private org.w3c.dom.Element createBottomrightElement(Document doc) {

return createPointTypeElement(doc, “bottomright”,

String.valueOf(rectangle.width+position.x),

String.valueOf(rectangle.height+position.y));

}

A rectangle is defined relative to the origin, so you have to adjust the coordinates of the bottom right cor-
ner by adding the corresponding position coordinates.

Adding a Circle Node
Creating the node for a <circle> element is not very different:

public void addElementNode(Document doc) {

org.w3c.dom.Element circleElement = doc.createElement(“circle”);

// Create the radius attribute and attach it to the <circle> node

Attr attr = doc.createAttribute(“radius”);

attr.setValue(String.valueOf(circle.width/2.0));

circleElement.setAttributeNode(attr);

// Create the angle attribute and attach it to the <circle> node

attr = doc.createAttribute(“angle”);

attr.setValue(String.valueOf(angle));

circleElement.setAttributeNode(attr);

// Append the <color> and <position> nodes as children

circleElement.appendChild(createColorElement(doc));

circleElement.appendChild(createPositionElement(doc));

doc.getDocumentElement().appendChild(circleElement);

}

There’s nothing new here. You can use either the width or the height member of the
Ellipse2D.Double class object to get the diameter of the circle. You divide the width field for the
circle object by 2.0 to get the radius.

Adding a Curve Node
Creating a <curve> node is a bit more long-winded, as a GeneralPath object represents a curve, and
you have to extract the arbitrary number of defining points from it. The code that does this is more or
less what you used in the writeObject() method for a curve, so it is nothing new:

public void addElementNode(Document doc) {

org.w3c.dom.Element curveElement = doc.createElement(“curve”);

// Create the angle attribute and attach it to the <curve> node

Attr attr = doc.createAttribute(“angle”);

attr.setValue(String.valueOf(angle));

curveElement.setAttributeNode(attr);

// Append the <color> and <position> nodes as children

1251

Creating and Modifying XML Documents

curveElement.appendChild(createColorElement(doc));

curveElement.appendChild(createPositionElement(doc));

// Get the defining points via a path iterator

PathIterator iterator = curve.getPathIterator(new AffineTransform());

int maxCoordCount = 6; // Maximum coordinates for a segment

float[] temp = new float[maxCoordCount]; // Stores segment data

int result = iterator.currentSegment(temp); // Get first segment

assert result == iterator.SEG_MOVETO; // ... should be move to

iterator.next(); // Next segment

while(!iterator.isDone()) { // While you have segments

result = iterator.currentSegment(temp); // Get the segment data

assert result == iterator.SEG_LINETO; // Should all be lines

// Create a <point> node and add it to the list of children

curveElement.appendChild(createPointTypeElement(doc, “point”,

String.valueOf(temp[0]+position.x),

String.valueOf(temp[1]+position.y)));

iterator.next(); // Go to next segment

}

doc.getDocumentElement().appendChild(curveElement);

}

You add one <point> node as a child of the Element node for a curve for each defining point after the
first. Since the defining points for the GeneralPath object were created relative to the origin, you have
to add the corresponding coordinates of position to the coordinates of each defining point.

Adding a Text Node
A text node is a little different and involves quite a lot of code. As well as the usual <color> and
<position> child nodes, you also have to append a node to define the font and a <string>
node. The node has three attributes that define the font name, the font style, and the point size.
The <string> node has the text as well as a <bounds> element that has two attributes defining the
width and height of the text. Here’s the code:

public void addElementNode(Document doc) {

org.w3c.dom.Element textElement = doc.createElement(“text”);

// Create the angle attribute and attach it to the <text> node

Attr attr = doc.createAttribute(“angle”);

attr.setValue(String.valueOf(angle));

textElement.setAttributeNode(attr);

// Append the <color> and <position> nodes as children

textElement.appendChild(createColorElement(doc));

textElement.appendChild(createPositionElement(doc));

// Create and apppend the node

org.w3c.dom.Element fontElement = doc.createElement(“font”);

1252

Chapter 23

attr = doc.createAttribute(“fontname”);

attr.setValue(font.getName());

fontElement.setAttributeNode(attr);

attr = doc.createAttribute(“fontstyle”);

String style = null;

int styleCode = font.getStyle();

if(styleCode == Font.PLAIN) {

style = “plain”;

} else if(styleCode == Font.BOLD) {

style = “bold”;

} else if(styleCode == Font.ITALIC) {

style = “italic”;

} else if(styleCode == Font.ITALIC+Font.BOLD) {

style = “bold-italic”;

}

assert style != null;

attr.setValue(style);

fontElement.setAttributeNode(attr);

attr = doc.createAttribute(“pointsize”);

attr.setValue(String.valueOf(font.getSize()));

fontElement.setAttributeNode(attr);

textElement.appendChild(fontElement);

// Create the <string> node

org.w3c.dom.Element string = doc.createElement(“string”);

// Create the <bounds> node and its attributes

org.w3c.dom.Element bounds = doc.createElement(“bounds”);

attr = doc.createAttribute(“width”);

attr.setValue(String.valueOf(this.bounds.width));

bounds.setAttributeNode(attr);

attr = doc.createAttribute(“height”);

attr.setValue(String.valueOf(this.bounds.height));

bounds.setAttributeNode(attr);

string.appendChild(bounds); // Set <bounds> element as <string> content

string.appendChild(doc.createTextNode(text));

textElement.appendChild(string);// Set <text> as <string> content

doc.getDocumentElement().appendChild(textElement);

}

Since the font style can be “plain”, “bold”, “bold-italic”, or just “italic”, you have a series of if
statements to determine the value for the attribute. The style is stored in a Font object as an integer with
different values for plain, bold, and italic. The values corresponding to bold and italic can be combined,
in which case the style is “bold-italic”.

All the element objects in a sketch can now add their own node to a Document object. You should now
be able to make a SketchModel object use this capability to create a document that encapsulates the
entire sketch.

1253

Creating and Modifying XML Documents

Creating a Document Object for a Complete Sketch
You can add a createDocument() method to the SketchModel class to create a Document object and
populate it with the nodes for the elements in the current sketch model. Creating the Document object
will use the code fragment you saw earlier. You need to add some import statements at the beginning of
the SketchModel.java source file for the new interfaces and classes you will be using:

import javax.swing.JOptionPane;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.DOMImplementation;

import org.w3c.dom.DOMException;

Here’s the method definition you can add to the class:

// Creates a DOM Document object encapsulating the current sketch

public Document createDocument() {

Document doc = null;

try {

DOMImplementation domImpl = DocumentBuilderFactory.newInstance()

.newDocumentBuilder()

.getDOMImplementation();

doc = domImpl.createDocument(null, “sketch”,

domImpl.createDocumentType(“sketcher”, null, “sketcher.dtd”));

} catch(ParserConfigurationException e) {

JOptionPane.showInternalMessageDialog(null,

“Parser configuration error while creating document”,

“DOM Parser Error”,

JOptionPane.ERROR_MESSAGE);

System.err.println(e.getMessage());

e.printStackTrace(System.err);

return null;

} catch(DOMException e) {

JOptionPane.showInternalMessageDialog(null,

“DOM exception thrown while creating document”,

“DOM Error”,

JOptionPane.ERROR_MESSAGE);

System.err.println(e.getMessage());

e.printStackTrace(System.err);

return null;

}

// Each element in the sketch can create its own node in the document

for(Element element : elements) { // For each element...

element.addElementNode(doc); // ...add its node.

}

return doc;

}

1254

Chapter 23

Now notice that this requires that the DTD file for Sketcher should be in the same folder as a saved
sketch, so copy Sketcher.dtd from wherever you put it to the current directory for this version of
Sketcher.

You now pop up a dialog and return null if something goes wrong when you are creating the
Document object. In case of an exception of type DOMException being thrown, you could add a switch
statement to analyze the value in the code member of the exception and provide a more specific mes-
sage in the dialog.

The SketchModel object can now create a DOM Document object encapsulating the entire sketch. All
you now need is some code to use this to write an XML file.

Saving a Sketch as XML
Of course, you could modify Sketcher so that it could optionally save sketches either as objects or as XML,
but to keep things simple you’ll add menu items to the File menu to export or import a sketch as XML. In
broad terms, here’s what you have to do to the SketchFrame class to save a sketch as an XML file:

❑ Add Import XML and Export XML menu items.

❑ Add XML ImportAction and XMLExportAction inner classes to SketchFrame defining the
Action types for the new menu items, either to save the current sketch as an XML file or to
replace the current sketch by a new sketch created from an XML file.

❑ Implement the process of creating an XML document as text from the Document object created
by the createDocument() method that you added to the SketchModel class.

❑ Implement writing the text for the XML document to a file.

By adding new Action classes for the two new menu items, you avoid cluttering up the existing
FileAction class any further. Clearly, a lot of the work will be in the implementation of the new
Action classes, so let’s start with the easy bit — adding the new menu items to the File menu. First, you
can add two new fields for the menu items by changing the existing definition in the SketchFrame
class:

private FileAction newAction, openAction, closeAction,

saveAction, saveAsAction, printAction;

private XMLExportAction exportAction; // Action for XML export menu item

private XMLImportAction importAction; // Action for XML import menu item

These store the references to the Action objects for the new menu items.

You can create the Action objects for the two new menu items in the SketchFrame constructor, follow-
ing the creation of the Action item for the Save As menu item:

saveAsAction = new FileAction(“Save As...”);

exportAction = new XMLExportAction(“Export XML”,

“Export sketch as an XML file”);

importAction = new XMLImportAction(“Import XML”,

“Import sketch from an XML file”);

printAction = new FileAction(“Print”,

KeyStroke.getKeyStroke(‘P’, CTRL_DOWN_MASK), “Print sketch”);

1255

Creating and Modifying XML Documents

You can also add the menu items in the SketchFrame constructor, immediately following the menu sep-
arator definition that comes after the saveAsAction menu item:

addMenuItem(fileMenu, saveAction);

addMenuItem(fileMenu, saveAsAction);

fileMenu.addSeparator(); // Add separator

fileMenu.add(new JMenuItem(exportAction));

fileMenu.add(new JMenuItem(importAction));

fileMenu.addSeparator(); // Add separator

Now you can add code in the SketchFrame class for the two inner classes. You can define the
ExportAction class within the SketchFrame class like this:

class XMLExportAction extends AbstractAction {

public XMLExportAction(String name, String tooltip) {

super(name);

if(tooltip != null) { // If there is tooltip text

putValue(SHORT_DESCRIPTION, tooltip); // ...squirrel it away

}

}

public void actionPerformed(ActionEvent e) {

JFileChooser chooser = new JFileChooser(DEFAULT_DIRECTORY);

chooser.setDialogType(chooser.SAVE_DIALOG);

chooser.setDialogTitle(“Export Sketch as XML”);

chooser.setApproveButtonText(“Export”);

ExtensionFilter xmlFiles = new ExtensionFilter(“.xml”,

“XML Sketch files (*.xml)”);

chooser.addChoosableFileFilter(xmlFiles); // Add the filter

chooser.setFileFilter(xmlFiles); // and select it

File file = null;

if(chooser.showDialog(SketchFrame.this, null) == chooser.APPROVE_OPTION){

file = chooser.getSelectedFile();

if(file.exists()) { // Check file exists

if(JOptionPane.NO_OPTION == // Overwrite warning

JOptionPane.showConfirmDialog(SketchFrame.this,

file.getName()+” exists. Overwrite?”,

“Confirm Save As”,

JOptionPane.YES_NO_OPTION,

JOptionPane.WARNING_MESSAGE))

return; // No overwrite

}

saveXMLSketch(file);

}

}

}

This is very similar to the code that appears in the FileAction class. The constructor provides only for
what you use — a menu item name plus a tooltip. If you want to have the option for an icon for use
on a toolbar button, you can add that in the same way as for the FileAction constructors. The
actionPerformed() method pops up a CFFileChooser dialog to enable the destination file for
the XML to be selected. The chosen file is passed to a new method that you will put together,
saveXMLSketch(), which will handle writing the XML document to the file.

1256

Chapter 23

You can define the XMLImportAction inner class like this:

class XMLImportAction extends AbstractAction {

public XMLImportAction(String name, String tooltip) {

super(name);

if(tooltip != null) { // If there is tooltip text

putValue(SHORT_DESCRIPTION, tooltip); // ...squirrel it away

}

}

public void actionPerformed(ActionEvent e) {

JFileChooser chooser = new JFileChooser(DEFAULT_DIRECTORY);

chooser.setDialogTitle(“Import Sketch from XML”);

chooser.setApproveButtonText(“Import”);

ExtensionFilter xmlFiles = new ExtensionFilter(“.xml”,

“XML Sketch files (*.xml)”);

chooser.addChoosableFileFilter(xmlFiles); // Add the filter

chooser.setFileFilter(xmlFiles); // and select it

if(chooser.showDialog(SketchFrame.this, null) == chooser.APPROVE_OPTION)

openXMLSketch(chooser.getSelectedFile());

}

}

This is more of the same but in the opposite direction, as Stanley might have said. Once the name of the
file to be imported has been identified in the JFileChooser dialog, you call openXMLSketch() to read
the XML from the file and create the corresponding sketch.

Now you can go on to the slightly more difficult bits. Since you can’t test the process for reading a sketch
as XML until you have written some, you’ll start by looking at how you can write an XML document to
a file.

Writing the XML File
Before you start on the code, you can add a few constants that you’ll need to the SketcherConstants
class that you defined in the Constants package:

public final static String QUOTE_ENTITY = “"”;

public final static char QUOTE = ‘\”’;

public final static char NEWLINE = ‘\n’;

public final static char TAG_START = ‘<’;

public final static char TAG_END = ‘>’;

public final static String EMPTY_TAG_END = “/>”;

public final static String END_TAG_START = “</”;

It would be a good idea to standardize on using a double quote as a string delimiter in the XML that
Sketcher will generate. You’ll therefore substitute the QUOTE_ENTITY constant for any double quotes that
appear in the text for a Sketcher Text element. The other constants will be useful when you are assem-
bling XML markup for a sketch.

You can make the saveXMLSketch() method a member of the SketchFrame class. This method will
obtain a FileChannel object for the File object that is passed as an argument. The FileChannel object
can then be used to write the XML to the file. Here’s how you can define this method:

1257

Creating and Modifying XML Documents

private void saveXMLSketch(File outFile) {

FileOutputStream outputFile = null; // Stores an output stream reference

try {

outputFile = new FileOutputStream(outFile); // Output stream for the file

FileChannel outChannel = outputFile.getChannel(); // Channel for file stream

writeXMLFile(theApp.getModel().createDocument(), outChannel);

} catch(FileNotFoundException e) {

e.printStackTrace(System.err);

JOptionPane.showMessageDialog(SketchFrame.this,

“Sketch file “ + outFile.getAbsolutePath() + “ not found.”,

“File Output Error”,

JOptionPane.ERROR_MESSAGE);

return; // Serious error – return

}

}

This calls another method that you have yet to write. The writeXMLFile() method will assemble the
XML from the Document object passed as the first argument and write that to the FileChannel refer-
enced by the second argument.

You don’t really expect to end up in the catch block. If you do, something is seriously wrong some-
where. Don’t forget to import the FileChannel class name. The import statement you must add to
SketchFrame is:

import java.nio.channels.FileChannel;

The writeXMLFile() method that you’ll put together next will have to navigate the Document object
and its nodes to create all the well-formed and valid XML that has to be written to the file to form a com-
plete XML document.

Creating the XML document for a sketch won’t be difficult. You already know how to navigate a
Document object and write the nodes to the command line. You did that in an example a few pages back.
You’ll need to make sure the code you use here writes everything that is necessary to produce well-
formed XML, but it will be essentially the same as what you have seen. The only difference here is that
you are writing to a file channel rather than the command line, but that should not be any trouble since
you know how to do that, too. If you take a little care in the appearance of the XML, you should be able
to end up with an XML file defining a sketch that is reasonably readable.

Since you want to be able to look at the XML file for a sketch in an editor, you’ll write it as the 8-bit
Unicode subset UTF-8. By applying all the knowledge and experience you have accumulated up to now,
you can implement writeXMLFile() in the SketchFrame class like this:

private void writeXMLFile(org.w3c.dom.Document doc, FileChannel channel) {

StringBuffer xmlDoc = new StringBuffer(

“<?xml version=\”1.0\” encoding=\”UTF-8\”?>”);

xmlDoc.append(NEWLINE).append(getDoctypeString(doc.getDoctype()));

xmlDoc.append(getDocumentNode(doc.getDocumentElement(), “”));

try {

channel.write(ByteBuffer.wrap(xmlDoc.toString().getBytes(“UTF-8”)));

1258

Chapter 23

} catch(UnsupportedEncodingException e) {

System.out.println(e.getMessage());

} catch(IOException e) {

JOptionPane.showMessageDialog(SketchFrame.this,

“Error writing XML to channel.”,

“File Output Error”,

JOptionPane.ERROR_MESSAGE);

e.printStackTrace(System.err);

return;

}

}

Initially you create a StringBuffer object that will eventually contain the entire XML document. It
starts out initialized with the XML declaration, and you append the text corresponding to the DOCTYPE
declaration. You use the getDoctypeString() method to generate this, and this method will be virtu-
ally identical to the method of the same name from the example earlier in this chapter, as you’ll see in a
moment. This method accepts an argument of type DocumentType, assembles a complete DOCTYPE dec-
laration from that, and returns it as type String. This is appended to xmlDoc following a newline char-
acter that will start the declaration on a new line.

You introduce another new method in the code for the writeXMLFile() method in the statement:

xmlDoc.append(getDocumentNode(doc.getDocumentElement(), “”));

This is for good reason. You’ll need a recursive method to navigate the nodes in the Document object
that represent the body of the document and create the XML for that. The string that is returned will be
the entire document body, so once you have appended this to xmlDoc, you have the complete document.
You’ll implement the getDocumentNode() method shortly.

The other statement deserving some explanation is the one in the try block that writes the complete
document to the file:

channel.write(ByteBuffer.wrap(xmlDoc.toString().getBytes(“UTF-8”)));

Starting from the inside and working outwards: Calling the toString() method for xmlDoc returns the
contents as type String. You then call the getBytes() method for the String object to obtain an array
of type byte[] containing the contents of the String object encoded as UTF-8. You then call the static
wrap() method in the ByteBuffer class (that will need importing) to create a ByteBuffer object that
wraps the array. The buffer that is returned has its limit and position set ready for the buffer contents to
be written to a file. You can therefore pass this ByteBuffer object directly to the write() method for
the FileChannel object to write the contents of the buffer, which will be the entire XML document, to
the file. How’s that for a powerful statement.

The code for the getDoctypeString() method will be:

private String getDoctypeString(org.w3c.dom.DocumentType doctype) {

// Create the opening string for the DOCTYPE declaration with its name

String str = doctype.getName();

StringBuffer doctypeStr = new StringBuffer(“<!DOCTYPE “).append(str);

// Check for a system ID

1259

Creating and Modifying XML Documents

if((str = doctype.getSystemId()) != null) {

doctypeStr.append(“ SYSTEM “).append(QUOTE).append(str).append(QUOTE);

}

// Check for a public ID

if((str = doctype.getPublicId()) != null) {

doctypeStr.append(“ PUBLIC “).append(QUOTE).append(str).append(QUOTE);

}

// Check for an internal subset

if((str = doctype.getInternalSubset()) != null) {

doctypeStr.append(‘[‘).append(str).append(‘]’);

}

return doctypeStr.append(TAG_END).toString(); // Append ‘>’ & return string

}

This assembles a DOCTYPE declaration from the information stored in the DocumentType object that is
passed as the argument to the method, and returns it as a string.

Creating XML for the Document Body
The recursive getDocumentNode() method to assemble the XML for the document body is a little more
work than the others, but it will work much like the method you wrote earlier to list nodes in a docu-
ment. The method will find out the specific type of the current node and then append the appropriate
XML string to a StringBuffer object. If the current node has child nodes, the method will call itself to
deal with each of these nodes. You can implement the writeDocumentNode() method like this:

private String getDocumentNode(Node node, String indent) {

StringBuffer nodeStr = new StringBuffer().append(NEWLINE).append(indent);

String nodeName = node.getNodeName(); // Get name of this node

switch(node.getNodeType()) {

case Node.ELEMENT_NODE:

nodeStr.append(TAG_START);

nodeStr.append(nodeName);

if(node.hasAttributes()) { // If the element has attributes...

org.w3c.dom.NamedNodeMap attrs = node.getAttributes(); // ...get them

for(int i = 0 ; i<attrs.getLength() ; i++) {

org.w3c.dom.Attr attribute = (org.w3c.dom.Attr)attrs.item(i);

// Append “ name=”value” to the element string

nodeStr.append(‘ ‘).append(attribute.getName()).append(‘=’)

.append(QUOTE).append(attribute.getValue()).append(QUOTE);

}

}

if(!node.hasChildNodes()) { // Check for no children for this element

nodeStr.append(EMPTY_TAG_END); // There are none-close as empty element

return nodeStr.toString(); // and return the completed element

} else { // It has children

nodeStr.append(TAG_END); // so close start-tag

NodeList list = node.getChildNodes(); // Get the list of child nodes

assert list.getLength()>0; // There must be at least one

1260

Chapter 23

// Append child nodes and their children...

for(int i = 0 ; i<list.getLength() ; i++) {

nodeStr.append(getDocumentNode(list.item(i), indent+” “));

}

}

nodeStr.append(NEWLINE).append(indent).append(END_TAG_START)

.append(nodeName).append(TAG_END);

break;

case Node.TEXT_NODE:

nodeStr.append(replaceQuotes(((org.w3c.dom.Text)node).getData()));

break;

default:

assert false;

}

return nodeStr.toString();

}

You start out by creating the StringBuffer object and appending a newline and the indent to it to
make each element start on a new line. This should result in a document you can read comfortably in a
text editor.

After saving the name of the current node in nodeName, you determine what kind of node you are deal-
ing with in the switch statement. You could have used the instanceof operator and if statements to
do this, but here there’s a chance to try out the alternative approach that I discussed earlier. You identify
only two cases in the switch, corresponding to the constants Node.ELEMENT_NODE and
Node.TEXT_NODE. This is because our DTD for Sketcher doesn’t provide for any others, so you don’t
expect to find them.

For a node that is an element, you begin appending the start tag for the element, including the element
name. You then check for the presence of attributes for this element. If there are some, you get them as a
NamedNodeMap object in the same manner as our earlier example. You then just iterate through the col-
lection of attributes and build the text that corresponds to each, appending the text to the
StringBuffer object nodeStr.

Once you have finished with the attributes for the current node, you determine whether it has child
nodes. If it has no child nodes, it has no content, so you can complete the tag for the current node mak-
ing it an empty element. Since the element is now complete, you can return it as a String. If the current
element has child nodes, you obtain those in a NodeList object. You then iterate through the nodes in
the NodeList and call getDocumentNode() for each with an extra space appended to indent. The
String that is returned for each call is appended to nodeStr. When all the child nodes have been pro-
cessed, you are done, so you can exit the switch and return the contents of nodeStr as a String.

The other possibility is that the current node is text. This will arise from an Element.Text object in the
sketch. It is also possible that this text may contain double quotes — the delimiter that you are using for
strings in our XML. You therefore call replaceQuotes() to replace all occurrence of QUOTE in the text
with the QUOTE_ENTITY constant that you defined in our Constants interface, before appending the
string to nodeStr.

1261

Creating and Modifying XML Documents

You can implement the replaceQuotes() method in SketchFrame as follows:

public String replaceQuotes(String str) {

StringBuffer buf = new StringBuffer();

for(int i = 0 ; i<str.length() ; i++) {

if(str.charAt(i)==QUOTE) {

buf.append(QUOTE_ENTITY);

} else {

buf.append(str.charAt(i));

}

}

return buf.toString();

}

This just tests each character in the original string. If it’s a delimiter for an attribute value, it’s replaced
by the entity reference " in the output string buf.

Well, you’re done — almost. You must not forget the extra import statements you need in the
SketchFrame.java file:

import java.io.FileNotFoundException;

import java.io.UnsupportedEncodingException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

These cover the new classes that you used in our new code for I/O and for DOM without using fully
qualified names.

Try It Out Writing a Sketch as XML
You call one method that you have yet to define — the openXMLSketch() method that is called in the
XMLImportAction class. You can add an empty definition for this method to SketchFrame to make the
code compilable:

private void openXMLSketch(File xmlFile) {

}

Recompile sketcher with the new code. Once you have fixed any errors, you can run Sketcher and export
your sketch as XML. You can then inspect the file in your editor. You can also process the file with the
TryDOM and TrySAX programs to check that the XML is valid.

How It Works
You’ve been through the detailed mechanics of this. The SketchModel object creates a Document object
that is populated by nodes encapsulating the sketch elements. Each node is created by the corresponding
sketch element. You then navigate through the nodes in the document to create the XML for each node.

You can now have a go at importing an XML sketch.

1262

Chapter 23

Reading an XML Representation of a Sketch
The Import XML operation will also be implemented in the SketchFrame class. You have already added
the menu item and the XMLImportAction class that is used to create it. You just need to implement the
openXMLSketch() method that is called by the actionPerformed() method in the XMLImportAction
class.

Assuming the XML representation of a sketch that you have created is well-formed and valid, creating a
Document object encapsulating a sketch will be a piece of cake. You will just get a DOM parser to do it —
and it will verify that the document is well-formed and valid along the way. You will need an
ErrorHandler object to deal with parsing errors, so first add an inner class to our SketchFrame class
for that:

class DOMErrorHandler implements org.xml.sax.ErrorHandler {

public void fatalError(org.xml.sax.SAXParseException spe)

throws org.xml.sax.SAXException {

JOptionPane.showMessageDialog(SketchFrame.this,

“Fatal error at line “+spe.getLineNumber()

+ “\n”+spe.getMessage(),

“DOM Parser Error”,

JOptionPane.ERROR_MESSAGE);

throw spe;

}

public void warning(org.xml.sax.SAXParseException spe) {

JOptionPane.showMessageDialog(SketchFrame.this,

“Warning at line “+spe.getLineNumber()

+ “\n”+spe.getMessage(),

“DOM Parser Error”,

JOptionPane.ERROR_MESSAGE);

}

public void error(org.xml.sax.SAXParseException spe) {

JOptionPane.showMessageDialog(SketchFrame.this,

“Error at line “+spe.getLineNumber()

+ “\n”+spe.getMessage(),

“DOM Parser Error”,

JOptionPane.ERROR_MESSAGE);

}

}

This implements the three methods declared in the ErrorHandler interface. In contrast to the previous
example using a DOM error handler, rather than writing error information to the command line, here
you display it in a suitable dialog.

Here’s how you can implement the openXMLSketch() method in the SketchFrame class:

private void openXMLSketch(File xmlFile) {

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();

builderFactory.setValidating(true); // Add validating parser feature

builderFactory.setIgnoringElementContentWhitespace(true);

1263

Creating and Modifying XML Documents

try {

DocumentBuilder builder = builderFactory.newDocumentBuilder();

builder.setErrorHandler(new DOMErrorHandler());

checkForSave();

theApp.insertModel(createSketchModel(builder.parse(xmlFile)));

filename = xmlFile.getName(); // Update the file name

setTitle(frameTitle+xmlFile.getPath()); // Change the window title

sketchChanged = false; // Status is unchanged

} catch(ParserConfigurationException e) {

JOptionPane.showMessageDialog(SketchFrame.this,

e.getMessage(),

“DOM Parser Factory Error”,

JOptionPane.ERROR_MESSAGE);

e.printStackTrace(System.err);

} catch(org.xml.sax.SAXException e) {

JOptionPane.showMessageDialog(SketchFrame.this,

e.getMessage(),

“DOM Parser Error”,

JOptionPane.ERROR_MESSAGE);

e.printStackTrace(System.err);

} catch(IOException e) {

JOptionPane.showMessageDialog(SketchFrame.this,

e.getMessage(),

“I/O Error”,

JOptionPane.ERROR_MESSAGE);

e.printStackTrace();

}

}

Most of the code here is devoted to catching exceptions that you hope will not get thrown. You set up
the parser factory object to produce a validating parser that will ignore surplus whitespace. The latter
feature will avoid extraneous nodes in the Document object that will be created by the parser from the
XML file.

After storing a reference to the DOM parser that is created in builder, you create a DOMErrorHandler
object and set that as the handler for any parsing errors that arise. If the parser finds any errors, you’ll
see a dialog displayed indicating what the error is. You use the builder object to parse the XML file that
is identified by the File object xmlFile and pass the Document object that is returned by the parse()
method to the createSketchModel() method that you’ll be adding to the SketchFrame class next.
This method has the job of creating a new SketchModel object from the Document object.

Let’s see how you can create a new SketchModel object encapsulating a new sketch by analyzing the
Document object.

Creating the Model
You know that a sketch in XML is a two-level structure. There is a root element <sketch> that contains
one XML element for each of the elements in the original sketch. Therefore, to recreate the sketch, you
just need to extract the children of the root node in the Document object and then figure out what kind of
sketch element each child represents. Whatever it is, you want to create a sketch element object of that
type and add it to a model. The simplest way to create sketch element objects from a given document

1264

Chapter 23

node is to add a constructor to each of the classes that define sketch elements. You’ll add these construc-
tors after you have defined the createSketchModel() method in the SketchFrame class. Here’s the
code for that:

private SketchModel createSketchModel(org.w3c.dom.Document doc) {

SketchModel model = new SketchModel(); // The new model object

// Get the first child of the root node

org.w3c.dom.Node node = doc.getDocumentElement().getFirstChild();

// Starting with the first child, check out each child in turn

while (node != null) {

assert node instanceof org.w3c.dom.Element; // Should all be Elements

String name = ((org.w3c.dom.Element)node).getTagName(); // Get the name

if(name.equals(“line”)) { // Check for a line

model.add(new Element.Line((org.w3c.dom.Element)node));

} else if(name.equals(“rectangle”)) { // Check for a rectangle

model.add(new Element.Rectangle((org.w3c.dom.Element)node));

} else if(name.equals(“circle”)) { // Check for a circle

model.add(new Element.Circle((org.w3c.dom.Element)node));

} else if(name.equals(“curve”)) { // Check for a curve

model.add(new Element.Curve((org.w3c.dom.Element)node));

} else if(name.equals(“text”)) { // Check for a text

model.add(new Element.Text((org.w3c.dom.Element)node));

}

node = node.getNextSibling(); // Next child node

}

return model;

}

You’ll need three more import statements in SketchFrame for the new names you use here:

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

This method works in a straightforward fashion. You get the first child node of the root node by calling
getDocumentElement() for the document object to obtain a reference to the org.w3c.dom.Element
object that encapsulates the root node, and then call its getFirstChild() method to obtain a reference
of type Node to its first child. All the children of the root element should be Element nodes, and the
assertion verifies this.

You determine what kind of element each child node is by checking its name. You call a sketch Element
constructor corresponding to the node name to create the sketch element to be added to the model. Each
of these constructors creates an object from the org.w3c.dom.Element object reference that is passed as
the argument. You just have to implement these constructors in the subclasses of Element, and you’re
done.

1265

Creating and Modifying XML Documents

Creating Sketch Elements from XML Elements
Every element has to have the color field in the base class set to a color determined from a <color> ele-
ment in the document. You can therefore usefully add a base class method to take care of this. Add the
following to the Element class definition:

protected void setElementColor(org.w3c.dom.Element colorElement) {

color = new Color(Integer.parseInt(colorElement.getAttribute(“R”)),

Integer.parseInt(colorElement.getAttribute(“G”)),

Integer.parseInt(colorElement.getAttribute(“B”)));

}

The method expects to receive a reference to an org.w3c.dom.Element object as an argument that con-
tains the RGB values for the color. You extract the value of each of the attributes in the colorElement
object by calling its getAttribute() method with the attribute name as the argument. You pass each of
the values obtained to the Color constructor, and you store the reference to this object in color. Because
the attribute values are strings, you have to convert them to numerical values using the static
parseInt() method that is defined in the Integer class.

The same applies to the position field in the Element class, so you should define a method in the
Element class to initialize it from an org.w3c.dom.Element object:

protected void setElementPosition(org.w3c.dom.Element posElement) {

position = new Point();

position.setLocation(Double.parseDouble(posElement.getAttribute(“x”)),

Double.parseDouble(posElement.getAttribute(“y”)));

}

This uses essentially the same mechanism as the previous method. Here the attribute strings represent
double values, so you use the static parseDouble() method from the Double class to convert them to
the numeric equivalent.

Every Sketcher element has a color, a position, and an angle, which are stored in base class fields, so you
can create a base class constructor to initialize these from the document node for the element:

protected Element(org.w3c.dom.Element xmlElement) {

// Get the <color> element

org.w3c.dom.NodeList list = xmlElement.getElementsByTagName(“color”);

setElementColor((org.w3c.dom.Element)list.item(0)); // Set the color

list = xmlElement.getElementsByTagName(“position”); // Get <position>

setElementPosition((org.w3c.dom.Element)list.item(0)); // Set the position

angle = Double.parseDouble(xmlElement.getAttribute(“angle”)); // Set the angle

}

You have declared this constructor as protected to prevent the possibility of it being called externally.

Every one of the new constructors in the inner classes to Element will call this constructor first. An
important point to remember is that if a constructor for a derived class object does not call a base class
constructor as the first statement in the body of the constructor, the compiler will insert a call to the

1266

Chapter 23

no-arg constructor for the base class. This means that a base class always has to have a no-arg construc-
tor if the derived class constructors do not call a base class constructor with arguments.

You first extract the child element for the current element with the name “color” by calling the
getElementsByTagName() method for xmlElement. This method is declared in the
org.w3c.dom.Element interface and returns a NodeList object containing all the child nodes with the
given name. If you pass the string “*” as the argument to this method, it will return all child
org.w3c.dom.Element objects in the node list. There’s another method, getElementsByTagNameNS(),
that is declared in the Element interface that does the same for documents using namespaces. The first
argument in this case is the namespace URI, and the second argument is the element name. The strings
to either or both arguments can be “*”, in which case all namespaces and/or names will be matched.

You pass the reference to the element with the name “color” to the setElementColor() method that
is inherited from the base class. This sets the value of the color field in the base class.

Next you initialize the position field in the Element class by calling the setElementPosition()
method. The process is much the same as for the color field. Lastly, you set the angle field by convert-
ing the string that is the value for the angle attribute for the current node to type double.

Now you’re ready to add the new constructors to the subclasses to create sketch elements from XML
elements.

Creating a Line Element
You can construct an Element.Line object by first calling the base class constructor you have just
defined to set the color, position, and angle fields and then setting the line field in the derived
class. Here’s the code for the constructor:

// Content is <color>, <position>, <endpoint> elements. Attribute is angle.

public Line(org.w3c.dom.Element xmlElement) {

super(xmlElement);

org.w3c.dom.NodeList list = xmlElement.getElementsByTagName(“endpoint”);

org.w3c.dom.Element endpoint = (org.w3c.dom.Element)list.item(0);

line = new Line2D.Double(origin.x, origin.y,

Double.parseDouble(endpoint.getAttribute(“x”))-position.getX(),

Double.parseDouble(endpoint.getAttribute(“y”))-position.getY());

}

To save you having to refer back to the DTD, the comment preceding the constructor definition outlines
the XML corresponding to the element. You first call the base class constructor and then extract the child
element that is the <endpoint> element. You will doubtless recall that all our sketch elements are
defined at the origin. This makes moving an element very easy and allows all elements to be moved in
the same way — by modifying the position field. You therefore create the Line2D.Double object as a
line starting at the origin. The coordinates of its end point are the values stored in the <endpoint> child
element minus the corresponding coordinates of position that were set in the base class constructor.

Creating a Rectangle Element
This constructor will be almost identical to the previous constructor for a line:

1267

Creating and Modifying XML Documents

// Rectangle has angle attribute. Content is <color>,<position>,<bottomright>

public Rectangle(org.w3c.dom.Element xmlElement) {

super(xmlElement);

org.w3c.dom.NodeList list = xmlElement.getElementsByTagName(“bottomright”);

org.w3c.dom.Element bottomright = (org.w3c.dom.Element)list.item(0);

rectangle = new Rectangle2D.Double(origin.x, origin.y,

Double.parseDouble(bottomright.getAttribute(“x”))-position.getX(),

Double.parseDouble(bottomright.getAttribute(“y”))-position.getY());

}

Spot the differences! This code is so similar to that of the Line constructor that I don’t think it requires
further explanation.

Creating a Circle Element
Here’s the code for the Circle constructor:

// Circle has radius, angle attributes. Content is <color>, <position>

public Circle(org.w3c.dom.Element xmlElement) {

super(xmlElement);

double radius = Double.parseDouble(xmlElement.getAttribute(“radius”));

circle = new Ellipse2D.Double(origin.x, origin.y, // Position - top-left

2.*radius, 2.*radius); // Width & height

}

If this code is compared to the previous two constructors, the only change you will find is the last bit
where you use the radius attribute value to define the Ellipse2D.Double object representing the circle.

Creating a Curve Element
Before you nod off, this one’s a little more challenging because there can be an arbitrary number of child
nodes:

// Curve has angle attribute. Content is <color>, <position>, <point>+

public Curve(org.w3c.dom.Element xmlElement) {

super(xmlElement);

curve = new GeneralPath();

curve.moveTo(origin.x, origin.y);

org.w3c.dom.NodeList nodes = xmlElement.getElementsByTagName(“point”);

for(int i = 0 ; i<nodes.getLength() ; i++) {

curve.lineTo(

(float)(Double.parseDouble(

((org.w3c.dom.Element)nodes.item(i)).getAttribute(“x”)) - position.x),

(float)(Double.parseDouble(

((org.w3c.dom.Element)nodes.item(i)).getAttribute(“y”)) - position.y));

}

}

1268

Chapter 23

Having said that, the first part calls the base class constructor the same as ever. It’s more interesting
when you get the list of Element nodes with the name “point” by calling getElementsByTagName()
for the xmlElement object. These are the nodes holding the coordinates of the points that define the
curve. It is important to us here that the method returns the nodes in the NodeList object in the
sequence in which they were originally added to the XML document. If it didn’t, you would have no
way to reconstruct the curve. With the data encapsulated in the nodes from the NodeList object that is
returned, you can reconstruct the GeneralPath object that describes the curve. The first point on the
curve is always the origin, so the first definition in the path is defined by calling its moveTo() method to
move to the origin.

Each of the <point> nodes contains a point on the path in absolute coordinates. Since you want the
curve to be defined relative to the origin, you subtract the coordinates of the start point position from
the corresponding coordinates stored in each node. You use the resulting coordinates to define the end
on each line segment by passing them to the lineTo() method for the path object.

Creating a Text Element
Recreating an Element.Text object from a <text> element is the messiest of all. It certainly involves
the most code. It’s not difficult though. There are just a lot of bits and pieces to take care of:

// Text has angle attribute. Content is <color>, <position>, , <string>

// has attributes fontname, fontstyle, pointsize

// fontstyle is “plain”, “bold”, “italic”, or “bold-italic”

// <string> content is text plus <bounds>

public Text(org.w3c.dom.Element xmlElement) {

super(xmlElement);

// Get the font details

org.w3c.dom.NodeList list = xmlElement.getElementsByTagName(“font”);

org.w3c.dom.Element fontElement = (org.w3c.dom.Element)list.item(0);

String styleStr = fontElement.getAttribute(“fontstyle”);

int style = 0;

if(styleStr.equals(“plain”)) {

style = Font.PLAIN;

} else if(styleStr.equals(“bold”)) {

style = Font.BOLD;

} else if(styleStr.equals(“italic”)) {

style = Font.ITALIC;

} else if(styleStr.equals(“bold-italic”)) {

style = Font.BOLD + Font.ITALIC;

} else {

assert false;

}

font = new Font(fontElement.getAttribute(“fontname”), style,

Integer.parseInt(fontElement.getAttribute(“pointsize”)));

// Get string bounds

list = xmlElement.getElementsByTagName(“bounds”);

org.w3c.dom.Element boundsElement = (org.w3c.dom.Element)list.item(0);

this.bounds = new java.awt.Rectangle(origin.x, origin.y,

Integer.parseInt(boundsElement.getAttribute(“width”)),

Integer.parseInt(boundsElement.getAttribute(“height”)));

1269

Creating and Modifying XML Documents

// Get the string

list = xmlElement.getElementsByTagName(“string”);

org.w3c.dom.Element string = (org.w3c.dom.Element)list.item(0);

list = string.getChildNodes();

StringBuffer textStr = new StringBuffer();

for(int i = 0 ; i<list.getLength() ; i++) {

if(list.item(i).getNodeType()==org.w3c.dom.Node.TEXT_NODE) {

textStr.append(((org.w3c.dom.Text)list.item(i)).getData());

}

}

text = textStr.toString().trim();

}

The attributes of the <string> element define the font. Only the fontstyle attribute needs some anal-
ysis since you have to represent the style by an integer constant. This means testing for the possible val-
ues for the string and setting the appropriate integer value in style. Of course, you could have stored
the style as a numeric value, but that would have been meaningless to a human reader. Making the
attribute value a descriptor string makes it completely clear. After obtaining the style code, you have an
assertion to make sure it actually happened. Because the XML was created by Sketcher, the only reasons
why this would assert are if there is an error in the code somewhere if the XML was written by a differ-
ent version of Sketcher, or if the XML was generated by hand. Of course, errors in the XML due to incon-
sistencies with the DTD would be caught by the parser and signaled by one or other of the
ErrorHandler methods.

Text content for an element can appear distributed among several child <Text> nodes. You accommo-
date this possibility by concatenating the data from all the child <Text> nodes that you find, and then
trimming any leading and trailing whitespace from the string before storing it in text.

That’s all the code you need. If everything compiles, you are ready to try exporting and importing
sketches. If it doesn’t compile, chances are good there’s an import statement missing.

Try It Out Sketches in XML
You can try various combinations of elements to see how they look in XML. Be sure to copy the
sketcher.dtd file to the directory in which you are storing exported sketches. If you don’t, you won’t
be able to import them since the DTD will not be found. Don’t forget you can look at the XML using any
text editor and in most browsers. I created the sketch shown in Figure 23-1.

1270

Chapter 23

Figure 23-1

When I exported this sketch I got an XML file with the following contents:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE sketch SYSTEM “sketcher.dtd”>

<sketch>

<circle radius=”15.0” angle=”0.0”>

<color B=”255” G=”0” R=”0”/>

<position x=”153.0” y=”109.0”/>

</circle>

<circle radius=”18.027756377319946” angle=”0.0”>

<color B=”255” G=”0” R=”0”/>

<position x=”217.0” y=”123.0”/>

</circle>

<circle radius=”134.61797799699713” angle=”0.0”>

<color B=”255” G=”0” R=”0”/>

<position x=”78.0” y=”48.0”/>

</circle>

<line angle=”0.0”>

<color B=”0” G=”0” R=”255”/>

<position x=”191.0” y=”158.0”/>

<endpoint x=”162.0” y=”194.0”/>

</line>

<line angle=”0.0”>

<color B=”0” G=”0” R=”255”/>

<position x=”162.0” y=”193.0”/>

1271

Creating and Modifying XML Documents

<endpoint x=”197.0” y=”198.0”/>

</line>

<line angle=”0.0”>

<color B=”0” G=”255” R=”0”/>

<position x=”185.0” y=”94.0”/>

<endpoint x=”137.0” y=”104.0”/>

</line>

<line angle=”0.0”>

<color B=”0” G=”255” R=”0”/>

<position x=”246.0” y=”110.0”/>

<endpoint x=”285.0” y=”166.0”/>

</line>

<curve angle=”0.0”>

<color B=”0” G=”0” R=”255”/>

<position x=”132.0” y=”224.0”/>

<point x=”132.0” y=”223.0”/>

<point x=”133.0” y=”222.0”/>

<point x=”134.0” y=”222.0”/>

<point x=”137.0” y=”222.0”/>

<!-- points cut here for the sake of brevity -->

<point x=”211.0” y=”245.0”/>

<point x=”212.0” y=”245.0”/>

<point x=”213.0” y=”245.0”/>

<point x=”214.0” y=”245.0”/>

</curve>

<text angle=”0.3183694064160789”>

<color B=”0” G=”255” R=”0”/>

<position x=”42.0” y=”283.0”/>

<string>

<bounds width=”271” height=”21”/>

The Complete Set! "Try it out"

</string>

</text>

</sketch>

This file is also available as sketchexample.xml in the code download for this book from the Wrox
Press web site, http://www.wrox.com. You could try importing it into Sketcher and see if you get the
same sketch.

Summary
In this chapter I’ve discussed how you can use a DOM parser to analyze XML and how JAXP supports
the synthesis and modification of XML documents using DOM. The key points I have covered include
the following:

❑ An object of type DocumentBuilder encapsulates a DOM parser.

❑ You create an object encapsulating a DOM parser by using a DocumentBuilderFactory object
that you obtain by calling the static newInstance() method that is defined in the
DocumentFactoryBuilder class.

1272

Chapter 23

❑ You can parse an XML document by passing the document as an argument to the parse()
method for a DocumentBuilder object.

❑ A DOM parser creates a Document object that encapsulates an entire XML document as a tree of
Node objects.

❑ The DOM API defines the methods of a Document object that enable you to analyze an XML
document by navigating through the nodes in the Document object.

❑ The DOM API also defines methods for creating a new XML document encapsulated by a
Document object.

❑ When you want to create a new XML document that includes a DTD, you should use the
createDocument() method for a DOMImplementation object, rather than the newDocument()
method for a DocumentBuilder object.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Write a program using DOM that will count the number of occurrences of each element type in
an XML document and display them. The document file should be identified by the first
command-line argument. The program should also accept optional, additional command-line
arguments that are the names of elements. When there are two or more command-line arguments,
the program should count and report only on the elements identified by the second and
subsequent command-line arguments.

2. Implement the XML Import capability in Sketcher using SAX, rather than DOM.

1273

Creating and Modifying XML Documents

24
Talking to Databases

In the next two chapters, you’re going to look at how Java programs can interface with relational
databases or any database that can be accessed using Structured Query Language (SQL). You’ll be
executing SQL statements by using classes that come with the Java Development Kit (JDK).

First I’ll introduce the basic ideas behind databases and how they store data. This leads naturally
into a discussion of SQL, the language that is used with many relational databases to both define
and query data and which is a prerequisite for database access in Java. Then you’ll look into the
Java Database Connectivity (JDBC) class library, which provides a standard way for establishing
and maintaining a Java program’s connection to a database. Once you have a connection to a
database, you can use SQL to access and process the contents.

In this first chapter, you’ll take a brief tour of database concepts, SQL and JDBC. In the next chap-
ter you’ll go into more depth on the capabilities provided by JDBC and develop a database brows-
ing application. In this chapter you will learn:

❑ What databases are

❑ What the basic SQL statements are and how you apply them

❑ What the rationale behind JDBC is

❑ How to write a simple JDBC program

❑ What the key elements of the JDBC API are

JDBC Concepts and Terminology
To make sure we have a common understanding of the jargon, I’ll first take a look at database ter-
minology. First, in general, data access is the process of retrieving or manipulating data that is
taken from a remote or local data source. Data sources don’t have to be relational — they can come
in a variety of different forms. Some common examples of data sources that you might access are:

❑ A remote relational database on a server — for example, SQL Server

❑ A local relational database on your computer — for example, Personal Oracle or Microsoft
Access

❑ A text file on your computer

❑ A spreadsheet

❑ A remote mainframe/midrange host providing data access

❑ An online information service (such as a stock market ticker, for example)

JDBC is, by definition, an interface to relational data sources. While it is conceivable that non-relational
sources may be accessible through JDBC, you’ll be concentrating on relational databases throughout this
chapter and the next. If you haven’t met relational databases before, you should still be able to follow the
discussion. The structure of a relational database is logical and fairly easy to learn, and while I can’t pro-
vide a comprehensive tutorial on it here, I’ll cover enough of the basics to make what you are doing
understandable, even if you’ve never worked with databases before.

The Java Database Connectivity (JDBC) library provides the means for you to execute SQL statements
within a Java program to access and operate on a relational database. JDBC was designed as an object-
oriented, Java-based application program interface (API) for database access and is intended to be a
standard to which Java developers and database vendors can adhere.

JDBC is based on other standard program-database interfaces — largely the X/Open SQL CLI (Call Level
Interface) specification, but knowledge of these standards isn’t necessary to use JDBC. However, if you’ve
programmed database access before, you should be able to draw on that experience when using JDBC.

The library is implemented in the java.sql package. It is a set of classes and interfaces that provides a
uniform API for access to a broad range of databases.

Figure 24-1 shows the basic contents of the technical_library database (available as part of the code
download for this book from the Wrox web site —www.wrox.com) that I’ll be using both to illustrate
some key concepts and as a base for the examples.

This shows the tables that make up the sample database. In case you are unfamiliar with relational
databases, I’ll be going into what tables are in a moment.

The operations that you want to carry out on a relational database are expressed in a language that was
designed specifically for this purpose, the Structured Query Language — more commonly referred to as
SQL. SQL is not like a conventional programming language, such as Java. SQL is a declarative language,
which means that SQL statements tell the database server what you want to do, but not how it should be
done — the how is up to the server. Each SQL command is analyzed by the database server, and the oper-
ation it describes is carried out by a separate piece of software that is usually referred to as the database
engine. A database engine will be associated with a particular implementation of a relational database,
although not necessarily uniquely. Different commercial database implementations may use a common
database engine.

1276

Chapter 24

Figure 24-1

Tables for technical_library Database

Catalog

authid

authors

lastname firstname

isbn

books

title pub_code

pub_code

publishers

name

pub_code

periodicals

name

authid

auth_books

Table

columns

rows

isbn

isbn

book_kwds

keyword art_id

article_kwds

keyword

art_id

articles

authid per_code issue title

1277

Talking to Databases

Tables
A relational database consists of a number of tables. A table, such as the authors table in the example in
Figure 24-1, is the primary database construct that you’ll be dealing with. Any time that you define, cre-
ate, update, or delete data, you’ll do so within the context of a table.

When you create a table within a database, you are creating a “template” for a rectangular grid that will
contain the data. In relational parlance, a table is a collection of rows conforming to the specifications of
the corresponding columns, and the table is called a relation. Each row implies that the set of data items
that it contains are related in some way — it expresses a relationship between the data items, and a table
can contain as many rows as you want.

The technical term for a row in a table is a tuple. The columns define the constituent parts of a row
and are referred to as fields, and these column-defined items of data in a row are called attributes.
Thus, the number of columns for a given table is fixed. Figure 24-2 shows the authors table from the
technical_library database.

Figure 24-2

Although a table is logically a set of rows with a fixed number of columns, the physical organization
doesn’t have to be like that. The physical organization can be anything at all as long as the logical
organization — the way it appears when you access it — is as I have described.

Table Columns
As I said, a table behaves as if it is a rectangular grid of cells. The grid has a given number of columns
and an arbitrary number of rows. Each column of cells in the grid stores data of a particular kind. Not
only is the data of a particular data type, but it is also a specific category of information specified by the
field name. For example, in Figure 24-2, the field with the name lastname is one of three fields defined

The columns in a row are referred to
as fields.

The authors Table

A value in a table cell is
called an attribute.

A row in a table is
called a tuple.

authid

authors
lastname firstname

4 Horton Ivor

1278

Chapter 24

for the authors table. It stores the last name of the authors that appear in the table, and the type of the
data will be a text string. SQL has data types that correspond to the basic Java data types — I’ll list them
later.

It’s fundamental to a relational database that the data items in each column in a table have consistent
data types and semantics. For example, in the authors table, the lastname column, which is defined as
a text field, will be used to store text only — not numbers, so the data type is preserved. The column’s
semantics must also be preserved, and since the column represents the last name of an author, you
would not use this column to store an author’s hobbies or favorite movie, even though such data items
may be of the same type. If you wanted to record that information, you would need to create new
columns in the table.

Table Rows
Each row in a table is the collection of data elements that make up an entity referred to as a tuple. Some
data sources refer to a row as a record, and you will often see the term record used in a general-purpose
programming context when accessing a relational database. The term recordset is used to describe a col-
lection of rows that is produced by executing an SQL command.

A row from the authors table in the database shown in Figure 24-2 would look like the following:

4 Horton Ivor

This row contains data items for the authid, lastname, and firstname columns. Although in this case
there is a data item corresponding to each column, this does not have to be the case. A data item can be
empty, but it still appears in the row. Note that empty is not the same as zero, and NULL is used in SQL to
denote the absence of a value. A rough analogy might be a variable in Java of type Integer that could
contain a reference to an object that represents zero (or some other integer value, of course) or could con-
tain null. I’ll come back to the notion of NULL when I introduce SQL data types.

Database Catalog
In general, the catalog refers to the database system tables. System tables are similar to the tables used
by your application, except that they are used to store information about the databases, the tables, and
the composition of those tables, rather than storing application data. The catalog can be queried to find
out what tables are available from a data source, what columns are defined for a given table, and so
forth. The data describing the contents of a database is also referred to as metadata — data about data —
or collectively as the data dictionary.

In Figure 24-1, “Catalog” refers to the entire technical_library database.

Depending on the particular database to which you’re connected, the catalog may contain other infor-
mation related to accessing the database, such as security details, foreign keys, and stored procedures.

1279

Talking to Databases

Figure 24-3

Many database servers are capable of executing pre-built scripts, as well as SQL statements. These
server-based scripts are called by the application, and are executed by the database server. They are fre-
quently referred to as stored procedures, or just procedures. They are used to package up commonly
used operations on the database, particularly those that enforce specific business rules.

Introducing SQL
Structured Query Language (SQL) is accepted internationally as the official standard for relational
database access. A major reason for the acceptance of SQL as the relational query language was the move
toward client/server architectures that began in the late 1980s.

lastname

The authors table The auth_books table

This field is called a key field because
the values in the column uniquely identify

each of the rows in the authors table.

This field is called a foreign key
because the values in the column are

key values for the authors table.

firstnameauthid isbnauthid

The column values that together uniquely identify a particular row in a table make
up what is referred to as the primary key. Such columns are also called primary key
fields or primary key values. Rows may also contain values that refer to key values
in different tables. For example, the auth_books table contains a column authid
whose value is the primary key for a row in the authors table. When a table con-
tains columns that are key columns for another table, values in those columns are
referred to as foreign keys. Figure 24-3 shows key fields and foreign keys.

1280

Chapter 24

SQL is different from other programming languages that you may be familiar with in that it is declara-
tive, not procedural. In other words, you don’t use SQL to define complex processes; you use SQL to
issue commands that define and manipulate data.

The first thing that strikes you about SQL is that it is very readable. The way that each query is struc-
tured reads like a sentence in English. The syntax is easy to learn, and the constructs and concepts are
very easy to grasp. Secondly, with SQL you always issue commands. You send the command to the
database and the database either returns the required data or performs the required action.

Let’s look at the example of a database that you saw earlier in Figure 24-1 — the technical_library
database. How would you go about defining the tables you need to implement this database?

Try It Out Designing Database Tables
The first step in designing the tables you need in your database is to decide what information you want
to capture. Then you can design the tables around that information.

With the technical_library database, you want to keep track of the following kinds of things:

❑ Books

❑ Articles

❑ Authors

❑ Publishers

For each of these information categories, called entities in database jargon, you will want to record a
specific set of data items, as follows:

Entity Attribute

Books ISBN

Book title

Author(s)

Publisher

Table continued on following page

Not all versions and dialects of SQL are created equal, however. As vendors have
incorporated SQL into their products, extensions to the grammar have often been
added. That was convenient for the database vendors but tough for anyone else try-
ing to work with more than one database vendor. To ensure SQL’s place as a stan-
dard for database access, organizations like the ISO and ANSI have worked with the
industry to develop standards for SQL. The current ISO operating standard is SQL-
92, to which JDBC adheres. Conformance to the standard does not guarantee that
your SQL will work in every case though. A database system that is in conformance
with the standard for SQL is not obliged to implement all the capabilities that the
standard defines. Indeed, most database systems do not do so.

1281

Talking to Databases

Entity Attribute

Articles Author(s)

Title

Periodical it was published in

Issue of publication

Authors Last name

First name

Books published

Articles published

Publishers Publisher code

Name

Let’s start out with a table to keep track of the authors. You’ll call this table authors and describe the
columns that you want for this table:

Column Heading Description

authid Unique identifier for an author — you need this because several
authors could have the same name

lastname Family name

firstname First name

address1 Address line one

address2 Address line two

city City

state_prov State or province

postcode Zip or postal code

country Country

phone Contact phone number

fax Fax number

email E-mail address

You need to assign a data type to each column heading that prescribes the form of the data in the column
as it is stored in the table. Of course, these need to be data types meaningful to SQL, not necessarily Java
data types. The data types for data in a relational database are those recognized by the SQL implementa-
tion supported by the database engine, and these types will have to be mapped to Java data types. Let’s
look at some examples of SQL data types:

1282

Chapter 24

SQL Data Type Description

CHAR Fixed-length string of characters

VARCHAR Variable-length string of characters

BOOLEAN Logical value —true or false

SMALLINT Small integer value, from -127 to +127

INTEGER Larger integer value, from -32767 to +32767

NUMERIC A numeric value with a given precision — which is the number of decimal
digits in the number — and a given scale — which is the number of digits
after the decimal point. For example, the value 234567.89 has a precision of
8 and a scale of 2.

FLOAT Floating-point value

CURRENCY Stores monetary values

DOUBLE Higher precision floating-point value

DATE Date

TIME Time

DATETIME Date and time

RAW Raw binary data (can be used to store objects in a streamed binary format)

As I said earlier, NULL represents the absence of a value for any SQL type of data, but it is not the same
as the null we have been using in Java. For one thing, in SQL you can’t compare one NULL with
another NULL, you can only determine whether a particular attribute is or is not NULL. One effect of
this is to introduce four potential values of type BOOLEAN—TRUE and FALSE, which you would
expect; NULL meaning the absence of a BOOLEAN value; and UNKNOWN, which arises when the result
cannot be determined — when you compare two NULL values, for example. Note that not all database
systems allow BOOLEAN values to be NULL however.

Based on the types of information in the authors table listed earlier, you can assign a data type for each
column in the table that is appropriate for the kind of information in the column:

Column Name Data Type

authid INTEGER

lastname VARCHAR

firstname VARCHAR

address1 VARCHAR

address2 VARCHAR

city VARCHAR

Table continued on following page

1283

Talking to Databases

Column Name Data Type

state_prov VARCHAR

pzipcode VARCHAR

country VARCHAR

phone VARCHAR

fax VARCHAR

email VARCHAR

How It Works
The column names tell us something about the information that will be stored in that field, but they
don’t tell the computer what type of information has been stored or how to store it. While you are inter-
ested in the information stored in the columns, all the database engine wants to know is the type of infor-
mation, and that’s where the data type comes in.

You probably noticed that a column labeled authid has been placed at the top of the list of columns in
the authors table. This is to give each record a unique identifier so that an individual record can easily
be retrieved. Think of the nightmare you’d have if you were managing books and journals for a large
library and you had several authors named John Smith. You wouldn’t have any way of distinguishing
one John Smith from another. It’s essential to give each row, or record, a unique identifier, and the
author’s ID serves this purpose here. Of course, it is not always necessary to introduce a column or
columns specifically for this purpose. If your table already contains a column or combination of columns
that will uniquely identify each row, then you can just use that.

Most of the data in the authors table is string information, so the VARCHAR data type was chosen as
most convenient, since it allows as much or as little text information to be stored in that field as neces-
sary. However, in practice it is likely to be more efficient to choose fixed-length character fields.

The next requirement is to be able to store information about books. One possibility is to store the data in
the authors table using extra columns. If you wanted to store books in the authors table, you might
consider adding two columns —title and publisher. However, this would seriously restrict the
amount of information about books written by a particular author — to just one book in fact. Since each
record in the authors table has a unique author ID, each author can have only one record in the table,
and thus only one book could be recorded for each author. In practice, authors will frequently write
more than one book or article, so you must have a way to cope with this. A much more realistic
approach is to store books in a separate table.

Not all databases support VARCHAR. In such cases, you will have to define these
fields as CHAR type anyway and estimate the maximum number of characters these
fields will require. You’ll be doing this a little later when you get to a final defini-
tion of the database tables to allow the same table definitions to work with
Microsoft Access and other databases.

1284

Chapter 24

Try It Out Defining the Books Table
You can easily store information about individual books by creating a table that will store the following
information:

Column Heading Description

isbn ISBN is a globally unique identifier for a book

title Title of the book

pub_code Code identifying the publisher of the book

You also need an SQL data type assignment for each column in our books table.

Column Heading Data Type

isbn VARCHAR

title VARCHAR

pub_code CHAR(8)

Here the publisher’s code is a fixed-length character field. The other two fields vary in length so you
have assigned VARCHAR as the most convenient type. Where this is not supported, you would have to
use the CHAR type with a length sufficient to accommodate whatever data might turn up — something
that is not always easy to decide.

How It Works
The books table allows you to record the ISBN for each book, which uniquely identifies the book, its
title, and the publisher of the book. Notice, however, that I haven’t included any information about the
author. This isn’t an oversight. Since more than one author can be involved in the writing of a book and
an author can be involved in the writing of more than one book, you need to add some more informa-
tion linking an author with a book that will be independent of the books table. Let’s see how you might
do that.

Designing an Intersection Table
It is not difficult to see that you could create the link between an author and a book by using the isbn
(the book identifier) and the authid. If you create a table with these two pieces of information, you can
make a record of each combination of authors and the books they authored or co-authored. This table is
simple enough — it merely contains a column for the author identifier and the ISBN. The data types
must match the corresponding columns in the authors and books tables:

Column Heading Data Type

authid INTEGER

isbn VARCHAR

1285

Talking to Databases

This table effectively provides links between the authors table and the books table. A table like this that
links two or more tables is called an intersection table and is illustrated in Figure 24-4.

Figure 24-4

Now that you’ve decided on the design of the tables, let’s see how you use SQL to create and add infor-
mation to them. Rather than use the VARCHAR type for text fields, which is less widely supported, you’ll
use fixed-length CHAR types so that the database can be created in more environments. It may also be a
bit more efficient.

SQL Statements
Most SQL statements, and certainly the ones you’ll be using, fall neatly into two groups:

❑ Data Definition Language (DDL) statements that are used to describe the tables and the data
they contain.

❑ Data Manipulation Language (DML) statements that are used to operate on data in the
database. DML can be further divided into two groups:

❑ SELECT statements — Statements that return a set of results

❑ Everything else — Statements that don’t return a set of results

isbnauthid

1-234...345

1-234...25

1-357...345

1-468...345

lastname firstname

The books Table

The auth_books Table

The authors Table

One author with
three books.

One book with
two authors

authid

May Mary25

Can Will345

Knack Nick678

title pub_codeisbn

Do It Now 222221-234...

Never Again 222221-357...

DB or Not DB 222221-468...

1286

Chapter 24

To create the tables in the example, you would use DDL, which defines a syntax for commands such as
CREATE TABLE and ALTER TABLE. You would use DDL statements to define the structure of the
database. To carry out operations on the database — adding rows to a table or searching the data, for
example — you would use DML statements.

Here’s an example of a typical DDL statement:

CREATE TABLE authors (

authid INT NOT NULL PRIMARY KEY,

lastname CHAR(25) NOT NULL,

firstname CHAR(15),

address1 CHAR(25),

address2 CHAR(25),

city CHAR(25),

state_prov CHAR(25),

zipcode CHAR(10),

country CHAR(15),

phone CHAR(20),

fax CHAR(20),

email CHAR(25));

This is not dissimilar to the data type assignments that I described earlier, but as you can see, in this SQL
statement I’ve used fixed-length CHAR fields rather than VARCHAR types. The values between parentheses
are the number of characters in the field. Note that while it is not mandatory, by convention keywords in
SQL are written in uppercase.

The clause NOT NULL PRIMARY KEY for the authid column tells the database two things. First, it indi-
cates that no row of the table is allowed to contain a NULL value in this column. Every row in this col-
umn must always contain a valid value. Second, because this column is a primary key field, the database
should create a unique index in the authid column. This ensures that there will be no more than one
row with any given author ID. This greatly assists the database operations when searching through and
ordering records. Think how difficult it would be to search for an entry in an encyclopedia without an
index of unique values in one of the volumes.

This is the same principle on which database indexes work. Just to make sure you have some concrete
information identifying an author, the lastname field is also not allowed to be NULL. Of course, all the
tables in a database have to have unique names; otherwise, it would not be possible to determine to
which table you were referring. The names for the columns within a table must all be different for the
same reason, and it is also helpful if you give all the non-key columns in all the tables in the database
unique names, but this is not mandatory.

Now that you have a table created, you need to put data into the table. The SQL INSERT statement does
exactly that.

INSERT Statements
There are three basic parts to an INSERT statement:

❑ Defining the target table for inserting data

❑ Defining the columns that will have values assigned

❑ Defining the values for those columns

1287

Talking to Databases

An INSERT statement begins with the keywords INSERT INTO, followed by the name of the target table:

INSERT INTO authors

You then supply a list of the names of the columns that will receive values, enclosed between parentheses:

(authid, lastname, firstname, email)

Lastly, you put the keyword VALUES followed by the values between parentheses for the columns you
have identified:

VALUES (99, ‘Phillips’, ‘Ron’, ‘ronp@happykitty.com’)

Thus, the complete INSERT statement is:

INSERT INTO authors (authid, lastname, firstname, email)

VALUES (99, ‘Phillips’, ‘Ron’, ‘ronp@happykitty.com’)

The result of executing this statement is a new row inserted into the authors table. This statement does
not fill in values for every column in the table, however. The SQL database will supply a NULL value
where no values were supplied by the INSERT statement. If you had attempted to insert a row without a
value for authid, the database would have reported an error, since the table was created with the
authid column specified as NOT NULL.

You can use a variation on the INSERT statement when all column values are being filled; when no
columns are specified in an INSERT statement, SQL assumes that the values following the VALUES key-
word correspond to each column in the order that they were specified when the table was created. For
example, you could add a row to the books table with the following statement:

INSERT INTO books (isbn, title, pub_code)

VALUES (‘186100088X’, ‘Beginning Visual C++ 6’, ‘WROX’)

Since the books table contains only the three columns, the following statement has exactly the same
results:

INSERT INTO books

VALUES (‘186100088X’, ‘Beginning Visual C++ 6’, ‘WROX’)

Note how I have been spreading the SQL statements over two lines, just for readability. Whitespace is
ignored generally in SQL, except in the middle of a string, of course, so you can add whitespace wher-
ever it helps to make your SQL code more readable.

Now, let’s look at a basic SELECT statement, as this will provide a starting point for getting some data
back from the database that you prepared earlier.

SELECT Statements
You use the SELECT statement to retrieve information from a database. There are four parts to an SQL
SELECT statement:

1288

Chapter 24

❑ Defining what you want to retrieve

❑ Defining where you want to get it from

❑ Defining the conditions for retrieval — joining tables and record filtering

❑ Defining the order in which you want to see the data

So, how do you define what you want to retrieve? The first keyword in the SELECT statement, unsur-
prisingly, is SELECT. This tells the database that you intend to get some data back in the form of a result-
set, sometimes referred to as a recordset. A resultset is just a table of data — with fixed numbers of
columns and rows — that corresponds to some subset of data from a database table generated as a result
of the SELECT statement.

The next identifier enables you to define what you want to see — it allows you to specify which columns
you want to retrieve and to have as the resultset table headers. You specify each column name as part of
a comma-separated list.

So the sample SELECT statement so far looks like this:

SELECT firstname, lastname, authid

You now have to specify which table you want to retrieve the data from. When creating a table, there is
nothing to stop the developer giving similar column names to each table, so you must ensure that there
are no ambiguities when selecting similar column names from two or more tables.

You specify the table or tables that you wish to retrieve data from in a FROM clause. This clause immedi-
ately follows the SELECT clause. A FROM clause consists of the keyword FROM, followed by a comma-sep-
arated list of tables that you wish to access:

FROM authors

Giving:

SELECT firstname, lastname, authid FROM authors

This is a complete statement that will retrieve the name, surname, and author ID from each row in the
authors table.

When you retrieve a resultset from the database, each resultset column has a label that, by default, is
derived from the column names in the SELECT statement. It is also possible to provide aliases for the
table column names that are to be used for the resultset column names. Aliases are also referred to as
correlation names and are often used so that column names can be abbreviated. Column aliases appear
after the column names in the SELECT statement following the keyword AS. For example:

SELECT firstname, lastname, authid AS author_identifier

FROM authors

would alias the authid as author_identifier. If you require an alias for a column name that includes
whitespace, just put the alias between double quotes in the SELECT statement.

1289

Talking to Databases

If you want to select all columns from a table in a SELECT statement, there is a wildcard notation you can
use. You just specify the columns as * to indicate that you want to select all the columns in a table. For
example, to select all the columns from the authors table you would write:

SELECT * FROM authors

Suppose you wanted to limit the rows returned by a SELECT operation to include only authors that
reside within the UK. To accomplish that, you would add a WHERE clause. WHERE clauses are used to fil-
ter the set of rows produced as the result of a SELECT operation. For example, to get a list of authors in
the UK:

SELECT lastname, firstname FROM authors

WHERE country = ‘UK’

You can also specify multiple criteria for row selection in a WHERE clause. For example, you might want
to get a list of authors in the UK for whom an e-mail address is also on record:

SELECT lastname, firstname, phone FROM authors

WHERE country = ‘UK’

AND email IS NOT NULL

Note the construction of the WHERE clause — there are two conditions that a row is required to satisfy
before it will be returned. Firstly, the country field must contain a value that is equal to the string value
UK, and the email field must not be NULL. If you wanted to find rows in which the field is NULL, you
would omit the NOT.

Let’s look at one final example of a SELECT statement — a table join. Suppose you want to see a list of
all authors and the books they have written. You can write a statement that will return this information
like this:

SELECT a.lastname, a.firstname, b.title

FROM authors a, books b, auth_books ab

WHERE a.authid = ab.authid

AND b.isbn = ab.isbn

The table join appears in the first line of the WHERE clause; for each row, you specify the condition that
the authid columns of the authors table and the auth_books table must be equal. You also specify
that the isbn column of books and auth_books must be equal.

Notice also one small addition to the statement. As you saw earlier, you can alias table names by specify-
ing an alternative name after each table identifier, or expression using the AS keyword. In this statement
you are aliasing the table names in the FROM clause by simply putting the alias following the table name.
The authors table is aliased as a, the books table is aliased as b, and the auth_books table is aliased as
ab. Back in the first part of the SELECT statement, the column names are “qualified” by the aliases for
each table. This is how column name ambiguities are removed. Since the authid column name appears
in more than one table, if you did not have a qualifier in front of each usage of the authid column name,
the database engine would have no way of knowing from which table the column was required. Note
that if you specify an alias in the FROM clause, column names in the WHERE clause must be qualified with
the appropriate table alias.

1290

Chapter 24

UPDATE Statements
UPDATE statements provide a way of modifying existing data in a table. Update statements are con-
structed in a similar way to SELECT statements. You first start with the UPDATE keyword, followed by
the name of the table you wish to modify:

UPDATE authors

You then specify the SET keyword and the data members you wish to modify with their new values:

SET lastname = ‘Burk’

Finally, the WHERE clause is used to filter the records that you wish to update. An UPDATE statement can-
not be performed across a table join, so the WHERE clause is not used to specify a join of this type.

WHERE authid = 27

The full statement:

UPDATE authors SET lastname = ‘Burk’ WHERE authid = 27

will update the author record to reflect a change in last name for the author with the ID of 27.

UPDATE statements do not return a resultset, they merely modify data in the database.

Delete Statements
DELETE statements provide a way of deleting particular rows from tables in a database. DELETE state-
ments consist of the DELETE keyword, a FROM clause, and a WHERE clause. For example:

DELETE FROM books WHERE isbn = ‘0131259075’

deletes the record in the books table with the ISBN value ‘0131259075’. In the case of the books table,
there can only be one row with this value, since its primary key is the ISBN. If a similar DELETE state-
ment were executed against the auth_books table, however, it would delete all rows with the matching
ISBN value.

By now you should have a reasonably clear idea of:

❑ The way SQL is constructed

❑ How to read SQL statements

❑ How to construct basic SQL statements

You can expect SQL statements to work with relational databases that adhere to
ANSI standards, although each database typically implements a subset of the full
standard. For this reason, you always need to understand the functionality of the
SQL that is used by the underlying database you are using, as this will affect the
way you use JDBC to write your Java applications.

1291

Talking to Databases

The JDBC Package
The JDBC library was designed as an interface for executing SQL statements, and not as a high-level
abstraction layer for data access. So, although it wasn’t designed to automatically map Java classes to
rows in a database, it allows large-scale applications to be written to the JDBC interface without worry-
ing too much about which database will be deployed with the application. A JDBC application is well
insulated from the particular characteristics of the database system being used and therefore doesn’t
have to be re-engineered for specific databases. From the user’s point of view, a Java application work-
ing with a database looks conceptually as shown in Figure 24-5.

Figure 24-5

JDBC manages to operate with a variety of different relational database systems by having an implemen-
tation of the JDBC interface for each specific database — a driver. This handles the mapping of Java
method calls in the JDBC classes to the database API. You’ll learn more about this later on.

Java Application

JDBC

Sybase MSQL ...Oracle

1292

Chapter 24

Relating JDBC to ODBC
One of the fundamental principles of JDBC’s design was to make it practical to build JDBC drivers based
on other database APIs. There is a very close mapping between the JDBC architecture and API and the
Open DataBase Connectivity (ODBC) counterparts, fundamentally because they are all based on the
same standard, the SQL X/Open CLI; but JDBC is a lot easier to use. Because of their common ancestry,
they share some important conceptual components:

Driver Manager Loads database drivers and manages the connections between the applica-
tion and the driver

Driver Translates API calls into operations for a specific data source

Connection A session between an application and a database

Statement A SQL statement to perform a query or update operation

Metadata Information about returned data, the database, and the driver

Resultset Logical set of columns and rows of data returned by executing a statement

JDBC Basics
Assuming you have followed the instructions given at the start of the chapter, and have the requisite
sample database and database driver installed on your machine, you are ready to look at a basic JDBC
program that involves the following steps:

1. Import the necessary classes.

2. Load the JDBC driver.

3. Identify the data source.

4. Allocate a Connection object.

5. Allocate a Statement object.

6. Execute a query using the Statement object.

7. Retrieve data from the returned ResultSet object.

8. Close the ResultSet.

9. Close the Statement object.

10. Close the Connection object.

Throughout this chapter you will work toward accumulating a sufficient understanding of JDBC to
implement the essential elements of such a program.

1293

Talking to Databases

The JDBC architecture is based on a collection of Java interfaces and classes that together enable you to
connect to data sources, to create and execute SQL statements, and to retrieve and modify data in a
database. These operations are illustrated in Figure 24-6.

Figure 24-6

Each of the boxes in Figure 24-6 represents a JDBC class or interface that has a fundamental role in
accessing a relational database. All your work with JDBC will begin with the
java.sql.DriverManager class, but before you look at that, let’s set up the technical_library
database so that you will be ready to use it as you progress.

Setting Up a Database
Before you get started on learning about the DriverManager class, it’s worthwhile setting up a sample
database and a suitable JDBC driver for our code to use. The database is called technical_library,
and it stores information on technical books that you might have in your library. This is implemented as
a Microsoft Access 2000 database, and you can download it together with the sample code from the book
from the Wrox web site.

In Microsoft Windows, to use this database with the application that you are going to construct in this
chapter, you can set up an Access database driver for the database in the ODBC Data Source
Administrator dialog box, which can be found by selecting Start| Settings | Control Panel and then
double-clicking the ODBC Data Sources icon. Select the System DSN tab at the top of the dialog box, and
click the Add... button at the right. In the list box that comes up, select Microsoft Access Driver (*.mdb)
and then click Finish. A further dialog box will then come up with the title ODBC Microsoft Access
Setup. In the Data Source Name text box at the top of the dialog, type in technical_library. Type in a suit-
able description in the Description text field if you wish. In the Database section of the dialog, click the

DriverManager
creates

Connection Statement ResultSet

Driver

creates

Establish link to DB

SQL data

creates

Database

1294

Chapter 24

Select button, and in the file browsing dialog box that comes up, find and select your saved version of
technical_library.mdb; then click OK. Now click OK in the ODBC Microsoft Access Setup dialog. The
System DSN section of the initial ODBC Data Source Administrator dialog should now have
technical_library in the list of system data sources available. Click the OK button at the bottom of the
dialog to exit. Barring unforeseen problems, you should now be able to use this database with the pro-
grams in this chapter.

If you’re working with a database program other than Access, you will need to obtain an appropriate
driver for it if you do not already have one. An up-to-date list of suitable drivers for various databases
can be found at http://servlet.java.sun.com/products/jdbc/drivers. If you have a database
other than Access and the correct driver is already set up, you can use a small Java class, build_tables,
that is also included with the book’s code, to create the sample database’s tables.

If you are using something other than Access, you may need to edit the first few lines of the source file to
use the appropriate database driver, and possibly edit the data defining the String array of SQL state-
ments to accommodate the data types used by your database system. It is quite common for database
systems not to support all of the SQL capabilities defined by the ANSI standard. If you have no luck get-
ting the sample database up and running first time around, try reading on in this chapter and then re-
reading your driver and database documentation before having another go. Once you have a suitable
database and JDBC driver installed, you can try running the InteractiveSQL program that you’ll be
using in this chapter to show how to send commands to a database. You’ll build the application at the
end of this chapter, by which time its workings should be plain to you.

DriverManager
JDBC database drivers are defined by classes that implement the Driver interface. The DriverManager
class is responsible for establishing connections to the data sources that you want to access through the
JDBC drivers. If any JDBC driver has been identified in the “jdbc.drivers” system property (see later
in this section) on your computer, then the DriverManager class will attempt to load that when it is
loaded.

The system properties are actually stored in a Properties object. The java.util.Properties class
associates values with keys in a map, and the contents of the map defines a set of system properties. In
general, each key is supplied as a String and the value corresponding to a key can be any valid object.
Thus, you can use a Properties object to supply as much information as is required by your driver —
or anything else that interacts with the system properties for that matter. You just set the key/value pairs
for the Properties object that are needed.

You can set the “jdbc.drivers” system property by calling the setProperty() method for the
System class, for example:

System.setProperty(“jdbc.drivers”,”sun.jdbc.odbc.JdbcOdbcDriver”);

In all the examples you will write in this chapter, you’ll be using the JDBC-ODBC
Bridge driver —sun.jdbc.odbc.JdbcOdbcDriver— to access the MS Access 2000
database technical_library.mdb that I’ve assumed has been set up with a
Microsoft Access ODBC driver as described in the section earlier.

1295

Talking to Databases

The first argument is the key for the property to be set and the second argument is the value. This state-
ment identifies the JDBC-ODBC Bridge driver in the system property. This driver supports connections
to any ODBC-supported database. If you want to specify multiple drivers in the system property value,
you should separate the driver names within the string by colons.

If the security manager permits it, you can obtain a reference to the Properties object for your system
by calling the static getProperties() method for the System class. If there is no Properties object
defined containing the system properties, one will be created with a default set of properties. The
Properties class defines a list() method that you can use to list all your system properties as
follows:

System.getProperties().list(System.out); // List all properties

You could try this out in a simple program of your own if you want to see what your system properties
are. The Properties class also defines a setProperty() method, so once you have a Properties
object, you can set properties directly by calling this method for the object.

If a security manager is in effect and a security policy has been set up on your system, it may be that you
will not be allowed to set the system property, in which case the setProperty() call will throw an
exception of type SecurityException. In this situation, to include the driver that you want to use, you
can load the driver explicitly by calling the static forName() method in the Class class and passing a
String object as an argument containing the driver class name. For example:

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”); // Load the ODBC driver

The forName() method can throw an exception of type ClassNotFoundException if the driver class
cannot be found, and this must be caught; so a call to the function has to appear in a try block with an
appropriate catch block.

Each driver class will typically create an instance of itself when it is loaded, and register that instance by
calling the DriverManager class method automatically. You don’t need to — indeed you can’t — create
DriverManager objects, and all the methods in the DriverManager class are static. There are
DriverManager class methods that can be used to determine which drivers have been loaded, as well as
methods that register or unregister drivers “on the fly.” However, for the most part you will need to call
only the method that establishes a connection to a data source.

When you need a connection to a JDBC driver, you don’t create a new object encapsulating the connec-
tion yourself — you ask the DriverManager to do it for you. The DriverManager class provides several
static methods for creating objects that implement the Connection interface and encapsulate a con-
nection to a database. These are all overloaded versions of the getConnection() method.

Creating a Connection to a Data Source
A connection to a specific data source is represented by an object of a class that implements the
java.sql.Connection interface. Before you can execute any SQL statements, you must first have a
Connection object. A Connection object represents an established connection to a particular data
source, and you use it to create a java.sql.Statement object that enables you to define and execute
specific SQL statements. A Connection object can also be used to query the data source for information
about the data in the database (the metadata), including the names of the available tables, information
about the columns for a particular table, and so on.

1296

Chapter 24

There are three overloaded getConnection() methods in the DriverManager class that return a
Connection object. In the simplest case you can obtain a Connection object that represents a session
for your database with the following statement:

Connection databaseConnection = DriverManager.getConnection(source);

The argument, source, is a String object defining the URL that identifies where the database is located.
Note that this is a String object specifying the URL, not an object of the URL class that you have seen
earlier.

URLs and JDBC
A URL references an electronic resource, such as a World Wide Web page or a file on an FTP server, in a
manner that uniquely identifies that resource. URLs play a central role in networked application devel-
opment in Java. JDBC uses URLs to identify the locations of both drivers and data sources. JDBC URLs
have the following format:

jdbc:subprotocol:data_source_identifier

The scheme jdbc indicates that the URL refers to a JDBC data source. The sub-protocol identifies which
JDBC driver to use. For example, the JDBC-ODBC Bridge uses the driver identifier odbc.

The JDBC driver dictates the format of the data source identifier. In the previous example, the JDBC-
ODBC Bridge simply uses the ODBC data source name. To use the ODBC driver with the
technical_library ODBC data source, you would create a URL with the following format:

jdbc:odbc:technical_library

The next step to getting data to or from a database is to create a Connection object. The Connection
object essentially establishes a context in which you can create and execute SQL commands. Since the
data source that you will use in this chapter’s examples doesn’t require a user name or password, the
simplest form of the getConnection() method can be used.

You could exercise the getConnection() method in a working example.

Try It Out Making a Connection
The following source code is a minimal JDBC program that creates a Connection object. In this instance
the connection will be established using only the URL for the data source. In the next section you’ll look
at how you can also supply a user ID and a password when this is necessary.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

public class MakingTheConnection {

public static void main(String[] args) {

// Load the driver

try {

// Load the driver class

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

// Define the data source for the driver

1297

Talking to Databases

String sourceURL = “jdbc:odbc:technical_library”;

// Create a connection through the DriverManager

Connection databaseConnection = DriverManager.getConnection(sourceURL);

System.out.println(“Connection is: “+databaseConnection);

} catch(ClassNotFoundException cnfe) {

System.err.println(cnfe);

} catch(SQLException sqle) {

System.err.println(sqle);

}

}

}

This should output a line something like the following:

Connection is: sun.jdbc.odbc.JdbcOdbcConnection@4a5ab2

How It Works
As usual, you import the class and interface names that you use in the program — in this case they are
all from the java.sql package. The forName() method call at the beginning of main() ensures that the
JDBC driver class required by our program is loaded. This guarantees that any initialization that the
JDBC driver must do will be completed before your code actually uses the driver. As I said earlier, the
forName() method will throw a ClassNotFoundException if the driver class cannot be found, and
this exception must be caught.

The forName() method call causes the Java interpreter’s class loader to load the class for the driver
specified by the argument. When the driver class is loaded, the class loader will determine if the driver
class has any static initialization code. If it does, it will execute the static initialization code immedi-
ately after the class has been loaded. That is how the driver class is able to instantiate itself and register
the instance that is created with the DriverManager object. It can also execute other initialization code
that may be required, such as loading a dynamic link library if the driver uses native methods, for exam-
ple, and since this all happens when the class is loaded, it is guaranteed to happen before any other
driver methods are called.

Most JDBC methods handle errors by throwing an exception of type SQLException, and the
getConnection() method of the DriverManager class does exactly that, so you also have a catch
block that handles the SQLException exception. In this example, a simple message will be displayed in
the event of a problem loading the JDBC driver or creating a Connection to the data source. In the next
chapter, you will learn more sophisticated error-handling techniques.

More Complex Connections
If the database requires a user name and password to gain access to it, you can use the second form of
the getConnection() method:

databaseConnection = DriverManager.getConnection(sourceURL,

myUserName,

myPassword);

1298

Chapter 24

All three arguments here are of type String. In some cases, however, the user name and password may
not be enough to establish a connection. To accommodate those situations, the DriverManager class
provides another getConnection() method that accepts a Properties object as an argument.

To supply the properties required by your JDBC driver, you can create a Properties object using the
default class constructor and then set the properties that you need by calling its setProperty()
method. In general, at least the user name and password need to be set.

The code fragment below illustrates creation of a connection for the JBDC driver for ODBC:

import java.util.Properties;

// ...

String driverName = “sun.jdbc.odbc.JdbcOdbcDriver”;

String sourceURL = “jdbc.odbc:technical_library”;

try {

Class.forName (driverName);

Properties prop = new Properties();

prop.setProperty(“user”, “ItIsMe”);

prop.setProperty(“password”, “abracadabra”);

Connection databaseConnection = DriverManager.getConnection(sourceURL, prop);

} catch(ClassNotFoundException cnfe) {

System.err.println(“Error loading “ + driverName);

} catch(SQLException sqle) {

System.err.println(sqle);

}

Of course, you’ll also need to import the Properties class name from the java.util package.

While this pretty much covers everything that most developers will ever do to establish a connection to
a data source, the DriverManager class defines other static methods that may be useful. You’ll take a
look at these next.

Logging JDBC Driver Operations
The DriverManager class provides a pair of access methods for the PrintWriter object that is used by
the DriverManager class and all JDBC drivers to record logging and trace information. These allow you
to set, or reroute, the java.io.PrintWriter that the driver uses to log information. The two access
methods are:

public static void setLogWriter(PrintWriter out)

public static PrintWriter getLogWriter()

You can disable logging by passing a null argument to the setLogWriter() method.

Examining the log can be pretty interesting. If you want to find out what’s going on behind the scenes,
take a look at the information generated by the JDBC-ODBC driver. You’ll get a very good idea of how
that driver works.

1299

Talking to Databases

Your application can write to the PrintWriter stream using the static println() method that is
defined in the DriverManager class. Just pass a String object as an argument containing the message
you want to record in the log. This method is typically used by JDBC drivers, but it may prove useful for
debugging or logging database-related errors or events.

Setting the Login Timeout
The DriverManager class provides a pair of access methods for the login timeout period. These allow
you to specify a timeout period (in seconds) that limits the time that a driver is prepared to wait for log-
ging in to the database. The two access methods are:

setLoginTimeout(int secs) Sets the maximum time the driver will wait to connect to a
database to secs seconds

getLoginTimeout() Returns the number of seconds that the driver is prepared to
wait to establish a connection to a database as a value of
type int

Specifying a non-default timeout period can be useful for troubleshooting applications that are having
difficulty connecting to a remote database server. For example, if your application is trying to connect to
a very busy server, the application might appear to have hung. You can tell the DriverManager to fail
the connection attempt by specifying a timeout period. The code fragment below tells the
DriverManager to fail the login attempt after 60 seconds:

String driverName = “sun.jdbc.odbc.JdbcOdbcDriver”;

String sourceURL = “jdbc:odbc:technical_library”;

try {

Class.forName(driverName);

DriverManager.setLoginTimeout(60); // fail after 60 seconds

Connection databaseConnection = DriverManager.getConnection(sourceURL);

} catch(ClassNotFoundException cnfe) {

System.err.println(“Error loading “ + driverName);

} catch(SQLException sqle) {

System.err.println(sqle);

}

More on Drivers
When the DriverManager class has been loaded, it is then possible to connect to a data source using a
particular driver. A driver is represented by an object of type java.sql.Driver. Driver implementa-
tions come in four flavors:

❑ JDBC-ODBC Bridge driver

❑ Native API/partly Java

1300

Chapter 24

❑ Net protocol all-Java client

❑ Native protocol all-Java

Understanding a little of how drivers are built, and their limitations, will help you to decide which
driver is most appropriate for your application.

JDBC-ODBC Bridge Driver
The JDBC-ODBC Bridge —”sun.jdbc.odbc.JdbcOdbcDriver”— is included with the JDK, and it
enables Java applications to access data through drivers written to the ODBC standard. The driver
bridge is very useful for accessing data in data sources for which no pure JDBC drivers exist.

The bridge works by translating the JDBC methods into ODBC function calls. It has the advantage of
working with a huge number of ODBC drivers, but it works only under the Microsoft Windows and Sun
Solaris operating systems.

Native API/Partly Java Driver
This class of driver is quite similar to the bridge driver. It consists of Java code that accesses data
through native methods — typically, calls to a particular vendor library. Like the bridge driver, this class
of driver is convenient when a C data access library already exists, but it isn’t usually very portable
across platforms.

Net Protocol All-Java Client
This class of driver is implemented as “middleware,” with the client driver completely implemented in
Java. This client driver communicates with a separate middleware component (usually through
TCP/IP), which translates JDBC requests into database access calls. This form of driver is an extension of
the previous class, with the Java and native API separated into separate client and proxy processes.

Native Protocol All-Java
This class of driver communicates directly to the database server using the server’s native protocol.
Unlike the previous driver type, there is no translation step that converts the Java-initiated request into
some other form. The client talks directly to the server. If this class of driver is available for your
database, then this is the one you should use.

The only time that you are likely to come into contact with the Driver object is when you install it.
Your applications need not ever interact directly with the Driver object itself since the DriverManager
class takes care of all such communications. When you call the getConnection() method of the

A large number of JDBC drivers are available. As I mentioned earlier, the best
source of up-to-date information about JDBC drivers is from the JavaSoft JDBC
drivers page on Java’s web site: http://servlet.java.sun.com/products/
jdbc/drivers.

1301

Talking to Databases

DriverManager class, it iterates through the drivers that are registered with the DriverManager and
asks each one in turn if it can handle the URL that you have passed to it. The first driver that can satisfy
the connection defined by the URL creates a Connection object, which is passed back to the application
by way of the DriverManager (see Figure 24-7).

Figure 24-7

There are occasions, however, when you may want to query a specific driver for information, such as its
version number. For example, you may know that a particular feature that your program makes use of
wasn’t incorporated into a driver until version 2.1. You can query the driver to get the version number
so your program can handle an earlier version intelligently.

To get the Driver object, you call the static getDriver() method that is defined in the DriverManager
class, passing the URL of the data source to it as the argument. If the DriverManager finds a driver that
can accommodate the data source, the method returns a reference to a Driver object encapsulating it.
The code fragment below illustrates testing the version of a JDBC driver, looking for versions that are 1.1
or greater:

Connection

DriverManager

SybaseDriver

Database

getConnection("jdbc:odbc::technical_library") DB2Driver

Database

iMsqlDriver

Database

JdbcOdbcDriver

DriverManager queries JDBC drivers to create Connection object
Database

1302

Chapter 24

// Load the driver class

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

// Define the data source for the driver

String sourceURL = “jdbc:odbc:technical_library”;

// Test for driver version

int verMajor = 0; // Major version number

float verComplete = 0.0f; // Complete version number

float verPreferred = 1.1f; // The minimum preferred version

Driver theDriver = DriverManager.getDriver(sourceURL); // Set the driver

// Get the version number to the left of the decimal point, e.g. 1 out of 1.0

verMajor = theDriver.getMajorVersion();

// Make the complete version number type float by adding the minor number

// to verMajor (to the right of the decimal point, e.g. 1108 out of 1.1108)

verComplete = Float.parseFloat(verMajor + “.” + theDriver.getMinorVersion());

// Test to see if we have a suitable version of the driver

if(verComplete >= verPreferred) {

System.out.println(“Version “ + verComplete + “ found”);

//Make the connection...

} else {

System.out.println(“Required version of driver (“ +

verPreferred + “) not found”);

// Otherwise drop out...

}

In practice, you could do a lot more that just output messages, depending on the version of the driver
that is available. Your program might choose to operate differently to account for the limitations of an
earlier version, for example.

Statement Objects
A java.sql.Statement object is an object of a class that implements the Statement interface. When a
Statement object is created, it provides a workspace for you to create an SQL query, execute it, and
retrieve any results that are returned. You can also assemble multiple SQL statements into a batch, and
submit them for processing as a batch to the database.

Statement objects are created by calling the createStatement() method of a valid Connection
object. Once you have created a Statement object, you can use it to execute an SQL query by calling the
executeQuery() method for your Statement object. You pass a String object containing the text of
your SQL query as the argument to the method.

The resultset from the query is returned as an object of type java.sql.ResultSet. For example, if you
have a Statement object, statement, you could write:

ResultSet results = statement.executeQuery(

“SELECT lastname, firstname FROM authors”);

1303

Talking to Databases

This will execute the SELECT statement that appears as the argument.

When you want to batch several SQL statements, you call the addBatch() method in the Statement
object for each of them, passing a String object containing an SQL statement as the argument. When
you finally want to execute the batch of SQL that you have created, you call the executeBatch()
method for the statement object. To clear the batch of statements in readiness for a new set, you call the
clearBatch() method for the Statement object. Because a batch of SQL statements can generate mul-
tiple resultsets, accessing them is a little complicated. It involves calling the getResultSet() method
for the Statement object to retrieve the first resultset and then using getXXX() methods for the object
reference that is returned to access the contents. To move to the next resultset, you call
getMoreResults() for the Statement object. This returns true if the next result is another resultset
and false if the next result is not a resultset or there are no more results. You can then call
getResultSet() again to obtain a reference to the next resultset if there is one. This is a relatively rare
requirement, so I won’t go into further detail on this.

JDBC provides two other kinds of objects that you can use to execute SQL statements. These objects
implement interfaces that are subinterfaces of the Statement interface — the java.sql.Prepared
Statement interface, which extends the Statement interface, and the java.sql.CallableStatement
interface, which extends the PreparedStatement interface.

You obtain a reference to a PreparedStatement object by calling the prepareStatement() method
for a Connection object. In the simplest case, you just pass a String object specifying the text of
an SQL statement as the argument to the prepareStatement() method, but there is a more complex
version of the method that provides you with more control over the resultset that is produced.
PreparedStatement objects differ from Statement objects in that the SQL statement is pre-compiled
and can have placeholders for runtime parameter values. PreparedStatement objects are particularly
useful when a statement will be executed many times (for example, when you are adding a large num-
ber of new rows to a table), since substantial performance gains can be achieved in many cases.

This is due to the fact that a prepared statement is parsed once and reused, whereas the SQL for a
Statement object has to be parsed by the server each time it is executed. PreparedStatement objects
are also helpful when it is not convenient to create a single string containing the entire SQL statement.
You’ll see an example later in this chapter that will show the same SQL statement executed via both
Statement and PreparedStatement objects.

A CallableStatement reference is returned by the prepareCall() method for a Connection object.
There are two overloaded versions of this method, one requiring a single String JDBC-ODBC Bridge
argument that defines the SQL for the stored procedure, and the other with additional parameters pro-
viding more control over the resultset that is produced. You use a CallableStatement object for calling
procedures on the database. As I said earlier, many database engines have the ability to execute proce-
dures. This allows business logic and rules to be defined at the server level, rather than relying on appli-
cations to replicate and enforce those rules.

Whichever type of Statement reference you are using, the results of an SQL query are always returned
in the same way, so let’s look at that.

ResultSet Objects
The results of executing an SQL query are returned in the form of an object that implements the
ResultSet interface and contains the table produced by the SQL query. The ResultSet object contains

1304

Chapter 24

something called a cursor that you can manipulate to refer to any particular row in the resultset. This
initially points to a position immediately preceding the first row. Calling the next() method for the
ResultSet object will move the cursor to the next position. You can reset the cursor to the first or last
row at any time by calling the first() or last() method for the ResultSet object. You also have
methods beforeFirst() and afterLast() to set the cursor position before the first row or after the
last. The previous() method for the ResultSet object moves the cursor from its current position to
the previous row. This ability to scroll backwards through a resultset is dependent on your database and
whether your driver supports this capability.

Usually you will want to process rows from a resultset in a loop, and you have a couple of ways to do
this. Both the next() and previous() methods return true if the move is to a valid row and false if
you fall off the end, so you can use this to control a while loop. You could process all the rows in a
resultset with the following loop:

while(resultset.next()) {

// Process the row...

}

This code fragment assumes that resultset is the object returned as a result of executing a query and
the resultset object starts out in its default state with the cursor set to 1 before the first row. You can
also use the isLast() or isFirst() methods to test whether you have reached the end or the begin-
ning of the resultset.

Now you know how to get at the rows in a resultset; let’s look into how you access the fields in a row.

Accessing Data in a Resultset
Using the ResultSet reference, you can retrieve the value of any column for the current row (as speci-
fied by the cursor) by name or by position. You can also determine information about the columns, such
as the number of columns returned or the data types of columns. The ResultSet interface declares the
following basic methods for retrieving column data for the current row as Java types:

getAsciiStream() getTimestamp() getTime()

getBoolean() getBinaryStream() getString()

getDate() getBytes() getByte()

getInt() getFloat() getDouble()

getShort() getObject() getLong()

Note that this is not a comprehensive list, but it is not likely you will need to know about the others. For
a full list of the methods available take a look at the documentation for the ResultSet interface. There
are overloaded versions of each of the methods shown in the preceding table that provide two ways of
identifying the column containing the data. The column can be selected by passing the SQL column
name as a String argument or by passing an index value for the column of type int, where the first
column has the index value 1. Note that column names are not case-sensitive so “FirstName” is the
same as “firstname”.

The getDate(), getTime(), and getTimestamp() methods return objects of type java.sql.Date,
java.sql.Time, and java.sql.TimeStamp, respectively. The getAsciiStream() method returns an

1305

Talking to Databases

object of type java.io.InputStream that you can use to read the data as a stream of ASCII characters.
This is primarily for use with values of the SQL type LONGVARCHAR, which can be very long strings that
you would probably want to read piecemeal. Most of the basic data access methods are very flexible in
converting from SQL data types to Java data types. For example, if you use getInt() on a field of type
CHAR, the method will attempt to parse the characters assuming they specify an integer. Equally, you can
read numeric SQL types using the getString() method.

With all these methods, an absence of a value, which is an SQL NULL, is returned either as the equivalent
of zero, or as null if an object reference is returned. Thus a NULL boolean field will return false, and a
NULL numeric field will return 0. If a database access error occurs when executing a getXXX() method
for a resultset, an exception of type SQLException will be thrown.

The JDBC API provides access to metadata not only for the Connection object, but also for the
ResultSet object. The JDBC API provides a ResultSetMetaData object that lets you peek into the data
behind the ResultSet object. If you plan on providing interactive browsing facilities in your JDBC
applications, you’ll find this particularly useful and you’ll see how to do this later.

Together, these classes and interfaces make up the bulk of the JDBC components that you will be work-
ing with. Let’s now put them into action with a simple example.

Try It Out Using a Connection
You’ll do something useful with the Connection object created by changing our
MakingTheConnection class into a new class for accessing the technical_library database. The
code for this example is shown below:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import java.sql.ResultSet;

public class MakingAStatement {

public static void main(String[] args) {

// Load the driver

try {

// Load the driver class

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

// This defines the data source for the driver

String sourceURL = new String(“jdbc:odbc:technical_library”);

// Create connection through the DriverManager

Connection databaseConnection =

DriverManager.getConnection(sourceURL);

Statement statement = databaseConnection.createStatement();

ResultSet authorNames = statement.executeQuery(

“SELECT lastname, firstname FROM authors”);

// Output the resultset data

while(authorNames.next()) {

1306

Chapter 24

System.out.println(authorNames.getString(“lastname”)+” “+

authorNames.getString(“firstname”));

}

} catch(ClassNotFoundException cnfe) {

System.err.println(cnfe);

} catch(SQLException sqle) {

System.err.println(sqle);

}

}

}

You can save this as MakingAStatement.java. This program will list all the author names, one author
to a line, with the last name first on each line.

How It Works
Once the connection has been established by the getConnection() method call, the next step is to cre-
ate a Statement object that enables you to execute an SQL statement and retrieve the results. To create a
Statement object you simply call the createStatement() method for the Connection object.

Once you have created the statement object, you execute an SQL query against the connected database
by passing a String object as the argument to the executeQuery() method for the statement object.
The executeQuery() method returns an object that implements the ResultSet interface. As the name
implies, the ResultSet interface enables you to get at information that was retrieved by the query. You
can think of the ResultSet interface as providing row-at-a-time access to a virtual table of results. The
ResultSet object provides an internal cursor or logical pointer to keep track of its current row. When
the ResultSet is first returned, the cursor is positioned just before the first row of data. This mechanism
is illustrated in Figure 24-8.

Figure 24-8

The cursor for the ResultSet returned by
the executeQuery() method is positioned

before the first row of data. Carone
Genesereth
Riecken
Penrose

Timothy
Michael
Doug
Roger

The initial call to the next() method for the
ResultSet sets the cursor to the first row.
Each subsequent call of next() advances

the cursor to the next row of data.
Calls to data access methods such as
getString(), getInt(), etc. apply to the

current row position.

1307

Talking to Databases

After executing the query, the row position needs to be advanced by calling the next() method before
any column data can be accessed, and you do this in the while loop condition. The next() method
advances the row position and returns a boolean value indicating whether the ResultSet is positioned
at a valid row (true) or there are no more rows (false). Thus, the while loop continues until you have
output the data from all the rows in the authorNames resultset.

Within the while loop, you access the data in the columns using the getString() method for the
ResultSet object. In both cases you use the column names to reference the column. Accessing the
columns by name has the advantage that you don’t need to know the order of the columns. On the other
hand, you do need to know the column names. If you wanted to process the columns by their index
position, you would just use the index values 1 and 2 to refer to data in the first and second columns,
respectively. Using the column position is slightly faster than using the column name since there is no
additional overhead in matching a column name to determine a particular column position. It can also
be more convenient to refer to columns using their position when you want to identify the column by
means of an expression.

Note that the rows in the resultset are not ordered. If you want to output the rows in lastname order,
you need to change the SQL statement to sort the rows, as follows:

ResultSet authorNames = statement.executeQuery(

“SELECT lastname, firstname FROM authors ORDER BY lastname”);

The rows in the resultset will be sorted in lastname order — in ascending sequence by default. To sort in
descending sequence you should add the keyword DESC to the end of the SQL statement. You can sort
on multiple columns by separating the column names by commas. The sorting applies to the columns
successively from left to right, so if you specify the sort columns as lastname, firstname in the
SELECT statement, then the rows in the resultset will be ordered by lastname, and where two last
names are the same, by first name. For example, if you want the rows in the resultset authorNames to be
sorted in descending sequence, you could write:

ResultSet authorNames = statement.executeQuery(

“SELECT lastname, firstname FROM authors

ORDER BY lastname DESC, firstname DESC”);

Note that you must supply the DESC keyword for each column name to which you want to apply it. If
you omit it for a column, the default ascending sequence will apply.

Getting Metadata for a Resultset
The getMetaData() method for a ResultSet object returns a reference to an object of type
java.sql.ResultSetMetaData that encapsulates the metadata for the resultset. The
ResultSetMetaData interface declares methods that enable you to get items of metadata for
the resultset.

The getColumnCount() method returns the number of columns in the resultset as a value of type int.
For each column, you can get the column name and column type by calling the getColumnName() and
getColumnType() methods, respectively. In both cases you specify the column by its index value. The
column name is returned as a String object, and the column type is returned as a value of type int that
identifies the SQL type. The Types class in the java.sql package defines public fields of type int that
identify the SQL types, and the names of these class data members are the same as the SQL types they

1308

Chapter 24

represent — such as CHAR, VARCHAR, DOUBLE, INT, TIME, and so on. Thus, you could list the names of the
columns in a resultset that were of type CHAR with the following code:

ResultSetMetaData metadata = results.getMetaData();

int columns = metadata.getColumnCount(); // Get number of columns

for(int i = 1 ; i<= columns ; i++) { // For each column

if(metadata.getColumnType(i) == Types.CHAR) { // if it is CHAR

System.out.println(metadata.getColumnName(i)); // display the name

}

}

You could output the data value of each row of a ResultSet object results that was of SQL type CHAR
with the following code:

ResultSetMetaData metadata = results.getMetaData();

int columns = metadata.getColumnCount(); // Get number of columns

int row = 0; // Row number

while(results.next()) { // For each row

System.out.print(“\nRow “+(++row)+”:”); // increment row count

for(int i = 1 ; i<= columns ; i++) // For each column

if(metadata.getColumnType(i) == Types.CHAR) { // if it is CHAR display it

System.out.print(“ “+results.getString(i));

}

}

You can also get the type name for a column as a String by calling the getColumnTypeName() method
with the column number as the argument. Another very useful method is getColumnDisplaySize(),
which returns the normal maximum number of characters required to display the data stored in the col-
umn. You pass the index number of the column that you are interested in as the argument. The return
value is type int. You can use this to help format the output of column data.

A whole range of other methods supplies other metadata for a resultset, and you will find those meth-
ods in the documentation for the ResultSetMetaData interface. Here’s a list of a few more that you
may find useful — they all require an argument that is the column number as type int:

getTableName() Returns the table name for the column as type String

getColumnLabel() Returns a String object that is the suggested label for a column for
use in printouts

getPrecision() Returns the number of decimal digits for a column as type int

getScale() Returns the number of decimal digits to the right of the decimal
point for a column as type int

isSigned() Returns true if the column contains signed numbers

isCurrency() Returns true if the column contains currency values

Table continued on following page

1309

Talking to Databases

isNullable() Returns an int value that can be:

columnNoNulls indicating NULL is not allowed

columnNullable indicating NULL is allowed

columnNullableUnknown indicating it is not known if NULL is
allowed

isWritable() Returns true if a write on the column is likely to succeed

The Essential JDBC Program
You now have all the pieces to make up the essential JDBC program, one that will initialize the environ-
ment, create Connection and Statement objects, and retrieve data by both position and column name.

Try It Out Putting It All Together
This application will execute two queries, one that selects specific columns by name and another that
selects all columns. First you’ll define the application class in outline, with the data members and the
main() function and the other methods in the class:

import java.sql.Connection;

import java.sql.Statement;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

public class EssentialJDBC {

public static void main (String[] args) {

EssentialJDBC SQLExample = new EssentialJDBC(); // Create application object

SQLExample.getResultsByColumnName();

SQLExample.getResultsByColumnPosition();

SQLExample.getAllColumns();

SQLExample.closeConnection();

}

public EssentialJDBC() {

// Constructor to establish the connection and create a Statement object...

}

void getResultsByColumnName() {

// Execute wildcard query and output selected columns...

}

void getResultsByColumnPosition() {

// Execute ID and name query and output results...

1310

Chapter 24

}

void getAllColumns() {

// Execute wildcard query and output all columns...

}

// Close the connection

void closeConnection() {

if(connection != null) {

try {

connection.close();

connection = null;

} catch (SQLException ex) {

System.out.println(“\nSQLException-------------------\n”);

System.out.println(“SQLState: “ + ex.getSQLState());

System.out.println(“Message : “ + ex.getMessage());

}

}

}

Connection connection;

Statement statement;

String sourceURL = “jdbc:odbc:technical_library”;

String queryIDAndName = “SELECT authid, lastname, firstname FROM authors”;

String queryWildcard = “SELECT * FROM authors”; // Select all columns

}

The data source is identified by a URL in the form jdbc:driver_name:datasource. The data source
identifier format is defined by the driver. In the case of the JDBC-ODBC Bridge, the data source is the
ODBC source name. You have defined a closeConnection() method here that closes the connection
when you are done. Notice that this method tests the value of the connection to ensure that you don’t try
to close a null connection.

Next you can fill in the details of the constructor for the class. This will establish a connection with the
database and create a Statement object that will be used for executing queries:

public EssentialJDBC() {

try {

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

connection = DriverManager.getConnection(sourceURL);

statement = connection.createStatement();

} catch(SQLException sqle) {

System.err.println(“Error creating connection”);

} catch(ClassNotFoundException cnfe) {

System.err.println(cnfe.toString());

}

}

Next you can code the getResultsByColumnName() method. You will be using the statement object
created from the connection object in the constructor to execute the SQL query to get a resultset back.
A while loop with a call to next() as the condition will iterate through all the rows starting at the first:

1311

Talking to Databases

void getResultsByColumnName() {

try {

ResultSet authorResults = statement.executeQuery(queryWildcard);

int row = 0;

while(authorResults.next()) {

System.out.println(“Row “ + (++row) + “) “+

authorResults.getString(“authid”)+ “ “ +

authorResults.getString(“lastname”)+ “ , “+

authorResults.getString(“firstname”));

}

authorResults.close();

} catch (SQLException sqle) {

System.err.println (“\nSQLException-------------------\n”);

System.err.println (“SQLState: “ + sqle.getSQLState());

System.err.println (“Message : “ + sqle.getMessage());

}

}

The SQLException handling code here doesn’t provide very elegant error handling for this program,
but you are obliged to catch this exception.

You can now define the getResultsByColumnPosition() method. This will use the query for the ID
and names columns, where the order of the columns is determined by the order of the column names in
the query:

void getResultsByColumnPosition() {

try {

ResultSet authorResults = statement.executeQuery(queryIDAndName);

int row = 0;

while (authorResults.next()) {

System.out.print(“\nRow “ + (++row) + “) “);

for(int i = 1 ; i<=3 ; i++) {

System.out.print((i>1?”, “:” “)+authorResults.getString(i));

}

}

authorResults.close(); // Close the resultset

} catch (SQLException ex) {

System.err.println(“\nSQLException-------------------\n”);

System.err.println(“SQLState: “ + ex.getSQLState());

System.err.println(“Message : “ + ex.getMessage());

}

}

Next you can define the getAllColumns() method. This uses the wildcard form of the SELECT state-
ment where the * for the columns to be selected will retrieve all columns in the authors table. In gen-
eral you won’t necessarily know how many columns are returned in the resultset, but you can
implement the method so that it will deal with any number of columns as well as any number of rows:

void getAllColumns() {

try {

ResultSet authorResults = statement.executeQuery(queryWildcard);

1312

Chapter 24

ResultSetMetaData metadata = authorResults.getMetaData();

int columns = metadata.getColumnCount(); // Column count

int row = 0;

while (authorResults.next()) {

System.out.print(“\nRow “ + (++row) + “) “);

for(int i = 1 ; i<=columns ; i++) {

System.out.print((i>1?”, “:” “)+authorResults.getString(i));

}

}

authorResults.close(); // Close the resultset

} catch (SQLException ex) {

System.err.println(“\nSQLException-------------------\n”);

System.err.println(“SQLState: “ + ex.getSQLState());

System.err.println(“Message : “ + ex.getMessage());

}

}

Running the EssentialJDBC program produces three sets of results. The first two sets are the same and
consist of the ID and the name columns from the authors table. The third set lists all columns. Although
the additional columns are null, you can see that you get them all in this case.

How It Works
The EssentialJDBC class provides a main() method to declare and allocate an EssentialJDBC object
by calling the class constructor. It then calls the getResultsByColumnName(),
getResultsByColumnPosition(), and getAllColumns() methods of the new object.

The constructor initializes member variables and loads the JdbcOdbc driver class. It then creates a
Connection object by calling the static getConnection() method of the DriverManager class. It then
uses the Connection object to create a Statement object.

The bulk of the work is done in the three getXXX() methods. All three use the same Statement object to
execute an SQL query. The difference between the three methods is how they retrieve the returned data.

The getResultsByColumnName() method executes the wildcard form of an SQL SELECT statement
where the column names are specified by an *, and the column ordering of the returned results is deter-
mined by the database engine. This query is executed by calling the executeQuery() method of the
Statement object, and this method returns the data in a ResultSet object. Since the column ordering is
unknown ahead of time, you retrieve data by explicitly specifying the column names. The column data
is retrieved as strings and written to the standard output stream. Finally, the ResultSet is closed. Note
that the garbage collection of Java will handle this automatically anyway, but calling close() explicitly
ensures that the resources, used by the ResultSet object, will be cleaned up sooner.

The getResultsByColumnPosition() method executes a SELECT statement that explicitly specifies
the columns required by name, so the column ordering in the resultset is the same as the sequence of col-
umn names in the SELECT statement. You can therefore use the column position index values to retrieve
the data from the ResultSet. Like the previous method, the column data is retrieved as strings and
printed to the console for each row returned. Finally, the ResultSet object is closed as before.

The getAllColumns() method uses the wildcard form of the SELECT statement to retrieve a resultset
containing all columns from the authors table — the entire table, in other words. The method gets the
count of the number of columns by means of the ResultSetMetaData object for the ResultSet object
created as a result of the query. This is used to output however many columns there are in the resultset.

1313

Talking to Databases

Using a PreparedStatement Object
Let’s put a prepared statement into action now to go through the mechanics in a practical context. This
won’t really show the capabilities of this — I’ll get to that in the next chapter. You will code an example
that executes the same SQL SELECT statement using both Statement and PreparedStatement objects.
For each of these, the results will be displayed along with the metadata.

Try It Out Statements and Metadata
First you’ll define an outline of the StatementTest class and its member data. The main() method will
instantiate a StatementTest object and then call the methods doStatement() and
doPreparedStatement() for that object:

import java.sql.Connection;

import java.sql.Statement;

import java.sql.PreparedStatement;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

public class StatementTest {

public static void main(String[] args) {

try {

StatementTest SQLExample = new StatementTest();

SQLExample.doStatement();

SQLExample.doPreparedStatement();

} catch(SQLException sqle) {

System.err.println(“SQL Exception: “ + sqle);

} catch(ClassNotFoundException cnfe) {

System.err.println(cnfe.toString());

}

}

Connection databaseConnection; // Connection to the database

String driverName; // Database driver name

String sourceURL; // Database location

}

Next you can define the StatementTest class constructor. This constructor will assign the driver name
and the source URL that defines where the data will come from. It will then load the driver and call the
static getConnection() method of the DriverManager class to establish the database connection:

public StatementTest() throws SQLException, ClassNotFoundException {

driverName = “sun.jdbc.odbc.JdbcOdbcDriver”;

sourceURL = “jdbc:odbc:technical_library”;

Class.forName (driverName);

databaseConnection = DriverManager.getConnection(sourceURL);

}

1314

Chapter 24

Next you can define the doStatement() method that is called in main(). This method shows once
again how you create a Statement object and use it to execute a query. The ResultSet object that is
returned by the executeQuery() method of the Statement object is passed to the showResults()
method of the StatementTest class to display the results:

public void doStatement() throws SQLException {

Statement myStatement = databaseConnection.createStatement();

ResultSet myResults = myStatement.executeQuery(

“SELECT authid, lastname, firstname FROM authors ORDER BY authid”);

showResults(myResults);

}

Next you can add a definition for the doPreparedStatement() method. This method will demonstrate
how a PreparedStatement is created and executed. For the time being you will define it so that it oper-
ates in the same fashion as the doStatement() method:

public void doPreparedStatement() throws SQLException {

PreparedStatement myStatement = databaseConnection.prepareStatement(

“SELECT authid, lastname, firstname FROM authors ORDER BY authid”);

ResultSet myResults = myStatement.executeQuery();

showResults(myResults);

}

This method calls the showResults() method, which you can define next. You pass a ResultSet object
to the showResults() method from which it will extract both data and metadata:

public void showResults(ResultSet myResults) throws SQLException {

// Retrieve ResultSetMetaData object from ResultSet

ResultSetMetaData myResultMetadata = myResults.getMetaData();

// How many columns were returned?

int numColumns = myResultMetadata.getColumnCount();

System.out.println(

“ ---------------------Query Results-------------------------”);

// Loop through the ResultSet and get data

while(myResults.next()) {

System.out.printf(“%-5d”, myResults.getInt(1)); // 1st Column only

for(int column = 2; column <= numColumns; column++) {

System.out.print(myResults.getString(column)+” “);

}

System.out.print(“\n”);

}

System.out.println(“\n\n-----------Query Metadata----------------”);

System.out.println(“ResultSet contains “ + numColumns + “ columns”);

for (int column = 1; column <= numColumns; column++) {

System.out.println(“\nColumn “ + column);

// Print the column name

System.out.println(“ column : “ +

myResultMetadata.getColumnName(column));

// Print the label name

System.out.println(“ label : “ +

myResultMetadata.getColumnLabel(column));

// Print the column’s display size

1315

Talking to Databases

System.out.println(“ display width : “ +

myResultMetadata.getColumnDisplaySize(column) +

“ characters”);

// Print the column’s type

System.out.println(“ data type : “ +

myResultMetadata.getColumnTypeName(column));

}

}

Notice that the first thing this method does is retrieve the ResultSetMetaData object, from which it
determines the number of columns returned. It then loops through and retrieves each column value as a
string and prints it out. After the data is displayed, the method extracts information about each column
and displays that, too.

When you run the StatementTest program, you should get the following results twice:

---------------------Query Results-------------------------

1 Gamma Erich

2 Helm Richard

3 Johnson Ralph

...

13 Riecken Doug

14 Genesereth Michael

15 Carone Timothy

-----------Query Metadata----------------

ResultSet contains 3 columns

Column 1

column : authid

label : authid

display width : 11 characters

data type : INTEGER

Column 2

column : lastname

label : lastname

display width : 48 characters

data type : CHAR

Column 3

column : firstname

label : firstname

display width : 48 characters

data type : CHAR

How It Works
All you’ve done in this example is to take the concepts that you’ve seen in this chapter and put them all
together into a working program.

The program creates and executes both a Statement and a PreparedStatement object, which should
produce identical results. In this case, there were no parameters for the PreparedStatement (not to

1316

Chapter 24

worry — you’ll have more than enough PreparedStatement objects in the next chapter!). Since the
results were identical, the ResultSetMetaData is identical for the two executed SQL statements as well.

Notice that all of the exception handling for this example is handled within main(). Each of the other
methods that might generate exceptions declares those exceptions in its throws clause. If an exception is
thrown within any of those methods, the method will simply pass that exception back to the calling
routine —main().

Creating an Interactive SQL Tool
So far the examples with database operations have all been console applications. In practice you will
want to implement your database programs as interactive windowed applications, so let’s apply what
you know to creating an example. You will build an interactive SQL tool that will execute SQL state-
ments to retrieve a resultset.

The interactive SQL tool will be a simple front end to the JDBC API. It will provide a means of entering
and executing SQL statements, and have a display area for viewing results. This tool will be pretty basic
in terms of functionality, but may come in handy for experimenting with SQL statements. You can
always add extensions to this utility as you become more familiar with JDBC.

You’ll set the requirements for the InteractiveSQL tool class to be fairly simple:

❑ Enable the user to enter and execute an SQL command

❑ Display the resultset from an SQL query

❑ Display error information where appropriate

You will implement this as an application with a window based on the Swing class JFrame. You will
also use a Swing component that is particularly useful for database applications — a table defined by the
JTable class. The JTable class is defined in the javax.swing.table package along with some other
classes and interfaces that support tables of data. The resultset that is generated when you execute an
SQL SELECT statement is a rectangular table of data values, so a JTable component is ideal for display-
ing resultsets. Let’s first explore the basics of the JTable component so you can apply it to the
InteractiveSQL program.

Using Tables
You use a JTable component to display a rectangular array of data on the screen. The items of data in
the table do not have to be of all the same type; in fact, each column of data in the table can be of a differ-
ent type, either a basic type or class type. This is precisely the situation you have with a resultset. There
are several ways to create a JTable component, but I’ll just consider the most convenient in the database
context, which is to use an object that encapsulates the data that is to be displayed in the table and
implements the javax.swing.table.TableModel interface. You can create a JTable object directly
from such an object by passing a reference of type TableModel to a JTable constructor. For example:

JTable table = new JTable(model);

1317

Talking to Databases

Here, model is a variable of type TableModel that stores a reference to an object that encapsulates the
data to be displayed — the resultset, in other words. All you need is a class to define this object, so the
obvious next step is to investigate how you implement the TableModel interface.

Understanding the TableModel Interface
The TableModel interface declares methods that are used by a JTable object to access the data item to
be displayed at each position in the table. This interface is defined in the javax.swing.table package,
along with the JTable class. Our class encapsulating a resultset will need to implement this interface
and therefore define all the methods that the interface declares. The bad news is that there are nine of
them. The good news is that there is an abstract class, AbstractTableModel, that implements six of
them, so if you extend this class you have a minimum of three methods to define. The full set of methods
declared in the TableModel interface is as follows:

getColumnCount() Returns the number of columns in the table model
as type int.

getRowCount() Returns the number of rows in the table model as
type int.

getValueAt(int row, Returns the value of the data item in the table
int column) model at the position specified by the argument as

type Object.

getColumnClass(int column) Returns the class type of the data in the columns
specified by the argument as type Class.

getColumnName(int column) Returns the name of the columns specified by the
argument as type String.

setValueAt(Object value, Sets the value value for the data item in the table
int row, model at the position specified by the last two
int column) arguments. There is no return value.

isCellEditable(int row, Returns true if the data item at the position
int column) specified by the arguments is editable, and false

otherwise.

addTableModelListener(Adds a listener that is notified each time the table
TableModelListener tml) model is altered.

removeTableModelListener(Removes a listener that was listening for table
TableModelListener tml) model changes.

Remember that all these methods are called by the JTable object, so these provide the means whereby
the JTable object accesses and manipulates data in the table model. The AbstractTableModel class
provides default implementations for the last six methods in the list above, so the minimum you have to
supply when you extend this class are the first three.

Defining a Table Model
You want to define a class that encapsulates a ResultSet object, and it will be convenient to make the
object of this class type have the capability to replace the existing ResultSet object by a new one at any

1318

Chapter 24

time. This will enable a single JTable object to display a series of different resultsets, just by setting a
new resultset in the underlying TableModel object. You can do this by providing a method that will
accept a ResultSet object as an argument and making the contents available through the TableModel
interface. With this in mind, the basic outline of the class will be:

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

import javax.swing.table.AbstractTableModel;

import java.util.Vector;

class ResultsModel extends AbstractTableModel {

public void setResultSet(ResultSet results) {

// Make the data in the resultset available through the TableModel interface...

}

public int getColumnCount() {

// Return number of columns...

}

public int getRowCount() {

// Return number of rows...

}

public String getValueAt(int row, int column) {

// Return the value at position row,column...

}

public String getColumnName(int column) {

// Return the name for the column...

}

}

You could access the data to be returned by the TableModel interface methods by going back to the
original ResultSet object as necessary. This may involve going back to the database each time, and it
will be generally more convenient and probably more efficient to cache the data from the resultset in the
ResultsModel object. This means that the setResultSet() method will need to set this up. You will
need to store two sets of information in a ResultsModel object — the column names, which are String
objects, and the data in the table, which could be any of the types matching the SQL data types. To keep
things simple, you’ll access the data using the getString() method for the ResultSet object. Any of
the SQL data types you will be using can be extracted as type String, and with this approach you’ll
have to deal only with strings at this point.

You can store the column names in a String array, so you can add a data member to the ResultsModel
class to provide for this:

private String[] columnNames = new String[0]; // Empty array of names

Defining columnNames as an array with zero elements ensures that you start out with a non-null array,
even though there is no resultset initially. You won’t know in advance how many rows or columns of
data there are, so you won’t want to use an array. A Vector<> object will provide sufficient flexibility to
accommodate whatever you need. You can store the contents of a row as an array of String objects that

1319

Talking to Databases

you can then store as an element in the Vector<>. You can define the data member that stores the rows
of data values as:

private Vector<String[]> dataRows = new Vector<String[]>(); // Vector of rows

Of course, you have set the type for all the data items in a row to String here, but if you wanted to
accommodate different types within a row, you could use an array of type Object[] object to store each
row. You mustn’t forget the import statement for the Vector class name — it’s defined in java.util.

You can now implement the setResultSet() method in the ResultsModel class as:

public void setResultSet(ResultSet results) {

try {

ResultSetMetaData metadata = results.getMetaData();

int columns = metadata.getColumnCount(); // Get number of columns

columnNames = new String[columns]; // Array to hold names

// Get the column names

for(int i = 0; i < columns; i++) {

columnNames[i] = metadata.getColumnLabel(i+1);

}

// Get all rows

dataRows.clear(); // Empty vector to store the data

String[] rowData; // Stores one row

while(results.next()) { // For each row...

rowData = new String[columns]; // create array to hold the data

for(int i = 0; i < columns; i++) { // For each column

rowData[i] = results.getString(i+1); // retrieve the data item

}

dataRows.addElement(rowData); // Store the row in the vector

}

fireTableChanged(null); // Signal the table there is new model data

}

catch (SQLException sqle) {

System.err.println(sqle);

}

}

To get the column names and the number of columns, you need access to the ResultSetMetaData
object corresponding to the ResultSet object. The getColumnLabel() method for the metadata object
returns the label to be used to name the column. This will either be the name of the column as known to
the database, or the alias if you specify one in the SELECT statement used to create the resultset. The col-
umn names are stored in the array columnNames.

You call the clear() method for the Vector<String[]> object to remove any existing references from the
vector. Each element in the vector will be a reference to an array of String objects, rowData, that you create
in the while loop, and you set the values of its elements in the nested for loop. Once you have created the

1320

Chapter 24

array, you store a reference to it in dataRows. After all the rows from the resultset have been stored, you call
the fireTableChanged() method that the ResultsModel class inherits from the base class. This method
notifies all listeners for the JTable object for this model that the model has changed, so the JTable object
should redraw itself from scratch. The argument to the fireTableChanged() method is a reference to an
object of type TableModelEvent that you can use to record the parts of the model that have changed, and
this is passed to the listeners. You pass a null here, as you want to invalidate the whole table.

The method to return the number of columns is now very easy to implement:

public int getColumnCount() {

return columnNames.length;

}

The column count is the number of elements in the columnNames array.

Supplying the row count is just as easy:

public int getRowCount() {

return dataRows == null ? 0 : dataRows.size();

}

The number of rows corresponds to the size of the Vector<> object, dataRows. You check to verify that
the value of the dataRows vector is not null to ensure that the initialization of the InteractiveSQL
GUI can take place even when the vector has not been initialized.

The next method you need to define provides access to the data values. You can implement this as fol-
lows:

public String getValueAt(int row, int column) {

return dataRows.elementAt(row)[column];

}

The elementAt() method returns the element in the Vector<> object at the position specified by the
argument. This will be a reference to an array of type String[] so you just index this with the value of
the column parameter to select the element to be returned.

The last method you must add to the class is getColumnName(), which will return the column name
given a column index. You can implement this as:

public String getColumnName(int column) {

return columnNames[column] == null ? “No Name” : columnNames[column];

}

You take the precaution here of dealing with a null column name by supplying a default column name
in this case.

1321

Talking to Databases

The Application GUI
Figure 24-9 shows the user interface for the InteractiveSQL tool. The text field at the top provides an
entry area for typing in the SQL statement and will be implemented using a JTextField component.
The results display provides a scrollable area for the results of the executed SQL command. This will be
implemented using a JScrollPane component. A status line, implemented as a JTextArea component,
provides the user with the number of rows returned from the query, or the text of any SQLException
object generated by the query.

Figure 24-9

Figure 24-9 also shows the menu items in the File menu and the tooltip prompt for the SQL input area.
The Clear query menu item will just clear the input area where you enter an SQL query.

Try It Out Defining the GUI
You will derive the InteractiveSQL class from the JFrame class and make this the foundation for the
application. Its constructor will be responsible for loading the JDBC driver class, creating a connection to
the database, and creating the user interface. The code is as follows:

import java.awt.BorderLayout;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import javax.swing.JFrame;

import javax.swing.JTextField;

1322

Chapter 24

import javax.swing.JTextArea;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.SQLException;

public class InteractiveSQL extends JFrame {

public static void main(String[] args) {

// Create the application object

InteractiveSQL theApp = new InteractiveSQL(“sun.jdbc.odbc.JdbcOdbcDriver”,

“jdbc:odbc:technical_library”,

“guest”,

“guest”);

}

public InteractiveSQL(String driver, String url,

String user , String password) {

super(“InteractiveSQL”); // Call base constructor

setBounds(0, 0, 400, 300); // Set window bounds

setDefaultCloseOperation(DISPOSE_ON_CLOSE); // Close window operation

addWindowListener(new WindowAdapter() { // Listener for window close

// Handler for window closing event

public void windowClosing(WindowEvent e) {

dispose(); // Release the window resources

System.exit(0); // End the application

}

});

// Add the input for SQL statements at the top

command.setToolTipText(“Key SQL commmand and press Enter”);

getContentPane().add(command, BorderLayout.NORTH);

// Add the status reporting area at the bottom

status.setLineWrap(true);

status.setWrapStyleWord(true);

getContentPane().add(status, BorderLayout.SOUTH);

// Create the menubar from the menu items

JMenu fileMenu = new JMenu(“File”); // Create File menu

fileMenu.setMnemonic(‘F’); // Create shortcut

fileMenu.add(clearQueryItem); // Add clear query item

fileMenu.add(exitItem); // Add exit item

menuBar.add(fileMenu); // Add menu to the menubar

setJMenuBar(menuBar); // Add menubar to the window

// Establish a database connection and set up the table

try {

Class.forName(driver); // Load the driver

connection = DriverManager.getConnection(url, user, password);

statement = connection.createStatement();

1323

Talking to Databases

model = new ResultsModel(); // Create a table model

JTable table = new JTable(model); // Create a table from the model

table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF); // Use scrollbars

resultsPane = new JScrollPane(table); // Create scrollpane for table

getContentPane().add(resultsPane, BorderLayout.CENTER);

} catch(ClassNotFoundException cnfe) {

System.err.println(cnfe); // Driver not found

} catch(SQLException sqle) {

System.err.println(sqle); // error connection to database

}

pack();

setVisible(true);

}

JTextField command = new JTextField(); // Input area for SQL

JTextArea status = new JTextArea(3,1); // Output area for status and errors

JScrollPane resultsPane;

JMenuBar menuBar = new JMenuBar(); // The menu bar

JMenuItem clearQueryItem = new JMenuItem(“Clear query”); // Clear SQL item

JMenuItem exitItem = new JMenuItem(“Exit”); // Exit item

Connection connection; // Connection to the database

Statement statement; // Statement object for queries

ResultsModel model; // Table model for resultset

}

You can try running the application as it is, and you should see the basic application interface displayed
in the window with a working close operation.

How It Works
The constructor is passed the arguments required to load the appropriate driver and create a
Connection to a database. The first executable statement in this constructor calls the constructor for the
JFrame class, passing a default window title to it. The constructor then creates and arranges the user
interface components. Most of this should be familiar to you, but let’s pick out a few things that are new,
or are worthy of a second look.

You can see how you add a tooltip for the JTextField component command— the input area for an SQL
statement. Don’t forget that you can add a tooltip for any Swing component in the same way.

You define the JTextArea object, status, so that it can display three lines of text. The first argument to
the JTextArea constructor is the number of lines of text, and the second argument is the number of
columns. Some of the error messages can be quite long, so you call both the setLineWrap() method to
make lines wrap automatically, and the setWrapStyleWord() method to wrap a line at the end of a
word — that is, on whitespace — rather than in the middle of a word. In both cases the true argument
switches the facility on.

You create the JTable object using the default ResultsModel object, which will contain no data ini-
tially. Since the number of columns in a resultset will vary depending on the SQL query that is executed,
you wrap the JTable object in a JScrollPane object to provide automatic scrolling as necessary. The
scrollbars will appear whenever the size of the JTable object is larger than the size of the scroll pane. By

1324

Chapter 24

default, a JTable object will resize the width of its columns to fit within the width of the JTable com-
ponent. To inhibit this and allow the scroll pane scrollbars to be used, you call the
setAutoResizeMode() method with the argument as JTable.AUTO_RESIZE_OFF.

This not only inhibits the default resizing action when the table is displayed, but also allows you to
change the size of a column when the table is displayed without affecting the size of the other columns.
You change the size of a column by dragging the side of the column name using the mouse. There are
other values defined in the JTable class that you can pass to the setAutoResizeMode() method to
determine how resizing is handled:

AUTO_RESIZE_ALL_COLUMNS Adjusts the sizes of all columns to take up the
change in width of the column being resized. This
maintains the overall width of the table.

AUTO_RESIZE_NEXT_COLUMN Adjusts the size of the next column to provide for
the change in the column being altered in order to
maintain the total width of the table.

AUTO_RESIZE_LAST_COLUMN Adjusts the size of the last column to provide for
the change in the column being altered in order to
maintain the total width of the table.

AUTO_RESIZE_SUBSEQUENT_COLUMNS Adjusts the size of the columns to the right to pro-
vide for the change in the column being altered in
order to maintain the total width of the table.

Handling Events
Of course, the program doesn’t do anything because there’s no code in the program to respond to SQL
commands that you enter in the text field or to menu item selection. The first step is to make the
InteractiveSQL class implement the ActionListener interface. Change the first line of the class
definition to:

public class InteractiveSQL extends JFrame implements ActionListener {

You can define the actionPerformed() method in the InteractiveSQL class like this:

public void actionPerformed(ActionEvent e) {

Object source = e.getSource();

if(source == command) { // Enter key for text field input

executeSQL();

} else if(source == clearQueryItem) { // Clear query menu item

command.setText(“”); // Clear SQL entry

} else if(source == exitItem) { // Exit menu item

dispose(); // Release the window resources

System.exit(0); // End the application

}

}

1325

Talking to Databases

This method is handling events from the text field and the menu items, so the action to be carried out
depends on the object that originated the event. You determine which object originated the event by
comparing the reference returned by the getSource() method for the event object with the three fields
in the InteractiveSQL object. If it’s the text field, you call the executeSQL() method that you’ll add
next; this will execute the SQL command that was entered. If it’s the clearQueryItem menu item, you
call the setText() method for the JTextField object to reset the contents to an empty string. If it’s the
exitItem menu item, you just exit the program after releasing the window resources.

You can define the method that will enter the SQL command that was entered like this:

public void executeSQL() {

String query = command.getText(); // Get the SQL statement

if(query == null ||query.length() == 0) { // If there’s nothing we are done

return;

}

try {

model.setResultSet(statement.executeQuery(query));

status.setText(“Resultset has “ + model.getRowCount() + “ rows.”);

} catch (SQLException sqle) {

status.setText(sqle.getMessage()); // Display error message

}

}

Calling the getText() method for the JTextField object returns a reference to the string that was
entered. If it’s null or an empty string, there’s nothing to be done, so the method returns immediately. If
it’s not null, you pass the query string to the executeQuery() method for the Statement object. This
will return a reference to a ResultSet object containing the results of the query, and you pass this to the
setResultSet() method for the ResultsModel object. This sets the new resultset in the model and
causes the JTable object to redisplay itself with the new data from the table model. Finally, you display
the number of rows returned by the query in the text area below the table.

Of course, you still have to identify the InteractiveSQL object as the listener for the text field and the
two menu items, so add the following code to the constructor after the code that sets up the menu:

menuBar.add(fileMenu); // Add menu to the menubar

setJMenuBar(menuBar); // Add menubar to the window

// Add listeners for text field and menu items

command.addActionListener(this);

clearQueryItem.addActionListener(this);

exitItem.addActionListener(this);

You need to add two more import statements to the source file for InteractiveSQL:

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

If you recompile the program and rerun it, you should now be able to enter SQL commands and see the
results displayed in the application window.

The program works only with the database and driver that you have hard-coded in the program. You
can make it a lot more flexible by allowing command-line arguments to be supplied that specify the
database and driver, as well as the user ID and password.

1326

Chapter 24

Handling Command-Line Arguments
All you need to do is to alter the main() method to accept up to four command-line arguments; these
will be the values for the user name, password, database URL, and JDBC driver.

Try It Out Using Command-Line Parameters
You need to modify the code in main() to:

public static void main(String[] args) {

// Set default values for the command line args

String user = “guest”;

String password = “guest”;

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

// Up to 4 arguments in the sequence database url,driver url, user ID, password

switch(args.length) {

case 4: // Start here for four arguments

password = args[3];

// Fall through to the next case

case 3: // Start here for three arguments

user = args[2];

// Fall through to the next case

case 2: // Start here for two arguments

driver = args[1];

// Fall through to the next case

case 1: // Start here for one argument

url = args[0];

}

InteractiveSQL theApp = new InteractiveSQL(driver, url, user, password);

}

How It Works
Now the program enables you to optionally specify the JDBC URL, the JDBC driver, the user name, and
the password on the command line. If you don’t supply any command-line arguments, the program
works as before, accessing the technical_library database.

The mechanism that handles the optional parameters is pretty simple. The switch statement tests the
number of parameters that were specified on the command line. If one parameter was passed, it is inter-
preted as the JDBC URL. If two parameters were passed, the second parameter is assumed to be the
driver URL, and so on. There are no break statements, so control always drops through from the start-
ing case to include each of the following cases.

Summary
In this chapter you’ve been introduced to JDBC programming and seen it in action. The important points
covered in this chapter include the following:

1327

Talking to Databases

❑ The fundamental classes in JDBC are as follows:

❑ DriverManager manages the loading of JDBC drivers and connections to client appli-
cations.

❑ Connection provides a connection to a specific data source.

❑ Statement provides a context for executing SQL statements.

❑ ResultSet provides a means for accessing data returned from an executed
Statement.

❑ The essential JDBC program has the following basic sequence when writing:

❑ Import the necessary classes.

❑ Load the JDBC driver.

❑ Identify the data source.

❑ Allocate a Connection object.

❑ Allocate a Statement object.

❑ Execute a query using the Statement object.

❑ Retrieve data from the returned ResultSet object.

❑ Close the ResultSet.

❑ Close the Statement object.

❑ Close the Connection object.

❑ The JTable component provides an easy and convenient way to display the results of database
queries.

❑ A table model can provide the data to be displayed by a JTable component. A table model is an
object of a class that implements the TableModel interface.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Write a program that outputs all authors in the technical_library database with last names
starting with the letters A through H.

2. Write a program that lists all books and the authors for those books. (Hint: You will need an
SQL join and the auth_books table.)

3. Modify the InteractiveSQL program to allow the user to specify which database to use.

4. Modify the InteractiveSQL program to provide separate input areas for each part of a
SELECT statement — one for the table columns, one for the table, one for a possible WHERE
clause, and so on.

1328

Chapter 24

25
The JDBC in Action

In this chapter I’ll expand on the topics that I introduced in the previous chapter, and go into more
detail on the Java Database Connectivity (JDBC) application program interface (API). In this chap-
ter you’re going to learn more about:

❑ How you map relational data onto Java objects

❑ The mapping between SQL and Java data types

❑ How you limit the data created in a resultset

❑ How you constrain the time spent executing a query

❑ How you use a PreparedStatement object to create a parameterized SQL statement

❑ How you can execute database update and delete operations in your Java programs

❑ How you can get more information from SQLException objects

❑ What an SQLWarning object is and what you can do with it

Data Types and JDBC
In all of the examples so far, all of the data extracted from a resultset was retrieved as a String.
You’ll certainly need to get other types of data, and as you saw in the previous chapter, the
ResultSet provides a number of methods for retrieving different data types. To use these effec-
tively, you need to look at the SQL data types and understand how they map to the Java data
types in your program.

Mapping between Java and SQL Data Types
The SQL-92 standard defines a set of data types that don’t map one-for-one with those in Java. As
you write applications that move data from SQL to Java and back, you’ll have to take account of
how JDBC performs that mapping. That is, you need to know the Java data type you need to rep-
resent a given SQL data type, and vice versa.

The Types class in the java.sql package defines constants of type int that represent each of the sup-
ported SQL types. The name given to the data member storing each constant is the same as that of the
corresponding SQL type. For example, when you retrieve the SQL type of a table column by calling the
getColumnType() method for a ResultSetMetaData object, the SQL type is returned as one of the
constants defined in the Types class.

When you’re retrieving data from a JDBC data source, the ResultSet implementation will map the SQL
data onto Java data types. The following table shows the SQL-to-Java mappings:

SQL Data Type Java Data Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Note that the last three are Java class types defined in the java.sql package. The Date, Time, and
Timestamp classes here that accommodate the requirements of the SQL types are derived from the Date
class defined in the java.util package.

Conversely, when you are relating Java-to-SQL data types, the following mappings apply:

1330

Chapter 25

Java Data Type SQL Data Type

String VARCHAR, LONGVARCHAR

java.math.BigDecimal NUMERIC

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] VARBINARY, LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

Most likely you’ll know ahead of time what the SQL type is for the data you are accessing in a database.
When this is not the case, you can easily determine the SQL type for each column in a resultset by calling
the getColumnType() method for the ResultSetMetaData object. You can then compare the return
value with the constants defined in the Types class to select the getXXX() method for the ResultSet
object that is appropriate for retrieving the data.

Mapping Relational Data onto Java Objects
In the previous chapter, you saw how you could get the basic attribute data from a JDBC ResultSet
object. Since Java is object-oriented, in many cases you won’t want to deal with individual data items
such as the authors’ names and IDs — you’ll want to work with Author objects that represent the
authors. That’s what I’ll focus on now, and in the process, you’ll get some more experience with the
Statement and ResultSet interfaces.

The way that information is handled at the object level is usually different from the way that data is
stored in a relational database. In the world of objects, the underlying principle is to make those objects
exhibit the same characteristics (information and behavior) as their real-world counterparts — in other
words, objects function at the level of the conceptual model. Relational databases, on the other hand,

Note that some databases implement INTEGER data types as NUMERIC. When access-
ing INTEGER elements through the JDBC, it is important to associate the JDBC data
type with the internal data type that is actually stored in the database.

1331

The JDBC in Action

work at the data model level. As you saw in the previous chapter, relational databases store information
using normalized forms, where conceptual objects like invoices and customers can be decomposed into
a number of tables. So how do you deal with the problem of mapping objects to relational data models?

Sometimes there is a straightforward relationship between the columns in a table and the member vari-
ables in an object. In that case, the mapping task consists simply of matching the data types of the
database with those of Java. Figure 25-1 shows this simple application-level SQL-to-object mapping.

Figure 25-1

Try It Out A Simple Mapping from SQL Rows to Java Objects
The authors table in the sample database is a good example of a simple mapping. To recap, this table
has the following definition:

Column Data Type Description

authid int Unique identifier for each author

lastname char(48) Last name of author

firstname char(48) First name of author

address1 char(80) First line of address

address2 char(80) Second line of address

city char(25) City

state_prov char(25) State or province

Application

JDBC

Database
authors table

Author
object

Call JDBC method to specify
SQL SELECT statement

The application extracts data
describing an author from the

database as a ResultSet object.

The application creates the
Author object from data

contained within the ResultSet.

ResultSet
object

Table
data

SQL
SELECT

1332

Chapter 25

Column Data Type Description

postcode char(10) Postal code

country char(15) Country

phone char(20) Daytime phone number

fax char(20) Fax number

email char(25) E-mail address

Let’s define a Java class to encapsulate an author. Take a look back at the table that shows you how to
map SQL to Java data types. Based on those mappings, you can define the member variables for an
Author class, and add a constructor, member access methods, and a toString() method:

public class Author {

public Author(int authid, String lastname, String firstname,

String address[], String city, String state,

String postcode, String country,

String phone, String fax, String email)

{

this.authid = authid;

this.lastname = lastname;

this.firstname = firstname;

this.address = address;

this.city = city;

this.state = state;

this.postcode = postcode;

this.country = country;

this.phone = phone;

this.fax = fax;

this.email = email;

}

public int getId() {

return authid;

}

public String getLastName() {

return lastname;

}

public String getFirstName() {

return firstname;

}

public String[] getAddress() {

return address;

}

public String getCity() {

return city;

}

1333

The JDBC in Action

public String getState() {

return state;

}

public String getCountry() {

return country;

}

public String getPostCode() {

return postcode;

}

public String getPhone() {

return phone;

}

public String getFax() {

return fax;

}

public String getEmail() {

return email;

}

public String toString() {

return new String

(“author ID: “ + Integer.toString(authid) +

“\nname : “ + lastname + “,” + firstname +

“\naddress : “ + address[0] +

“\n : “ + address[1] +

“\n : “ + city + “ “ + state +

“\n : “ + postcode + “ “ + country +

“\nphone : “ + phone +

“\nfax : “ + fax +

“\nemail : “ + email);

}

int authid;

String lastname;

String firstname;

String address[];

String city;

String state;

String postcode;

String country;

String phone;

String fax;

String email;

}

Next, you need to get the data from the database into the Author object. Your initial strategy for doing
this is going to be pretty basic — the application class will create the Connection, Statement, and
ResultSet objects and read the data from the database. The Author class constructor will be called
using each row of data read. For this example, you’ll use an SQL statement that is a literal string in the
code, rather than creating a PreparedStatement:

1334

Chapter 25

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.ResultSet;

import java.sql.SQLException;

public class TrySimpleMapping {

public static void main (String[] args) {

TrySimpleMapping SQLtoJavaExample;

try {

SQLtoJavaExample = new TrySimpleMapping();

SQLtoJavaExample.listAuthors();

} catch(SQLException sqle) {

System.err.println(sqle);

} catch(ClassNotFoundException cnfe) {

System.err.println(cnfe);

}

}

public TrySimpleMapping() throws SQLException, ClassNotFoundException {

Class.forName (driverName);

connection = DriverManager.getConnection(sourceURL, user, password);

}

public void listAuthors() throws SQLException {

Author author = null;

String query = “SELECT authid, lastname, firstname, address1,”+

“address2, city, state_prov, postcode, country,”+

“phone, fax, email FROM authors”;

Statement statement = connection.createStatement();

ResultSet authors = statement.executeQuery(query);

while(authors.next()) {

int id = authors.getInt(1);

String lastname = authors.getString(2);

String firstname = authors.getString(3);

String[] address = { authors.getString(4), authors.getString(5)};

String city = authors.getString(6);

String state = authors.getString(7);

String postcode = authors.getString(8);

String country = authors.getString(9);

String phone = authors.getString(10);

String fax = authors.getString(11);

String email = authors.getString(12);

author = new Author(id, lastname, firstname,

address, city, state, postcode,

country, phone, fax, email);

System.out.println(“\n” + author);

}

authors.close();

connection.close();

1335

The JDBC in Action

}

Connection connection;

String driverName = “sun.jdbc.odbc.JdbcOdbcDriver”;

String sourceURL = “jdbc:odbc:technical_library”;

String user = “guest”;

String password = “guest”;

}

You should get the following output when you execute the preceding example:

author ID: 15

name : Carone ,Timothy

address : null

: null

: null null

: null null

phone : null

fax : null

email : null

author ID: 14

name : Genesereth ,Michael

address : null

: null

: null null

: null null

phone : null

fax : null

email : null

and so on...

How It Works
Everything in this example should look pretty familiar, but there are just a couple of new things I need to
cover.

Note first that there’s an extra step after the data is read that creates the Author object by calling its con-
structor with that data. Also, in the while loop, as each row is read from the ResultSet, the application
uses the appropriate getXXX() method of the ResultSet object to perform the mapping from SQL to
Java data types. In each of these method calls, the argument is the index value to select the column.
Since the query selects the columns by name, the columns in the resultset will be in the same sequence
as the column names in the SQL query. To display the data for each Author object, you simply call
System.out.println() and pass the Author object reference to it. This will automatically invoke the
toString() method for the object. Notice that in the output, the literal null appears where there are
null values in the database.

This example uses the JDBC-ODBC Bridge driver with a data source that does not
require a user name or password. If you need a user name and password to access that
data source, simply modify the code in the TrySimpleMapping constructor to use the
appropriate driver, URL, and getConnection() method of the DriverManager.

1336

Chapter 25

A Better Mapping Strategy
As you saw, the simple strategy described in the previous section does in fact transfer the data between
the relational database and the Java objects successfully (and this approach can be used in reverse to get
data back to the database, as you’ll see shortly). It does, however, leave quite a lot to be desired because
the movement of data between the database and the Java object is left completely to the application code.

A better, more object-oriented strategy would be to make the Author class handle its own data extrac-
tion from a ResultSet object. To do this, you could add to the Author class a static factory method (a
method that manufactures Author objects) that will synthesize Author objects from data in the
database. The code calling the factory method must still do the work of creating the Connection and
Statement objects and use the Statement object to execute the query that retrieves the data. It will also
need to ensure that the ResultSet contains the columns required for populating the Author object.

You need to establish an implied “contract” between this factory method and any code that calls it:

❑ The current row of the ResultSet object that is passed to the factory method must be posi-
tioned at a valid row.

❑ The ResultSet must contain all the columns from the authors table.

You can implement the factory method in the Author class as:

public static Author fromResults(ResultSet authors) throws SQLException {

String[]address = {

authors.getString(“address1”),

authors.getString(“address2”)

};

return new Author(

authors.getInt(“authid”),

authors.getString(“lastname”),

authors.getString(“firstname”),

address,

authors.getString(“city”),

authors.getString(“state_prov”),

authors.getString(“postcode”),

authors.getString(“country”),

authors.getString(“phone”),

authors.getString(“fax”),

authors.getString(“email”));

}

Here you access the columns by name, so there is no dependency on the order in which they are
retrieved in the query. This gives a little added flexibility to the application — to use the wildcard nota-
tion, for example. The only requirement is that all the columns should be present in the ResultSet
object. If any are not, an exception of type SQLException will be thrown, and this will need to be caught
by the calling method. Of course, the Author.java file must now have import statements added for
the ResultSet and SQLException names from the java.sql package.

You can see this in action with another example.

1337

The JDBC in Action

Try It Out Encapsulated Mapping of SQL Rows to Java Objects
You just need to create the application class. This class is nearly identical to TrySimpleMapping, except
that there’s less code in the listAuthors() method:

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.ResultSet;

import java.sql.SQLException;

public class TryEncapsulatedMapping {

public static void main (String[] args) {

TryEncapsulatedMapping SQLtoJavaExample;

try {

SQLtoJavaExample = new TryEncapsulatedMapping();

SQLtoJavaExample.listAuthors();

} catch(SQLException sqle) {

System.err.println(sqle);

} catch(ClassNotFoundException cnfe) {

System.err.println(cnfe);

}

}

public TryEncapsulatedMapping() throws SQLException,

ClassNotFoundException {

Class.forName (driverName);

connection = DriverManager.getConnection(sourceURL, user, password);

}

public void listAuthors() throws SQLException {

Author author;

String query = “SELECT authid, lastname, firstname, address1,”+

“address2, city, state_prov, postcode, country,”+

“phone, fax, email FROM authors”;

Statement statement = connection.createStatement();

ResultSet authors = statement.executeQuery(query);

while(authors.next())

System.out.println(“\n” + Author.fromResults(authors));

authors.close();

connection.close();

}

Connection connection;

String driverName = “sun.jdbc.odbc.JdbcOdbcDriver”;

String sourceURL = “jdbc:odbc:technical_library”;

String user = “guest”;

String password = “guest”;

}

When you run the example, you should get results that are exactly the same as those from the previous
example.

1338

Chapter 25

How It Works
All you’ve really done in this example is push the work of extracting Java types from the ResultSet to
the class that is using the data. Instead of reading from the ResultSet and instantiating a new Author
object for each row in the listAuthors() method, you just call the static fromResults() method of
the Author class, which will create a new Author object from the data in the current row of the
ResultSet.

This approach is better than the previous example because the class itself is responsible for ensuring that
the correct mapping is performed between the database and the Java object. That way, applications don’t
have to duplicate that logic and don’t have the opportunity to attempt bad mappings (such as convert-
ing an SQL REAL type to an int). The mapping is also independent of the sequence of columns in the
resultset. Encapsulation of the mapping from the database data to the class object is important for ensur-
ing that classes can be reused easily within and between applications; therefore, although it’s a little
more work than the simple mapping method, it’s well worth it.

The Statement and PreparedStatement
Interfaces

In this section you’re going to look in more detail at the Statement and PreparedStatement interfaces.

You’ll start with the Statement interface, where you’ll learn about the methods that allow you to con-
strain the query and how to handle data definition and data manipulation. Next, you’ll look at the
PreparedStatement, explore the differences between static and dynamic statements, and work with
the PreparedStatement interface.

The Statement Interface
You were introduced to the Statement interface in the previous chapter. The Statement interface
defines a set of methods that are implemented by an object returned to your program when you call the
createStatement() method for the Connection object:

try {

Statement queryStatement = connection.createStatement();

// ...

} catch(SQLException sqle) {

System.err.println(sqle);

}

Like pretty much every other method defined by JDBC, this code must be within a try block and
include a catch block for SQLException.

Once the Statement interface has been created, defining the query is as simple as building a String
containing a valid SQL statement and passing that statement as the argument to the executeQuery()
method of the Statement object. The SQL query can be a literal, or it can be a String value that you
build at run time, as was the case in the InteractiveSQL application in the previous chapter, where the
application obtains the SQL string from the text field just before the statement is executed.

1339

The JDBC in Action

Constraining the Resultset
In general, you won’t normally know how much data will be returned from executing a query. In the
technical_library example, there isn’t any possibility of getting into difficulties because of the vol-
ume of data, but with production databases you may need some controls. Getting a million rows back
from a SELECT operation could be an embarrassment, not only because a substantial amount of time will
be involved, but also because a large amount of memory will be needed to store the data. The
Statement interface allows you to set constraints on the consequences of executing a query. You can
limit the number of rows in the resultset that are returned, as well as specify the maximum field size.
You can also limit the amount of time that is allowed for a query to execute.

Maximum Number of Rows
The JDBC driver may impose a limitation on how many rows may be returned by a query, and you may
wish to impose your limit on how many rows are returned in a resultset. The Statement interface
defines the getMaxRows() and setMaxRows() methods that allow you to query and set the maximum
number of rows returned in the ResultSet object. An argument value 0 is defined as no limit.

A particular JDBC driver may default to a practical limit on the number of rows in a resultset or may
even have implementation restrictions that limit the number of rows that are returned. To determine the
row limit in effect, you can call the getMaxRows() method for your Statement object:

Statement statement = connection.createStatement();

int maxRows = statement.getMaxRows();

When you wish to limit the number of rows returned from a query in an application, to prevent an
extremely lengthy query process, for example, you call setMaxRows() to limit the number of rows
returned:

SQLStatement.setMaxRows(30);

Maximum Field Size
The Statement interface also enables you to query and set the maximum field size that applies to all
column values returned in a ResultSet. Querying this value will tell you if the JDBC driver imposes a
practical or absolute limit on the size of the columns returned. The value 0 is defined as no limit.

To determine the maximum field size for statement results, simply call the getMaxFieldSize() method
of the Statement:

Statement statement = connection.createStatement();

int maxFieldSize = statement.getMaxFieldSize();

It’s important to realize that when the maximum row count is set to a non-zero value
(zero being unlimited), you won’t get any indication when the data that would have
been returned has been truncated. If the total number of rows exceeds the maximum
value, the maximum number of rows are returned in the resultset, and any remain-
ing rows that meet the query criteria will be silently left behind.

1340

Chapter 25

The value returned is the maximum number of bytes permitted for any field returned in a resultset. Like
the maximum row method pair, there is a corresponding setMaxFieldSize() method to set the maxi-
mum field size:

SQLStatement.setMaxFieldSize(4096);

Note that the setMaxFieldSize() method applies only to columns with the following SQL data types:

BINARY VARBINARY LONGVARBINARY

CHAR VARCHAR LONGVARCHAR

Any bytes in a field in excess of the maximum you have set will be silently discarded.

Query Time-Out
Depending on your JDBC driver and the database to which it is attached, there may be an execution
timeout period after which a query will fail and the executeQuery() method will throw an exception.
You can check the value for the time-out period with the getQueryTimeout() method for a Statement
object; you can also set the time-out period (for example, if you want a query to fail after a fixed time
period) using the setQueryTimeout() method. The time-out period is defined in seconds, and a time-
out value of 0 indicates that there is no limit on the time that a query can take.

Here’s a simple program that will test the default query constraints for your JDBC driver. You can substi-
tute an appropriate URL and driver name if you have other JDBC drivers available.

Try It Out Query Constraints
Since this program is tiny, you’ll incorporate everything into the main() method:

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.SQLException;

public class TestQueryTimeOut {

public static void main(String[] args) {

Statement statement = null;

try {

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String username = “guest”;

String password = “guest”;

Class.forName(driver);

Connection connection = DriverManager.getConnection(url, username, password);

statement = connection.createStatement();

System.out.println(“Driver : “ + driver);

} catch (ClassNotFoundException cnfe) {

System.out.println(cnfe);

} catch (SQLException sqle) {

System.out.println(sqle);

}

1341

The JDBC in Action

// Put each method call in a separate try block to execute them all

try {

System.out.print(“\nMaximum rows :”);

int maxRows = statement.getMaxRows();

System.out.print(maxRows == 0 ? “ No limit” : “ “ + maxRows);

} catch (SQLException sqle) {

System.err.print(sqle);

}

try {

System.out.print(“\nMax field size :”);

int maxFieldSize = statement.getMaxFieldSize();

System.out.print(maxFieldSize == 0 ? “ No limit” : “ “ + maxFieldSize);

} catch (SQLException sqle) {

System.err.print(sqle);

}

try {

System.out.print(“\nTimeout :”);

int queryTimeout = statement.getQueryTimeout();

System.out.print(queryTimeout == 0 ? “ No limit” : “ “ + queryTimeout);

} catch (SQLException sqle) {

System.err.print(sqle);

}

}

}

Running this with Access, I got the following output:

Driver : sun.jdbc.odbc.JdbcOdbcDriver

Maximum rows : No limit

Max field size :java.sql.SQLException: [Microsoft][ODBC Microsoft Access

Driver]Optional feature not implemented

Timeout :java.sql.SQLException: [Microsoft][ODBC Microsoft Access

Driver]Optional feature not implemented

You can see that the underlying ODBC driver doesn’t support time-out or field size constraints — more
sophisticated drivers are likely to support these methods.

How It Works
This code is pretty simple. It creates a Connection using a URL defining an Access database called
technical_library. Once the connection is established, a Statement object is created, and using that
the values for the query time-out period, the maximum column size, and the maximum number of rows
can be executed. All three methods providing this information will throw an exception of type
SQLException if the information is not available — as is the case with the Microsoft Access driver. To
make sure that you do call all three methods, even when an exception is thrown, each method call is in a
separate try block.

Executing DDL and DML
As you know, the executeQuery() method is used to execute an SQL query statement — a statement
that is expected to return some results in a resultset. As I indicated in the previous chapter, there are other

1342

Chapter 25

types of SQL statements that do not return results. These statements fall into two primary categories:
Data Definition Language (DDL) statements and Data Manipulation Language (DML) statements.

❑ DDL statements are those that change the structure of a database, such as CREATE TABLE and
DROP TABLE.

❑ DML statements are those that change the contents of the database, such as INSERT, UPDATE,
and DELETE statements.

So far, all of the examples you have seen, including the InteractiveSQL application, have used the
executeQuery() method. If you tried to execute an SQL statement that didn’t produce a resultset with
the InteractiveSQL program, such as any DDL or DML, you would see an exception message reported
on the status line. This is shown in Figure 25-2.

Figure 25-2

The exception containing the message “No ResultSet was produced” is thrown because the
executeQuery() method expects only an SQL statement that generates results (note that even
though an exception was thrown in this case, the SQL statement was still executed).

The Statement interface provides the executeUpdate() method to execute statements that change
the contents of the database rather than return results. Like executeQuery(), the executeUpdate()
method accepts a single argument of type String specifying the SQL statement that is to be executed.
You can use the executeUpdate() method to execute UPDATE, INSERT, or DELETE SQL statements. You

1343

The JDBC in Action

can also use it to execute DDL statements. The method returns a value of type int that indicates the
number of rows affected by the operation when the database contents are changed, or 0 for statements
that do not alter the database.

The code fragment below illustrates use of the executeUpdate() method to add a row to the authors
table:

int rowsAdded = 0;

Statement statement = connection.createStatement();

rowsAdded = statement.executeUpdate(

“INSERT INTO authors (authid, lastname, firstname)” +

“VALUES(65,’Einstein’,’Albert’)”);

I split the SQL command into two strings simply because it will not fit on a single line in the book.

Using the executeUpdate() method, it is pretty easy to write a utility to create and populate a table.
The next example does exactly that. In fact, this example is similar to the build_tables utility included
with the book’s source code, except that the latter reads an SQL statement from an external file.

Try It Out Executing DDL and DML
Again, this is a small example, so the code will all be contained in the main() method. The URL and the
driver are identified by the url and driver strings:

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.SQLException;

public class BuildTables {

public static void main(String[] args) {

try {

String username = “guest”;

String password = “guest”;

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String[] SQLStatements = {

“CREATE TABLE online_resources (pub_id int, name char(48), url char(80))”,

“INSERT INTO online_resources VALUES(1, ‘Wrox Home Page’,” +

“ ‘http://www.wrox.com’)”,

“INSERT INTO online_resources VALUES(2, ‘JavaSoft Home Page’,” +

“ ‘http://www.javasoft.com’)”,

“INSERT INTO online_resources VALUES(3, ‘Apress Home Page’,” +

“ ‘http://www.apress.com’)”,

“INSERT INTO online_resources VALUES(4, ‘Addison Wesley Home Page’,” +

“ ‘http://www.awprofessional.com’)”,

“INSERT INTO online_resources VALUES(5, ‘Java Developer Connection’,” +

“ ‘http://java.sun.com’)”

};

Class.forName(driver);

1344

Chapter 25

Connection connection = DriverManager.getConnection(url, username, password);

Statement statement = connection.createStatement();

for (String SQLStatement : SQLStatements) {

statement.executeUpdate(SQLStatement);

System.out.println(SQLStatement);

}

} catch (ClassNotFoundException cnfe) {

System.err.println(cnfe);

} catch (SQLException sqle) {

System.err.println(sqle);

}

}

}

The SQLStatements String array contains the DDL and DML that will be executed by this program.
The for loop simply iterates through each statement in the array and executes it using the
executeUpdate() method of the Statement.

You can check the results by running the InteractiveSQL application on the table you created and
observing that the rows were inserted. To do this, start that application and execute the SQL statement:

SELECT * FROM online_resources

After you’re satisfied with your results, feel free to delete the table. Using a new instance of the
InteractiveSQL application, execute the statement:

DROP TABLE online_resources

InteractiveSQL will complain that no ResultSet is produced, but will dispose of the table nevertheless.

How It Works
The BuildTables program is very simple. The String array SQLStatements contains all of the SQL
statements that you want to execute with executeUpdate()— one statement in each element of the
array. Note that you concatenate two String literals for three of the array element values just to make
the presentation clearer on the page here. The for loop iterates through that array and executes and
prints each statement in turn. As usual, the code is inside a try block to catch any exceptions that might
be thrown.

The only differences between this example and the other examples you’ve seen are that the SQL state-
ments are executed with the executeUpdate() method instead of the executeQuery() method, and
instead of a ResultSet being returned, the method returns the number of rows affected by the operation.

The PreparedStatement Interface
Earlier in this chapter, you saw that you can build SQL strings on the fly and execute them with the
executeQuery() method of a Statement. That is one way to introduce parameters into an SQL state-
ment, but it is not the only way, nor is it necessarily the most convenient. The PreparedStatement
interface provides an alternative mechanism that enables you to define an SQL statement with
placeholders for arguments. Placeholders are tokens that appear in the SQL statement that are replaced

1345

The JDBC in Action

by actual values before the SQL statement is executed. This is usually much easier than building an SQL
statement with specific values by concatenating strings.

Like a Statement object, you create a PreparedStatement object by calling a method for a
Connection object. Instead of calling the createStatement() method of the Connection object, you
call the prepareStatement() method when you want to create a PreparedStatement object. While
you can use a Statement object to execute any number of different SQL statements, a
PreparedStatement object executes only one predefined SQL statement that has placeholders for the
variable parts of the statement. You specify the SQL statement that a PreparedStatement object repre-
sents by an argument of type String to the prepareStatement() method. The argument specifies the
SQL statement with each placeholder for a value represented by a ? character. For example:

String newLastName = “UPDATE authors SET lastname = ? WHERE authid = ?”;

PreparedStatement updateLastName = connection.prepareStatement(newLastName);

The first statement defines a String object specifying an UPDATE statement with placeholders for the
last name and the author ID values. This string is passed as the argument to the prepareStatement()
method call that creates the PreparedStatement object, updateLastName. This will allow any value
for lastname to be set for any authid.

Setting Query Parameters
You must set values for all the placeholders that appear in the statement encapsulated by the
updateLastName reference before the statement can be executed. You supply the value for each place-
holder by calling one of the setXXX() methods of the PreparedStatement interface:

setAsciiStream() setBigDecimal() setBinaryStream()

setBoolean() setByte() setBytes()

setDate() setDouble() setFloat()

setInt() setLong() setNull()

setObject() setShort() setString()

setTime() setTimestamp() setUnicodeStream()

These methods accept, minimally, a position argument that identifies which placeholder you are refer-
ring to and a value argument that is the value to be substituted for the placeholder. Placeholders are
indexed in sequence from left to right starting at 1, so you reference the leftmost placeholder with a posi-
tion index of 1, and any placeholders that follow with index values of 2, 3, and so on.

The method that you call for a particular placeholder for an input value depends of the SQL type of the
destination column. You must select the method that corresponds to the field type, so you would use
setInt() for type INTEGER, for example. After calling the appropriate setXXX() method for each
placeholder in the PreparedStatement object, you can execute the SQL statement that the
PreparedStatement object represents either by calling its executeQuery() method if the statement
generates a resultset or by calling its executeUpdate() method to update or otherwise alter the
database. Neither method requires an argument since the PreparedStatement object already has its
SQL statement defined.

1346

Chapter 25

Once all the placeholders have values set and you have executed the statement, you can update any or
all of the placeholders (or even none) before re-executing the statement. The following code fragment
shows the PreparedStatement placeholder value replacement in action:

// Create a PreparedStatement to update the lastname field for an author

String changeLastName = “UPDATE authors SET lastname = ? WHERE authid = ?”;

PreparedStatement updateLastName = connection.prepareStatement(changeLastName);

updateLastName.setString(1,”Martin”); // Set lastname placeholder value

updateLastName.setInt(2,4); // Set author ID placeholder value

int rowsUpdated = updateLastName.executeUpdate(); // execute the update

Note that placeholders for string arguments are not quoted — they are just a ? character, and the
PreparedStatement automatically sets up the empty placeholder. Also, it’s perfectly okay to set
parameters in whatever order you choose — you don’t have to set the first placeholder first, the second
one next, and so forth, just so long as they are all set before the statement is executed.

Let’s try the code fragment above in an example that will change the last name of the author whose
authid is 4.

Try It Out Using a PreparedStatement Object
Try out the following code — only the bits that are of particular interest are shaded here:

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

public class TryPlaceHolders {

public static void main(String[] args) {

try {

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String user = “guest”;

String password = “guest”;

Class.forName(driver);

Connection connection = DriverManager.getConnection(url);

String changeLastName = “UPDATE authors SET lastname = ? WHERE authid = ?”;

PreparedStatement updateLastName =

connection.prepareStatement(changeLastName);

updateLastName.setString(1,” Martin”); // Set lastname placeholder value

updateLastName.setInt(2,4); // Set author ID placeholder value

int rowsUpdated = updateLastName.executeUpdate(); // execute the update

System.out.println(“Rows affected: “ + rowsUpdated);

connection.close();

} catch (ClassNotFoundException cnfe) {

System.err.println(cnfe);

} catch (SQLException sqle) {

System.err.println(sqle);

}

}

}

1347

The JDBC in Action

This should produce the following output:

Rows affected: 1

How It Works
The PreparedStatement object is created from the Connection object by calling the
prepareStatement() method. The statement is also defined with the placeholders marked as question
marks. Those placeholders, for the last name and author ID columns, respectively, are then filled with
values at run time by calling the setString() and setInt() methods of the PreparedStatement
interface.

The statement is executed by calling the executeUpdate() method, which returns the number of rows
affected by the update operation. No arguments are passed to the method since the SQL statement was
defined when the PreparedStatement object was created.

Note that if no change was made to the database, which would occur for example if the primary key
value, authid, did not exist in the authors table, the 0 would be returned as the number of rows
affected. If you want to verify that the change was made, you can use the InteractiveSQL program to
inspect the list of authors.

Statement versus PreparedStatement
There will be times where the choice between using a Statement object or a PreparedStatement
object may not be entirely clear. PreparedStatement objects are great when:

❑ You need to execute the same statement several times and need to change only specific values.

❑ You are working with large chunks of data that make concatenation unwieldy.

❑ You are working with a large number of parameters in the SQL statement that make string con-
catenation unwieldy.

Conversely, Statement objects work well when you have simple statements; and of course, you have no
option if your JDBC driver doesn’t support the PreparedStatement interface.

Working with Input Streams
One of the most intriguing features of the PreparedStatement interface is the ability to use a stream as
the source of data to be inserted in a statement in place of a placeholder. It’s very often more convenient
to deal with streams when you’re working with data types like LONGVARCHAR and LONGVARBINARY. For
example, an application storing binary images can very efficiently populate a LONGVARBINARY column
by creating a FileInputStream object representing the source file.

The PreparedStatement interface provides three methods for extracting data from input streams:

1348

Chapter 25

Method Description

setAsciiStream() Use for columns with the SQL type LONGVARCHAR

setUnicodeStream() Use for columns with the SQL type LONGVARCHAR

setBinaryStream() Use for columns with the SQL type LONGVARBINARY

Each of these methods requires three argument values that indicate the placeholder position, the
InputStream object that is the source of the data, and the number of bytes to be read from the stream. If
an end of file is encountered before the designated number of bytes have been read, the methods throw
an exception of type SQLException.

The next example is a simple illustration of using the setAsciiStream() method of the
PreparedStatement to store Java source code in a database. It opens a Java source code file as an
InputStream object and uses that InputStream object to populate a column in the database. Access
does not support the LONGVARCHAR SQL type, and you have to use LONGTEXT as the type for the field
that will store the source code in the CREATE TABLE command.

Try It Out PreparedStatement and Input Streams
The program starts out with the usual code for establishing a connection to the database. Then a
FileInputStream object is created from the source code file for this program. The number of bytes con-
tained by the file is obtained by calling the available() method:

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.io.FileInputStream;

public class TryInputStream {

public static void main(String[] args) {

try {

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String user = “guest”;

String password = “guest”;

FileInputStream fis = new FileInputStream(“TryInputStream.java”);

Class.forName(driver);

Connection connection = DriverManager.getConnection(url, user, password);

Statement createTable = connection.createStatement();

// Execute the SQL to create the table

createTable.executeUpdate(

“CREATE TABLE source_code (name CHAR(20), source LONGTEXT)”);

// Create a PreparedStatement to INSERT a row in the table

1349

The JDBC in Action

String ins = “INSERT INTO source_code VALUES(?,?)”;

PreparedStatement statement = connection.prepareStatement(ins);

// Set values for the placeholders

statement.setString(1, “TryInputStream”); // Set first field

statement.setAsciiStream(2, fis, fis.available()); // Stream is source

int rowsUpdated = statement.executeUpdate();

System.out.println(“Rows affected: “ + rowsUpdated);

connection.close();

} catch (Exception e) {

System.err.println(e);

}

}

}

The code can throw exceptions of types IOException, ClassNotFoundException, and
SQLException, and they all need to be caught. The FileInputStream constructor and the
setAsciiStream() method of the PreparedStatement interface can throw IOException exceptions.
Since all you’ll do in each case is output the exception to the error stream, you can economize on the
code by catching them all in the same catch block that uses Exception as the type. This works because
all exception objects have the Exception class as a base.

You might want to check your results by running the InteractiveSQL application to verify that the
table was created and the rows were inserted. Start that application and execute the SQL statement:

SELECT * FROM source_code

After you’re satisfied with your results, feel free to delete the table. Having restarted the
InteractiveSQL application, execute the statement:

DROP TABLE source_code

Note that once the table exists, executing the CREATE TABLE command will fail, so if you want to run the
example more than once be sure to delete the table each time.

How It Works
This program is very similar to the previous example. A FileInputStream object is created from the
file TryInputStream.java. Since the setXXXStream() methods need to know how many bytes to
read from the stream, you have to get the file size of the TryInputStream.java file by calling the
available() method of the FileInputStream object.

1350

Chapter 25

You first create the table by executing the CREATE TABLE SQL command using the Statement object
createTable. Then the PreparedStatement object statement is created, and the placeholder value for
the first column is set by calling the setString() method for the statement object. The real magic hap-
pens in the setAsciiStream() method — all you have to do is supply the method with the placeholder
position, the InputStream, and the number of bytes to be read — returned by the available() method
for the FileInputStream object. When the SQL INSERT statement is executed, the bytes are read from
the stream and stored in the second column of the row inserted in the database table source_code.

When your JDBC applications will be dealing with large chunks of data, the Stream methods of the
PreparedStatement interface are a real help.

The ResultSet
Now that you have a good understanding of the capabilities of the Statement and
PreparedStatement interfaces, it’s time to dig a little deeper into the details of getting the data back
from the query. In this section, you’ll add to what you learned about the ResultSet object in the last
chapter. You’ll explore the getXXX() methods in more depth and look at some of the special SQL data
types and how they are handled. You’ll also look at how to use streams with a ResultSet object.

Retrieving Column Data for Specified Data Types
So far you’ve retrieved data from a resultset as type String because data of any SQL type can be
retrieved in this way. As you saw briefly in the previous chapter, like the Statement and
PreparedStatement interfaces, the ResultSet interface provides methods for working with a variety
of data types and retrieving data as a Java type that is more consistent with the original SQL type.

Most of these methods work in a similar way and come in two overloaded forms. One form specifies the
column by the column name:

xxxType resultSet.getXXX(String columnName)

The other specifies the column name by its index position, the first position index being 1:

xxxType resultSet.getXXX(int columnPosition)

The mechanics of calling these methods is quite straightforward, but to use these methods effectively,
you need to understand the possible mappings between Java data types and SQL data types in both
directions.

1351

The JDBC in Action

The table in Figure 25-3 illustrates the mappings between SQL data types and the appropriate
ResultSet getXXX() methods. To decide which getXXX() method you should use, look in the table for
the method that maps the column data type to the Java type you’ll use. The “preferred” method for a
type is indicated with the Y character. That means that it is the closest mapping to the SQL type. Other
methods that may also work are indicated by the ± symbol.

Figure 25-3

Working with Null Values
As I’ve said, NULL is a special value in the world of SQL. NULL is not the same thing as an empty string
for text columns, nor is it the same thing as zero for a numeric field. NULL means that no data is defined

ResultSet Method to SQL Data Type Mapping

getByte()

getShort()

getInt()

getLong()

getFloat()

getDouble()

getBigDecimal()

getBoolean()

getString()

Y

±

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

±

± ± ±
± ± ±

± ± ±

± ± Y

± ± Y

± ± ±

± ± ±

± Y Y

Y

±

±

±

±

±

±

±

±

Y

±

±

±

±

±

±

±

±

± ± ± ±

Y Y ±

±

Y

±

±

Y ±

±

Y

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

getBytes()

getDate()

getTime()

getTimeStamp()

getAsciiStream()

getUnicodeStream()

getBinaryStream()

getObject()

TI
N

YI
N

T

S
M

AL
LI

N
T

IN
TE

G
ER

B
IG

IN
T

R
EA

L

FL
O

AT

D
O

U
B

LE

D
EC

IM
AL

N
U

M
ER

IC

B
IT

C
H

AR

VA
R

C
H

AR

LO
N

G
VA

R
C

H
AR

B
IN

AR
Y

VA
R

B
IN

AR
Y

LO
N

G
VA

R
B

IN
AR

Y

D
AT

E

TI
M

E

TI
M

ES
TA

M
P

1352

Chapter 25

for a column value within a relation. For example, recall the authors table, which has several values
that may or may not have values assigned, including the email column. To determine which authors do
not have an e-mail address recorded, you could use the following query:

SELECT authid FROM authors WHERE email = NULL

This query will return the ID for each author without an e-mail address.

The ResultSet interface provides a method for testing a column value within a resultset to determine if
it is null. The wasNull() method returns a boolean value that is true if the last column read from the
ResultSet object was a null, and false if it was some other value.

You’ll need to use the capability to detect a null value for a field in your code unless you created your
tables with every column defined as NOT NULL, which tells the database system that it must never allow
a null value in any column. However, that’s not always a practical or desirable way to design tables.

Let’s consider a simple example that selects and displays the author ID, last name, first name, and e-mail
address for each row in the authors table. If any of these values are not assigned a value, the code could
throw a NullPointerException when the program attempts to display the value. To avoid that sort of
bad program behavior, this example will use the wasNull() method of the ResultSet to check for
empty fields. Notice that the wasNull() method is called after the value is retrieved from the
ResultSet.

Try It Out Testing for Null Values in the ResultSet
Here’s the code for the example:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

import java.sql.ResultSet;

public class TestNullValues {

public static void main(String[] args) {

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String theStatement = “SELECT authid, lastname, firstname, email FROM authors”;

try {

Class.forName(driver);

Connection connection = DriverManager.getConnection(url, “guest”, “guest”);

Statement queryAuthors = connection.createStatement();

ResultSet results = queryAuthors.executeQuery(theStatement);

String lastname, firstname, email;

int id;

while(results.next()) {

id = results.getInt(1);

lastname = results.getString(2);

firstname = results.getString(3);

email = results.getString(4);

1353

The JDBC in Action

if(results.wasNull()) {

email = “no email”;

}

System.out.println(Integer.toString(id) + “, “ +

lastname.trim() + “, “ +

firstname.trim() +”, “ +

email.trim());

}

queryAuthors.close();

} catch (Exception e) {

System.err.println(e);

}

}

}

Running this code produces the following results:

1, Gamma, Erich, no email

2, Helm, Richard, no email

3, Johnson, Ralph, no email

4, Horton, Ivor, no email

...

How It Works
In TestNullValues, the SQL statement is executed, and the values for the author ID, last name, first
name, and e-mail address are extracted into local variables. The rows in the resultset are ordered by
authid because of the ORDER BY clause in the SQL query. Because the value for email can be null in
the table, you call the wasNull() method immediately after retrieving that column from results to test
if the value read was a null value. If so, you replace the literal string referenced by email, so outputting
the report will work without throwing an exception. Since the authid, lastname, and firstname
columns are required, there’s no need to test those column values for null values.

Working with Special Data Types
The JDBC java.sql package defines some special data types to accommodate the characteristics of par-
ticular SQL types that don’t readily map to a standard Java data type. A ResultSet class object has
methods for accessing data of these special types. The ResultSet class also defines methods that access
values of SQL types that map to Java data types defined in the java.math package that are designed to
handle numbers with a large number of digits of precision. These types are as follows:

Date
The java.sql.Date class defines the object that is returned by the ResultSet.getDate() method.
This class subclasses the Date class defined in the java.util package, so all of the methods for
java.util.Date objects can be applied to objects of type java.sql.Date. The java.sql.Date class
defines three nondeprecated methods:

❑ A toString() method that formats the value of the date as a string in the form yyyy-mm-dd

❑ A static valueOf() method that converts a string representation (yyyy-mm-dd form) of a date
into a java.sql.Date object

1354

Chapter 25

❑ A setTime() method that accepts an argument of type long that is a millisecond value relative
to 1st January 1970, 00:00:00 GMT, and sets the date value encapsulated by the current
java.sql.Date object to this value

Time
Like java.sql.Date, the java.sql.Time class wraps the java.util.Date class as a subclass. The
class defines a static valueOf() method that returns a Time object from a string representation
(hh:mm:ss form) of time into a Time object and a toString() method that returns a string representation
of the time encapsulated by the object in the form hh:mm:ss.

Timestamp
The java.sql.Timestamp class also subclasses java.util.Date, but provides additional support for
SQL timestamps with support for nanoseconds (java.util.Date supports time only to the nearest mil-
lisecond). The static valueOf() method creates a Timestamp object from a string representation (yyyy-
mm-dd hh:mm:ss.fffffffff form). It also overloads accessor methods and comparison methods —before()

and after()— to support nanoseconds.

Big Numbers
The SQL NUMERIC and DECIMAL types are mapped to the Java BigDecimal class type. This class is
defined in the java.math package along with the BigInteger class that defines objects that encapsu-
late integers of arbitrary precision, with negative values in 2’s complement form. A BigDecimal object
defines a decimal value of arbitrary precision that can be positive or negative. A BigDecimal object is
implemented as an arbitrary precision signed integer — a BigInteger object, plus a scale value that
specifies the number of digits to the right of the decimal point. Thus, the value of a BigDecimal object is
the integer value divided by 10scale. To read a column value of either NUMERIC or DECIMAL SQL type as a
Java BigDecimal object, you use the getBigDecimal() method for the ResultSet object.

The BigInteger and BigDecimal classes are very useful for applications that require a large number of
digits of precision, such as security keys, very large monetary values, and so forth. The BigInteger and
BigDecimal classes provide mathematical methods for addition, subtraction, multiplication, and divi-
sion, as well as comparison methods and methods for returning their value as standard Java types.
Additionally, BigInteger objects support bitwise and shift operations. The BigDecimal class provides
methods for tailoring the rounding behavior in arithmetic operations.

Like Java String objects, the value of a BigInteger or BigDecimal object is immutable. That is, once
an object has been created, you can’t change its value. When you apply arithmetic operations to
BigInteger and BigDecimal objects using their methods, such as multiply() and divide(), you
always get a new object as a result, in much the same way as you get a new String object when you use
the concat() or substring() methods of String.

You can get an idea of the usefulness of these classes if you consider the difficulties you would have if
you had to use type double for computations where which you needed to maintain a great deal of accu-
racy. Suppose you had to calculate the product of the following two floating-point numbers:

98765423462576235623562346234623462.35632456234567890

and

9898234523235624664376437634674373436547.34586558

1355

The JDBC in Action

If you were to calculate the product of two variables of type double that you have initialized with these
values, you would probably be very disappointed when your code produced the result:

9.776033242192577E74

Considering the number of digits of precision you entered originally for the factors, you could not
claim that accuracy has been maintained. Of course, the problem is that the precision for values of type
double is fixed and limited to the number of digits that you see in the preceding result. Enter the
BigDecimal class. Let’s see how it would work with that.

Try It Out The BigDecimal Class
You can do the calculation and produce the sort of result that you want using BigDecimal objects as
follows:

import java.math.BigDecimal;

public class TestBigDecimal {

public static void main(String[] args) {

BigDecimal bn1 = new BigDecimal(

“98765423462576235623562346234623462.35632456234567890”);

BigDecimal bn2 = new BigDecimal(

“9898234523235624664376437634674373436547.34586558”);

BigDecimal bn3 = bn1.multiply(bn2);

System.out.println(bn3);

}

}

When you run the code, the program displays the result of the multiplication:

977603324219257863723893512231480785031019252779047208595196675768219339448.7733135

102106926932422620

How It Works
The BigDecimal class has remarkable capabilities. It can support numbers of virtually limitless
precision. The precision and scale are both 32-bit signed integer values, so they can be as large as
2,147,483,647 digits — and that’s a huge number of decimal digits! In the example, you create two
BigDecimal objects, bn1 and bn2, representing the original values that you want to multiply. You multi-
ply them using the multiply() method for bn1 and store the reference to the BigDecimal object that is
returned containing the result in bn3. You can use this in a println() method call since the
BigDecimal class implements the toString() method.

The BigDecimal class defines methods that implement all of the usual arithmetic operators, add(),
subtract(), multiply(), divide(), and remainder(), as well as a range of methods supporting
other operations, including max(), min(), pow(), and compareTo(). Just about anything that you can
do with a primitive numeric type you can also do with BigDecimal objects.

The BigInteger class is just as impressive — it provides the same arbitrary precision characteristics for
integer values. Of course, there is a price to pay for that precision. Computations using the BigInteger
and BigDecimal classes are notably slower than their counterparts using native Java types.

1356

Chapter 25

The BigInteger and BigDecimal classes manage digits as objects in a vector, so to get the flexibility of
unlimited precision, you have to trade off computing time for operations on the numbers. Nonetheless,
this class is invaluable for many applications.

Working with Streams
Earlier, you looked at using streams to populate LONGVARCHAR and LONGVARBINARY columns because
it’s frequently much easier to use streams when you’re working with large objects.

The ResultSet interface provides three methods for retrieving data from a database as a stream. These
methods are:

Method Description

getAsciiStream() Use for LONGVARCHAR columns

getCharacterStream() Use for LONGVARCHAR columns

getBinaryStream() Use for LONGVARBINARY columns

Each of these methods requires an argument to be supplied that indicates the column either by name or
by index position. The getCharacterStream() method returns a reference to a Reader object, whereas
the other two methods return a reference to an InputStream object from which you can read the data
for the column.

The next example shows a simple example of using the getAsciiStream() method of the ResultSet.
This example extends the TryInputStream.java program that you saw in the previous chapter.

Try It Out ResultSet Columns as Streams
Here’s a version of the TryInputStream.java program that uses a stream:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.io.FileInputStream;

import java.io.BufferedReader;

import java.io.InputStreamReader;

public class TryInputStream2 {

public static void main(String[] args) {

try {

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String user = “guest”;

String password = “guest”;

FileInputStream fis = new FileInputStream(“TryInputStream2.java”);

Class.forName(driver);

1357

The JDBC in Action

Connection connection = DriverManager.getConnection(url, user, password);

Statement createTable = connection.createStatement();

createTable.executeUpdate(

“CREATE TABLE source_code (name char(20), source LONGTEXT)”);

String ins = “INSERT INTO source_code VALUES(?,?)”;

PreparedStatement statement = connection.prepareStatement(ins);

statement.setString(1, “TryInputStream2”);

statement.setAsciiStream(2, fis, fis.available());

int rowsUpdated = statement.executeUpdate();

System.out.println(“Rows affected: “ + rowsUpdated);

// Create a statement object and execute a SELECT

Statement getCode = connection.createStatement();

ResultSet theCode = getCode.executeQuery(

“SELECT name,source FROM source_code”);

BufferedReader reader = null; // Reader for a column

String input = null; // Stores an input line

while(theCode.next()) { // For each row

// Create a buffered reader from the stream for a column

reader = new BufferedReader(

new InputStreamReader(theCode.getAsciiStream(2)));

// Read the column data from the buffered reader

while((input = reader.readLine()) != null) { // While there is a line

System.out.println(input); // display it

}

}

connection.close();

} catch (Exception e) {

System.err.println(e);

}

}

}

Make sure that the source_code table doesn’t exist before you run the program. If it does, you can
delete it using the InteractiveSQL program, as you’ve seen before. You should see the text of this
source code printed out. After you’re satisfied with your results, you can delete the table using the
InteractiveSQL application.

How It Works
Most of this code sets up and populates the source_code table with the data from the program source
file, TryInputStream2.java. Once that is done you get a Statement object from the connection that
you’ll use to retrieve the data from the table. The while loop iterates through all the rows in the resultset
that contains the result of the SQL query in the way that you are now very familiar with.

Using the ResultSet object that is returned from executeQuery(), you get an InputStream object
corresponding to the second column in the current row by calling its getAsciiStream() method with
the position index argument as 2. The InputStream object that is returned is used to create an
InputStreamReader object, which in turn is used to create a BufferedReader object that provides
buffered stream input for the column data. The readLine() method for the BufferedReader object

1358

Chapter 25

returns a String object containing a line of input. When the end of the stream is reached, the
readLine() method returns null so the inner while loop will then terminate.

Calling Procedures
Many database systems support stored procedures, which are predefined sequences of SQL commands
that you can call when you want to execute the function that the stored procedure defines. This is a very
powerful facility with a lot of ramifications, so I’ll only touch on the basics of how to use this here, just
so that you are aware of it. JDBC provides support for this sort of capability through the
java.sql.CallableStatement interface, which is derived from the PreparedStatement interface.
You can obtain a CallableStatement reference corresponding to a stored procedure call by calling the
prepareCall() method for a Connection object.

The argument to the prepareCall() method is a String object that defines a string in a format
described as SQL escape syntax. The purpose of SQL escape syntax is to enable the driver to determine
that this is not an ordinary SQL statement and needs to be transformed into a form that will be under-
stood by the database system. This enables the idiosyncrasies of how stored procedures are called in dif-
ferent database systems to be accommodated, since it is up to the driver to recognize that the string is
SQL escape syntax and transform it to the format required by the underlying database. Let’s first con-
sider the simplest possible form for a string to call a stored procedure:

“{call procedureName}”

The braces are always present. The procedure to be called has the name procedureName. Given that you
have a Connection object connection, you could call the procedure with the following code:

CallableStatement call = connection.prepareCall(“{call procedureName}”);

ResultSet result = call.executeQuery(); // Execute the procedure call

Now you can obtain the data from the ResultSet object that is returned by the procedure using
getXXX() methods in the usual way. This code assumes that the stored procedure produces a single
resultset. Of course, it is possible that a procedure may produce multiple resultsets, in which case you
would use the execute() method to execute the procedure and getResultSet() to retrieve the result-
set. If the procedure updated the database, you would call the executeUpdate() method to execute it.

Stored procedures can have arguments that specify input values (called IN parameters) to the operation.
In this case you specify the parameter list between parentheses following the procedure name. Each
parameter is denoted by ?, as for a PreparedStatement command, and you set the values for the
parameters using the setXXX() methods in the way you have seen for PreparedStatement objects. For
example:

CallableStatement call = connection..prepareCall(“{call getMonthData(?, ?)}”);

call.setInt(1, 6); // Set first argument value

call.setInt(2,1999); // Set second argument value

ResultSet result = call.executeQuery(); // Execute the procedure call

As you have seen, each parameter is identified by an index value, the first parameter having the index
value 1.

1359

The JDBC in Action

Procedures can also have parameters for returning a result — referred to as OUT parameters — and you
can set these, too. The placeholder for an OUT parameter is ?— no different from an IN parameter — but
obviously the process for setting the parameter is significantly different. For each OUT parameter, you
must identify the type of the output value as one of the types defined in the java.sql.Types class by
calling the registerOutParameter() method for the CallableStatement object. The first argument
is the index position of the OUT parameter, and the second argument is the type. For example:

call.registerOutParameter(2, Types.INTEGER); // Second parameter OUT and INTEGER

Of course, if you don’t want to qualify the type constants from the Types class in the code, you can
always use a static import statement to import the names into your source file.

Once the OUT parameters have been registered, you then execute the procedure call in the way you have
seen. If a resultset is returned, you can access the data from that in the usual way. To get the value for
each OUT parameter, you must call the getXXX() method for the CallableStatement object that corre-
sponds to the parameter type, so for the preceding example you would write:

int value = call.getInt(2); // Read second parameter value

Procedures can also have parameters that serve as both input and output, so-called INOUT parameters.
In this case you just combine what I’ve discussed for IN and OUT parameters, using setXXX() for the
input value, registerOutParameter() to set the type for the output, and getXXX() to retrieve the
output value.

Finally, a stored procedure may return a value — not as part of the parameter list but as a return value as
for a method. In this case you specify it as follows:

CallableStatement call = connection.prepareCall(“{? = call getData(?, ?)}”);

This has two parameters plus a return value specified by the first ?— preceding the = in the string. This
placeholder is at index position 1, and the two other parameters will be at index position 2 and 3. You
now need to register the type of the value that is returned by the procedure before you execute the pro-
cedure call. You do this in the same way as for any other OUT parameter:

call.registerOutParameter(1,Types.DECIMAL);

When the procedure has been executed, you can retrieve the return value using the getDouble()
method for the call object.

Handling Errors
In all of the examples that you’ve used so far in this chapter, I’ve glossed over the issue of errors, warn-
ings, and exceptions. The examples up until this point have all been predicated on the hope that every-
thing will work okay.

Unfortunately, life is a bit less predictable than that, and you need to take some extra steps in your JDBC
applications to handle conditions that generate warnings or errors. In this section, you’ll see how to
build mechanisms to trap errors, how to use the extra facilities built into JDBC to get detailed warning

1360

Chapter 25

and error information from the data source, and how to gracefully recover from JDBC exceptions. The
first place where you get some extra help is from the SQLException class.

SQLException
Most of the examples that you’ve seen so far have just output the basic exception that is thrown when an
error occurred:

try {

//do JDBC stuff

} catch(SQLException sqle) {

System.err.println(sqle);

}

This invokes the toString() method for the exception object and displays the result. Every method of
every JDBC class and interface can throw an exception of type SQLException. Using the SQLException
exception in this way is a pretty broad-brush approach to handling errors in JDBC, and it is certainly
possible to do a little better.

To do useful things with the SQLException, you need to know that three important pieces of informa-
tion are available from the exception object that is thrown. How you use these pieces of information
depends on what is possible in the context of your application.

The Exception Message
The boilerplate information that you get with just about any exception is a string that describes the
exception, and as you’ve seen, it’s returned by the getMessage() method of the exception object. For
the examples that I’ve presented so far, this is the most useful piece of information. However, this string
varies depending on the JDBC driver that you’re using, so while this information is useful for humans as
an indication of why things are not working out as they should, it’s difficult for programs to make deci-
sions based on this information. For that you need to use something a little different.

SQL State
There is another piece of information that is available when an error occurs — the SQL state — which you
can use within a program to make decisions about how best to proceed. The SQL state is a string that
contains a state as defined by the X/Open SQL standard. You obtain the SQL state value from the
SQLException object by calling its getSQLState() method.

The X/Open standard defines the SQL state as a five-character string that consists of two parts. The first
two characters of the string define the class of the state — for example, the characters 01 represent the
SQL state “success with warning”. Class here is merely a classification — it has nothing to do with
class types.

The next three characters define the subclass of the state. The X/Open standard defines specific sub-
classes and also provides the value 000 as a general subclass. Specific database implementations may
define state subclasses of their own using the values 900 through ZZZ where the standard does not pro-
vide a specific subclass.

The following table shows the SQL state strings defined in the X/Open standard. When these state codes
are set, they may not be directly attributable to your JDBC code, but may reflect an error occurring in the

1361

The JDBC in Action

underlying driver. For example, if you’re using the JDBC-ODBC Bridge, a SQL state can reflect an error
occurring at the ODBC driver level.

Class Subclass Description

01 Success with warning

002 Disconnect error

004 String data, right truncation

006 Privilege not revoked

02 000 No data

07 Dynamic SQL error

001 Using-clause does not match dynamic parameters

006 Restricted data type attribute violation

008 Invalid descriptor count

08 Connection exception

001 Server rejected the connection

002 Connection name in use

003 Connection does not exist

004 Client unable to establish connection

007 Transaction state unknown

S01 Communication failure

21 Cardinality violation

S01 Insert value list does not match column list

S02 Degree of derived table does not match column list

22 Data exception

001 String data, right truncation

003 Numeric value out of range

005 Error in assignment

012 Divide by zero

23 000 Integrity constraint violation

24 000 Invalid cursor state

25 000 Invalid transaction state

S02 Transaction still active

S03 Transaction is rolled back

1362

Chapter 25

Class Subclass Description

2D 000 Invalid transaction termination

34 000 Invalid cursor name

37 000 Syntax error or access violation

40 000 Transaction rollback

001 Statement completion unknown

42 000 Syntax error or access violation

HZ 000-ZZZ RDA (Remote Data Access) errors

S0 Invalid name

001 Base table or view already exists

002 Base table not found

011 Index already exists

012 Index not found

021 Column already exists

S1 Call Level Interface specific

001 Memory allocation error

002 Invalid column number

003 Program type out of range

004 SQL data type out of range

008 Operation canceled

009 Invalid argument value

010 Function sequence error

012 Invalid transaction operation code

013 Memory management error

015 No cursor name available

900-ZZZ Implementation defined

The SQL state string is a very useful piece of information if you want to handle exceptions programmati-
cally. As you can see from the table, the subclasses indicate specific problems that in many cases may be
recoverable. Using the SQL state value, you can make decisions in your program as to whether it is pos-
sible to recover from an exception or not.

For example, if your application creates tables, an exception indicating SQL state S0001 means that
the table already exists. Depending on your application, this may not represent a fatal error, and your

1363

The JDBC in Action

program can continue. This was the case in the example that generated to the source_code table, for
example, and then output the source code from the table to the screen. As written, the example termi-
nated when the exception was thrown, but it would obviously be possible to code the example to use the
SQL state information and allow the program to continue with the output operation if the table was
already there.

Vendor Error Code
The third piece of information that you can get from the SQLException object is a vendor-specific error
code. This value is returned as an integer, and its meaning is completely defined by the driver vendor.
You can obtain this value by calling the getErrorCode() method for the SQLException object.

Let’s use an example to take a look at the additional information you can get when an exception is
thrown.

Try It Out Extracting Information from SQLException
In this example, you’ll intentionally create errors in the executed SQL statements to generate exceptions,
and then extract the message, vendor code, and SQL state from the exception. To generate the exception,
I’ve misspelled the name of the table in the variable theStatement.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

import java.sql.ResultSet;

import java.sql.SQLException;

public class ExtractSQLExceptionInfo {

public static void main(String[] args) {

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String user = “guest”;

String password = “guest”;

// Following statement contains a deliberate mistake

String theStatement = “SELECT lastname, firstname FROM autors”;

try {

Class.forName(driver);

Connection connection = DriverManager.getConnection(url, user, password);

Statement queryAuthors = connection.createStatement();

ResultSet theResults = queryAuthors.executeQuery(theStatement);

queryAuthors.close();

} catch (ClassNotFoundException cnfe) {

System.err.println(cnfe);

} catch (SQLException sqle) {

String sqlMessage = sqle.getMessage();

String sqlState = sqle.getSQLState();

int vendorCode = sqle.getErrorCode();

System.err.println(“Exception occurred:”);

System.err.println(“Message: “ + sqlMessage);

System.err.println(“SQL state: “ + sqlState);

System.err.println(“Vendor code: “ + vendorCode +

1364

Chapter 25

“\n----------------”);

}

}

}

When I ran this example, it produced the following output:

Exception occurred:

Message: [Microsoft][ODBC Microsoft Access Driver] The Microsoft Jet database

engine cannot find the input table or query ‘autors’. Make sure it exists and that

its name is spelled correctly.

SQL state: S0002

Vendor code: -1305

How It Works
In the SQLException exception handler, you extract the message, the SQL state, and the vendor-specific
error code. In this elementary example, this information is simply formatted and displayed. In a more
sophisticated application, you might want to decide how the program proceeds based on the informa-
tion, and log this information to a file to help you troubleshoot your application.

The message that is returned is quite self-explanatory. The text will vary, of course, from driver to driver —
hence, the importance of the SQL state value. If you look back to the previous table, you’ll see that the
SQL state reported in this exception corresponds to the SQL state “Base table not found,” which correctly
identifies the problem. Lastly, the vendor code that was returned indicates the driver vendor’s numeric
code for the exception.

Chaining SQLExceptions
When an SQL exception is thrown, more than one exception object associated with the error that caused
the exception may be thrown. To handle this situation, the SQLException may be linked to another in a
chain of exceptions. This situation is shown in Figure 25-4.

Figure 25-4

An SQLException object is essentially a node in a linked list. The SQLException class defines the
setNextException() method for JDBC drivers and applications — the code throwing the exception, in
other words — to link a new exception to the chain. When a catch block in your program catches an

Detail Message
SQLState

vendorCode
next object

Detail Message
SQLState

vendorCode
next object

A chain of SQLException objects

Detail Message
SQLState

vendorCode
next object

null

1365

The JDBC in Action

exception of type SQLException, it is always the first node in a chain of one or more exception objects.
You can call the getNextException() method for the SQLException object that is passed to a catch
block to obtain the next exception object in the chain if one exists. This method returns either a reference
to the next SQLException object in the chain, or null if there are no more exceptions.

Thus, when your program catches an SQLException, you should always use the getNextException()
method in a loop to get all of the exceptions. The code fragment below illustrates a simple technique for
looping:

try {

// call a method that can throw SQLException

theProgram.doSQLQuery();

} catch(SQLException sqle) {

do { // loop through each exception

// do something with each exception

System.err.println(“Exception occurred:\nMessage: “ + sqle.getMessage());

System.err.println(“SQL state: “ + sqle.getSQLState());

System.err.println(“Vendor code: “ + sqle.getErrorCode());

} while((sqle = sqle.getNextException()) != null);

}

In the do-while loop, you output information from the exception object sqle, which is passed to the
catch block on the first iteration. The loop condition stores the references returned by the
getNextException() for the sqle object back in sqle, and if it is not null, the loop continues. In this
way you iterate through all the exceptions in the chain, outputting the information from each.

The next example shows the mechanics of how an application can add a new exception to a chain of
SQLException objects in its exception handling. This technique is useful if you are defining a class that
wraps one of the JDBC classes and you want to provide additional information when an exception is
thrown.

Try It Out Chaining SQLExceptions
You’ll contrive to add an SQLException object to a chain of exceptions by executing the database opera-
tions in a method, doQuery(). This method will catch the SQLException when it is thrown, add a new
exception object to the chain, and then rethrow the exception so that it can be caught in main(). Here’s
the code:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

import java.sql.ResultSet;

import java.sql.SQLException;

public class ChainSQLExceptions {

public static void main(String[] args) {

ChainSQLExceptions theApp = new ChainSQLExceptions();

try {

theApp.doQuery(); // Call the method that deals with the DB

} catch(SQLException sqle) { // Catch the exception thrown by the method

do { // loop through each exception

// do something with each exception

System.err.println(“Exception occurred:\nMessage: “ + sqle.getMessage());

1366

Chapter 25

System.err.println(“SQL state: “ + sqle.getSQLState());

System.err.println(“Vendor code: “ + sqle.getErrorCode() +

“\n----------------”);

} while((sqle = sqle.getNextException()) != null);

}

}

// Method to add an exception to a chain of SQLExceptions

public void doQuery() throws SQLException {

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String user = “guest”;

String password = “guest”;

String theStatement = “SELECT lastname, firstname FROM autors”;

try {

Class.forName(driver);

Connection connection = DriverManager.getConnection(url, user, password);

Statement queryAuthors = connection.createStatement();

ResultSet theResults = queryAuthors.executeQuery(theStatement);

queryAuthors.close();

} catch(ClassNotFoundException cnfe) {

System.out.println(cnfe);

} catch(SQLException sqle) {

SQLException generatedException = new SQLException(// New exception

“SQL operation cancelled”, // Message

“S1008”, // SQL state

0); // Vendor code

generatedException.setNextException(sqle); // Append the old exception

throw generatedException; } // and throw the chain

}

}

When I ran the program with the JDBC-ODBC driver I got the following:

Exception occurred:

Message: SQL operation cancelled

SQL state: S1008

Vendor code: 0

Exception occurred:

Message: [Microsoft][ODBC Microsoft Access Driver] The Microsoft Jet database

engine cannot find the input table or query ‘autors’. Make sure it exists and that

its name is spelled correctly.

SQL state: S0002

Vendor code: -1305

How It Works
This example demonstrates the code that you saw earlier for handling chains of SQLException objects
and how you can add exceptions to the chain.

1367

The JDBC in Action

The main() method calls the doQuery() method, which can throw a SQLException. The exception
handler in main() starts with the exception object that is passed to the exception handler and follows
the chain of exceptions, outputting the information for each one. For each exception, the message,
SQLState, and vendor code are displayed.

The doQuery() method contains an exception handler that appends a new SQLException to the chain
when an exception is thrown because of an error in the database access code. You just append the old
exception to your generatedException and throw it again.

SQLWarnings
JDBC provides a means of obtaining warning information from JDBC objects. Sometimes conditions may
arise that may not be serious enough to throw an exception, but do merit the program being signaled
that all is not completely well. Warnings are represented by objects of type java.sql.SQLWarning, and
an SQLWarning object is silently appended to a JDBC object when an operation using the object causes
something odd to occur.

The SQLWarning class is derived from SQLException; therefore, it inherits the ability of the
SQLException objects to define a message, an SQLState code, and a vendor code. An SQLWarning
object can also be chained to one or more other SQLWarning objects. The techniques described in the
previous section for traversing SQLException object chains apply just as well to SQLWarning object
chains. In most respects, the SQLWarning looks a lot like SQLException, except for one very important
distinction: You have to ask for an SQLWarning object explicitly. If you don’t ask, you won’t get it.

The ResultSet, Connection, and Statement interfaces all declare the getWarnings() method, which
returns an SQLWarning object if warnings are present, and null otherwise.

To better understand how SQLWarning objects arise, consider one special class of warnings — data trun-
cation. There is nothing preventing an application from retrieving data from a column as a Java type that
is not particularly suitable for the SQL type — for example, accessing a floating-point column as an inte-
ger type. Of course, this can and probably will result in data loss. This sort of thing will cause an
SQLWarning object to be chained to the ResultSet object that requested the inappropriate data conver-
sion. To detect this the application can call the getWarnings() method of the ResultSet object.

Since data truncation is a particularly common type of warning, JDBC provides a DataTruncation class
that is itself derived from SQLWarning. Let’s give it a go.

Try It Out Using SQLWarning
This example is basically the same code as the previous example, except that here you intentionally
retrieve floating-point values from the PRODUCTS table integers to force a warning. Any warnings arising
from data access operations are detected by the checkForWarning() method that you’ve added to the
class. Here’s the code:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

1368

Chapter 25

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.SQLWarning;

public class TestSQLWarning {

public static void main(String[] args) {

TestSQLWarning theApp = new TestSQLWarning();

try {

theApp.doQuery(); // Call the method that deals with the DB

} catch(SQLException sqle) { // Catch the exception thrown by the method

do { // loop through each exception

// do something with each exception

System.err.println(“Exception occurred:\nMessage: “ + sqle.getMessage());

System.err.println(“SQL state: “ + sqle.getSQLState());

System.err.println(“Vendor code: “ + sqle.getErrorCode() +

“\n----------------”);

} while((sqle = sqle.getNextException()) != null);

}

}

public void doQuery() throws SQLException {

String url = “jdbc:odbc:technical_library”;

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String user = “guest”;

String password = “guest”;

String theStatement =

“SELECT title, price FROM books WHERE price <> NULL”;

try {

Class.forName(driver);

Connection connection = DriverManager.getConnection(url, user, password);

Statement queryBooks = connection.createStatement();

ResultSet results = queryBooks.executeQuery(theStatement);

int price;

String title;

while(results.next()) {

title = results.getString(“title”);

checkForWarning(results.getWarnings());

price = results.getInt(“price”);

checkForWarning(results.getWarnings());

System.out.println(title + “ “ + price);

}

queryBooks.close();

} catch (ClassNotFoundException cnfe) {

System.out.println(cnfe);

} catch (SQLException sqle) {

SQLException generatedException =

new SQLException(“SQL operation canceled”,”S1008”, 0);

SQLException lastException = sqle;

while(lastException.getNextException() != null)

lastException = lastException.getNextException();

1369

The JDBC in Action

lastException.setNextException(generatedException);

throw sqle;

}

}

boolean checkForWarning(SQLWarning w) {

if(w == null) {

return false;

}

do {

System.err.println(“Warning:\nMessage: “ + w.getMessage());

System.err.println(“SQL state: “ + w.getSQLState());

System.err.println(“Vendor code: “ + w.getErrorCode() +

“\n----------------”);

} while((w = w.getNextWarning())!=null);

return true;

}

}

When you run the program you should see the following output:

Warning:

Message: Data truncation

SQL state: 01004

Vendor code: 0

Beginning Visual C++ 6 49

Warning:

Message: Data truncation

SQL state: 01004

Vendor code: 0

Beginning C. Third Edition 44

Warning:

Message: Data truncation

SQL state: 01004

Vendor code: 0

Beginning ANSI C++: The Complete Language, Third Edition 59

Warning:

Message: Data truncation

SQL state: 01004

Vendor code: 0

1370

Chapter 25

Beginning Java 2 JDK 5 Edition 49

Warning:

Message: Data truncation

SQL state: 01004

Vendor code: 0

and so on...

How It Works
Since SQLWarning objects are just attached to the ResultSet object when unusual conditions arise, the
code needs to check the ResultSet object after extracting each value to find out if any warnings were
produced. The ResultSet.getWarnings() method returns an SQLWarning object if any warnings
were generated, and null otherwise. The value returned by the method call is passed to your
checkForWarning() method, which checks for a non-null value and iterates through the chain of
SQLWarning objects in the way you have seen applied to a chain of SQLException objects. For each
warning the method outputs the message, the SQL state, and the vendor code. The method also returns
a boolean value that is true if there was a warning, just in case the calling method needs to know about
it. As you can see, you don’t make use of this in the code here.

The results displayed by running the program reflect the fact that the books don’t generally have prices
that are an integral number of dollars, so in most cases retrieving the price as an integer results in data
truncation.

Browsing a Database
It’s time you put together another “proper” application with a decent GUI. As a final example on JDBC
operations, you’ll put together an application that will enable you to browse any relational database for
which you have a JDBC driver available — plus the necessary authority to get at the data, of course.
Along the way, you’ll learn a bit more about how you can get hold of metadata for a database — you’ll
need that to start the browsing process off. You’ll also explore some new components that will be useful
in this context, as well as discover a few wrinkles about some that you are already familiar with.

Let’s start by deciding the basic appearance of the application window. You’ll need to provide for an
input area where the database URL, user ID, and password can be entered. These will basically be
single-line text input fields, so JTextField objects will do nicely. You can use JLabel objects to
annotate the entry areas. The password entry ought to have some protection from prying eyes though,
and you can provide this by using the JPasswordField class, which happens to be a subclass of
JTextField. The main feature of a JPasswordField object is that the input data is displayed as
asterisks, so you can’t read what was typed.

1371

The JDBC in Action

You need a regular application window so you can derive the application class from JFrame. It will be
convenient to locate all the input at the top of the window, and you can arrange the fields and their
labels quite easily using Box containers, as shown in Figure 25-5.

Figure 25-5

You’ll recall that the Box container uses the BoxLayout layout manager, and this arranges everything in
a single row or column, depending on the orientation of the Box object. Here you have a vertical Box
container with two horizontal Box containers inside it. The horizontal Box containers are used to align
the input fields and their labels. You could start your application off by putting the code for this
together, along with a JTextArea component at the bottom of the window to display messages to the
user.

Try It Out Building the Basic GUI
You’ll call the application class DatabaseBrowse, so the initial code will be as follows:

import javax.swing.JFrame;

import javax.swing.JTextField;

import javax.swing.JPasswordField;

import javax.swing.JTextArea;

import javax.swing.JLabel;

import javax.swing.Box;

Horizontal Box container

JTextFieldJLabel

JLabel JTextField JLabel JPasswordField

Input field for database URL

Input field for passwordInput field for user ID

Horizontal Box container

Vertical Box container

Application Window Layout Using Box Containers

1372

Chapter 25

import javax.swing.BorderFactory;

import javax.swing.SwingUtilities;

import java.awt.BorderLayout;

import javax.swing.border.BevelBorder;

class DatabaseBrowse extends JFrame {

public static void main(String[] args) {

SwingUtilities.invokeLater(new Runnable() {

public void run() {

createGUI();

}

});

}

private static void createGUI() {

DatabaseBrowse theApp = new DatabaseBrowse(); // Create application object

}

// Constructor

public DatabaseBrowse() {

super(“Database Browser”);

setBounds(0, 0, 400, 300);

setDefaultCloseOperation(DISPOSE_ON_CLOSE);

// Create labels for input fields

JLabel dbURLLabel = new JLabel(“Database URL: “);

JLabel userIDLabel = new JLabel(“User ID:”, JLabel.RIGHT);

userIDLabel.setPreferredSize(dbURLLabel.getPreferredSize()); // Set same size

JLabel passwordLabel = new JLabel(“Password: “);

// Box for database URL input

Box dbPane = Box.createHorizontalBox();

dbPane.add(dbURLLabel);

dbPane.add(database);

// Box for user ID and password input fields

Box loginPane = Box.createHorizontalBox();

loginPane.add(userIDLabel);

loginPane.add(userIDInput);

loginPane.add(passwordLabel);

loginPane.add(passwordInput);

Box inputPane = Box.createVerticalBox();

inputPane.add(dbPane);

inputPane.add(loginPane);

getContentPane().add(inputPane, BorderLayout.NORTH);

// Add message area

status.setText(“Enter a database URL and/or press Enter”);

status.setEditable(false); // No user input

status.setLineWrap(true); // Lines wrap

status.setWrapStyleWord(true); // on word boundaries

status.setBorder(BorderFactory.createBevelBorder(BevelBorder.LOWERED));

getContentPane().add(status, BorderLayout.SOUTH);

1373

The JDBC in Action

setVisible(true); // Set window visible

database.requestFocus(); // Focus to the url input field

}

private String userID = “guest”;

private String password = “guest”;

private String url = “jdbc:odbc:technical_library”;

private JTextField database = new JTextField(url);

private JTextField userIDInput = new JTextField(userID);

private JPasswordField passwordInput = new JPasswordField(password);

private JTextArea status = new JTextArea(3,30);

}

You can compile and run this as it is. You should see the window shown in Figure 25-6 when it executes.

Figure 25-6

The cursor is on the database URL input field and the default password value appears as asterisks, just
as it should.

How It Works
You should have no trouble seeing how this works as it’s all standard stuff. The first bit sets up the win-
dow with the default window closing operation being DISPOSE_ON_CLOSE. The window is created in a
separate thread from the main thread to avoid any possibility of deadlocks.

The JTextField and JPasswordField objects and the String objects they display are all members of
the DatabaseBrowse class because you’ll need to refer to these objects elsewhere in the code. You set the
preferred size of the label for the user ID field to be the same as that for the database URL label just to
get them to line up nicely.

1374

Chapter 25

Note how you specify the userIDLabel text as right-justified; the second argument to the JLabel con-
structor can have values of RIGHT, LEFT, or CENTER. These values are actually defined in the
javax.swing.SwingConstants interface that is implemented by the JLabel class. To arrange the
input fields and their labels, you just add them all to their respective horizontal Box containers in the
appropriate sequence, and then add these horizontal Box containers to the vertical Box container. This
last Box container serves to arrange the other two one above the other. You then add the vertical Box
container to the top of the content pane for the application window.

The message display area at the bottom of the screen is a JTextArea object that displays three lines. You
don’t want anyone entering data here, and since input is allowed by default, you set it as not editable by
calling its setEditable() method with the argument false. You also ensure you get line wrapping on
word boundaries by calling the setLineWrap() and setWrapStyleWord() methods, both with the
argument true.

Once the components are set up, you set the window as visible by calling its setVisible() method.
You finally call requestFocus() for the URL input field so that it will have the focus initially. Note that
calling this method works only when the component is visible on the screen.

Displaying Database Data
You have two kinds of information to display; you have the metadata for a database, which in our case
will be the table names and the column names for each table, and you have the contents of a particular
table, as selected by the user. This suggests that you’ll need two display areas to accommodate these,
and a javax.swing.JSplitPane component provides just what you need.

The JSplitPane class defines a pane with either a horizontal or vertical divider that can be moved by
dragging with the mouse. Each half of the split pane can display a separate component. For example,
you can create a pane with a vertical divider with the following statement:

JSplitPane splitpane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

true, // Continuous relayout

leftComponent, // Left pane content

rightComponent); // Right pane content

For a pane divided by a horizontal divider, you would specify the first argument as the constant,
VERTICAL_SPLIT. The second argument defines what happens when the divider is dragged with the
mouse. With a true argument the two panes are redrawn continuously as the divider is dragged. On a
slow machine or with very complicated content for the two halves, you might want to set this to false,
which will update the two halves only when the divider drag operation ends. The last two arguments
specify the components to appear in the left or right panes — or the top and bottom panes in the case of
a horizontal divider. Any component can appear in either half of a split pane, including another
JSplitPane component. In this way you can create a pane that is split into however many panes
you need.

1375

The JDBC in Action

In this case you’ll use a JSplitPane object that is split into two panes side by side. You’ll display the
metadata in the left pane, and the contents of a table in the right pane. When it is complete, the applica-
tion window will look as shown in Figure 25-7.

Figure 25-7

To display the table data in the right pane, you’ll use the same mechanism that you used in the
InteractiveSQL example from the previous chapter — a JTable object with an underlying
ResultsModel object displayed in a JScrollPane to allow scrolling of the data. For the metadata you’ll
use something new — a JTree component — also within a scroll pane. Let’s look at the basics of using a
JTree component.

Using a JTree Component
The JTree class defines a component that displays data organized in a tree-like structure. There’s a bit
of jargon used with trees that you need to understand. Each element in a tree is referred to as a node,
and the base node of the tree is referred to as the root node. A parent node is a node that has other nodes
attached to it, and nodes that have a parent node, which will be all nodes other than the root node, are
called child nodes. Nodes that have no children are called leaf nodes. An example of nodes in a simple
tree is shown in Figure 25-8.

1376

Chapter 25

Figure 25-8

You can visualize the data in a relational database as a very simple tree that has a fixed number of levels —
always three. The root node at the top level is the database itself, and that has child nodes on the next
level that are tables. Each table node has child nodes on the next level that are the columns in the table,
and since the columns are the lowest level, these will be leaf nodes.

The JTree class has vastly more capability than you’ll be using to display database metadata, both in
terms of the complexity of the structures it can handle and in terms of the nature of the nodes in the
structure. You can use a JTree component to display virtually any tree structure where the nodes in the
tree can be any kind of object — and they can all be different if you want. You could use it to display peo-
ple in the management structure of a company, for example, complete with photos of everyone, and dif-
ferent visual cues denoting the level of each person in the hierarchy. I won’t be going into this level of
detail, but now that you have an idea of the potential, you may want to explore it further for yourself.

Defining Tree Nodes
A node in a tree can be any object of a class that implements the TreeNode interface. The methods
declared by the TreeNode interface provide the means of navigating a tree:

Method Description

getParent() Returns the parent node as a TreeNode reference and
null if there isn’t one — that is, it’s a root node.

getChildCount() Returns the number of child nodes as type int.

getChildAt(int index) Returns the child node at position index— child nodes
being indexed from 0.

Table continued on following page

Root Node

Example of a Tree

Base of the Tree

• All except the root node are child nodes.
• All except the leaf nodes are parent nodes.
• Leaf nodes have no children.

Leaf Node

Leaf Node

Leaf Node Leaf Node

Leaf Node Leaf Node

1377

The JDBC in Action

Method Description

children() Returns a reference to an Enumeration object that can
be used to iterate through the child nodes.

getIndex(TreeNode node) Returns the index value for the child node node.

getAllowsChildren() Returns true if the current node allows children. By
default children are allowed, but classes that implement
this interface can inhibit children for a node.

isLeaf() Returns true if the current node is a leaf node.

The TreeNode interface doesn’t provide enough capability to link nodes in a tree. To create a tree struc-
ture, each node needs to be able to refer to its parent node and any child nodes that it has. The
MutableTreeNode interface extends the TreeNode interface and adds declarations for the methods that
allow a tree to be constructed:

Method Description

insert(MutableTreeNode child, Inserts the node child as a child of the current
int index) node at position index.

remove(int index) Removes the child node at position index for the
current node.

remove(Removes node from the set of children of the
MutableTreeNode node) current node.

removeFromParent() Removes the current node from the list of children for
its parent node.

setParent(Sets parent as the parent of the current node.
MutableTreeNode parent)

setUserObject(Object o) Sets the object o as the object to be displayed for the
node in a tree. This is where you set your node infor-
mation — the table name for a node representing a
database table, for example.

While you can create your own class to define nodes if you want, the DefaultMutableTreeNode class
in the javax.swing.tree package is adequate for most purposes. This class implements the
MutableTreeNode interface and adds a few more methods of its own. The default constructor creates an
object with no parent and no children. You can also construct a DefaultMutableTreeNode object con-
taining an object of your own, again with no parent and no children, by using the constructor that
accepts a single argument of type Object— any class type, in other words. For example:

DefaultMutableTreeNode tableNode = new DefaultMutableTreeNode(“authors”);

A third DefaultMutableTreeNode constructor accepts a second argument of type boolean, and a value
of false prevents the node from having children — forcing it to be a leaf node, in other words. You won’t

1378

Chapter 25

need to go into the methods that the DefaultMutableTreeNode class has beyond those I have already
discussed, but you do need to know more about how the JTree class works before you can use it.

Tree Models
Like the JTable component, the JTree component works with an underlying model object that sup-
plies the data that is to be displayed in the tree. A class that defines a model for a tree implements the
TreeModel interface, which appears in the javax.swing.tree package. This is quite an extensive
interface, with eight methods declared in it, so to save you the work of creating a class from scratch, the
javax.swing.tree package includes a DefaultTreeModel class that implements TreeModel and that
you can use “as is” in many situations. You create a DefaultTreeModel object using a single node that
is the root node for your tree. For example:

DefaultMutableTreeNode dbNode = new DefaultMutableTreeNode(“No Database”);

DefaultTreeModel dbTreeModel = new DefaultTreeModel(dbNode);

Here, you first construct a node object with the String argument as the object it stores. You then use this
as the root node to create a tree model object model. Now that you have a DefaultTreeModel object,
you can create a JTree object from it using the JTree class constructor that accepts a TreeModel refer-
ence as the argument:

Tree dbTree = new JTree(dbTreeModel);

The dbTree object doesn’t do very much. When you want to actually store a database in the tree, you
can call the setRoot() method for the DefaultTreeModel object to set a new root node that you can
then add table nodes to using the methods from the MutableTreeNode interface. Before I get to that,
you need to put the component together in the GUI that will display the metadata. Let’s try adding the
code for that to our example.

Try It Out Creating and Displaying a Tree
You’ll first add the data members to the DatabaseBrowse class that you’ll need to access in various
class methods:

private DefaultMutableTreeNode dbNode; // Root node for the database tree

private DefaultTreeModel dbTreeModel; // Model for the database metadata

private JTree dbTree; // Tree to display the metadata

private JScrollPane treePane; // Scroll pane holding the tree

You’ll also need to add import statements to the DatabaseBrowse.java file for names from the pack-
age supporting trees:

import javax.swing.tree.DefaultMutableTreeNode;

import javax.swing.tree.DefaultTreeModel;

import javax.swing.tree.TreePath;

You’ll also need import statements for the Color, JTree, and JScrollPane class names:

import javax.swing.JTree;

import javax.swing.JScrollPane;

import java.awt.Color;

1379

The JDBC in Action

Now you can add code to the DatabaseBrowse class constructor to create the tree and place it in a scroll
pane:

// Create tree to go in left split pane

dbNode = new DefaultMutableTreeNode(“No database”);

dbTreeModel = new DefaultTreeModel(dbNode);

dbTree = new JTree(dbTreeModel);

treePane = new JScrollPane(dbTree);

treePane.setBorder(BorderFactory.createLineBorder(Color.darkGray));

This code will go just before the call to setVisible() in the constructor. As you can see, you are just
applying the code you saw earlier to first create a root node and then to create a model from the root
node. Then a tree object is created from the model, and finally you place the tree in a scroll pane.

You’ll want to put the scroll pane containing the tree in the left half of a split pane, but first you need to
put together the component that goes in the other half that will eventually display the table data. As I
discussed earlier, this will be another JScrollPane object containing a JTable object — just as you had
in the InteractiveSQL example. You’ll use the ResultsModel class here, too, so copy the source file
for the class from the directory containing the InteractiveSQL files to the directory for our current
example. You’ll need import statements for the JTable and JSplitPane class names in the
DatabaseBrowse source file:

import javax.swing.JSplitPane;

import javax.swing.JTable;

You’ll need three data members in the DatabaseBrowse class to store the model, the table, and the scroll
pane object that will contain the table:

private ResultsModel tableModel; // Model for table

private JTable table; // Table holding table data

private JScrollPane tablePane; // Scroll pane holding the table

The code to add the table can go immediately following the previous block of code that you added to
create the tree:

// Create table to go in right split pane

tableModel = new ResultsModel();

JTable table = new JTable(tableModel);

table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);

tablePane = new JScrollPane(table);

tablePane.setBorder(BorderFactory.createLineBorder(Color.darkGray));

You have no idea at this point how many rows and columns there will be in a table. This will vary
depending on the table currently selected. By putting the table in a scroll pane you can deal with a table
with any number of rows. If there are too many to fit within the available space, the scroll pane will
automatically insert a scrollbar to manage the rows. You call setAutoResizeMode() with the argument
JTable.AUTO_RESIZE_OFF to prevent the columns being squashed up to fit within the available space
for the table. This way you’ll get a horizontal scrollbar if the column headings exceed the width of the
scroll pane. You’ll also be able to change the width of a column by dragging the right boundary of the
column header.

1380

Chapter 25

Now you can create the split pane containing the tree and the table and add it to the content pane of
the application window. This code can follow the code fragment that you added previously in the
constructor:

JSplitPane splitpane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

true, // Continuous relayout

treePane, // Left pane content

tablePane); // Right pane content

getContentPane().add(splitpane, BorderLayout.CENTER);

splitpane.setDividerLocation(200); // Left pane 200 pixels wide

You should also call pack() for the window to lay out the components at their appropriate sizes:

pack();

Place this statement immediately before the setVisible() method call in the constructor.

If you compile the application again and run it, the window should be similar to the screenshot that you
saw earlier.

How It Works
The JTree and the JTable objects have been set up to display data in the left and right panes of the
JSplitPane object. They each have their respective model objects that will supply the data that is to be
displayed. They each have their own scroll pane that will provide scrolling capability when the data is
outside the area that is displayed. Each JScrollPane object has its own line border, and when you have
data to display, you’ll replace this with a titled border that will show the name of the data that is
displayed — the database URL for the left pane, and the table name for the right pane.

Try dragging the split pane divider with the mouse. The JSplitPane object manages this quite auto-
matically and will arrange for the contents of the panes to be redrawn as necessary — when you have
some, that is.

Getting Database Metadata
You need to obtain the database metadata that will be displayed by the JTree object in the left scroll
pane. You can do this when a connection has been established, for which you need the database URL
plus the user ID and password. Before you can establish a connection, you want to be sure the driver is
loaded, so add the following data member to the DatabaseBrowse class to store the driver names:

private String[] drivers = {

“sun.jdbc.odbc.JdbcOdbcDriver”, // ODBC bridge

“com.imaginary.sql.msql.MsqlDriver” // mSQL driver

};

I have added the driver for mSQL — which is a mini SQL implementation that is available as shareware —
just to show how easy it is to have multiple drivers. If the driver is not present on your system the pro-
gram will record an error message in the lower part of the application window, but you can ignore that.
You can add the names of your own drivers between the braces if you wish. You’ll put code in the
constructor that will try to load all the drivers in the drivers array, and failing to load a driver won’t

1381

The JDBC in Action

matter, as long as you don’t need it, of course. Add the following code to the end of the code for the
constructor:

// Attempt to load all drivers

for(String driver : drivers) {

try {

Class.forName(driver);

} catch(ClassNotFoundException cnfe) {

System.err.println(cnfe);

status.setText(“Driver load failed: “ + cnfe.getMessage());

}

}

The try and catch blocks are both within the scope of the for loop, so failing to load one driver will
not prevent the others from being loaded.

The trigger to open a connection with a database will be pressing the Enter key for any of the input
fields. By default, this will create an action event, so you can respond to this by making the
DatabaseBrowse class implement the ActionListener interface. This involves defining the
actionPerformed() method in the class, and adding the class object as the action listener for all three
input fields. The first line of the class definition will be:

class DatabaseBrowse extends JFrame implements ActionListener {

The actionPerformed() method definition will be:

public void actionPerformed(ActionEvent e) {

Object source = e.getSource(); // Get source of the event

if(source == database || // If its URL input,

source == userIDInput || // or userID input,

source == passwordInput) { // or password input...

// ...try for a connection

url = database.getText(); // Get database URL

userID = userIDInput.getText(); // Get user ID

char[] pw = passwordInput.getPassword(); // Get password

if(pw != null) {

password = new String(pw);

}

if(url == null || url.length() == 0) {

status.setText(“Please specify a database URL “);

return;

}

openConnection();

password = null; // For security

}

}

Here you get all the input you need and then call a method openConnection() that you’ll need to add
to the DatabaseBrowse class before you try compiling the code again. You also need to register the
application object as the listener for the events, so add the following code to the constructor preceding
the call to pack():

1382

Chapter 25

// Add event listeners

database.addActionListener(this);

userIDInput.addActionListener(this);

passwordInput.addActionListener(this);

Since the this pointer references the current object, the application object will be registered as the action
listener for all three input fields.

You must add import statements for the ActionEvent and ActionListener names to DatabaseBrowse:

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

If you add the openConnection() method to the DatabaseBrowse class, you could take the applica-
tion for another run.

Try It Out Opening a Connection
The DatabaseBrowse application class will need data members to store a Connection reference and to
store a Statement reference that you’ll use to execute an SQL query when you want to display table
data. You can do this by adding the following fields to the class:

private Connection connection;

private Statement statement;

You can add import statements for the names you’ll be referencing from the java.sql package, too, at
this point:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

import java.sql.DatabaseMetaData;

import java.sql.ResultSet;

import java.sql.SQLException;

Because it will be called each time the user enters a new URL and presses Enter, the openConnection()
method will need to close any existing connection before opening a new connection. It will also need to
reset the contents of the split pane — both the metadata and any table data that is displayed. To facilitate
resetting the contents of the JTable object displayed in the right split pane, you can amend the
ResultsModel class method setResultSet() to reset the data when a null argument is passed to it.
You can do this as follows:

public void setResultSet(ResultSet results) {

if(results == null) {

columnNames = new String[0]; // Reset the columns names

dataRows.clear(); // Remove all entries in the Vector

fireTableChanged(null); // Tell the table there is new model data

return;

}

// Rest of the code as before...

}

1383

The JDBC in Action

So by passing null to this method, you’ll reset the JTable object that it supports to display nothing.

You can now implement the first part of the openConnection() method in our DatabaseBrowse class
as follows:

public void openConnection() {

try {

if(connection != null) { // If there is a connection

connection.close(); // close it

// Reset the table data

tableModel.setResultSet(null);

tablePane.setBorder(BorderFactory.createLineBorder(Color.darkGray));

// Reset the tree displaying metadata

dbNode = new DefaultMutableTreeNode(“No database”);

dbTreeModel.setRoot(dbNode);

dbTree.setRootVisible(true);

treePane.setBorder(BorderFactory.createLineBorder(Color.darkGray));

dbTreeModel.reload();

}

// Code to open the new connection will go here...

} catch(SQLException sqle) {

status.setText(sqle.getMessage()); // Display first message

do { // loop through exceptions

System.err.println(“Exception occurred:\nMessage: “ + sqle.getMessage());

System.err.println(“SQL state: “ + sqle.getSQLState());

System.err.println(“Vendor code: “ + sqle.getErrorCode() +

“\n----------------”);

} while((sqle = sqle.getNextException()) != null);

}

}

If connection is not null, you call the close() method for the connection object to close it and reset any
table data that is displayed by calling the setResultSet() member of the model object supporting the
table. You also have to reset the border for the scroll pane that contains the table, because you’ll put a
title border in place showing the table name when you display data from a table.

To reset the JTree object, you first set a new root node for the underlying TreeModel object by calling
its setRoot() method and passing a new node object as the argument. When you display the metadata
for a database, what you want to see are the table names, and optionally the columns in each table, and
since the root node takes up unnecessary real estate within the application window, you’ll set it as invisi-
ble to provide maximum space for what you want to see. However, you restore the visibility of the “No
database” root node when there are no tables in the tree as you reset the model, and this is done by
calling the setRootVisible() method for the JTree object dbTree with the argument true. Lastly,
you have to reset the border for the scroll pane to a line border, because you’ll use a title border to dis-
play the database name when the metadata is displayed.

To open the new connection you can add the following code:

public void openConnection() {

try {

1384

Chapter 25

// Code to close the old connection as before....

// Now open the new connection

connection = DriverManager.getConnection(url, userID, password);

status.setText(“Database connection established”);

statement = connection.createStatement(); // Create statement for query

dbNode = new DefaultMutableTreeNode(url); // Root node is URL

dbTreeModel.setRoot(dbNode); // Set root in model

setupTree(connection.getMetaData()); // Set up tree with metadata

treePane.setBorder(BorderFactory.createTitledBorder(

BorderFactory.createLineBorder(Color.darkGray),

url,

TitledBorder.CENTER,

TitledBorder.DEFAULT_POSITION));

dbTree.setRootVisible(false); // Now hide the root node

dbTreeModel.reload(); // Get the tree redisplayed

} catch(SQLException sqle) {

status.setText(sqle.getMessage()); // Display first message

do { // loop through exceptions

System.err.println(“Exception occurred:\nMessage: “ + sqle.getMessage());

System.err.println(“SQL state: “ + sqle.getSQLState());

System.err.println(“Vendor code: “ + sqle.getErrorCode() +

“\n----------------”);

} while((sqle = sqle.getNextException()) != null);

}

}

You open the connection and create a Statement object in the way you have seen previously. You create
a new root node for the tree model and store the String object containing the URL as the user object in
the node. To populate the tree with the metadata, you call the method setupTree() in the application
class — you’ll come to the implementation of this in a moment. The argument is a DatabaseMetaData
reference that is returned by the getMetaData() method that you call for the connection object. To
show the database name in the left split pane, you reset the border for the scroll pane containing the tree
to a title border showing the database URL. You’ll need to add an import statement for the
TitledBorder class name:

import javax.swing.border.TitledBorder;

As I discussed previously, you won’t want to see the root node while the table names are displayed, so
you set the root node as invisible by calling the setRootVisible() method for the tree with the argu-
ment false. Calling the reload() method for the DefaultTreeModel object causes the data to be
reloaded into the tree, so the tree display will be updated.

Any exceptions that are thrown in all this will be caught by the catch block. To let the user know
directly when an error occurs, you display the message for the exception in the status area at the bottom
of the application window. You then iterate through the potential chain of exceptions using the tech-
nique that you saw earlier.

If you want to try compiling and running the application again, you can add an empty definition for the
setupTree() method to the DatabaseBrowse class:

1385

The JDBC in Action

private void setupTree(DatabaseMetaData metadata) {

// Code to be added here...

}

When you press Enter when the application window is initially displayed, the connection will be estab-
lished and the application window will then look something like that shown in Figure 25-9.

Figure 25-9

How It Works
Pressing the Enter key with the focus in any of the input fields will cause the openConnection()
method to be called if a database URL is available. This opens the connection to the database and dis-
plays the URL in the border of the left scroll pane. There are no scrollbars yet because there is no data in
the scroll pane. As you can see, the status is displayed at the bottom of the screen. Try entering an
invalid database URL and see the effect.

Loading the Database Metadata
The setupTree() method will be responsible for retrieving the metadata using the DatabaseMetaData
reference that is passed as the argument. The DatabaseMetaData interface declares well in excess of 100
methods, so I won’t be going through all of them — I’ll just pick a few that are relevant in the present
context, and you can explore the rest in the JDK documentation. One word of caution — all of these
methods depend on the underlying driver and database engine supporting access to the metadata that is
required, and in many cases this will not be available, in which case the requesting method will throw
an exception. For example, although it would be nice to be able to display the key fields in a table in our

1386

Chapter 25

example by using the getPrimaryKeys() method in the DatabaseMetaData interface, unfortunately
this capability is not supported by the ODBC driver for Access.

You can potentially get at several different kinds of metadata. One broad classification is information
related to the capability of the database engine in general. You can request the SQL types supported by
calling the getTypesInfo() method, for example, or the maximum length of an SQL statement by call-
ing the getMaxStatementLength() method. A whole series of methods provides data on the limits on
table size, row length, and other constraints implicit in the database system. You would use this kind of
data to condition your application code to work within the prescribed limits. This provides the possibil-
ity of your code being able to adapt itself to accommodate the constraints that are peculiar to the current
database and thus avoid exceptions being thrown when attempting operations outside those limits. Of
course, if the database and/or driver do not make the data available, it won’t be particularly effective,
but the architects of JDBC have at least had the foresight to provide for the possibility.

Retrieving Table Names
Most of the time, the metadata that you’ll be interested in relates to the particular database that you
want to access. You can get information about the tables within the database with the getTables()
method, which is of the following form:

ResultSet getTables(String catalog,

String schemaPattern,

String tableNamePattern,

String[] types)

The parameters form the basis for deciding which tables in the database are to be identified, and each
parameter provides a separate way of filtering out the tables that you are interested in. The first parame-
ter is a database catalog name, and data will be returned on the tables within the catalog that you spec-
ify. If you supply an empty string, “”, as the argument here, you’ll get information on tables without a
catalog. If you supply null as the argument, you’ll get tables with and without a catalog.

The second parameter is a pattern for a schema name. A database schema is a set of declarations for the
tables and other entities such as views that make up the database. Only tables for schemas conforming
to the pattern will be selected. A pattern is a string of characters where ‘%’ means any substring and ‘_’
means any character. For example, the pattern “%data” specifies any string ending “data”, so
“Mydata” or “Yourdata” would be in, and “Mydata1” would be out. The pattern “data_” would
select “data1” or “dataA”, but not “Adata” or “Mydata”. If you supply an empty string, “”, as the
argument, you’ll get information on tables without a schema. If you supply null, you’ll get tables with
and without a schema.

The third parameter is a pattern for selecting the table names, with the pattern defined as described in
the preceding paragraph. Only data on tables with names corresponding to the pattern will be returned.
If you specify the argument as null, information on all tables consistent with the other arguments will
be returned.

The fourth parameter is an array of table type names. Examples of table types are “TABLE”, “SYSTEM
TABLE”, or “VIEW”— which is a virtual table constructed from actual tables. A null argument selects all
table types.

The information on the tables is returned in a ResultSet object, with each row supplying information
about a particular table. The resultset will have five columns:

1387

The JDBC in Action

Column Name Column Data

TABLE_CAT A String object specifying the table catalog, which can be null

TABLE_SCHEM A String object specifying the table schema, which can be null

TABLE_NAME A String object specifying the table name

TABLE_TYPE A String object specifying the table type

REMARKS A String object describing the table

If an error of any kind occurs when accessing the database, the getTables() method will throw an
exception of type SQLException.

Given a DatabaseMetaData reference, metadata, you could retrieve all the tables for a database with
the statements:

String[] tableTypes = { “TABLE”};

ResultSet tables = metadata.getTables(null,

null,

null,

tableTypes);

This will return information on tables that are real data tables in the database, not views or system
tables. This is because you have included only type “TABLE” in the tableTypes array. Of course, you
would need to take care of handling the exception that could be thrown here.

Retrieving Column Names
To get the column names for particular tables, you can call the getColumns() method for a Database
MetaData object. The first three arguments are the catalog, schemaPattern, and tableNamePattern,
as described for the getTables() method. The fourth argument is a String object specifying a
pattern for selecting column names. This method returns a ResultSet object containing no less than
18 columns, where each row provides information about a particular column. The ones you are most
likely to be interested in are:

Column Name Column Data

TABLE_CAT A String object specifying the catalog for the table containing the column,
which can be null

TABLE_SCHEM A String object specifying the schema for the table containing the column,
which can be null

TABLE_NAME A String object specifying the name of the table containing the column

1388

Chapter 25

Column Name Column Data

COLUMN_NAME A String object specifying the name of the column

DATA_TYPE A String object specifying the SQL type for the data in the column

COLUMN_SIZE The maximum number of characters in the case of character or date types,
or the precision for NUMERIC or DECIMAL types

Of course, using the third argument that specifies the table name pattern, you can get data on the
columns for a specific table, just by supplying the table name here. The getColumns() method can also
throw an exception of type SQLException if an error occurs.

Now you have enough knowledge to implement the setupTree() method, so let’s try it.

Try It Out Displaying Metadata
You just need to apply the DatabaseMetaData methods that I have just discussed. You won’t catch the
exceptions in the method. You can let the calling method openConnection() catch them instead. Here’s
the code for the setupTree() method:

private void setupTree(DatabaseMetaData metadata) throws SQLException {

String[] tableTypes = { “TABLE”}; // We want only tables

ResultSet tables = metadata.getTables(// Get the tables info

null,

null,

null,

tableTypes);

String tableName; // Stores a table name

DefaultMutableTreeNode tableNode; // Stores a tree node for a table

while(tables.next()) { // For each table

tableName = tables.getString(“TABLE_NAME”); // get the table name

tableNode = new DefaultMutableTreeNode(tableName);

dbNode.add(tableNode); // Add the node to the tree

// Get all the columns for the current table

ResultSet columnNames = metadata.getColumns(null, null, tableName, null);

// Add nodes for the columns as children of the table node

while(columnNames.next()) {

tableNode.add(new

DefaultMutableTreeNode(columnNames.getString(“COLUMN_NAME”)));

}

}

}

1389

The JDBC in Action

You can try compiling and executing the application again. Pressing Enter should display the tables as
shown in Figure 25-10.

Figure 25-10

Single-clicking a table name will select it. Double-clicking it will expand the tree to show the column
names. Double-clicking the node for an expanded table will contract it again. All this function comes for
free with the JTree component. If you expand the tree so that its extent is outside the pane, the scroll-
bars will appear automatically.

Note that holding the Ctrl key down enables you to select several individual nodes one after another.
When you have selected one node, you can select a block of nodes from the currently selected node to
any other node by holding the Shift key down.

How It Works
You have a simple application of the getTables() and getColumns() methods from the Database
MetaData interface. The call to getTables() returns a ResultSet object that provides access to infor-
mation on the tables of type “TABLE”. You iterate through the rows in the resultset in the outer while
loop. For each row, you retrieve and save the table name, and you add a new node as a child to the root
node in the tree model dbTreeModel. You use the table name that you have saved in tableName to
retrieve information on the columns in that table by calling the getColumns() method for metadata. In
the inner while loop, you iterate through all the rows in the resultset relating to the columns, and add a
child node to the table node corresponding to each column name. This process will add a table node to

1390

Chapter 25

the root node in dbTreeModel for each table, and add a column node to a table node for every column
in the table. Simple really, isn’t it?

The last thing you need to figure out is how to display the contents of a table. You could do this in vari-
ous ways, but you’ll display the contents of a table by listening to the tree.

Using Tree Listeners
You can add three different kinds of listeners to a JTree object, each of which has an interface defining
the methods involved.

❑ The TreeExpansionListener interface declares two methods that are called when a node in a
tree is expanded or contracted.

❑ The treeExpanded() method is called when a tree node is expanded.

❑ Unsurprisingly, the treeCollapsed() method is called when a tree node is collapsed.

Each method is passed an event object of type TreeExpansionEvent.

❑ Knowing that the tree was expanded may be too late in some circumstances. You may need to
do things immediately before the expansion or contraction takes place. In this case you can use
a TreeWillExpandListener. The TreeWillExpandListener declares treeWillExpand()
and treeWillCollapse() methods with the obvious applications.

❑ In the DatabaseBrowse application, you’ll use the third kind of listener for a tree, of type
TreeSelectionListener. This declares a single method, valueChanged(), which is called
when a selection within the tree changes — that is, when a node is selected or deselected. When
the method is called, it is passed an object of type TreeSelectionEvent as the argument. This
object provides methods that you can use to discover which nodes changed their selection state.
Since you can make individual selections, multiple selections, or select a block of nodes, a single
event can signal that several nodes have changed their selection state.

The methods in the JTree class that you use to add the listeners I’ve been talking about are
addTreeExpansionListener(), addTreeWillExpandListener(), and
addTreeSelectionListener(). Note that the tree event classes and listener interfaces are defined in
the javax.swing.event package, so you’ll need that following import statements in the
DatabaseBrowse.java file:

import javax.swing.event.TreeSelectionEvent;

import javax.swing.event.TreeSelectionListener;

Tree Paths
A node that has changed state is identified by a TreePath object. A TreePath object defines a path to a
node from the root node; in other words, it contains the sequence of nodes from the root to a particular
node. To get a reference to the node identified by a TreePath object, you can call its
getLastPathComponent() method. To provide maximum flexibility, the node is returned as type
Object, but for a DefaultTreeNodeModel the node will actually be of type TreeNode.

You have lots of ways to iterate through the nodes in a path. You can use the getParentPath() method
in conjunction with the getLastPathComponent() method. The getParentPath() method returns a

1391

The JDBC in Action

TreePath object that is the parent of the current path — in other words, a path that is like the current
path, but without the last node in the path. You can also get all the nodes in a path as an array of ele-
ments of type Object by calling the getPath() method for a TreePath object. You could use an object
treepath of type TreePath like this:

MutableTreeNode[] nodes = (MutableTreeNodes[])treepath.getPath();

for(int i = 0 ; i < nodes.length ; i++) {

System.out.println(“Node “ + (i+1) + “ is “ + nodes[i]);

}

This just outputs each node on a separate line.

You can also get a count of the number of nodes in a path by calling the getPathCount() method for
the TreePath object. You could then use the getPathComponent() method, which accepts a zero-based
index to a node as an argument, to select each node and return the node as type Object. For example,
you could get the same effect as the previous code fragment like this:

for(int i = 0 ; i < treepath.getPathCount() ; i++) {

System.out.println(“Node “ + (i+1) + “ is “ +

((MutableTreeNode)getPathComponent (i)));

}

A TreeSelectionEvent object provides methods to obtain all the paths for nodes that have changed
their selection state. The getPath() method will return the first path, and you can test whether the first
path was selected or deselected by calling isAddedPath() for the event object. This returns true if the
path is for a node that was selected — added in other words — and false otherwise — when the node
was deselected. The getPaths() method for the event object will return all paths to nodes that have
changed. To tell whether a particular path is to a node that was selected or deselected, you can call an
overloaded version of the isAddedPath() method in the TreeSelectionEvent class that expects an
argument of type TreeNode.

Dealing with the paths from a TreeSelectionEvent that are a combination of paths to selected and
deselected nodes can be quite complicated. If you are interested only in the paths that are selected, you
can avoid all this by going directly to the horse’s mouth — the JTree object. You can use this to get at
just the selected nodes. If you have several JTree objects you are listening for, you can get a reference to
the object originating the event by calling the getSource() method for the event object. This method is
inherited in the TreeSelectionEvent class from the EventObject class. If you have only one tree, as
you do in the example, you can use your JTree reference directly to call the getSelectionPaths()
method. This returns an array of TreePath objects that represent paths to nodes selected in the tree. I
think you know enough about tree paths to complete the example now, so let’s do that.

Try It Out Displaying Table Data
Make sure you added the import statements for the TreeSelectionEvent and
TreeSelectionListener names from the javax.swing.event package. You’ll make the application
class a tree selection listener, so you should declare that it implements the interface:

class DatabaseBrowse2 extends JFrame

implements ActionListener, TreeSelectionListener {

1392

Chapter 25

You mustn’t forget to add the application object as the tree selection listener. Add the following state-
ment after the other three statements in the class constructor that add listeners:

dbTree.addTreeSelectionListener(this);

The valueChanged() method will display some or all of the columns from a table in the right-hand
split pane, depending on what is selected. Because you have allowed complete flexibility to select any
number of nodes (you can restrict the possibilities though), you need to give a little thought to the prob-
lem of what you do under various selection states that can arise. For example, several table nodes may
be selected, possibly with column names selected, too. You can deal with this by defining the following
rules:

❑ If any table name is selected, you display the entire table for the first table name that you find.

❑ If only columns are selected, you display the selected columns for the first table that you find
with selected columns.

You now can add the definition for the valueChanged() method to handle selection events:

public void valueChanged(TreeSelectionEvent e) {

TreePath[] paths = dbTree.getSelectionPaths();

if(paths == null) {

return;

}

boolean tableSelected = false; // Set true if a table is selected

String column = null; // Stores a column name from a path

String tableName = null; // Stores a table name from a path

String columnsParam = null; // Column names in SQL SELECT

String tableParam = null; // Table name in SQL SELECT

String message = null; // Message for status area

for(TreePath path : paths) {

switch(path.getPathCount()) {

case 2: // We have a table selected

tableParam = (String)

(((DefaultMutableTreeNode)

(path.getPathComponent(1))).getUserObject());

columnsParam = “*”; // Select all columns

tableSelected = true; // Set flag for a table selected

message = “Complete “ + tableParam + “ table displayed”;

break;

case 3: // Column selected

tableName = (String)

(((DefaultMutableTreeNode)

(path.getPathComponent(1))).getUserObject());

if(tableParam == null) {

tableParam = tableName;

} else if(tableParam != tableName) {

break;

}

column = (String)

(((DefaultMutableTreeNode)

1393

The JDBC in Action

(path.getPathComponent(2))).getUserObject());

if(columnsParam == null) { // If no previous columns

columnsParam = column; // add the column

} else { // otherwise

columnsParam += “,” + column; // we need a comma too

}

message = columnsParam + “ displayed from “ + tableParam + “ table.”;

break;

}

if(tableSelected) { // If a table was selected

break; // we are done

}

}

try {

// Display the columns and change the scroll pane border

tableModel.setResultSet(

statement.executeQuery(“SELECT “ + columnsParam+” FROM “ + tableParam));

tablePane.setBorder(BorderFactory.createTitledBorder(

BorderFactory.createLineBorder(Color.darkGray),

tableParam,

TitledBorder.CENTER,

TitledBorder.DEFAULT_POSITION));

} catch(SQLException sqle) {

message = “Selection event Error\n” + sqle.getMessage();

System.err.println(message);

}

if(message != null) {

status.setText(message);

}

}

If you recompile the program with these additions, and you have managed to enter all the code without
typos, the whole program should now be working, and you can select table data as illustrated in Figure
25-11.

The table data that is displayed is updated as you select or deselect tables or columns. Don’t forget you
can use the Shift and Ctrl keys when selecting nodes. If you have one, you can also enter a different
database URL.

1394

Chapter 25

Figure 25-11

How It Works
The valueChanged() method is a little tricky, with some fearsome looking statements, but they are not
as tough as they look. The objective of the valueChanged() method is to assemble an SQL SELECT

statement for a table and then execute it. The set of columns in the statement will be assembled in the
variable columnsParam, and the table name will be stored in the tableParam variable.

First of all, you are interested only in paths to selected nodes here, so you get this information directly
from the dbTree object. Since a database tree has a fixed structure with three levels — as I discussed way
back — a TreePath will always have either two or three nodes in the path, two when a table is selected,
and three when a column is selected. This guides our approach to processing the paths for selected
nodes.

You iterate through the paths in the for loop. For each path, there will be either two or three elements in
the path, and this is returned by the getPathCount() method for the path. You use this value to select
one or other of the cases in the switch. When the value is 2, you have found a table name that is
selected, so you retrieve the name with the expression:

(String)(((DefaultMutableTreeNode)(path.getPathComponent(1))).getUserObject())

1395

The JDBC in Action

This expression is easy to understand if you take it from the inside out. The expression
path.getPathComponent(1) returns the second node object from the current path, path, as type
Object— which will be the node storing the table name. You want to call the getUserObject()
method for the node, but before you can do that, you must cast it to type DefaultMutableTreeNode,
and you need parentheses around that because of operator precedence. The reference returned by
getUserObject() is type Object, so you have to cast that to type String before storing it as the table
name in tableParam. To select all the columns in the table, you set columnsParam to “*”, and set the
tableSelected flag to true so you’ll exit the loop because of the if statement that tests this value at
the end, and thus you won’t look at any other paths.

If the value returned by getPathCount() is 3, you have found a column that is selected. You get the
column name using essentially the same expression as you used to get the table name. If columnsParam
is null, then this is the first column name you have found, so you just store the name. If columnsParam
is not null, you have an additional column name, so you append it following a comma to the existing
string in columnsParam. In this way you accumulate all the names of the selected columns. If a table
name turns up, you abandon the column names you have recorded and display the whole table.

The last bit after you exit the for loop is easy. You pass a SELECT statement formed from the
columnsParam and tableParam strings to the executeQuery() method for statement. This produces
a ResultSet object containing the table data that you pass to the setResultSet() method for our
ResultsModel object that supplies data to the table. Finally, you update the border for the scroll pane
containing the table to display the table name.

Summary
In this chapter, you’ve applied the basic JDBC skills you learned about in the previous chapter in some
new ways, extended your detailed knowledge of some of the topics I covered there, and even got into
some new ones. The important elements that I introduced in this chapter include:

❑ You can create Java objects directly from JDBC data sources by adding a factory method to a
class to extract data from a ResultSet object and build a class object.

❑ The Statement interface provides methods that enable you to limit the field size and number of
rows that can be generated in a resultset. You can also set a maximum duration for an SQL
query.

❑ A PreparedStatement object encapsulates a parameterized SQL statement and provides meth-
ods for you to set values for the parameters. Placeholders for the parameters in the SQL state-
ment are represented by a question mark.

❑ JDBC provides a set of preferred mappings between SQL types and Java types. The methods
provided for transferring data between your program and a database also support conversions
to other than the preferred types.

❑ The SQL NUMERIC and DECIMAL data types are mapped to the BigDecimal class type that is
defined in the java.math package. You can use this class and the BigInteger class for applica-
tions that need numerical precision beyond the capabilities of the primitive numeric types.

1396

Chapter 25

❑ When exceptions are thrown by JDBC methods, a chain of SQLException objects can be linked
together. You can access successive objects in the chain by calling the getNextException()
method for each SQLException object in the chain.

❑ If problems are detected by JDBC that do not warrant throwing an exception, an object of type
SQLWarning is attached to the object originating the problem. SQLWarning objects can be
attached to Connection, Statement, and ResultSet objects. You can check for a warning by
calling the getWarnings() method for the JDBC object you are using to access the database.

❑ You can use a JTree component to display data structured as a tree.

❑ The getMetaData() method for a Connection object returns a DatabaseMetaData object con-
taining methods that make database metadata available. These work only if the driver and
database engine support the capability implied by the methods you are using.

Remember, you’ve only skimmed the facilities offered by many of the classes I’ve discussed in this chap-
ter. You’ll find much more capability under the covers, and time spent browsing the class methods will
be very rewarding in most cases.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

With some additional features, you’ll find the InteractiveSQL utility very useful. Add the following
features to InteractiveSQL:

1. Keep the last ten queries that were executed and allow the user to select from that list of previ-
ously run queries.

2. Provide a menu option that lets the user close the current connection and open a new one.
Prompt the user for the URL, driver name, user name, and password.

3. Modify the program to provide full, detailed information about any SQLException exceptions
that are thrown. You may want to use a separate window that provides more space and keeps a
running list of exceptions until these are cleared by the user.

There are also lots of potential extensions to the DatabaseBrowse application. Try the following:

4. It would be more efficient to separate the execution of the SELECT statement from the selection
events from the tree. Add a button to execute a SELECT statement with whatever table or
columns are selected in the tree.

5. Extend the application to allow a WHERE condition to be applied. (This is quite hard. You’ll need
to provide an additional mechanism for specifying the WHERE conditions — which means you’ll
need to track the columns selected. You could keep a list that you record in the
TreeSelectionEvent handler and supply a dialog to allow the condition to be specified.)

6. Extend the application to allow an ORDER BY condition to be applied to the SELECT statement.
(If you have done the previous exercise, this will be a piece of cake.)

1397

The JDBC in Action

A
Keywords

The following keywords are reserved in Java, so you must not use them as names in your programs:

abstract assert boolean break

byte case catch char

class const continue default

do double else enum

extends final finally float

for goto if implements

import instanceof int interface

long native new package

private protected public return

short static strictfp super

switch synchronized this throw

throws transient try void

volatile while

You should also not attempt to use the boolean values true and false or null as names in your
programs.

B
Computer Arithmetic

In the chapters of this book, I have deliberately kept discussion of binary arithmetic to a minimum.
However, it is important overall, and fundamental to understanding how some operators work, so
I’ve included a summary of the subject in this appendix. If you feel confident about your math
knowledge, this will all be old hat to you and you need read no farther. If you find the math parts
tough, then this section should show you how easy it really is.

Binary Numbers
First let’s consider what you mean when you write a common everyday number such as 321 or
747. Put more precisely you mean

321 is:

3 x 10 x 10 + 2 x 10 + 1

and 747 is:

7 x 10 x 10 + 4 x 10 + 7

Because it is built around powers of ten, you call this the decimal system (derived from the Latin
decimalis meaning of tithes, which was a tax of 10 percent — ah, those were the days . . .).

Representing numbers in this way is very handy for people with ten fingers and ten toes, or crea-
tures with ten of any kind of appendage for that matter. However, your PC is quite unhandy in
this context, being built mainly of switches that are either on or off. This is okay for counting up to
two, but not spectacular at counting to ten. For this reason your computer represents numbers to
base 2 rather than base 10. This is called the binary system of counting, analogous to the bicycle
(two wheels), but nothing whatever to do with bibacity, which means an inclination to drink a lot.
With the decimal system, to base 10, the digits used can be from 0 to 9. In the binary system, to
base 2, the digits can only be 0 or 1, ideal when you have only on/off switches to represent them;
off is usually 0, and on is 1, simple. Each digit in the binary system is called a bit, which is a con-

traction of binary digit. In an exact analogy to the usual base 10 counting, the binary number 1101 is
therefore

1 x 2 x 2 x 2 + 1 x 2 x 2 + 0 x 2 + 1

which, if you work it out, amounts to 13 in the decimal system. In the following table you can see the
decimal equivalents of 8-bit binary numbers illustrated.

Binary Decimal Binary Decimal

0000 0000 0 1000 0000 128

0000 0001 1 1000 0001 129

0000 0010 2 1000 0010 130

...

0001 0000 16 1001 0000 144

0001 0001 17 1001 0001 145

...

0111 1100 124 1111 1100 252

0111 1101 125 1111 1101 253

0111 1110 126 1111 1110 254

0111 1111 127 1111 1111 255

Note that by using just 7 bits you can represent all the decimal numbers from 0 to 127, which is a total of
27, or 128 numbers; and using all 8 bits you get 256, which corresponds to 28 numbers. In general, if you
have n bits available, you can represent 2n positive integers with values from 0 to 2n-1.

Hexadecimal Numbers
When you get to work with larger binary numbers — for example, numbers with 24 bits:

1111 0101 1011 1001 1110 0001

the notation starts to be a little cumbersome, particularly when you consider that if you apply the
method you saw in the previous section to work out what this is in decimal notation, it’s only 16,103,905,
a miserable 8 decimal digits. You can sit more angels on a pinhead than that. Well, as it happens, you
have an excellent alternative.

Arithmetic to base 16 is a very convenient option. Each digit can have values from 0 to 15 (the digits
from 10 to 15 being represented by the letters A to F as shown in the next table, or by a to f if you’re
averse to capitalization) and values from 0 to 15 correspond quite nicely with the range of values that
four binary digits can represent.

1402

Appendix B

Hexadecimal Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 4 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Because a hexadecimal digit corresponds exactly to 4 binary bits, you can represent a binary number as a
hexadecimal number just by taking successive groups of four binary digits starting from the right, and
writing the equivalent base 16 digit for each group. Look as this binary number:

1111 0101 1011 1001 1110 0001

If you replace each group of 4 bits with the equivalent hexadecimal digit, you’ll get:

F5B9E1

You have six hexadecimal digits corresponding to the six groups of four binary digits. Just to show it all
really works out with no cheating, you can convert this number directly from hexadecimal to decimal,
by again using the analogy with the meaning of a decimal number, as follows:

F5B9E1 is:

15 x 16 x 16 x 16 x 16 x 16 + 5 x 16 x 16 x 16 x 16 + 11 x 16 x 16 x 16 + 9 x 16 x 16 + 14 x16 + 1

1403

Computer Arithmetic

This in turn turns out to be:

15,728,640 + 327,680+ 45,056 + 2304 + 224 + 1

which fortunately totals to the same number you got when you converted the original binary number to
a decimal value.

Negative Binary Numbers
There is another aspect to binary arithmetic that you need to understand — how negative numbers are
represented. So far you have assumed everything is positive — the optimist’s view, if you will — your
glass is still half full. But you can’t avoid the negative side of life forever — the pessimist’s perspective
that your glass is already half empty. How do you indicate a negative number? Well, you have only
binary digits at your disposal, so they must contain the solution.

For numbers where you want to allow the possibility of negative values (referred to as signed numbers)
you must first decide on a fixed length (in other words, fix the number of binary digits in a number) and
then designate the leftmost binary digit as a sign bit. You have to fix the length to avoid any confusion
about which bit is the sign bit as opposed to other bits that are digits. A single bit is quite capable of rep-
resenting the sign of a number because a number can be either positive — corresponding to a sign bit
being 0, or negative — indicated by the sign bit being 1.

Of course, you can have some numbers with 8 bits, and some with 16 bits, or whatever number of bits
you like, as long as you know what the length is in each case. If the sign bit is 0 the number is positive,
and if it is 1, the number is negative. This would seem to solve the problem, but not quite. If you add -8
in binary to +12 you would really like to get the answer +4. If you carry out that operation simplistically,
just putting the sign bit of the positive value to 1 to make it negative, and then doing the arithmetic with
conventional carries from one bit position to the next on the left, it doesn’t quite work:

12 in binary is 0000 1100

-8 in binary you suppose is 1000 1000

Since +8 is 0000 1000, the binary representation for -8 is the same, but with the leftmost bit set to 1. If we
now add these together we get:

12 + (-8) is 1001 0100

The value 1001 0100 seems to be -20 according to the rules, which is not what you wanted at all. It’s defi-
nitely not +4, which you know is 0000 0100. Ah, I hear you say, you can’t treat a sign just like another
digit. But that is just what you do have to do when dealing with computers because, dumb things that
they are, they have trouble coping with anything else. So you really need a different representation for
negative numbers if the same process for addition is to work regardless of the sign of the operands. Well,
as the same process for arithmetic operations should work regardless of the signs of the operands, you
could try subtracting +12 from +4 and see what you get. Whatever the result is should be -8:

1404

Appendix B

+4 is 0000 0100

Take away +12 0000 1100

and you get 1111 1000

For each digit from the fourth from the right onwards you had to borrow 1 to do the sum, analogously to
our usual decimal method for subtraction. This supposedly is -8, and even though it doesn’t look much
like it, it really is. Just try adding it to +12 or +15 in binary and you will see that it works. So what is it? It
turns out that the answer is what is called the 2’s complement representation of negative binary num-
bers.

Now here I am going to demand a little faith on your part and avoid getting into explanations of why it
works. I’ll just show you how the 2’s complement form of a negative number can be constructed from a
positive value and that it does work so you can prove it to yourself. Let’s return to the previous example
where you need the 2’s complement representation of -8. We start with +8 in binary:

0000 1000

You now flip each digit — if it is one make it zero, and vice versa:

1111 0111

This is called the 1’s complement form, and if you now add 1 to this, you’ll get the 2’s complement form:

1111 0111

Add one to this 0000 0001

and we get: 1111 1000

Now this looks pretty similar to the representation of -8 you got from subtracting +12 from +4. So just to
be sure, let’s try the original sum of adding -8 to +12:

+12 is 0000 1100

Our version of -8 is 1111 1000

and you get: 0000 0100

So the answer is 4 — magic! It works! The carry propagates through all the leftmost 1’s, setting them
back to zero. One fell off the end, but you shouldn’t worry about that. It’s probably the one you bor-
rowed from off the end in the subtraction sum you did earlier to get -8. In fact, what is happening is that
you are making the assumption that the sign bit, 1 or 0, repeats forever to the left. If you try a few exam-
ples of your own, you’ll find it always works quite automatically. The really great thing is, it makes
arithmetic very easy (and fast) for your computer.

1405

Computer Arithmetic

Floating-Point Numbers
You often have to deal with very large numbers: the number of protons in the universe, for example,
which needs around 79 decimal digits. Clearly there are lots of situations where you need more than the
10 decimal digits you get from a 4-byte binary number. Equally, there are lots of very small numbers: the
amount of time in minutes, for example, that it takes the typical car salesman to accept your cash offer
on his wonderful 1982 Ford LTD (and only driven 380,000 miles . . .). A mechanism for handling both
these kinds of numbers is — as you will have guessed from the title of this section — floating-point
numbers.

A floating-point representation of a number is a decimal point followed by a fixed number of digits mul-
tiplied by a power of 10 to get the number you want. It’s easier to demonstrate than explain, so let’s take
some examples. The number 365 in normal decimal notation would be written in floating-point form as:

0.365E03

Here, the E stands for exponent and is the power of ten that the 0.365 (the mantissa) is multiplied by, to
get the required value. That is:

0.365 x 10 x 10 x 10

which is clearly 365.

Now let’s look at a smallish number:

.365E-04

This is evaluated as .365 x 10-4, which is .0000365 — exactly the time in minutes required by the car sales-
man to accept your money.

The number of digits in the mantissa of a floating-point number depends on the type of the floating-
point number that you are using. The Java type float provides the equivalent of approximately 7 decimal
digits, and the type double provides around 17 decimal digits. The number of digits is approximate
because the mantissa is binary, not decimal, and there’s not an exact mapping between binary and deci-
mal digits.

Suppose you have a large number such as 2,134,311,179. How does this look as a floating-point number?
Well, as type float it looks like:

0.2134311E10

It’s not quite the same. You have lost three low-order digits, so you have approximated our original
value as 2,134,311,000. This is a small price to pay for being able to handle such a vast range of numbers,
typically from 10-38 to 10+38 either positive or negative, as well as having an extended representation that
goes from a minute 10-308 to a mighty 10+308. As you can see, they are called floating-point numbers for
the fairly obvious reason that the decimal point “floats” depending on the exponent value.

Aside from the fixed precision limitation in terms of accuracy, there is another aspect you may need to
be conscious of. You need to take great care when adding or subtracting numbers of significantly differ-

1406

Appendix B

ent magnitudes. A simple example will demonstrate the kind of problem that can arise. You can first
consider adding .365E-3 to .365E+7. You can write this as a decimal sum:

.000365 + 3,650,000

This produces the result:

3,650,000.000365

which when converted back to floating point with seven-digit accuracy becomes:

.3650000E+7

So you might as well not have bothered. The problem lies directly with the fact that you carry only
seven-digit precision. The seven digits of the larger number are not affected by any of the digits of the
smaller number because they are all farther to the right. Oddly enough, you must also take care when
the numbers are very nearly equal. If you compute the difference between such numbers you may end
up with a result that has only one or two digits precision. It is quite easy in such circumstances to end up
computing with numbers that are total garbage.

One final point about using floating-point values — many values that have an exact representation as a
decimal value cannot be represented exactly in binary floating-point form. For example, 0.2 as a decimal
value cannot be represented exactly as a binary floating-point value. This means that when you are
working with such values, you have tiny errors in your values right from the start. One effect of this is
that accumulating the sum of 100 values that are all 0.2 will not produce 20 as the result. If you try this
out in Java the result will be 20.000004, slightly more than you bargained for.

You can conclude from this that while floating-point numbers are a powerful way of representing a very
wide range of values in your programs, you must always keep in mind their limitations. If you are con-
scious of the range of values that you are likely to be working with, you can usually adopt an approach
to performing the calculations that you need that avoids the sorts of problems I have described. In other
words, if you keep the pitfalls in mind when working with floating-point values, you have a reasonable
chance of stepping around or over them.

1407

Computer Arithmetic

In
de

x

Index

SYMBOLS AND
NUMERICS
& (ampersand)

bitwise AND operator, 64–68, 74, 99
logical AND operator, 95–96, 97
XML entity name prefix, 1158

&= (ampersand, equals sign) op= operator, 54
&& (ampersands) AND operator, 80, 95, 96–97
* (asterisk)

multiplication operator, 39
wildcard character, 24, 241, 242, 1312
XML cardinality operator, 1168

*= (asterisk, equals sign) op= operator, 54
*/ (asterisk, slash)

comment block suffix, 82
documentation comment suffix, 82

@ (at sign) documentation comment tag prefix,
82–83

\ (backslash) escape sequence prefix, 60, 61
\\ (backslashes) path separator, 404
| (bar)

bitwise OR operator, 64–68, 99
logical OR operator, 95, 98, 699
XML cardinality operator, 1168, 1169

|= (bar, equals sign) op= operator, 54
|| (bars) OR operator, 80, 95, 98
{ } (braces)

class definition delimiters, 15, 204
method definition delimiters, 25
statement block delimiters, 88–89, 92

< > (brackets, angled) type parameter delimiters, 548

[] (brackets, square)
array index value delimiters, 136
regular expression character class delimiters, 698

^ (caret)
exclusive OR operator, 64, 68–70
regular expression pattern match indicator, 696, 698

^= (caret, equals sign) op= operator, 54
: (colon)

conditional operator element, 100
switch statement element, 102
XML namespace separator, 1178

, (comma) declaration list separator, 35
$ (dollar sign) identifier prefix, 30
... (ellipsis) method argument list prefix, 296
= (equals sign)

array initialization character, 139
assignment operator, 34, 38, 81

== (equals signs) relational operator, 86–87,
161, 167

!= (exclamation mark, equals sign) relational
operator, 86

! (exclamation mark) logical NOT operator, 95, 98
> (greater than sign)

relational operator, 86
XML tag suffix, 1156

>= (greater than sign, equals sign)
op= operator, 54
relational operator, 86

>>= (greater than signs, equals sign) op= operator, 54
>>>= (greater than signs, equals sign) op=

operator, 54
>> (greater than signs) shift operator, 70
>>> (greater than signs) shift operator, 70

- -> (hyphens, greater than sign) XML comment
suffix, 1158

< (less than sign)
relational operator, 86
XML tag prefix, 1156

<= (less than sign, equals sign) relational operator, 86
<!- - (less than sign, exclamation mark, hyphens) XML

comment prefix, 1158
</ (less than sign, slash) XML element end tag

prefix, 1156
<<= (less than signs, equals sign) op= operator, 54
<< (less than signs) shift operator, 70
–= (minus sign, equals sign) op= operator, 54
– (minus sign) subtraction operator, 39
–– (minus signs) decrement operator, 46–47, 50, 128
(number sign) regular expression delimiter, 692
() (parentheses)

method definition delimiters, 20, 41
operator delimiters, 39
SQL procedure delimiters, 1359
SQL statement value delimiters, 1288

%= (percent sign, equals sign) op= operator, 54
% (percent sign) modulus operator, 46, 50
. (period)

class notation dot operator, 23, 203
member selection operator, 189
wildcard character, 697

+ (plus sign)
addition operator, 39, 45, 157, 159–160
XML cardinality operator, 1168

+= (plus sign, equals sign) op= operator, 54, 157
++ (plus signs) increment operator, 46–47, 50, 61,

112–113
? (question mark)

conditional operator element, 100
SQL procedure parameter indicator, 1359
SQL statement placeholder, 1346
XML cardinality operator, 1168, 1169

“ ” (quotes, double)
DTD path delimiters, 1211
string delimiters, 44, 61, 153, 1158, 1160
XML attribute delimiters, 1160

‘ ’ (quotes, single)
character literal delimiters, 60, 61
XML attribute delimiters, 1160
XML string delimiters, 1158, 1160

; (semicolon)
for statement separator, 112, 116
statement suffix, 19, 38
XML entity name suffix, 1158

/ (slash)
division operator, 39
path separator, 404

/* (slash, asterisk) comment block prefix, 82
/** (slash, asterisks) documentation comment prefix,

82
/= (slash, equals sign) op= operator, 54
// (slashes) comment prefix, 15, 81
~ (tilde) complement operator, 64, 67
_ (underscore) identifier prefix, 30

A
About dialog, 1005–1009, 1010–1011
abs method, 55
AbsoluteControl interface, 333
abstract keyword, 287
Abstract Windowing Toolkit (AWT), 768
AbstractAction class, 904, 906
AbstractButton class, 798, 883
AbstractCollection class, 612
abstraction, data, 15
AbstractList class, 613
AbstractMap class, 612, 613
AbstractQueue class, 613
AbstractSequentialList class, 613
AbstractSet class, 613
AbstractTableModel class, 1318
accept method, 414–415, 417, 1097, 1099
Account class, 743, 747
acos method, 54
action class, 906–908
Action interface
ActionPerformed method, 904
add method, implementing using, 903
addPropertyChangeListener method, 904
disabling, 922–923
getValue method, 904
ImageIcon object, storing in Action object, 915
isEnabled method, 904, 922
properties, 903
putValue method, 904
removePropertyChangeListener method, 904
setEnabled method, 904, 922
tooltip text, storing in Action object, 920

ActionEvent class
getSource method, 1027
getValue method, 1090
hierarchy, 882
objects produced by, 882

1410

--> (hyphens, greater than sign) XML comment suffix

ActionListener interface
actionPerformed method, 864, 883
DatabaseBrowse class implementation, 1382
InteractiveSQL class implementation, 1325
SketchFrame class implementation, 1007
SketchView class implementation, 1049
TypeListener class implementation, 899–900

ActionMap object, 903
actionPerformed method
AboutDialog class, 1007
Action interface, 904
ActionListener interface, 864, 883
ColorAction class, 908, 988, 1001
ColorListener class, 901
DatabaseBrowse class, 1382
FileAction class
ActionEvent getValue method, using with, 1090
coding, initial, 907
file creation operation, 1103
file open operation, 1101–1102, 1103
file save operation, 1096, 1099–1100, 1105
print operation, 1111–1112, 1116, 1124,

1125–1126, 1128–1129
FontDialog class, 1026–1027
HandleControlButton class, 891, 892, 894
InteractiveSQL class, 1325
SketchFrame class, 1008–1009, 1038, 1075, 1147
SketchView class, 1049, 1050–1052, 1065–1066,

1070, 1115
TypeAction class, 1001
XMLImportAction class, 1263

add method
Action interface implementation, 903
ArrayIndexOutOfBoundsException

thrown by, 620
BinaryTree class, 572, 573–574, 578, 591
BorderLayout layout manager, 811
CardLayout layout manager, 814
ClassCastException thrown by, 609
Container class, 803
GregorianCalendar class, 688
IllegalOperationException thrown by, 609
JMenu class, 847, 908
JPopupMenu class, 1040
JToolBar class, 912, 915, 916, 918
LinkedList class, 638
ListIterator interface, 609
SketchFrame class, 846, 850
SketchModel class, 984
UnsupportedOperationException thrown by, 609
Vector class, 617, 620, 635

addActionListener method
JButton class, 815, 865, 1006
JMenuItem class, 1008

addAll method
ArrayIndexOutOfBoundsException

thrown by, 621
LinkedList class, 638
Vector class, 621

addBatch method, 1304
addButton method, 830
addChoosableFileFilter method, 1099
addElementNode method, 1249–1250
addEntry method, 651, 653
addFirst method, 638
addItem method, 315, 317, 598–599
addLast method, 638
addListSelectionListener method, 1029
addMenuItem method, 919
addMotionListener method, 979
addMouseListener method, 979
addMouseWheelListener method, 979
addObserver method, 672
addPoint method, 312, 317, 640
addPropertyChangeListener method, 904
addSeparator method, 847, 851
addTableModelListener method, 1318
addToolBarButton method, 918, 1125
addTreeExpansionListener method, 1391
addTreeSelectionListener method, 1391
addTreeWillExpandListener method, 1391
addWindowListener method, 879, 881, 1105
AdjustmentEvent class, 882, 883
AdjustmentListener interface, 883
adjustmentValueChanged method, 883
AffineTransform class

constructor, 1058
createTransformedShape method, 1058, 1062
default, 1054
getPathIterator method, passing

AffineTransform object to, 1086
getRotateInstance method, 1058
getScaleInstance method, 1058
getShearInstance method, 1058
getTransform method, 1054–1055
getTranslateInstance method, 1058
setToRotation method, 1055–1056
setToScale method, 1056
setToShear method, 1056
setToTranslation method, 1055
setTransform method, 1058

1411

AffineTransform class

In
de

x

after method
Calendar class, 688, 690
Date class, 679

afterLast method, 1305
allocate method, 438–439, 466
allocateDirect method, 466, 502
ampersand (&)

bitwise AND operator, 64–68, 74, 99
logical AND operator, 95–96, 97
XML entity name prefix, 1158

ampersand, equals sign (&=) op= operator, 54
ampersands (&&) AND operator, 80, 95, 96–97
analyze method, 585
AnAncestorEvent class, 883
AND operator

bitwise, 64–68, 74, 99
Boolean, 80, 95–96
conditional, 95, 97
logical, 95–96, 97

antialiasing, 938
Apache Project, 1196, 1198
append method
Book class, 1144, 1145
StringBuffer class, 189–191

Appendable interface, 462
appendChild method, 1246
appendReplacement method, 705–706, 707,

710, 713
appendTail method, 707, 708
applet

application, converting to applet, 856–857
border, 888
button, adding, 809–811, 889
color, 888–889
described, 1
destroying, 855
event handling, 884–893
executing, 10
HTML, inserting in, 11–12
initializing, 855, 856, 857
security, 854–855
starting, 855
stopping, 855

Applet class, 775
appletviewer browser, 10, 810
arc, drawing, 947–950
Arc2D class, 947–949
arithmetic. See math

ArithmeticException class
catching, 346–347, 349–350, 353, 355, 356
divide method, defining class corresponding to in,

365–366
exception condition represented, 342
loop structure, throwing in, 369

array
average, calculating, 142–143, 147–149, 197,

297–298
buffer, creating via wrapping array, 443–445
byte array, 183
character array, 152, 182–184, 191
column, 146
comparing arrays, 661
creating array consisting of multiple arrays, 145–151
defining, 136–137
dimension, 138, 146, 151, 660
element, 136, 138
filling, 140–141, 142, 151, 152, 660–661
float array, 146, 149
generic, 588–589
index, 136, 138, 145–146, 342
initializing, 137, 139–142, 197
interface array, returning, 588
iteration, 140, 142, 143, 145, 148–149
length, 137, 142, 148, 149–151
linked list, implementation as, 611
listing array values, 213–214
memory, allocating, 136, 137
multiplication table, containing, 197
referencing, 136, 138
regular expression, using in, 696
row, 146
searching, 666–669
sequence compared, 604
serialization, using in, 525, 529
sorting, 198, 662–666
stream

reading from array, 377, 382
reading to array, 376, 380
writing to array, 380, 383

string array, 155–156, 197, 1319
variable, 136, 138–139, 141–142
vector

relation to, 611
returning vector elements as array, 622–623

wildcard array, 589–592
array method, 445

1412

after method

ArrayIndexOutOfBoundsException class
add method, thrown by, 620
addAll method, thrown by, 621
divide method, thrown by, 353, 355, 357, 361–362
fill method, thrown by, 661
get method, thrown by, 621
message, displaying, 369
removeElementAt method, thrown by, 624
sort method, thrown by, 662

ArrayList class, 611, 613
Arrays class
asList method, 623
binarySearch method, 666–669
equals method, 661
fill method, 140–141, 151, 152, 659–661, 696
sort method, 662–663, 664

ArrayStoreException class, 342, 623
asCharBuffer method, 440, 489
asDoubleBuffer method, 440
asFloatBuffer method, 440
asin method, 54, 1071
asIntBuffer method, 440
asList method, 623
asLongBuffer method, 440, 492
asReadOnlyBuffer method, 440
assertion, 10, 130–133
asShortBuffer method, 440
assignment operator, 34, 38, 81
asterisk (*)

multiplication operator, 39
wildcard character, 24, 241, 242, 1312
XML cardinality operator, 1168

asterisk, equals sign (*=) op= operator, 54
asterisk, slash (*/)

comment block suffix, 82
documentation comment suffix, 82

AsynchronousCloseException class, 452, 454,
486, 503

at sign (@) documentation comment tag prefix, 82–83
atan method, 54
atan2 method, 54
atLocation method, 966
ATTLIST statement, 1169
Attr

interface, 1227, 1239, 1244
node, 1228

Attributes interface, 1206
AudioInputStream class, 377
Author class, 1333–1334, 1336, 1339

autoboxing, 245–246, 297, 556
available method, 1349, 1350
average method, 297–298
AverageFruit class, 50, 51
AvoidOverwritingFile class, 423–424
AWT (Abstract Windowing Toolkit), 768
AWTEvent class, 868–869, 872, 882

B
backslash (\) escape sequence prefix, 60, 61
backslashes (\\) path separator, 404
Bank class, 741, 752
BankOperation class, 745, 749–750
bar (|)

bitwise OR operator, 64–68, 99
logical OR operator, 95, 98, 699
XML cardinality operator, 1168, 1169

bar, equals sign (|=) op= operator, 54
bars (||) OR operator, 80, 95, 98
BasicStroke class, 937
before method
Calendar class, 688, 690
Date class, 679

beforeFirst method, 1305
BevelBorder class, 810–811, 820, 825
Bézier curve, 950, 962
BigDecimal class, 715, 1355–1356
BigInteger class, 716, 1355
binary operator, 39
binary stream, 374–375, 377, 491–495
binary tree

child node, 569, 570
described, 569
extracting object, 570, 574–575
generic type, 569–572
inserting object, 572–574
linked list, returning, 571–572, 574, 575–579
root node, 570
sorting using, 575–579
wildcard type, using with, 582–583, 587, 590–591

binary value
arithmetic, 1401–1402
bitwise operation, representation in, 63–65
complement form, 32
counting bits in, 75
hexadecimal value, converting to, 65–67
negative, 1404–1405
reversing bits in, 75
rotating bits in, 75, 76

1413

binary value

In
de

x

binary value (continued)
shifting, 70
string, converting to, 68, 77
zero, returning leading/trailing, 75

binarySearch method, 666–669
BinaryTree class
add method, 572, 573–574, 578, 591
Comparable interface implementation, 571, 578,

579–580, 581
constructor, 595–597
LinkedList object, returning from BinaryTree

object, 571–572, 574, 575–579
Person object, working with in, 579–580, 585–586
sort method, 572, 574
treeSort method, 574–575

bitCount method, 75, 76
BitwiseOps class, 67–68
block, statement, 88–89
Book class
append method, 1144, 1145
getNumberOfPages method, 1145
getPageFormat method, 1145
getPrintable method, 1145
Pageable interface implementation, 1144
Printable object implementation, 1143–1145

BookEntry class, 650–651, 654–655
Boolean class, 244
Boolean operation

AND, 80, 95–96
casting boolean type, 80
NOT operator, logical, 95, 98
OR, 80, 95, 98
variable, boolean type, 79–80, 86
XML boolean data type, 1183

BorderFactory class, 820, 888, 999
Box class
createGlue method, 822
createHorizontalBox method, 818
createHorizontalStrut method, 821
createVerticalBox method, 818
createVerticalStrut method, 821

boxInteger method, 246
braces ({ })

class definition delimiters, 15, 204
method definition delimiters, 25
statement block delimiters, 88–89, 92

brackets, angled (< >) type parameter delimiters, 548
brackets, square ([])

array index value delimiters, 136
regular expression character class delimiters, 698

break statement, 103, 104, 124–130, 351
brighter method, 790
buffer. See also memory

capacity, 186–188, 434–435, 438–439, 470, 527
clearing, 451, 466
compacting, 499–502
creating, 434, 438–441, 443–446
data transfer

input, 432, 446–449, 462–466
output, 432–433, 446–447, 449–451, 489
view buffer, 439, 449, 458, 460

direct/indirect, 466–467
duplicating, 441–443
flipping, 451, 457–458, 465, 480–481, 489
flushing, 373
Formatter object, loading using, 462–466
limit, 435–438, 450–451
mark property, 446
overflow, 447, 448
position, 435–438, 450–451, 453–455
records in, working with multiple, 475–477
rewinding, 451
serialization output stream, buffering, 527
slicing, 441–443
string buffer

appending to, 189–191
creating String object from, 194–196
creating via wrapping string, 445–446
deleting character from, 193–194
deleting substring from, 194
inserting string into, 192–193
length, changing, 188–189
multi-threading, 185
replacing substring, 192
reversing character sequence, 194
setting character in, 193

view buffer
ByteBuffer creating from, 434, 439, 441
capacity, 437
data transfer role, 439, 449, 458, 460
limit, 437
multiple view buffers, using, 473–474
position, 437
referencing, 440

Buffer class
capacity method, 434–435
clear method, 451, 466
flip method, 451, 489
hasRemaining method, 438, 489
limit method, 437, 438

1414

binary value (continued)

position method, 437, 454–455, 477
remaining method, 486, 489, 502, 522
reset method, 446
rewind method, 451

BufferedInputStream class, 377, 378
BufferedOutputStream class, 527
BufferedReader class, 381, 382, 629, 1358
BufferedWriter class, 383
BufferOverflowException class, 447, 448
BufferUnderflowException class, 494, 495
BuilderFactory class, 1224
BuildTables class, 1344–1345
button. See also event handling, button

action performed, assigning, 814–815, 891, 892
applet, adding to, 809–811, 889
border, 798, 810–813
box layout, 818–820
Cancel button, 1003
card layout, 814–815
color, 889, 891
flow layout, 806–811, 888, 890
font selection dialog button panel, 1026–1027,

1035–1037
grid layout, 829–834
group, 799, 820, 902
icon, 915–916
label, 886, 892, 916, 917, 1092
listener, 864, 886, 890, 1026–1027, 1036–1037
OK button, 1003, 1006–1007, 1008–1009
radio, 799, 818–823, 844, 1035–1037
spring layout, 835, 837–842, 859
Swing component, 798–799
toggle, 799, 1077
toolbar, adding to, 798, 912–914, 916–918,

1019, 1077
ButtonGroup object, 799, 820, 902
Byte class, 160
byte type

array, 183
bytes occupied, 31
casting, 48, 52
initializing, 35, 70, 84
integer literal, 35
string, writing to file as, 458–460
value

hexadecimal, 70
range, 32

wrapper class, 160
ByteArrayInputStream class, 377
ByteArrayOutputStream class, 379

ByteBuffer class
allocate method, 438–439, 466
allocateDirect method, 466, 502
asCharBuffer method, 440, 489
asDoubleBuffer method, 440
asFloatBuffer method, 440
asIntBuffer method, 440
asLongBuffer method, 440, 492
asReadOnlyBuffer method, 440
asShortBuffer method, 440
described, 434
getChar method, 489, 499
limit, 435–436
position, 435–436
put methods, 447–448
view buffer, creating from, 434, 439, 441
wrap method, 443–444, 481

ByteChannel interface, 431–432
byteData.txt file, 459

C
Calendar class
after method, 688, 690
before method, 688, 690
compareTo method, 689
equals method, 689
roll method, 688
set method, 686

Call Level Interface (CLI) specification, 1276
CallableStatement interface, 1304, 1359, 1360
canonical equivalence, 692
canRead method, 409
canWrite method, 409
capacity method
Buffer class, 434–435
StringBuffer class, 188, 196
Vector class, 619

Card class, 634–635
cardinality operators, XML, 1168–1169
caret (^)

exclusive OR operator, 64, 68–70
regular expression pattern match indicator, 696, 698

caret, equals sign (^=) op= operator, 54
case keyword, 102
casting

automatic, 52–53
boolean type, 80
byte type, 48, 52
char type, 74

1415

casting

In
de

x

casting (continued)
double type, 52, 53
explicit, 48, 52, 301
float type, 52–53
generic type, 558–559
Graphics2D type, 936
int type, 61
long type, 52–53, 74
object, 298–301
primitive types, between, 52, 80
readObject method, 654
short type, 48

Cat class, 283
catch block. See exception, catch block
cbrt method, 56
CDATASection

interface, 1227
node, 1244

ceil method, 55, 144
change method, 208, 219
ChangeListener interface, 1034, 1035
changeRadius method, 211, 219
channel

closing, 431, 432
open status, testing, 431
read operation, 429, 432, 485–488, 512–513
transferring data directly between channels, 504–507
write operation, 429, 432–433, 451–453, 477–481,

512–513
Channel interface, 430–431, 432
char type

arithmetic operation involving, 61–63
bits occupied, 60
case, testing, 99
casting, 74
initializing, 60
path separator character, 404
shift operation, applying to, 72–74
wrapper class, 161

Character class
isDigit method, 100
isLetter method, 100, 171
isLetterOrDigit method, 100
isLowerCase method, 99
isUpperCase method, 99
isWhitespace method, 100, 715
toLowerCase method, 171

characters method, 1205, 1210
CharArrayReader class, 381, 382
CharArrayWriter class, 383

charAt method
IndexOutOfBoundsException thrown by, 170
String class, 170–171
StringBuffer class, 193

CharBuffer class
Appendable interface implementation, 462
buffer of type CharBuffer, creating, 445–446
described, 434
position method, 477
put method, 477
stream, reading to CharBuffer object, 380
toString method, 489

CharCodeCalcs class, 62
charData.txt file, 456, 489
CharSequence interface, 334, 380
Charset class, 375, 382
CharsetDecoder class, 382
charWidth method, 796
checkbox, 799, 818–820, 822, 843–844, 902
CheckedInputStream class, 377
checkError method, 383
checkForSave method, 1100–1101, 1104, 1105
checkForWarning method, 1368, 1371
children method, 1378
CipherInputStream class, 377
circle. See also Element class, Circle member

drawing, 990–993
serialization, 1086
transformation, 1063
XML, working with in

attribute-normal, 1161
color, 1170, 1173
element attribute, 1169–1170, 1184
positioning, 1160–1161
radius, 1160–1161, 1170, 1173

class. See also specific class
abstract, 287–288, 337
access attribute

choosing appropriate, 250, 279
inheritance, 272, 277, 278, 279
nested class, 256
private, 19, 247, 250, 273, 279
protected, 247, 279
public, 43, 204, 246–248, 250, 272
specifying, 248–250

action class, 906–908
adapter class, 879–881, 984
anonymous, 335
attribute, 15
collection class, 547, 601, 610–614

1416

casting (continued)

container, 203, 603, 776
data member

encapsulating, 20
enumeration class, adding to, 303–304
field, relation to, 200
fixing value, 317–318
hiding, 273
inheritance, 272–273, 274
initializing, 211–212
method, accessing in, 209–210
referencing, 203
static, 25, 209–210, 242–243
transience, 532–533

database resultset, encapsulating in, 1317–1318
defining, 15, 204–205, 906–908
derivation

base class, 269, 271–272, 276–279
constructor, 274, 275–276
creating derived class, 270–271, 275
inheritance, 21, 271
subclass, direct, 269–270
superclass, 21, 269–270, 276, 288, 588

described, 13, 200
enumeration as, 302
exception class, defining, 362–363, 364–368
field, 15, 200–201
final, declaring as, 317–318
hiding implementation using encapsulation, 20
hierarchy, 307
importing, 23, 59–60, 140–141, 241
inheritance

access attribute, 272, 277, 278, 279
data member, 272–273, 274
derived class, 21, 271

initialization block, 212–215
instance, 13, 200, 557–559, 587
JFC, 768
keyword, 204
library, 7–8, 22–24
linked list class, defining, 314–316
method, 200, 202–203, 209
name

full, 236, 241
returning, 290, 537

nesting, 256, 257–259, 262–264, 334
object

class of object, determining, 289–291, 301–302,
537–538

creating object of class, 217–218

relation to, 13, 17, 200
package, adding to, 237, 251
referencing, 23, 236, 241
regular expression character class, 697–698
serialization

creating custom class for, 541–542
determining class of deserialized object, 537–538
transience requirement, 532–533

shape class, creating custom, 985
standard, 22, 24, 244
stream input class, creating, 388–391
type, relation to, 200
typesafe, 548
variable, 111, 200
wrapper, 160–161, 555–556

Class class
forName method, 290, 587, 1296, 1298
generic class, as, 291, 587–588
getInterfaces method, 588
getName method, 290, 537, 558
getSuperclass method, 588
isInterface method, 588
JVM, use by, 290
newInstance method, 587, 588
toString method, 588

.class files, 9, 240
ClassCastException class
add method, thrown by, 609
exception condition represented, 342
set method, thrown by, 610
setValue method, thrown by, 647
sort method, thrown by, 663

ClassNotFoundException class, 534, 587, 1296,
1298, 1350

CLASSPATH variable, 7, 9, 238, 239, 251
clear method
Buffer class, 451, 466
GregorianCalendar class, 686
List interface, 624

clearBatch method, 1304
clearChanged method, 672
clearProperty method, 407
Clerk class, 743–744, 758–761, 763
CLI (Call Level Interface) specification, 1276
clone method
Object class, 289, 291
PageFormat class, 1141

Cloneable interface, 291–292, 325
CloneNotSupportedException class, 293

1417

CloneNotSupportedException class

In
de

x

close method
Channel interface, 431, 432
Closeable interface, 375, 380, 432
FileChannel class, 455
FileOutputStream class, 420
InputStream class, 376

Closeable interface, 375, 380, 431–432, 526
closeConnection method, 1311
ClosedByInterruptException class, 452, 454,

486, 503
ClosedChannelException class
force method, thrown by, 452
position method, thrown by, 487
read method, thrown by, 486
transferFrom method, thrown by, 503
transferTo method, thrown by, 503
write method, thrown by, 451, 454

closePath method, 962, 963, 966, 1087
collection. See also hashing

class, 547, 601, 610–614
described, 602–603
generic type implementation, 602
interface, 614–615
iteration, 606–608
linked list as collection type, 638
looping, collection-based, 113–114, 118–119, 143,

183, 565–567
map

abstract, 612, 613
capacity, 643–644
described, 605
dictionary, as, 605
File object hashcode value, returning, 408
file, storing in, 653–657
generating hashcode, 605, 606
key, 605, 606, 641–647
null object, storing in, 611
removing object, 645–646
storing object, 606

multithreading support, 612
priority queue, 605, 611
removing object, 608
returning object, 608
sequence, 604–605
set, 603, 610
sorting, 615, 630–631, 654–655
stack, 600, 605, 632–638, 658

CollectionForLoop class, 118
Collections class
sort method, 630, 631, 654–655
synchronizedList method, 762

colon (:)
conditional operator element, 100
switch statement element, 102
XML namespace separator, 1178

color
alpha compositing value, 790
applet, 888–889
background, 779, 788, 791, 792, 999
brightening, 790
button, 889, 891
chooser dialog, 1074–1076, 1077
comparing, 790, 899
component, 779, 788–789
cursor, 792
custom, 1074–1076, 1077
darkening, 790
foreground, 779, 789
gradient, 937, 968–972
intensity, 790
line, 937, 1187
menu, 850–851, 853, 897, 899–902, 908
paint, 937, 946, 1015
pane, 999, 1000
pattern, 937
returning, 788, 789, 974
RGB value, 789, 790, 891
status bar, 999
system color, 791
text, 791, 1014–1015, 1016
tooltip, 921
transparency, 790
window, 791, 792, 999, 1000
XML, working with in, 1170, 1173, 1184–1185,

1187–1188
XOR mode, 980–981

Color class
brighter method, 790
darker method, 790
equals method, 790, 899
getBlue method, 790
getGreen method, 790
getRed method, 790
getRGB method, 790
Paint interface implementation, 937

ColorAction class, 908, 917, 921, 988, 1001
ColorListener class, 900–901, 902
comma (,) declaration list separator, 35
command line

application, executing from, 9–10
file content, outputting to, 524
stream, writing to, 373, 392

1418

close method

Comment

interface, 1227
node, 1244

commentChar method, 387
commenting code

documentation comment, 82–83
lines, spanning multiple, 82
regular expression, 692
syntax, 15, 35, 81–82
tokenizing comment, 385, 387, 388
XML, 1157–1158, 1225, 1244

compact method, 500
Comparable interface
BinaryTree class implementation, 571, 578,

579–580, 581
BookEntry class implementation, 654–655
Card class implementation, 634–635
compareTo method, 571, 630, 636, 648, 655
Person class implementation, 579, 630

Comparator interface, 611, 662–666
compare method, 663
ComparePersons class, 664, 665
compareTo method
Calendar class, 689
Comparable interface, 571, 630, 636, 648, 655
Date class, 679
Enum class, 303
Person class, 664, 666
String class, 167–169

comparison
array, 661
color, 790, 899
date, 679, 688–689, 690
enumeration value, 94–95, 303
file equality, 408
point, 785, 941
rectangle, 787
relational operator, 86–87
text, 92–94, 161–163, 167–168
variable, storing comparison result in, 86

compilation
CLASSPATH variable, overriding, 9
error source checklist, 26
javac compiler, 8, 26
output display, 41–42
package, 238
regular expression, 691, 692, 693, 718

compile method, 691, 692, 693
complement

binary value complement form, 32
bitwise operator, 64, 67

component
border, 798, 811–813, 825
color, 779, 788–789
container

adding component to, 802–803
counting components in, 802
relation to, 776
returning component in, 802

coordinate system, 931–933
cursor, 779, 789, 791–792
drawing, 788, 933–938
enabling/disabling, 779, 780
font, 779, 789
glue, 820–823
name, 779
packing, 1006
parent, 779
positioning, 780–784
sizing, 780–783, 835–836
strut, 820–823
Swing component, 768–770, 779, 780, 797–801,

1146–1148
top, displaying on, 778
validation, 779, 780
visibility, 774–775, 779

Component class
attribute overview, 779
enableEvents method, 870, 873
getBackground method, 788
getBounds method, 780
getFont method, 789
getForeground method, 789
getGraphics method, 935, 981
getLocation method, 781
getName method, 780
getParent method, 779
getSize method, 781
hierarchy, 770–771, 775
isEnabled method, 780
isValid method, 780
isVisible method, 780
paint method, 788
setBackground method, 788, 988
setBounds method, 781
setCursor method, 789, 792
setEnabled method, 780
setFont method, 789
setForeground method, 788
setLocation method, 781
setMaximumSize method, 782
setMinimumSize method, 781

1419

Component class

In
de

x

Component class (continued)
setPreferredSize method, 782, 820, 890, 999
setSize method, 781
setVisible method, 780
Swing component, functionality inherited from, 779–780

ComponentEvent class, 869
CompoundBorder class, 825
concatenation

string, 45, 157–161, 228
transformation, 1057

Concurrent Programming in Java: Design Principles and
Patterns (Lea), 756

conditional operator, 95, 97, 100–101
ConditionalOp class, 101
Connection interface, 1296, 1304, 1339, 1359
constant

defining, 320–321
initializing, 39
variable, designating as, 204

constant method, 836–837
Constraints class, 834, 837–838, 841
constructor. See also specific class

calling, 225, 274, 276, 587
default, 215, 216–217, 527, 587
derivation, 274, 275–276
enumeration, 303, 304
generic, 595–598
multiple, using, 223–225
name, 19, 215
no-arg, 215
object, copying using, 226
parameterized, 595
T constructor, 548

container
class, 203, 603, 776
component

adding, 802–803
count, returning, 802
relation to, 776
returning component in container, 802

event handling, 868
layout manager, 801, 803–805
Window object as, 801

Container class
add method, 803
getComponent method, 802
getComponentAt method, 802
getComponentCount method, 802
getComponents method, 802
hierarchy, 770–771, 775, 776
setLayout method, 805, 806, 999

Swing component, functionality inherited from, 779
ContainerEvent class, 868
contains method
Marker class, 957–958, 959
Rectangle class, 788
Rectangle2D class, 944–945

containsKey method, 645
content pane, 777
ContentHandler interface, 1204, 1214
context menu, 799, 1044–1052
continue statement, 123–124
ConversionFactors

class, 321, 322
interface, 320

Conversions interface, 325–326
coordinate system

Cartesian, 773
component, 931–933
device-independent, 934
origin, 932
page, 1114–1115, 1116, 1118–1120
resolution, effect on, 933
returning coordinate value, 940
screen, 773
transformation

affine, 1053–1056
circle, 1063
concatenation, 1057
curve, 1063–1064
default, 1054, 1055
described, 1052
drawing, 937
Graphics2D object, modifying for, 1056–1057
identity transform, 1054
line, 1060–1062
moving element, 1065–1069
page coordinate system, 1114–1115, 1116,

1118–1120
rectangle, 1058, 1062–1063
returning current transform, 1054–1055
rotating, 1053–1054, 1055–1056, 1058,

1070–1074, 1077
scaling, 1053–1054, 1056, 1077, 1120–1122, 1150
shearing, 1053–1054, 1056, 1058
text, 1064–1065

translation, 1052, 1059–1065
user coordinate system, 933

Copies class, 1132–1133
copyValueOf method, 184
cos method, 54
cosh method, 55
countObservers method, 672

1420

Component class (continued)

country code, 680–681
CowboyHat class, 15–20
createAttribute method, 1244
createBackupFile method, 504
createBevelBorder method, 820
createBottomrightElement method, 1251
createButton method, 1026
createCDATASection method, 1244
createComment method, 1244
createCreature method, 281
createDocument method
DOMImplementation object, 1240, 1241–1242
SketchModel class, 1254

createDocumentFragment method, 1245
createDocumentType method, 1240, 1241–1242
createElement method
Document interface, 1243
MouseHandler class, 982–983, 987, 995
SketchView class, 982

createElementNS method, 1243
createEndpointElement method, 1250
createEntityReference method, 1245
createGlue method, 822
createGUI method
Lottery class, 887–888, 894, 896
MouseHandler class, 896
Sketcher class, 866, 879, 1082–1083

createHorizontalBox method, 818
createHorizontalStrut method, 821
createNewFile method, 418
createPointTypeElement method, 1250
createProcessingInstruction method, 1245
createSketchModel method, 1264, 1265
CreateSpheres class, 220, 221–222, 224
createStar method, 966
createStatement method, 1303, 1307, 1339
createTempFile method, 418
createTextNode method, 1244
createTitledBorder method, 888
createTransformedShape method, 1058, 1062
createVerticalBox method, 818
createVerticalStrut method, 821
cube root, 56
CubicCurve2D class, 951, 993, 996
currentSegment method, 1087
cursor

color, 792
component cursor, 779, 789, 791–792
database resultset cursor, 1305, 1307

element under
deleting, 1048, 1050–1051
displaying information about, 1077
highlighting, 1044–1045, 1046, 1047–1048
moving, 1048
rotating, 1048

position
returning, 959, 985, 1042, 1045–1046, 1066
saving, 977, 978, 1047
shape, testing if within, 788, 944, 959

resize cursor, 791
returning Cursor object, 792
standard types, 791
text cursor, 791

Cursor class, 791–792
curve. See also Element class, Curve member

Bézier curve, 950, 962
drawing, 950–954, 962, 993–995, 996
serialization, 1086–1089
transformation, 1063–1064
XML, working with in, 1174, 1189, 1251–1252,

1268–1269
CurveApplet class, 953, 955
CurvePane class, 954, 956
curveTo method, 962, 963, 1087

D
darker method, 790
Data Definition Language (DDL), 1286–1287,

1342–1345
Data Manipulation Language (DML), 1286, 1342–1345
data type. See type
database. See also JDBC (Java Database Connectivity);

ODBC (Open DataBase Connectivity); SQL (Struc-
tured Query Language)

attribute, 1278
browsing interface

layout, 1372
metadata display, 1375, 1381–1383, 1386–1390
scrolling, 1376, 1379–1380, 1381, 1384, 1386
split pane, using, 1375–1376, 1381
tree structure display, 1376–1381, 1389–1391

catalog, 1279–1280
column

aliasing, 1289
field, relation to, 1278
inserting value, 1288
name correlation, 1289
name, returning, 1388–1389

1421

database

In
de

x

database (continued)
naming, 1284, 1289
relational database, 1278–1279
resultset column information, returning, 1308–1309,

1311–1312, 1313, 1351–1352
type, returning, 1330

connection
closing, 1311, 1397
login timeout, 1300
null connection, 1311, 1383
opening, 1293–1294, 1295, 1296–1299, 1302,

1383–1386
data access, 1275
data dictionary, 1279
data source, 1275, 1276, 1311, 1349–1351
engine, 1276
entity, 1281–1282
error handling

chaining exceptions, 1365–1368
information about error, returning, 1361–1365, 1397
SQL state, 1361–1364
warning information, returning, 1368–1371

event handling, 1318, 1321, 1325–1326, 1382–1383
field, 1278, 1280, 1340–1341, 1375
logging, 1299–1300
menu, 1322–1324, 1325–1326
metadata

described, 1279
displaying in browsing interface, 1375, 1381–1383,

1386–1390
resultset, 1306, 1308–1310, 1386–1391

password entry, 1371–1372, 1374, 1397
procedure, 1280, 1359–1360
query

executing, 1304–1305, 1307, 1310–1311,
1342–1345

literal, 1339
placeholder, 1345–1346
resultset, returning, 1304–1305, 1311–1312
rows returned by, maximum, 1340
run time, building at, 1339
selection list of previously run queries, 1397
timeout, 1341–1342
wildcard, 1290, 1312, 1313

record, 1279, 1291, 1345, 1346
recordset, 1279, 1289
resultset

class, encapsulating in, 1317–1318
column information, returning, 1308–1309,

1311–1312, 1313, 1351–1352

cursor, 1305, 1307
data type, mapping to Java, 1330–1331
displaying, 1315–1316, 1318–1321
iteration, 1305, 1307–1308, 1311–1312
metadata, 1306, 1308–1310, 1386–1391
NULL SQL value in, 1352–1354
query, returning from, 1304–1305, 1311–1312
sorting, 1308
streaming, 1357–1359
string array, storing in, 1319

row
deleting, 1291
inserting, 1288, 1345
query, maximum rows returned by, 1340
record, relation to, 1279
relational database, 1278
sorting, 1308

state information, returning, 1361–1364
table

defining, 1285–1286
designing, 1281–1284
inserting data in, 1288
intersection table, 1285–1286
join, 1290
name, returning, 1387–1388
relation, 1278
system table, 1279
template, as, 1278

tuple, 1278
URL entry, 1375

DatabaseBrowse class
ActionListener interface implementation, 1382
actionPerformed method, 1382
coding, initial, 1372–1374
openConnection method, 1382, 1383–1384
setRootVisible method, 1384, 1385
setupTree method, 1385–1386, 1389
TreeExpansionListener interface implementation,

1391
TreeSelectionListener interface implementation,

1391
TreeWillExpandListener interface implementa-

tion, 1391
DatabaseMetaData interface, 1385, 1386–1387,

1388, 1389
DataInput interface, 526
DataInputStream class, 377
DataOutput interface, 526
DataTruncation class, 1368

1422

database (continued)

date
comparing dates, 679, 688–689, 690
file

modification date of file, returning, 412–414
writing date to, 482

formatting, 679–683
locale, 680, 682, 683
returning, 687–688, 690
setting, 686–687, 688
SQL date value, 1354–1355
string

obtaining date from string, 684
obtaining string from date, 482, 1354

Date class
after method, 679
before method, 679
compareTo method, 679
date method, 679
equals method, 679
setTime method, 686, 1355
toString method, 1354, 1355
valueOf method, 1354, 1355

date method, 679
DateFormat class

constants, 680
format method, 682, 683
getAvailableLocales method, 683
getDateInstance method, 681
getDateTimeInstance method, 681, 682, 683
getInstance method, 681
getTimeInstance method, 681, 683
parse method, 684

DateFormatSymbols object, 683, 690
DDL (Data Definition Language), 1286–1287,

1342–1345
dealHand method, 636, 638
decision making, 85–86
decode method, 343
decrement operator, 46–47, 50, 128
DefaultHandler class, 1202–1203, 1204,

1207, 1214
DefaultMutableTreeNode class, 1379, 1396
defaultPage method, 1125, 1135
defaultReadObject method, 541
DefaultTreeModel class, 1379
DefaultTreeNodeModel object, 1391
defaultWriteObject method, 542
delete method
File class, 418
StringBuffer class, 194

deleteCharAt method, 193

deleteObserver method, 672
deleteObservers method, 672
deleteOnExit method, 418–419
deriveFont method, 794
destroy method, 855
diacritic mark, 793
dialog. See also specific dialog

border, 1006
closing, 1003, 1004
color chooser dialog, 1074–1076, 1077
destroying, 1006
displaying, 1004, 1009–1010, 1093
input dialog, 1011–1013
modal/non-modal, 1003–1009
parent window dependency, 1002
positioning, 1006, 1008
sizing, 1005
SketchFrame class coding, 1005–1006, 1010
text, creating dialog for adding to image,

1013–1014, 1023
title bar, 1004, 1006, 1092

Dialog class, 775
Dice class, 667
dictionary

collection map, 605
database data dictionary, 1279

DigestInputStream class, 377
Dimension class, 780, 890
directory

content, listing, 411, 413, 414–417, 1092
creating, 418, 422
current, specifying, 1092
default, specifying, 1080–1081, 1091
deleting, 418
existence, testing, 409, 411, 413–414, 457
listing, 426
modification date, returning, 412–414
name, returning, 408, 413
package, 22, 237–238
parent, returning, 409–410, 414, 422
root, 412

dispose method
AboutDialog class, 1007
JDialog class, 1004
Sketcher class, 879
SketchFrame class, 872
Window class, 872

distance method
Point class, 228, 1071
Point2D class, 940, 991, 993

distanceSq method, 940

1423

distanceSq method

In
de

x

divide method, 353–357, 361–362, 364–366, 369
dividend, 45
divisor, 45
DML (Data Manipulation Language), 1286, 1342–1345
do while statement, 113–114, 120–121
DOCTYPE XML declaration, 1153, 1155, 1164,

1167, 1176
Document

class, 670, 671, 672
interface, 1226, 1243, 1244, 1245
node, 1228

Document Object Model. See DOM
Document Type Definition. See DTD
documentation comment, 82–83
DocumentBuilder class

DOM implementation, 1239
functionality provided by, 1196
getDOMImplementation method, 1239
newDocument method, 1239
parse method, 1226–1227
referencing DocumentBuilder object, 1225
setErrorHandler method, 1226

DocumentBuilderFactory class, 1196, 1225
DocumentFragment interface, 1228, 1245
DocumentType interface, 1227, 1228–1229, 1248
document/view architecture, 670
dollar sign ($) identifier prefix, 30
DOM (Document Object Model). See also XML (Extensi-

ble Markup Language)
comment, ignoring, 1225
default parser, setting as, 1225
DocumentBuilder object DOM implementation, 1239
entity reference, expanding, 1225
error handling, 1226, 1234, 1263–1264
JDK support, 1193
namespace awareness, 1225
node, 1227–1228, 1229–1230, 1234–1235
processing overview, 1195–1196
SAXException thrown by, 1224
secure processing, 1225
SketchModel class, creating DOM document object

in, 1254–1255
tree structure, 1227–1229
whitespace, ignoring, 1225, 1235–1236
W3C standard, 1198
Xerces, using as DOM parser, 1225

DOMErrorHandler class, 1263, 1264
DOMException class
appendChild method, thrown by, 1246
createAttribute method, thrown by, 1244

createDocument method, thrown by, 1241–1242
createDocumentType method, thrown by, 1240,

1241–1242
createElement method, thrown by, 1243
createElementNS method, thrown by, 1243
createEntityReference method, thrown by, 1245
insertBefore method, thrown by, 1246
parse method, thrown by, 1227
setAttribute method, thrown by, 1247
setAttributeNS method, thrown by, 1247

DOMImplementation object
createDocument method, 1240, 1241–1242
createDocumentType method, 1240, 1241–1242
hasFeature method, 1240
referencing, 1239

Donald Bren School of Information and Computer Sci-
ences web site, 680

doPreparedStatement method, 1314, 1315
doQuery method, 1366, 1368
doStatement method, 1314, 1315
doTransaction method, 747, 748, 753–754,

758–761, 764–765
Double class

hierarchy, 939
parseDouble method, 244, 1266
toString method, 228
wrapper class role, 157

double type
bytes occupied, 36
casting, 52, 53
declaring, 37
formatting double value, 400
initializing, 37
value range, 36
wrapper class, 161
XML, 1183

DoubleBuffer class, 434, 439, 440, 477
DoWhileLoop class, 120
draw method
Element class, 1014–1015, 1044–1045,

1060–1061, 1115
Graphics2D class, 938, 939, 942, 966, 976
Marker class, 955, 956

drawImage method, 938
drawing

antialiasing, 938
arc, 947–950
clip boundary, 938
component, 788, 933–938
control point, 951–952, 955–959

1424

divide method

curve, 950–954, 962, 993–995, 996
image, 938
line, 941–943, 945–947, 976–977, 986–988
mouse, using, 976–985
path

adding segment, 962, 994, 995
closing, 962, 963, 1087
complex, 960–966
current segment, returning information about, 1087
emptying, 963
iteration, 1086–1087, 1088

pattern, 937
pen, 937
point, 939–941
printing compared, 1108
region, dirty, 935
rubber-banding, 976–977
shape

circle, 990–993
closed, 960
creating custom shape class, 985
cursor, testing if within, 788, 944, 959
ellipse, 947–950, 996
filling, 938, 966–972, 996
overlapping, 938
point, testing if inside, 788, 944, 957–958, 960–961
rectangle, 935, 937, 941–943, 945–947, 988–990
SketchModel class, storing in, 974–975
star, 963–966
triangle, 962, 963

stroke, 937
text, 937, 938, 1013–1015, 1017
texture, 937
time limit for repaint, specifying, 935
transformation, 937
view, 935–937
winding rule, 960–961, 1087
XOR mode, 980–981, 995

drawString method
GradientApplet class, 971
Graphics2D class, 937, 938, 1064–1065

draw3DRect method, 937
DreadfulProblemException class, 363–364
drinkPotion method, 674, 675
DriverManager class

connection, role in establishing, 1295, 1296, 1302
getConnection method, 1297, 1298–1299,

1301–1302, 1313, 1314
getDriver method, 1302
getLoginTimeout method, 1300

println method, 1300
setLoginTimeout method, 1300
setLogWriter method, 1299

DTD (Document Type Definition). See also XML (Exten-
sible Markup Language)

ATTLIST declaration within, 1169
attribute, declaring within, 1169–1171
declaring, 1164–1165
defining, 1165
element, defining in, 1166–1169
entity, declaring within, 1158, 1171, 1172
event handling, 1204
external, 1164, 1200
namespace considerations, 1179
parsing document with, 1211–1212
path, 1211
public ID, 1164, 1165
referencing, 1164
string, returning as, 1229
subset, internal/external, 1164
system ID, 1164
URI, 1165
URN, 1164
validating XML against, 1154–1155

DTDHandler interface, 1204
duplicate method, 442–443

E
Element class
Circle member

coding, initial, 991–992
hierarchy, 973
serialization, 1086
translating, 1063
XML, working with in, 1173, 1178, 1189, 1251, 1268

cursor, displaying information about Element object
under, 1077

Curve member
coding, initial, 994
hierarchy, 973
serialization, 1086–1089
transformation, 1063–1064
XML, working with in, 1174, 1189, 1251–1252,

1268–1269
draw method, 1014–1015, 1044–1045,

1060–1061, 1115
getBounds method, 973, 974, 975, 986, 1062
getColor method, 973, 974
getElementsByTagName method, 1267

1425

Element class

In
de

x

Element class (continued)
getElementsByTagNameNS method, 1267
getShape method, 966, 973
Iterable interface implementation, 974
Line member

constructor, 986
hierarchy, 973
serialization, 1084–1085
transformation, 1060–1062
XML, working with in, 1173, 1187–1188,

1249–1250, 1267
modify method, 982, 1062, 1063, 1064
moving Element object, 1065–1069
readObject method, 1084–1085, 1089
Rectangle member

coding, initial, 989
hierarchy, 973
serialization, 1085–1086
transformation, 1058, 1062–1063
XML, working with in, 1173, 1188, 1250–1251,

1267–1268
rotating Element object, 1053–1054, 1055–1056,

1058, 1070–1074, 1077
Serializable interface implementation, 1083–1084
setElementColor method, 1267
setElementPosition method, 1267
Text member

coding, initial, 1014–1016
constructor, 1016–1017
serialization, 1089
transformation, 1064–1065
XML, working with in, 1174, 1189–1190,

1252–1253, 1269–1270
writeObject method, 1084, 1251

Element interface, 1227, 1246
Element node, 1228, 1248–1253
elementAt method, 1321
ellipse, drawing, 947–950, 996
Ellipse2D class, 947–949, 990, 1086
ellipsis (...) method argument list prefix, 296
empty method, 633
enableassertions keyword, 10
enableEvents method
Component class, 870, 873
SketchFrame class, 870, 871, 878

end method, 694, 696
endDocument method, 1204
endElement method, 1205, 1212
end-of-file (EOF), 487, 488–489, 496, 499, 502
endPrefixMapping method, 1205, 1213

endsWith method, 167, 415
ensureCapacity method
StringBuffer class, 188
Vector class, 619

entity. See database, entity; XML (Extensible Markup
Language), entity

Entity

interface, 1228
node, 1228

EntityReference interface, 1228, 1245
EntityResolver interface, 1204
entrySet method, 646, 647
Enum class
compareTo method, 303
equals method, 94, 303
toString method, 302

enumeration
class, as, 302
comparing value, 94–95, 303
constructor, 303, 304
data member, adding to enumeration class, 303–304
inheritance, 303
iteration, 118–119, 606
set, storing enumeration value in, 610
switch statement, using in, 103, 106, 107–108

Enumeration interface, 606–607
enumerator, 606
EnumMap class, 613
EnumSet class, 610, 613
EOF (end-of-file), 487, 488–489, 496, 499, 502
eolIsSignificant method, 387
equals method
Arrays class, 661
Calendar class, 689
Color class, 790, 899
Date class, 679
Enum class, 94, 303
File class, 408
Object class, 288, 642
Person class, 648
Point class, 785
Point2D class, 941
Rectangle class, 787
String class, 163, 165–166

equals sign (=)
array initialization character, 139
assignment operator, 34, 38, 81

equals signs (==) relational operator, 86–87, 161, 167
equalsIgnoreCase method, 163
Error class, 340–341

1426

Element class (continued)

error handling. See also exception
arithmetic error, 49, 51
data error, 340
database error

chaining exceptions, 1365–1368
information about error, returning, 1361–1365, 1397
SQL state, 1361–1364
warning information, returning, 1368–1371

DOM, 1226, 1234, 1263–1264
exception, signaled by, 341–342
SAX, 1206, 1214–1215
stream, error output, 384

error method, 1214, 1215
ErrorHandler interface, 1204, 1214, 1226,

1234, 1263
escape

Java, 60–61, 153, 402, 453, 699–700
SQL, 1359

EssentialJDBC class, 1310–1311
EtchedBorder class, 825
event handling. See also specific listener

adapter class, using, 879–881, 984
ancestor event, 883
applet, 884–893
button

listener, 864, 886, 890, 1026–1027, 1036–1037
semantic event, 883
source object, referencing, 893

container event, 868
database, 1318, 1321, 1325–1326, 1382–1383
delegation event model, 865
DTD event, 1204
enabling, 870, 871
focus

gain, 877
listener, 877–878
loss, 877
low-level event, 868, 869, 873, 877
window focus, 871–872, 873, 875, 1104

ID of event, returning, 871–872
key

listener, 876–877
low-level event, 868, 874
press, 876, 877, 959
release, 877

listener
button, 864, 886, 890, 1026–1027, 1036–1037
change listener, 904, 1034
focus, 877–878

interface, 864–865, 874–877
key, 876–877
list selection, 1029
low-level event, 874–881
menu, 896–899
mouse, 876, 895–896, 924–925, 978–979
object, 864
registering, 865
semantic event, 883, 896–902
tree, 1391
window, 875, 1105

mask, 869–870, 873
menu

context menu, 1044, 1049–1050
element type menu, 899–900
File menu, 1089–1090
listener, 896–899
pop-up menu, 1040, 1041–1043
semantic event, 883
shortcut key input, 852

mouse
area entry/exit, 876, 896
drag, 868, 877, 959, 978, 980–983
drawing operation, 977–980
image text, for adding, 1015, 1019–1022
listener, 876, 895–896, 924–925, 978–979
low-level event, 868, 869, 874, 876, 895–896
movement, 876, 877
press, 876, 877, 959, 979–980, 1019–1020
release, 876, 877, 959, 979, 983–985
semantic event, 867, 895–896
state, storing, 980
wheel rotation, 868, 874, 876, 877, 979

paint event, 868
printing, 1107, 1111, 1125–1126, 1129, 1146
program, event-driven, 862–863
SAX, 1193–1194, 1202–1203, 1205, 1207–1211,

1214–1215
semantic event

applet, 884–893
button, 883
described, 867
listener, 883, 896–902
menu, 883
mouse, 867, 895–896

source object, 863–864, 868, 893
speed, 865
target, 864
thread, event-dispatching, 865–866

1427

event handling

In
de

x

event handling (continued)
window

closing, 870–873, 875, 879, 906, 1104
focus, 871–872, 873, 875, 1104
icon, reducing to/restoring from, 868, 872, 875
listener, 875, 1105
low-level event, 868, 870–873
opening, 871, 875, 1104
state change, 872, 875

XML parsing, 1193–1194, 1202–1203, 1205,
1207–1211, 1214–1215

EventListener interface, 874
EventObject class, 868, 882
exception. See also specific exception
catch block

bonding with try block, 347–349
looping, 347–349, 367
multiple, using, 349–350
placement in relation to try block, 345
syntax, 345–346
Throwable type requirement, 346

class, defining, 362–363, 364–368
documentation comment, thrown by, 83
error signaled by, 341–342
execution

sequence, 347, 352–355, 357
stack, 359–360, 362, 364, 366, 369
tracing, 347, 355, 360, 362–364

finally block, 345, 350–351, 352, 355–358, 369
JVM exception, 340, 341
message, generating, 359, 360, 362, 363–364, 369
method exception, 340, 344–345, 351–352, 355–358
standard, 362
throwing, 340, 359, 363–364
try block

adding to existing code, 347
bonding with catch block, 347–349
break statement, 351
looping, 347–349, 367
nesting, 358
placement in relation to catch block, 345
return statement, 351, 355
syntax, 345
variable, declaring within, 347

Exception class, 340–341
ExceptionInitializerError class, 587
exclamation mark, equals sign (!=) relational operator, 86
exclamation mark (!) logical NOT operator, 95, 98
executeBatch method, 1304
executeQuery method, 1307, 1315, 1339,

1342–1343, 1345

executeUpdate method, 1343–1344, 1345
executing

applet, 10
Java application, 9–10
method, 18

execution order, 43
exists method, 409, 457
exit method, 364, 873
exp method, 57
expm1 method, 57
exponent, mathematical, 36–37, 57, 233–236, 711
exporting XML, 1255–1260
expression, regular. See regular expression
extends keyword, 271, 562
Extensible Markup Language. See XML
Extensible Stylesheet Language Transformations

(XSLT), 1193
ExtensionFilter class, 1097–1098
Externalizable interface, 545
ExtractSubstrings class, 177–178

F
Factorial class, 121
Factorial2 class, 123–124
fatalError method, 1214, 1215
file. See also serialization

access mode
direct, 428
random, 428, 429, 507–513, 546
read-only, 417, 485, 512
read-write, 512
sequential, 428
testing, 409

change, testing for, 1082, 1095, 1104–1106
closing, 265, 420, 455
command line, outputting file content to, 524
content, listing, 524
copying, 502–503
creating, 402–403, 418, 1103
date

modification date of file, returning, 412–414
writing date to file, 482

deleting, 418–419
EOF, 487, 488–489, 496, 499, 502
equality with another file, testing, 408
existence, testing, 409, 410–411, 413–414, 421–422
filter, 414–417, 1097–1099
hashcode value for File object, returning, 408
hidden, testing for, 409
length, returning, 412, 458

1428

event handling (continued)

listing files, 411, 413, 414–417
locking, 517–523
map, storing in, 653–657
memory-mapping, 513–517
metadata, 512–513
name

changing, 402, 417, 426, 504
default, specifying, 1080
returning, 408, 413

opening, 419–420, 1091, 1100–1103
path

absolute, 404–405, 408, 409, 422
DTD, of, 1211
portable, 404
relative, 22, 404–405
returning, 408, 409
separator, 404, 411

pointer, 513
position, 453–455, 486–487, 511
reading

binary file, 377, 491–495
input stream, creating, 484–485
mixed data, 496–499
number data, 491–495
text file, 488–491

records in, counting, 454
saving

change, testing for before, 1082, 1095
File menu save as dialog, creating, 1099–1100
File menu save dialog, creating, 1091–1097
window close, prompting for file save at, 1104–1106

string representation, returning, 408
temporary file, 418, 419
writing to

appending, 419–420, 421, 453
buffering, 432–433, 449–451
creating FileOutputStream object, 420
gathering-write operation, 477–481
guaranteeing write operation, 453–454
mixed data, 471–472
number data, 467–471
overwriting file, avoiding, 423–424
string, 455–462
XML, 1257–1260

File class
canRead method, 409
canWrite method, 409
constructor, 402, 403
createNewFile method, 418
createTempFile method, 418
creating File object, 402–403
delete method, 418

deleteOnExit method, 418–419
equals method, 408
exists method, 409
getAbsoluteFile method, 409, 422
getAbsolutePath method, 406, 409
getName method, 408, 413
getParent method, 408, 409–410, 414, 422
getParentFile method, 408
getPath method, 408
hashCode method, 408
immutability, 402
isAbsolute method, 408
isDirectory method, 409, 411, 413–414, 422, 457
isFile method, 409
isHidden method, 409
lastModified method, 412
length method, 412
list method, 411, 414–415
listFiles method, 411, 413, 414–415, 1097
listRoots method, 412, 426
mkdir method, 418, 457
mkdirs method, 418, 422
pathname encapsulation, 401, 402
rename method, 402
renameTo method, 417
setReadOnly method, 417
toString method, 408

File menu
chooser dialog, 1090–1091, 1092
event handling, 1089–1090
exit option, 924, 1105
new dialog, 1103
open dialog, 1100–1103
print dialog, 1110–1111, 1115–1116, 1125–1126,

1130–1132
save as dialog, 1099–1100
save dialog, 1091–1097

FileAction class
actionPerformed method

coding, initial, 907
file creation operation, 1103
file open operation, 1101–1102, 1103
file save operation, 1096, 1099–1100, 1105
print operation, 1111–1112, 1116, 1124,

1125–1126, 1128–1129
constructor, 907, 917
showDialog method, 1100
SketchFrame class FileAction object

implementation, 907–908
toolbar coding, 916
tooltip coding, 920

1429

FileAction class

In
de

x

FileChannel class
close method, 455
lock method, 518
map method, 514, 516–517
position method, 454, 487
read method, 430, 485–486, 507–508
referencing FileChannel object, 433
size method, 458
write method, 453–454, 507–508

FileCopy class, 504–505
FileDescriptor object, 420, 424–425, 485
FileFilter

class, 1097
interface, 414–415

FileInputStream class
available method, 1349, 1350
creating FileInputStream object, 483–485
FileNotFoundException thrown by, 484, 485
getChannel method, 485
getFD method, 424–425, 485
hierarchy, 377
SecurityException thrown by, 485
transferTo method, 502, 503, 507

FileListFilter class, 415, 417
FileLock class, 518
FilenameFilter interface, 414–417
FileNotFoundException class
FileInputStream constructor, thrown by, 484, 485
FileOutputStream constructor, thrown by, 419–420,

422, 457, 527
RandomAccessFile constructor, thrown by, 513, 516
Scanner constructor, thrown by, 714

FileOutputStream class
close method, 420
constructor, 419–420, 453, 517
creating FileOutputStream object, 420
FileNotFoundException thrown by, 419–420,

422, 457
getChannel method, 433, 457
hierarchy, 379
ObjectOutputStream constructor,

referencing by, 526
SecurityException thrown by, 420
transferFrom method, 503, 507

FileReader class, 714
fill method
ArrayIndexOutOfBoundsException thrown by, 661
Arrays class, 140–141, 151, 152, 659–661, 696
Graphics2D class, 938, 966–967
IllegalArgumentException thrown by, 661

fillInStackTrace method, 360

FilterInputStream class, 377
FilterOutputStream class, 379
FilterReader class, 381
FilterWriter class, 383
final keyword, 37–38, 209, 317–318
finalize method, 265–266, 289
finally block, 345, 350–351, 352, 355–358, 369
find method, 691, 694, 696, 705–707
FindCharacters class, 174–175
FindingIntegers class, 703
FindPrimes class, 127–128
FindPrimes2 class, 129
fireTableChanged method, 1321
first method, 815
firstElement method, 621
flip method, 451, 489
Float class, 161, 939
float type

array, 146, 149
bytes occupied, 36
casting, 52–53
declaring, 37
value range, 36
wrapper class, 161
XML, 1183

FloatBuffer class, 434, 440
floating-point types, 36–37, 49–51, 56, 117–118,

1406–1407
floor method, 55, 58
focus event handling. See event handling, focus
FocusAdapter class, 880
FocusEvent class, 869, 877
focusGained method, 877
FocusListener interface, 877
focusLost method, 877
font. See also text

ascent, 796
baseline, 796
bold, 793, 794, 1035–1036, 1253
component font, 779, 789
current, returning, 789, 1025
default, 937
descent, 796
family, 794–795
glyph, 792, 937
italic, 793, 794, 1035–1036, 1253
leading, 796
listing all available, 794–795, 1028–1031
metrics, 795–796
name, logical, 793
operating system support, 793

1430

FileChannel class

reference point, 796
selection dialog

button panel, 1026–1027, 1035–1037
data pane, 1027–1028
displaying sample text, 1031
listing font available, 1028–1031
menu item, associating with, 1037–1038
pane, split, 1024, 1031–1032
spinner, 1033–1035

size, 794, 796–797, 1033, 1114
SketcherConstants class font coding, 1018
spacing, 796
style, returning, 793
width, advance, 796–797
XML, defining in, 1174, 1189–1190, 1252–1253

Font class
creating Font object, 793
deriveFont method, 794
getSize method, 793
getStringBounds method, 1020, 1139
getStyle method, 793
isBold method, 793
isItalic method, 793
isPlain method, 793

FontDialog class
ActionListener interface implementation,

1026–1027
actionPerformed method, 1026–1027
addListSelectionListener method, 1029
constructor, 1024, 1025
createButton method, 1026
getCurrentFont method, 1025
getSelectedValue method, 1029, 1030
setSelectedValue method, 1029
setSelectionMode method, 1029
setValueIsAdjusting method, 1029
setVisible method, 1036, 1038

FontMetrics class, 795–796
FontRenderContext class, 1020, 1021, 1139
for statement, 112–113, 114–119
force method, 452, 515
ForLoop class, 114–115
format method
DateFormat class, 682, 683
Formatter class, 398, 465

FormattedInput class, 391–392, 652, 689
Formatter class

buffer, loading using Formatter object, 462–466
double value, formatting using, 400
format method, 398, 465

forName method, 290, 587, 1296, 1298

Frame class, 770, 775
fromResults method, 1339
Fruit class, 40, 43, 47
FruitWait class, 41

G
garbage collection, 220, 265
GatheringByteChannel interface, 431–432, 433
gathering-write operation, 477–481
Gaussian distribution, 675, 676
gc method, 220, 265
GeneralPath class
closePath method, 962, 963, 966, 1087
constructor, 961
curveTo method, 962, 963, 1087
getCurrentPoint method, 962
getPathIterator method, 1086
lineTo method, 962, 995, 1087–1088, 1089
moveTo method, 962, 966, 995, 1087–1088
quadTo method, 962, 963, 1087
reset method, 963
segment handling, 994, 995
Shape interface implementation, 963
winding rule value, 960–961

generic type. See type, generic
get method
ArrayIndexOutOfBoundsException

thrown by, 621
BufferUnderflowException thrown by, 494
GregorianCalendar class, 687, 690
HashMap class, 645
LinkedList class, 638
LongBuffer class, 492–493
Vector class, 618, 621

getAbsoluteFile method, 409, 422
getAbsolutePath method, 406, 409
getAccount method, 753
getAllColumns method, 1312, 1313
getAllFonts method, 794
getAllowsChildren method, 1378
getAngle method, 1072
getAscent method, 796
getAsciiStream method, 1305, 1352, 1357
getAttribute method, 1266
getAvailableFontFamilyNames method, 795, 1029
getAvailableLocales method, 683
getBackground method, 788
getBigDecimal method, 1352, 1355
getBinaryStream method, 1305, 1352, 1357
getBlue method, 790

1431

getBlue method

In
de

x

getBoolean method, 1305, 1352
getBounds method
component class, 780
Element class, 973, 974, 975, 986, 1062

getBounds2D method, 944
getButton method, 979, 980, 984
getByte method, 1305, 1352
getBytes method
ResultSet interface, 1305, 1352
String class, 183, 459

getCategory method, 1133
getCenter method, 955, 959
getCenterPoint method, 784
getChannel method
FileInputStream class, 485
FileOutputStream class, 433, 457

getChar method, 489, 499
getCharacterStream method, 1357
getChars method
String class, 182–183
StringBuffer class, 193

getChildAt method, 1377
getChildCount method, 1377
getChildNodes method, 1229
getClass method
Object class, 288, 289–291, 302, 558
Person class, 537

getClickCount method, 1022
getColor method, 973, 974
getColumnClass method, 1318
getColumnLabel method, 1309, 1320
getColumnName method, 1308, 1318
getColumnNumber method, 1214
getColumns method, 1388–1389, 1390
getColumnType method, 1308, 1330
getColumnTypeName method, 1309
getComponent method, 802
getComponentAt method, 802
getComponentCount method, 802
getComponents method, 802
getConnection method, 1297, 1298–1299,

1301–1302, 1313, 1314
getConstraint method, 835
getContentPane method, 777, 778, 988
getCount method, 209, 222
getCrossPlatformLookAndFeelClassName

method, 772
getCurrentFont method
FontDialog class, 1025
SketchFrame class, 1018

getCurrentPoint method, 962

getDate method, 1305, 1352
getDateInstance method, 681
getDateTimeInstance method, 681, 682, 683
getDefault method, 685
getDefaultToolkit method, 795
getDescent method, 796
getDescription method, 1097, 1099
getDevice method, 985
getDocType method, 1229, 1234
getDoctypeString method, 1259–1260
getDocumentElement method, 1228–1229
getDocumentNode method, 1259, 1260
getDOMImplementation method, 1239
getDouble method, 497, 1305, 1352
getDriver method, 1302
getElementColor method, 981
getElementsByTagName method, 1267
getElementsByTagNameNS method, 1267
getElementType method, 983
getEntry method, 653
getErrorCode method, 1364
getFD method
FileInputStream class, 424–425, 485
RandomAccessFile class, 485

getFilePointer method, 513
getFileSelectionMode method, 1092
getFirst method
LinkedList class, 316, 638
PolyLine class, 317

getFirstChild method, 1265
getFirstIndex method, 1030
getFloat method, 1305, 1352
getFont method, 789
getFontMetrics method, 795
getFontRenderContext method, 1139
getForeground method, 789
getGlassPane method, 778
getGraphics method
Component class, 935, 981
SketchView class, 1020

getGreen method, 790
getHeight method
FontMetrics class, 796
Icon interface, 914
Rectangle2D class, 943
SketchFrame class, 1148

getHgap method
BorderLayout layout manager, 813
FlowLayout layout manager, 808

getID method, 872

1432

getBoolean method

getImageableHeight method, 1114,
1120–1121, 1136

getImageableWidth method, 1114, 1120–1121, 1136
getImageableX method, 1114, 1136
getImageableY method, 1114
getIndex method, 1378
getInstance method, 681
getInt method, 1305, 1352
getInterfaces method, 588
getISOCountries method, 680
getKey method, 647
getKeyStroke method, 852, 937
getLast method, 638
getLastIndex method, 1030
getLastPathComponent method, 1391
getLayeredPane method, 778
getLeading method, 796
getLength method
Attributes interface, 1206
NamedNodeMap interface, 1236
NodeList interface, 1229

getLineNumber method, 1214
getLocalGraphicsEnvironment method, 783
getLocalName method, 1206
getLocation method
Component class, 781
Point class, 785
PointerInfo class, 985
Rectangle class, 786

getLoginTimeout method, 1300
getLong method, 499, 1305, 1352
getMaxAdvance method, 797
getMaxAscent method, 796
getMaxDescent method, 796
getMaxFieldSize method, 1341
getMaximumSize method, 836
getMaxRows method, 1340
getMaxStatementLength method, 1387
getMessage method
SAXException class, 1215
Throwable class, 360, 362, 364

getMetaData method, 1308, 1385
getMinimumSize method, 836
getModel method, 976
getModelExtent method, 1117
getMonths method, 690
getMoreResults method, 1304
getName method
Attr class, 1239
Class class, 290, 537, 558
Component class, 780

File class, 408, 413
Thread class, 736

getNamedItem method, 1236
getNamedItemNS method, 1236
getNext method
LinkedList class, 316
ListPoint class, 311
PolyLine class, 317

getNextException method, 1366
getNodeName method, 1234
getNodeType method, 1230, 1234
getNumberOfButtons method, 985
getNumberOfPages method
Book class, 1145
Pageable interface, 1109, 1134, 1139
SketchView class, 1139, 1143

getNumbers method, 887, 888, 892
getObject method, 1305, 1352
getOwnerElement method, 1239
getPageFormat method
Book class, 1145
Pageable interface, 1109, 1134, 1135, 1140

getPaper method, 1137
getParent method
Component class, 779
File class, 408, 409–410, 414, 422
TreeNode interface, 1377

getParentFile method, 408
getParentPath method, 1391–1392
getPath method
File class, 408
TreePath object, 1392

getPathComponent method, 1392, 1396
getPathCount method, 1392, 1395, 1396
getPathIterator method, 1086
getPaths method, 1392
getPoint method, 979, 1066
getPointerInfo method, 985
getPrecision method, 1309
getPredefinedCursor method, 792
getPreferredSize method, 836
getPrimaryKeys method, 1387
getPrintable method
Book class, 1145
IndexOutOfBoundsException thrown by, 1109
Pageable interface, 1109, 1134, 1135
SketchView class, 1139

getPrinterJob method, 1109
getPrintService method, 1109–1110
getPriority method, 762
getProperties method, 406–407, 1296

1433

getProperties method

In
de

x

getProperty method
System class, 406
XMLReader interface, 1202

getPublicID method, 1214
getQName method, 1206
getQueryTimeout method, 1341
getRed method, 790
getResultsByColumnName method,

1311–1312, 1313
getResultsByColumnPosition method,

1312, 1313
getResultSet method, 1304, 1359
getRGB method, 790
getRootPane method, 778
getRotateInstance method, 1058
getRowCount method, 1318
getScale method, 1309
getScaleInstance method, 1058
getScreenResolution method, 795
getScreenSize method, 783, 795
getSelectedIndices method, 1030
getSelectedValue method, 1029, 1030
getSelectionPaths method, 1392
getShape method
Element class, 966, 973
SketchView class, 976

getShearInstance method, 1058
getShort method, 1305, 1352
getSize method
Component class, 781
Font class, 793
Rectangle class, 786

getSketchName method, 1138
getSource method
ActionEvent class, 1027
EventObject class, 868
HandleControlButton class, 894

getSQLState method, 1361
getString method, 1305, 1307, 1319, 1352
getStringBounds method, 1020, 1139
getStyle method, 793
getSuperclass method, 588
getSystemID method, 1214
getSystemLookAndFeel method, 772
getTableName method, 1309
getTables method, 1387, 1388, 1390
getText method, 847
getTime method, 679, 684, 1305, 1352
getTimeInstance method, 681, 683
getTimestamp method, 1305, 1352

getTimeZone method, 685
getTitle method, 1004
getToolkit method, 782–783
getTransform method, 1054–1055
getTranslateInstance method, 1058
getType method, 1206
getTypesInfo method, 1387
getUnicodeStream method, 1352
getURI method, 1206
getUserObject method, 1396
getValue method
Action interface, 904
ActionEvent class, 1090
Attributes interface, 1206
Map interface, 647

getValueAt method, 1318
getValueIsAdjusting method, 1030
getVgap method
FlowLayout layout manager, 808
getVgap class, 813

getWarnings method, 1368
getWeekdays method, 690
getWholeText method, 1235
getWidth method
Icon interface, 914
Rectangle2D class, 943
SketchFrame class, 1148

getWidths method, 796
getWindingRule method, 1087
getX method
MouseEvent class, 959
Point class, 252
Point2D class, 940, 947
Rectangle2D class, 943

getXMLReader method, 1201
getY method
MouseEvent class, 959
Point class, 252
Point2D class, 940, 947
Rectangle2D class, 943

glassPane object, 778
glue, 820–823
glyph, 792, 937
GradientApplet class, 969–971
GradientPaint class, 937, 968–971
graphical user interface. See GUI
graphics context, 934–935. See also

Graphics2D class
GraphicsConfiguration class, 934
GraphicsDevice class, 934, 985

1434

getProperty method

GraphicsEnvironment class
described, 934
getAllFonts method, 794
getAvailableFontFamilyNames method,

795, 1029
getCenterPoint method, 784
getLocalGraphicsEnvironment method, 783

Graphics2D class
casting, 936
clip attribute, 938
composite attribute, 938
creating Graphics2D object, 934
draw method, 938, 939, 942, 966, 976
drawImage method, 938
drawString method, 937, 938, 1064–1065
draw3DRect method, 937
fill method, 938, 966–967
font attribute, 937
paint attribute, 937
scale method, 1122
setPaint method, 937, 946, 971
stroke attribute, 852, 937
transformation, modifying for, 1056–1057
translate method, 1115, 1119

greater than sign (>)
relational operator, 86
XML tag suffix, 1156

greater than signs, equals sign (>>=)
op= operator, 54
relational operator, 84

greater than signs, equals sign (>>=) op= operator, 54
greater than signs, equals sign (>>>=) op= operator, 54
greater than signs (>>) shift operator, 70
greater than signs (>>>) shift operator, 70
GregorianCalendar class
add method, 688
clear method, 686
constructor, 684
get method, 687, 690
set method, 686

GridBagConstraints object, 826–830
group method, 708
groupCount method, 708, 710
grow method, 787
GuaranteeAFile class, 421–422
GUI (graphical user interface). See also specific GUI

element
deadlock, 865–867, 888
event-dispatching thread, creating on, 866
look-and-feel, 768, 769, 770, 772, 797
Observable class use in GUI programming, 670

H
Habibi, Merhan (Java Regular Expressions: Taming the

java.util.regex Engine), 720
Hand class, 635, 638
HandleControlButton class, 886, 890–891,

893–894
hasArray method, 445
hasAttributes method, 1236
hasChanged method, 672
hasFeature method, 1240
hashCode method
File class, 408
Object class, 541, 641, 642–643, 648, 657
String class, 642

hashing
collision, 641
File object hashcode value, returning, 408
file, storing map in, 653–657
generating hashcode, 605, 606, 642–643
key, 605, 606, 641–647
load factor, 644
offset calculation, 606
print job request, storing as hash map attribute, 1130
removing object, 645–646
returning object, 645
storing object, 644
synchronization, hash table, 611
weak, 612

HashMap class
constructor, 643
described, 602, 611
get method, 645
hierarchy, 613
Map interface implementation, 615
put method, 644, 645
putAll method, 644
remove method, 645–646

hashMap method, 643
HashPrintRequestAttributeSet class, 1130
HashSet class, 610, 613
Hashtable class, 611
hasNext method
Iterator interface, 566, 608
ListIterator interface, 609
Scanner class, 717–718, 719–720
Vector class, 618

hasNextDouble method, 718
hasNextInt method, 718
hasPrevious method, 609
hasRemaining method, 438, 489

1435

hasRemaining method

In
de

x

hasValue method, 892, 893
HeadlessException class, 1110
height method, 838
hexadecimal value

arithmetic, 1402–1404
binary value, converting to, 65–67
byte type, 70
integer literal representation, 33–34
short type, 70
string, converting to, 63
Unicode encoding, 60

highestOneBit method, 75
home directory, 406
Horrific class, 673–674
hyphens, greater than sign (- ->) XML comment

suffix, 1158
hypot method, 57

I
icon

button, 915–916
menu, 843, 914–919
window iconification, 868, 872, 875, 1104

Icon interface, 914
identifier, 30, 113
identity transform, 1054
IdentityHashMap class, 612, 613
IEEEremainder method, 56
if statement, 87–94
ignorableWhitespace method, 1205, 1212
IllegalAccessException class, 587
IllegalArgumentException class
clearProperty method, thrown by, 407
createTempFile method, thrown by, 418
exception condition represented, 342
fill method, thrown by, 661
limit method, thrown by, 437, 438
parse method, thrown by, 1227
position method, thrown by, 437, 487
RandomAccessFile constructor, thrown by, 513
read method, thrown by, 508
set method, thrown by, 610
setPriority method, thrown by, 761
sort method, thrown by, 662
transferFrom method, thrown by, 503
transferTo method, thrown by, 503
write method, thrown by, 454, 508

IllegalFormatConversion class, 395
IllegalMonitorStateException class, 343, 756
IllegalOperationException class, 309, 609

IllegalStateException class
end method, thrown by, 694
exception condition represented, 343
nextBoolean method, thrown by, 715
nextByte method, thrown by, 715
nextDouble method, thrown by, 715
nextFloat method, thrown by, 715
nextLong method, thrown by, 715
nextShort method, thrown by, 715
remove method, thrown by, 566, 608, 609
set method, thrown by, 610
start method, thrown by, 694

IllegalThreadStateException class, 730
ImageIcon class, 914, 916
implements keyword, 323
ImportAction class, 1255
importing

class, 23, 59–60, 140–141, 241
constant, 322
XML, 1254–1255, 1257, 1263–1270, 1273

increment operator, 46–47, 50, 61, 112–113, 121
indenting code

Java, 88, 89
XML, 1162, 1234

indexOf method
String class, 172–176, 177–178
Vector class, 625–626

IndexOutOfBoundsException class
catching, 349, 353, 355
charAt method, thrown by, 170
divide method, thrown by, 353, 355, 357, 361–362
exception condition represented, 138, 342
getPrintable method, thrown by, 1109
ListIterator method, thrown by, 622
putDouble method, thrown by, 448
remove method, thrown by, 623
set method, thrown by, 638
setPrintService method, thrown by, 1110
subclasses, 343
wrap method, thrown by, 444
write method, thrown by, 478

InflaterInputStream class, 377
Info class, 334
inheritance

class
access attribute, 272, 277, 278, 279
data member, 272–273, 274
derived class, 21, 271

enumeration, 303
generic type, 598–599
interface, 326

1436

hasValue method

method, 273
multiple, 326

init method
JApplet class, 855
Lottery class, 888
Sketcher class, 857

initialization block, 212–215
InputEvent class, 852, 854, 869
InputMismatchException class, 715, 717
InputSource class, 1203
InputStream class
close method, 376
Closeable interface implementation, 375, 526
hierarchy, 377, 526
read method, 376
skip method, 376

InputStreamReader class, 381–382, 385
insert method
StringBuffer class, 192–193
TreeNode interface, 1378

insertBefore method, 1246
insertModel method, 1102, 1103
Inside type, 256–257
instance

class, 13, 200, 557–559, 587
variable, 14, 111, 201, 202
XML Schema instance document, 1192, 1215–1220

instanceof operator, 301–302, 537
InstantiationsException class, 587
int type

bytes occupied, 32
casting, 61
initializing, 37
value range, 32
wrapper class, 161

IntBuffer class, 434, 440
integer. See also number

argument value, returning integer closest to, 56, 58
calculation involving, 39–43, 45–49
factorial, 121–123
literal, 30, 34, 35
long type, using for, 49
regular expression, matching in, 702–703
remainder, 45–46
rounding value to nearest, 56, 59
shifting, 70–74
sorting using binary tree, 576–578
SQL big integer value, 1355–1357
types, 31–33
variable, 31–32, 34–36, 77–78

Integer class
bitCount method, 75, 76
highestOneBit method, 75
lowestOneBit method, 75
numberOfLeadingZeros method, 75
numberOfTrailingZeros method, 75
parseInt method, 244, 1266
reverse method, 75
rotateLeft method, 75, 76
rotateRight method, 75
toBinaryString method, 68, 76–77
toHexString method, 63

InteractiveSQL class, 1317, 1322–1324, 1325,
1326, 1328

interface. See also specific interface
access attribute, 319
array of interfaces, returning, 588
class, nesting in interface definition, 334
collection interface, 614–615
constant, defining in, 320–321
contract, 326
existence, testing, 588
extending, 325–326
functionality provided by, 318
generic type, 549, 565
inheritance, 326
listener interface, 864–865, 874–877
method

calling method defined in another interface, 333
defining, 323
type parameter, 333–334

partial implementation, 324–325
polymorphism, 327, 331–332
super-interface, 326

intern method, 166
International Organization for Standardization (ISO),

680, 1281
interpreter, 4, 9
interrupt method, 732
interrupted method, 733
InterruptedException class, 731, 733
InterruptibleChannel interface, 431
intersection method, 787
intersects method
Line class, 231–232, 233
Rectangle class, 787

InvalidClassException class, 528, 534, 545
InvalidMarkException class, 446
InvalidUserInputException class, 389–390, 391,

652, 689

1437

InvalidUserInputException class

In
de

x

invokeLater method, 865, 866–867, 888
IOException class

enabling a method to throw, 344
getFD method, thrown by, 485
nextToken method, thrown by, 386
ObjectOutputStream constructor, thrown by, 528
parse method, thrown by, 1227
position method, thrown by, 455, 487
read method, thrown by, 376, 380, 486
readObject method, thrown by, 534
saveSketch method, thrown by, 1095
Scanner constructor, thrown by, 714
skip method, thrown by, 376
transferFrom method, thrown by, 503
transferTo method, thrown by, 503
TryInputStream object, thrown by, 1350
write method, thrown by, 452, 454
writeObject method, thrown by, 528

ioException method, 714
isAbsolute method, 408
isAcceptAllFileFilterUsed method, 1099
isAddedPath method, 1392
isAlive method, 733
isAttributeCategorySupported method, 1133
isBold method, 793
isBusy method, 744, 747, 760–761, 764
isCellEditable method, 1318
isCurrency method, 1309
isCurrentSelection method, 892, 893
isDigit method, 100
isDirect method, 466
isDirectory method, 409, 411, 413–414, 422, 457
isDone method, 1087
isEmpty method
Rectangle class, 787
Rectangle2D class, 944
Vector class, 624

isEnabled method
Action interface, 904, 922
Component class, 780

isFile method, 409
isFloatable method, 914
isHidden method, 409
isInfinite method, 244
isInterface method, 588
isInterrupted method, 732, 733
isItalic method, 793
isLeaf method, 1378
isLetter method, 100, 171
isLetterOrDigit method, 100
isLoaded method, 515

isLowerCase method, 99
isModal method, 1004
isNamespaceAware method, 1197
isNaN method, 244
isNullable method, 1310
ISO (International Organization for Standardization),

680, 1281
isOpen method, 431
isPlain method, 793
isPopupTrigger method, 1041, 1043, 1048
isSigned method, 1309
isUpperCase method, 99
isValid method, 518, 780
isValidating method, 1197, 1217
isVisible method, 780
isWhitespace method, 100, 715
isWritable method, 1310
item method
NamedNodeMap interface, 1236
NodeList interface, 1229

ItemEvent class, 882, 883
ItemListener interface, 883, 1036
itemStateChanged method, 883, 1037
Iterable interface
Element class implementation, 974
Iterator method, 565, 566
LinkedList class implementation, 565–567, 579
SketchModel class implementation, 976

Iterator interface
described, 602
hasNext method, 566, 608
next method, 566, 568, 608
remove method, 566, 606, 608

Iterator method, 565, 566

J
JApplet class
destroy method, 855
functionality provided by, 776
hierarchy, 775
importing, 23
init method, 855
start method, 855
stop method, 855

.jar files, 24, 240
jar utility, 240
Java API for XML Processing (JAXP), 1152, 1196
Java API (Java Application Programming Interface), 4
java command, 9
Java Database Connectivity. See JDBC

1438

invokeLater method

Java Development Kit (JDK), 5–7, 1193
.java files, 8, 19, 21, 541
Java Foundation Classes (JFC), 768
Java Native Interface (JNI), 266
Java Network Launching Protocol (JNLP), 6
Java Regular Expressions: Taming the java.util.regex

Engine (Habibi), 720
Java Server Pages (JSP), 2
Java 2 Platform, 4
Java Virtual Machine. See JVM
javac compiler, 8, 26
javadoc software, 82, 83
JAXP (Java API for XML Processing), 1152, 1196
JButton class
addActionListener method, 815, 865, 1006
hierarchy, 798
setText method, 892, 916, 917

JCheckBox class, 798–799
JCheckBoxMenuItem class, 799, 843–844, 850, 902
JColorChooser class, 1075, 1076
JComponent class

functionality provided by, 776
hierarchy, 775, 798, 799, 800
printBorder method, 1146
printChildren method, 1146
printComponent method, 1146

JCreator editor, 5
JDBC (Java Database Connectivity)

architecture, 1294
data type, 1329–1331
driver, 1293, 1295–1296, 1297, 1299–1301
field size, maximum, 1340–1341
logging, 1299–1300
ODBC

Bridge, 1295, 1296, 1297, 1301, 1304
relation to, 1293

package, 1292
rows returned by query, maximum, 1340
URL, use of, 1297

JDialog class
constructor, 777, 1003–1004
dispose method, 1004
functionality provided by, 776
getTitle method, 1004
hierarchy, 775
isModal method, 1004
setModal method, 1004
setResizable method, 1005
setTitle method, 1004
setVisible method, 1004

JDK (Java Development Kit), 5–7, 1193
JEditorPane class, 800
JekyllAndHyde class, 673, 674
JFC (Java Foundation Classes), 768
JFileChooser class
addChoosableFileFilter method, 1099
constructor, 1091
getFileSelectionMode method, 1092
isAcceptAllFileFilterUsed method, 1099
removeChoosableFileFilter method, 1099
rescanCurrentDirectory method, 1092, 1093
setAcceptAllFileFilter method, 1099
setApproveButtonText method, 1092
setApproveButtonToolTipText method, 1092
setCurrentDirectory method, 1092
setDialogTitle method, 1092
setFileFilter method, 1099
setFileSelectionMode method, 1092
setMultiSelectionEnabled method, 1092
setSelectedFile method, 1092
showDialog method, 1093, 1098
showOpenDialog method, 1091
showSaveDialog method, 1091

JFormattedTextField class, 800
JFrame class

functionality provided by, 776
getContentPane method, 777, 778, 988
getGlassPane method, 778
getLayeredPane method, 778
getRootPane method, 778
getToolkit method, 782–783
hierarchy, 770–771, 775
Pack method, 808
printAll method, 1148
setBounds method, 773, 775, 808
setDefaultCloseOperation method, 774, 775,

857, 873
setJMenuBar method, 846
setVisible method, 774, 775, 808
Window class compared, 776

JLabel class, 800, 998
JLayeredPane object, 778
JList class, 801, 1024, 1028, 1029
JMenu class
add method, 847, 908
addSeparator method, 847, 851
constructor, 843
hierarchy, 799

JMenuBar class, 799, 843

1439

JMenuBar class

In
de

x

JMenuItem class
addActionListener method, 1008
getText method, 847
hierarchy, 799
JPopupMenu object add method, passing to, 1049
setAccelerator method, 852, 854, 1127
setEnabled method, 847
setIcon method, 918, 919, 1043
setText method, 847

JNI (Java Native Interface), 266
JNLP (Java Network Launching Protocol), 6
join method, 733
JoinStrings class, 158–159
JOptionPane class, 1009–1011
JPanel class, 800–801, 1031
JPasswordField class, 1371, 1374
JPopupMenu class
add method, 1040
hierarchy, 799
show method, 1040, 1042
SketchFrame class, implementing JPopupMenu

object in, 1048–1049
JRadioButton class, 798, 799, 1035
JRadioButtonMenuItem class, 799, 843, 844,

850, 899
JRootPane object, 778
JScrollPane class, 1030–1031, 1322,

1379–1380, 1381
JSP (Java Server Pages), 2
JSpinner class, 1033
JSplitPane class, 1024, 1031–1032,

1375–1376, 1380
JTable class, 801, 1317–1318, 1319, 1321,

1324–1325
JTextArea class, 800, 1322, 1324
JTextComponent class, 800
JTextField class, 800, 1322, 1324, 1326, 1371
JTextpane class, 800
JToggleButton class, 798, 799
JToolBar class
add method, 912, 915, 916, 918
creating JToolBar object, 911
isFloatable method, 914
setFloatable method, 914

JTooltip class, 797
JTree class, 1376–1381, 1384
JumbleNames class, 735
JVM (Java Virtual Machine)
Class class use by, 290
exception, 340, 341

file lock, support of overlapping, 519
garbage collection role, 220, 265

JWindow class, 775, 776

K
key event handling. See event handling, key
KeyAdapter class, 880
keyboard input, streaming, 384–392, 689, 714, 721
KeyEvent class, 868, 869
KeyListener interface, 876–877
keyPressed method, 877
keyReleased method, 877
keySet method, 646
KeyStroke class, 852, 854
keyTyped method, 877
keyword, 15, 30, 1399. See also specific keyword

L
language code, 397, 680
last method, 815
lastElement method, 621
lastIndexOf method
String class, 172, 173–174, 176
StringBuffer class, 191–192

lastModified method, 412
layout manager
BorderLayout, 804, 811–813, 911–912, 1006,

1026
BoxLayout, 804, 817–820, 1372
CardLayout, 804, 813–815
container layout manager, 801, 803–805
FlowLayout

button, positioning using, 806–811, 888, 890
constructor, 807
functionality provided by, 804
getHgap method, 808
setHgap method, 808
setVgap method, 808
status bar pane, positioning using, 999

GridBagLayout, 804, 825–834, 1028
GridLayout, 804, 815–817
method, specifying in, 888
SpringLayout, 804, 834–843, 859

LayoutManager interface, 804
Lea, Doug (Concurrent Programming in Java: Design

Principles and Patterns), 756
length method
File class, 412
String class, 170
StringBuffer class, 186, 196

1440

JMenuItem class

less than sign (<)
relational operator, 86
XML tag prefix, 1156

less than sign, equals sign (<=) relational operator, 86
less than sign, exclamation mark, hyphens (<!- -) XML

comment prefix, 1158
less than sign, slash (</) XML element end tag

prefix, 1156
less than signs, equals sign (<<=) op= operator, 54
less than signs (<<) shift operator, 70
LetterCheck class, 92–93
LetterCheck3 class, 99
LetterCheck2 class, 96
Library of Congress web site, 680
limit method, 437, 438
line. See also Element class, Line member

color, 937, 1187
drawing, 941–943, 945–947, 976–977, 986–988
math

point, creating from intersection of two lines,
230–233

points, creating line from, 229–230
serialization, 538–541, 1084–1085
transformation, 1060–1062
wrap, 1324, 1375
XML, working with in, 1173, 1187–1188,

1249–1250, 1267
Line class, 229–233, 252–253. See also Element

class, Line member
LineBorder class, 825
LineNumberInputStream class, 378
lineTo method, 962, 995, 1087–1088, 1089
Line2D class, 941, 942, 1060, 1070–1071
LinkageError class, 341
linked list. See list, linked list
LinkedHashMap class, 612, 613
LinkedHashSet class, 610, 613
LinkedList class
add method, 638
addAll method, 638
addFirst method, 638
addItem method, 315, 317, 598–599
addLast method, 638
BinaryTree object, returning from, 571–572,

574, 575–579
extending, 337
generic type, 549–555, 565–569
get method, 638
getFirst method, 316, 638
getLast method, 638
getNext method, 316

Iterable interface implementation, 565–567, 579
List interface implementation, 615
Point class, using with, 548
PolyLine class, using with, 309, 313–317, 549,

552–555, 639–640
Queue interface implementation, 615
remove method, 638
removeFirst method, 638
removeLast method, 638
Serializable interface implementation, 539,

561, 1083
set method, 638
typesafe, 548

list
event listener, 1029
iteration, 565–568, 608–610
linked list

adding item, 315, 621, 638
array, implementation as, 611
binary tree, returning from, 571–572, 574, 575–579
collection type, as, 638
defining linked list class, 314–316
deleting item, 337, 638
generic type, 549–555, 565–569
iteration, 565–568, 606, 638
points, of, 309
polyline, using with, 309, 313–317, 549, 552–555,

639–640
primitive type, storing in, 555–556
returning item in, 316, 638
sequence, as, 604
serialization, 538–541, 561–565, 1083–1084
sorting, 655

scrolling support, 1028, 1030–1031
selection list, 1028–1031, 1397
Swing component, 801
synchronized, 762–763

List interface, 615, 624, 638, 764
list method
File class, 411, 414–415
Properties class, 407, 1296
SecurityException thrown by, 411

listAll method
Stack class, 600
toString method, using with, 584
TryBinaryTree class, 582
TryParameterizedMethods class, 595
wildcard specification, using, 582

listAuthors method, 1339
listener. See event handling, listener
listEntries method, 655

1441

listEntries method

In
de

x

listFiles method, 411, 413, 414–415, 1097
ListItem class, 313–314
ListIterator

class, 567–568, 631
interface, 608–610, 621–622
method, 621–622, 631, 638

ListIterator interface, 609
listNodes method, 1234, 1235, 1237–1239
ListPoint class, 309–311
listRoots method, 412, 426
ListSelectionEvent class, 1030
ListSelectionListener interface, 1029–1030
listValues method, 213–214
literal

character, 60, 61
floating-point, 36–37
integer, 30, 34, 35
string, 61, 153

load method, 515, 517
Locale class, 397–398, 680, 682, 683
lock method, 518, 519
LockingPrimesRead class, 520–521
log method, 57
logical operator, 95–100, 698–699
log1p method, 57
log10 method, 57
Long class, 74–76, 77
long type

bytes occupied, 32
casting, 52–53, 74
declaring, 34
integer value, using for, 49
value range, 32
wrapper class, 161
XML, 1183

LongBuffer class, 434, 440, 491–493
look-and-feel, 768, 769, 770, 772, 797
lookupPrintServices method, 1110
looping
ArithmeticException, throwing in loop

structure, 369
array, iterating through using, 140, 142
body of loop structure, 112
break statement, 124–130
collection-based, 113–114, 118–119, 143, 183,

565–567
continue statement, 123–124
control mechanism, 112
counter, 112–113, 115–118

database resultset, iterating using, 1305, 1307–1308,
1311–1312

do while loop, 113–114, 120–121
enumeration, iterating through using, 118–119
for loop, 112–113, 114–119
functionality provided by, 111
identifier, 113
indefinite, 120, 127
nesting loop structure, 121–123
numerical, 112–113, 114–118
try block, 347–349, 367
while loop, 113, 114, 119–120

Lottery class
coding, initial, 884–886
createGUI method, 887–888, 894, 896
getNumbers method, 887, 888, 892
init method, 888
mouse listener, 924–925
toolbar coding, 925
tooltip coding, 925

lowerCaseMode method, 388
lowestOneBit method, 75
LuckyStars class, 156

M
MagicHat class, 258–261, 262–263
main method, 24–25, 41, 43
MakingAStatement class, 1306–1307
MakingTheConnection class, 1297–1298
Manager class, 580, 586, 592, 595, 598
map. See collection, map
Map interface, 614, 615, 646–647
map method, 514, 516–517
MapMode class, 516
MappedByteBuffer class, 514–515, 516
mark method, 446
Marker class
contains method, 957–958, 959
draw method, 955, 956
getCenter method, 955, 959
setLocation method, 958

Matcher class
appendReplacement method, 705–706, 707,

710, 713
appendTail method, 707, 708
end method, 694, 696
find method, 691, 694, 696, 705–707
group method, 708
groupCount method, 708, 710

1442

listFiles method

matches method, 697
reset method, 693–694
start method, 694, 696
state-machine encapsulation, 682

matcher method, 691, 693
matches method, 697
MatchStrings class, 162
MatchStrings2 class, 163–164
math. See also number

addition, 39, 45, 157, 159–160
argument value

returning, 55
returning integer closest to, 56, 58

average, calculating, 50, 142–143, 147–149, 197,
297–298

binary arithmetic, 1401–1402
character arithmetic, 61–63
cosine, 54, 55
cube root, 56
decrementing value, 46–47, 50, 128
division, 39, 45–46, 56
error handling, arithmetic, 49, 51
exponent, 36–37, 57, 233–236, 711
factorial, 121–123
floating-point arithmetic, 36–37, 49–51, 56, 117–118,

1406–1407
function, mathematical, 54–57
hexadecimal arithmetic, 1402–1404
incrementing value, 46–47, 50, 53, 61, 112–113
integer, calculation involving, 39–43, 45–49
logarithm, 57
mixed arithmetic expression, 51–52
modulus, 46, 50
multiplication, 39, 46, 197
PI mathematical constant, 58, 202, 203, 242
point

comparing points, 785, 941
control point, drawing, 951–952, 955–959
coordinate, returning string representation of, 228
creating from intersection of two lines, 230–233
creating line from points, 229–230
current, 962
distance between, calculating, 228, 940, 1063
drawing, 939–941
linked list of points, 309–311
positioning, 228, 785, 941, 957–959
shape, testing if inside, 788, 944, 957–958,

960–961
string, converting Point object to, 228
XML, defining in, 1188

Pythagorean theorem, 228
radius, calculating, 57–58
ratio, calculating, 84
remainder, 45–46, 56
rounding value to nearest integer, 56, 59
shifting

binary value, 70
integer, 70–74

sine, 54, 55
square root, 56, 57, 58, 134, 144
subtraction, 39
tangent, 54, 55
ULP, 56
unary operator, 39
variable, storing arithmetic result in, 38–39
volume, calculating, 84, 202, 209–210, 222

Math class
abs method, 55
acos method, 54
asin method, 54, 1071
atan method, 54
atan2 method, 54
cbrt method, 56
ceil method, 55, 144
cos method, 54
cosh method, 55
exp method, 57
expm1 method, 57
floor method, 55, 58
hypot method, 57
IEEEremainder method, 56
log method, 57
log1p method, 57
log10 method, 57
max method, 55
min method, 55
pow method, 57, 236, 711
random method, 57, 91
rint method, 56
round method, 56, 59, 223
signum method, 56
sin method, 54
sinh method, 55
sqrt method, 56, 58, 144
tan method, 54
tanh method, 55
toDegrees method, 55
toRadians method, 55

MathML (Mathematical Markup Language), 1155

1443

MathML (Mathematical Markup Language)

In
de

x

max method
Math class, 55
Spring class, 837

mcmLength class, 267
mean method, 207
member selection operator, 189
memory. See also buffer

array, allocating for, 136, 137
destroying object, 265–266, 289, 855, 1006
file, memory-mapped, 513–517
garbage collection, 220, 265

MemoryMappedFile class, 515–516
menu. See also event handling, menu; specific menu

bar, 771, 778, 799, 843–844, 858
color, 850–851, 853, 897, 899–902, 908
context menu, 799, 1044–1052
creating, 844–846
database menu, 1322–1324, 1325–1326
drop-down, 847–849, 858–859
icon, 843, 914–919
item

action, using as, 905–910
adding, 843, 847, 859, 1007–1008
enabling/disabling, 847
font selection dialog, associating with, 1037–1038
text, 843, 846–847, 1017–1019, 1326

label, 843, 846–847
pop-up, 799, 1039–1043
separator, 847, 851
shortcut key, 852–854, 859, 903, 920
SketchFrame class menu coding, 897–898,

899–900, 905–906, 919, 1007
Swing component, 799
top, displaying on, 778

MenuDragMouseEvent class, 868, 883
MenuKeyEvent class, 883
meta-character, 697
method

abstract, 287
accessor, 249
argument, 206, 208, 295–298
blocking method, 376
body, 43, 205
bridge, 599
calling, 44, 203, 333
class method, 200, 202–203, 209
data member, accessing, 209–210
defining, 24–25, 202–203, 205–206, 209, 323
exception thrown by, 340, 344–345, 351–352,

355–358

executing, 18
final, declaring as, 209, 317–318
generic, 560, 592–595
importing from another class, 59–60, 140–141
inheritance, 273
instance method, 202, 211
interface

calling method defined in another interface, 333
defining, 323
type parameter, 333–334

layout manager, specifying in, 888
mutator, 250
native, 266
overloading, 222–223
overriding, 277–278
parameterized, 592
pass-by-reference mechanism, 218
pass-by-value mechanism, 208
passing object to, 218–219
recursive, 233–236
returning from, 206
signature, 222, 224–225, 277, 281
static, 43, 203, 209, 560
synchronization, 741–748
variable, declaring in, 107, 207
void, 43

min method, 55
minus method, 837
minus sign, equals sign (–=) op= operator, 54
minus sign (–) subtraction operator, 39
minus signs (– –) decrement operator, 46–47, 50, 128
MissingFormatArgumentException class, 395
mkdir method, 418, 457
mkdirs method, 418, 422
model/view architecture, 670, 927–931
Model-View-Controller (MVC) architecture,

768–770, 927
modify method, 982, 1062, 1063, 1064
modulus operator, 46, 50
MorePrimes class, 143–144
mouse. See also event handling, mouse

buttons, returning number of, 985
click count, 1022
drawing using, 976–985
movement, tracking, 1045–1046

MouseAdapter class, 880
mouseClicked method
MouseHandler class, 1019–1020, 1022
MouseListener interface, 876

1444

max method

mouseDragged method
MouseHandler class, 959, 978, 980, 981, 1015
MouseMotionListener interface, 876
ROTATE mode, 1065
XOR mode, using in, 981

mouseEntered method, 876, 896
MouseEvent class
getButton method, 979, 980, 984
getClickCount method, 1022
getX method, 959
getY method, 959
hierarchy, 869
isPopupTrigger method, 1041, 1043, 1048
MouseInfo class versus, 985
mousePressed method, passing MouseEvent

object to, 979
occurrence represented, 868

mouseExited method, 876, 896
MouseHandler class
addMouseListener method, 979
createElement method, 982–983, 987, 995
createGUI method, 896
creating MouseHandler object, 958
getAngle method, 1072
mouseClicked method, 1019–1020, 1022
mouseDragged method, 959, 978, 980, 981, 1015
mouseMoved method, 1046–1047
mousePressed method, 957, 959, 978,

979–980, 1019
mouseReleased method, 959, 979, 984, 1022
processPopupTrigger method, 1042, 1050

MouseInfo class, 985
MouseInputAdapter class, 880, 957, 978
MouseInputListener interface, 877, 880
MouseListener interface, 876, 978
MouseMotionAdapter class, 880
MouseMotionListener interface, 876, 978, 1045
mouseMoved method
MouseHandler class, 1046–1047
MouseMotionListener interface, 876, 1045

mousePressed method
MouseEvent object, passing to, 979
MouseHandler class, 957, 959, 978, 979–980, 1019
MouseListener interface, 876
pop-up trigger implementation, 1042

mouseReleased method
MouseHandler class, 959, 979, 984, 1022
MouseListener interface, 876
pop-up trigger implementation, 1041, 1042

MouseWheelEvent class, 868

MouseWheelListener interface, 876
mouseWheelMoved method, 876
move method
Element class, 1065
Point class, 228, 785

moveTo method, 962, 966, 995, 1087–1088
mSQL driver, 1381
MutableTreeNode interface, 1379
MVC (Model-View-Controller) architecture,

768–770, 927

N
NamedNodeMap interface, 1236–1237, 1261
NaN (Not a Number) constant, 244
NegativeArraySizeException class, 342, 369
new keyword, 137
newDocument method, 1239
newDocumentBuilder method, 1225, 1226
newInstance method
BuilderFactory class, 1224
Class class, 587, 588
DocumentBuilderFactory class, 1225
SAXParserFactory class, 1197
SchemaFactory class, 1216
SecurityException thrown by, 587

newline character, 59, 61
newSAXParser method, 1197
newSchema method, 1216, 1217, 1220
next method
CardLayout layout manager, 815
Iterator interface, 566, 568, 608
ListIterator interface, 609
PathIterator interface, 1087, 1088
ResultSet interface, 1305, 1307
Scanner class, 717
Vector class, 618

nextBigDecimal method, 715
nextBigInteger method, 715
nextBoolean method
Random class, 676
Scanner class, 715

nextByte method, 715
nextBytes method, 677
nextDouble method
Random class, 676
Scanner class, 715, 718

nextFloat method
Random class, 676
Scanner class, 715

1445

nextFloat method

In
de

x

nextGaussian method, 676
nextIndex method, 609
nextInt method
Random class, 260, 261, 676, 678, 747
Scanner class, 715, 718

nextLong method
Random class, 676
Scanner class, 715

nextShort method, 715
nextToken method, 385–386, 388
Node

class, 572
interface, 1227–1228, 1229, 1230

NodeList interface, 1229
nodeType method, 1234
NonReadableChannelException class, 433, 486,

503, 519
NonWritableChannelException class, 451, 454,

503, 519
NoSuchElementException class, 566, 608, 715
Not a Number (NaN) constant, 244
Notation interface, 1228
notify method, 288, 757, 758
notifyAll method, 288, 757–758, 759
notifyObservers method
Observable class, 672, 674
SketchModel class, 975, 984

NotSerializableException class, 528, 1083
NullPointerException class
clearProperty method, thrown by, 407
exception condition represented, 342, 343
message stored in exception object, displaying, 369
printf method, thrown by, 393
read method, thrown by, 376, 380
retainAll method, thrown by, 624
setValue method, thrown by, 647
TestNullValues object, thrown by, 1353
toArray method, thrown by, 623

number. See also integer; math
file

reading number data from, 491–495
writing number data to, 467–471

random, generating, 57, 91, 134, 142, 675–678
number sign (#) regular expression delimiter, 692
NumberCheck class, 90–91
NumberFormatException class, 244, 343
numberOfLeadingZeros method, 75
numberOfTrailingZeros method, 75

O
object. See also specific object

casting, 298–301
class

creating object of class, 217–218
determining class of object, 289–291, 301–302,

537–538
relation to object, 13, 17, 200

copying, 226, 289, 291–295
described, 13
destroying, 265–266, 289, 855, 1006
event source object, 863–864, 868, 893
lifetime, 219–220
method, passing object to, 218–219

Object class
clone method, 289, 291
equals method, 288, 642
finalize method, 265–266, 289
getClass method, 288, 289–291, 302, 558
hashCode method, 541, 641, 642–643, 648, 657
notify method, 288, 757, 758
notifyAll method, 288, 757–758, 759
toString method, 288, 289
wait method, 288, 756–757, 758

objectCount method, 202
ObjectInput interface, 526
ObjectInputStream class

constructor, 533
hierarchy, 377, 526
openSketch method, ObjectInputStream object

creation by, 1103
readBoolean method, 538
readByte method, 538
readChar method, 538
readDouble method, 538
readFloat method, 538
readInt method, 538
readLong method, 538
readObject method, 533–534, 541
readShort method, 538
reset marker, 545

Object-Oriented Programming (OOP), 2, 12–21
ObjectOutput interface, 526
ObjectOutputStream class
FileOutputStream object, referencing, 526
hierarchy, 379, 526
IOException thrown by, 528
reset method, 545
write method, 529

1446

nextGaussian method

writeByte method, 528–529
writeBytes method, 529
writeChar method, 528–529
writeChars method, 529
writeDouble method, 528, 1084
writeFloat method, 528
writeInt method, 528
writeLong method, 528
writeObject method, 527, 540, 541
writeShort method, 528

ObjectStreamConstants interface, 526
ObjectStreamException class, 528
Observable class
addObserver method, 672
clearChanged method, 672
countObservers method, 672
deleteObserver method, 672
deleteObservers method, 672
GUI programming, use in, 670
hasChanged method, 672
notifyObservers method, 672, 674
setChanged method, 672, 674–675
update method calling at Observable object

change, 671, 674–675
Observer interface, 673, 674, 929, 1082
ODBC (Open DataBase Connectivity)

Access setup, 1294
driver, 1296, 1297, 1300–1301, 1336
JDBC

Bridge, 1295, 1296, 1297, 1301, 1304
relation to, 1293

OOP (Object-Oriented Programming), 2, 12–21
op= operator, 53–54, 66, 81
Open DataBase Connectivity. See ODBC
openAction object, 912, 913, 915
openConnection method, 1382, 1383–1384
openSketch method, 1101–1102, 1103
openXMLSketch method, 1257, 1262
operand, 39
operator. See also specific operator

assignment, 34, 38, 81
associativity, 80, 81, 160
complement, 64
conditional, 95, 97, 100–101
decrement, 46–47, 50, 128
logical, 95–100, 698–699
op= operators, 53–54, 66, 81
postfix form, 47, 81
precedence, 39, 80–81, 86

prefix form, 47, 80
relational, 86–87, 161, 163, 167
ternary, 100
unary, 39
XML cardinality operators, 1168–1169

OptionalDataException class, 534
OR operator

bitwise, 64–68, 99
Boolean, 80, 95, 98
conditional, 95
exclusive, 64, 68–70
logical, 95, 98, 699

ordinal method, 303
ordinaryChar method, 387
ordinaryChars method, 387
OutputStream class
Closeable interface implementation, 375, 526
hierarchy, 379, 526
write method, 379

OutputStreamWriter class, 382, 383
Outside class, 257–258
overlaps method, 519

P
Pack method
AboutDialog class, 1006
JFrame class, 808

package
class, adding, 237, 251
compiling, 238
default, 236
directory, 22, 237–238
extension, 240
functionality provided by, 236
JDBC, 1292
name, 22, 236, 237, 241–242
path, 238, 239, 251
referencing, 23, 239
standard, 22–23, 243
statement, 237

PackingCharacters class, 72–73
page painter, 1108
Pageable interface
Book class implementation, 1144
functionality provided by, 1108
getNumberOfPages method, 1109, 1134, 1139
getPageFormat method, 1109, 1134, 1135, 1140
getPrintable method, 1109, 1134, 1135
SketchView class implementation, 1139–1140

1447

Pageable interface

In
de

x

pageDialog method, 1127, 1129, 1131
PageFormat class
clone method, 1141
functionality provided by, 1107
getImageableHeight method, 1114,

1120–1121, 1136
getImageableWidth method, 1114,

1120–1121, 1136
getImageableX method, 1114, 1136
getImageableY method, 1114
setOrientation method, 1123, 1136

Paint interface, 937
paint method
Component class, 788
CurvePane class, 954, 956
GradientApplet class, 971
graphics context, passing to, 935, 936
SketchView class, 935–936, 945, 949–950,

975–976, 1015
StarPane class, 966–967
Swing component, 1146

PaintEvent class, 868
Paper class, 1136–1137, 1141
parentheses ()

method definition delimiters, 20, 41
operator delimiters, 39
SQL procedure delimiters, 1359
SQL statement value delimiters, 1288

parse method
DateFormat class, 684
DocumentBuilder class, 1226–1227
IllegalArgumentException thrown by, 1227
IOException thrown by, 1227
SAXParser class, 1203, 1204

parseByte method, 244
parsed character data (PCDATA), 1155, 1165, 1166
parseDouble method, 244, 1266
ParseException class, 684
parseFloat method, 244
parseInt method, 166, 244
parseLong method, 244
ParserConfigurationException class,

1201, 1213
parseShort method, 244
pass-by-reference mechanism, 218
pass-by-value mechanism, 208
path, file. See file, path
path, graphic. See drawing, path
PATH variable, 7
PathIterator interface, 1086–1088

Pattern class, 691, 693, 718
pattern, drawing, 937
PatternSyntaxException class, 691, 692
pausing program, 355, 358
PCDATA (parsed character data), 1155, 1165, 1166
peek method, 633
percent sign, equals sign (%=) op= operator, 54
percent sign (%) modulus operator, 46, 50
period (.)

class notation dot operator, 23, 203
member selection operator, 189
wildcard character, 697

Person class
BinaryTree object, working with in, 579–580,

585–586
Comparable interface implementation, 579, 630
Comparator interface implementation, 663–667
compareTo method, 664, 666
equals method, 648
getClass method, 537
information contained in Person object, 200
Observer interface implementation, 673, 674
println method argument, using Person

object as, 626
readPerson method, 628, 649

PhoneBook class
addEntry method, 651, 653
listEntries method, 655
put method, 651
save method, 654, 656
sort method, 654
values method, 655

PhoneNumber class, 649–650
PI mathematical constant, 58, 202, 203, 242
PI (processing instruction), 1153, 1205, 1228, 1245
PipedInputStream class, 377
PipedReader class, 381
PipedWriter class, 383
PipeOutputStream class, 379
PlayingPoints class, 784
plus sign (+)

addition operator, 39, 45, 157, 159–160
XML cardinality operator, 1168

plus sign, equals sign (+=) op= operator, 54, 157
plus signs (++) increment operator, 46–47, 50, 61,

112–113
Point class

access attribute, 248–250
constructor, 228, 785
creating Point object, 228

1448

pageDialog method

definition, initial, 227, 308
distance method, 228, 1071
equals method, 785
getLocation method, 785
GetX method, 252
GetY method, 252
LinkedList class, using with, 548
move method, 228, 785
Serializable interface implementation, 538
setLocation method, 785
setX method, 252
setY method, 252
toString method, 228
translate method, 785

PointerInfo class, 985
Point2D class
distance method, 940, 991, 993
equals method, 941
GetX method, 940, 947
GetY method, 940, 947
hierarchy, 939–940
setLocation method, 941

policytool utility, 855
Polygons.bin file, 540–541
PolyLine class
addPoint method, 312, 317, 640
creating PolyLine object, 312
definition, initial, 311
final, declaring as, 318
getFirst method, 317
getNext method, 317
LinkedList class, using with, 309, 313–317, 549,

552–555, 639–640
Serializable interface implementation, 538, 541
toString method, 317

polymorphism, 279–286, 307, 327, 331–332, 1248
PondRadius class, 57–58
pop method, 600, 633, 635
pop-up menu, 799, 1039–1043
Port interface, 334–335
position method
Buffer class, 437, 454–455, 477
CharBuffer class, 477
ClosedChannelException thrown by, 487
FileChannel class, 454, 487
IllegalArgumentException thrown by, 437, 487
IOException thrown by, 455, 487

pow method, 57, 236, 711
power method, 234–236
PowerCalc class, 234
prepareCall method, 1304, 1359

PreparedStatement interface, 1304, 1345–1351
prepareStatement method, 1304, 1346
previous method
CardLayout layout manager, 815
ListIterator interface, 609
ResultSet interface, 1305

previousIndex method, 609
Primes class, 125
primes_backup.bin file, 509, 515
primes.bin file, 491, 508
PrimesToFile class, 467–469
PrimesToFile3 class, 475–476
PrimesToFile2 class, 473–474
Primes2 class, 126–127
primitive type, 31, 52, 80, 244–245, 555–556
print method
Printable interface, 1108, 1112–1113, 1134
PrinterJob class, 1107, 1108, 1111,

1112–1113, 1145
SketchCoverPage class, 1138
SketchView class, 1112, 1115, 1116, 1118–1119,

1123–1124
Print Service API, 1107
Printable interface
Book class implementation, 1143–1145
functionality provided by, 1108
print method, 1108, 1112–1113, 1134
SketchFrame class implementation, 1147
SketchView class implementation, 1110,

1112, 1115
printAll method
JFrame class, 1148
TryVariableArgumentList class, 296–297

printBorder method, 1146
printChildren method, 1146
printComponent method, 1146
printDialog method, 1110, 1116, 1130, 1132, 1143
PrinterException class, 1110, 1112
PrinterGraphics interface, 1108
PrinterJob class
defaultPage method, 1125, 1135
functionality provided by, 1107
getPrinterJob method, 1109
lookupPrintServices method, 1110
pageDialog method, 1127, 1129, 1131
print method, 1107, 1108, 1111, 1112–1113, 1145
printDialog method, 1110, 1116, 1130, 1132, 1143
setPageable method, 1134, 1135, 1144
setPrintable method, 1110, 1112, 1125, 1134
setPrintService method, 1110
validatePage method, 1135

1449

PrinterJob class

In
de

x

printf method, 297, 392–394, 395, 397, 398
printing

book, 1143–1145
copies, multiple, 1132–1133
dialog, 1110–1111, 1115–1116, 1125–1126,

1130–1132
drawing compared, 1108
event handling, 1107, 1111, 1125–1126, 1129, 1146
job

referencing, 1108, 1109–1110, 1113
request, storing as hash map attribute, 1130
starting, 1110, 1111–1112
stopping, 1113, 1135

page
boundary line, 1150
coordinate system, 1114–1115, 1116, 1118–1120
cover page, 1138–1142
format, returning, 1109
imageable area, 1114, 1120, 1121, 1136, 1137
index value, 1113, 1134, 1140
margin, 1107, 1132, 1135–1136, 1141
multipage document, 1112–1113, 1134, 1143–1145
number of pages, returning, 1109, 1134, 1139
orientation, 1114, 1123–1125, 1136
painter, 1108
scaling to fit, 1120–1122, 1150
setup, 1126–1130
size, specifying, 1136–1137
title, 1150

stream, 297, 373, 392–394
Swing component, 1146–1148

PrintJob class, 1107, 1109, 1111
println method
DriverManager class, 1300
Person object, using as argument, 626
PrintStream class, 392
PrintWriter class, 382, 392
System.out class, 25, 44–45

PrintRequestAttribute interface, 1132
PrintRequestAttributeSet interface, 1130,

1132, 1143
PrintService object, 1109–1110, 1125
printStackTrace method, 360
PrintStream class, 297, 384, 392
PrintWriter class, 384, 392, 462, 1300
PriorityQueue class, 611, 613
private keyword, 19
process method, 1210, 1213, 1220
processEvent method, 873

processFocusEvent method, 873
processing instruction (PI), 1153, 1205, 1228, 1245
ProcessingInstruction

interface, 1228
node, 1245

processingInstruction method, 1205
processKeyEvent method, 874
processMouseEvent method, 873, 874
processMouseMotionEvent method, 874
processMouseWheelEvent method, 874
processPopupTrigger method, 1042, 1050
processWindowEvent method, 872, 874, 878
processWindowFocusEvent method, 873
processWindowStateEvent method, 873
ProgressMonitorInputStream class, 378
Properties class

key/value pairing, 903, 1295
list method, 407, 1296
SetProperty method, 1296, 1299

protected keyword, 247
ptLineDist method, 1071
public keyword, 204
push method, 600, 632, 633
pushback method, 388
PushbackInputStream class, 378
put method
ByteBuffer class put methods, 447–448
CharBuffer class, 477
DoubleBuffer class, 477
HashMap class, 644, 645
PhoneBook class, 651

putAll method, 644
putChar method, 448, 457
putConstraint method, 839
putDouble method, 448
putInt method, 461
putValue method, 904
Pythagorean theorem, 228

Q
QuadCurve2D class, 951–952, 993
quadTo method, 962, 963, 1087
question mark (?)

conditional operator element, 100
SQL procedure parameter indicator, 1359
SQL statement placeholder, 1346
XML cardinality operator, 1168, 1169

Queue interface, 615
quoteChar method, 388

1450

printf method

quotes, double (“ ”)
DTD path delimiters, 1211
string delimiters, 44, 61, 153, 1158, 1160
XML attribute delimiters, 1160

quotes, single (‘ ’)
character literal delimiters, 60, 61
XML attribute delimiters, 1160
XML string delimiters, 1158, 1160

R
Rabbit class, 260, 261, 262, 263–264
radius, calculating, 57–58
Random class

constructor, 676
nextBoolean method, 676
nextBytes method, 677
nextDouble method, 676
nextFloat method, 676
nextGaussian method, 676
nextInt method, 260, 261, 676, 678, 747
nextLong method, 676
setSeed method, 677

Random method, 57, 91
RandomAccessFile class

access mode, 512–513
constructor, 512–513
FileInputStream object, obtaining from, 483, 485
FileNotFoundException thrown by, 513, 516
getFD method, 485
getFilePointer method, 513
SecurityException, thrown by, 513
seek method, 513

RandomFileRead class, 508–509
RandomReadWrite class, 510–511
read method
ClosedChannelException thrown by, 486
FileChannel class, 430, 485–486, 507–508
IllegalArgumentException thrown by, 508
InputStream class, 376
InputStreamReader class, 381
IOException thrown by, 376, 380, 486
NullPointerException thrown by, 376, 380
pausing program using, 355, 358
Readable interface, 380
ReadableByteChannel interface, 432
Reader class, 380
ScatteringByteChannel interface, 432
try/catch block, in, 354, 355, 358

Readable interface, 380, 714
ReadableByteChannel interface, 431–432

ReadAString class, 490
readByte method, 538
readChar method, 538
readDouble method
InvalidUserInputException thrown by, 391
ObjectInputStream class, 538

readEntry method, 651
Reader class, 380, 381
readFloat method, 538
readInt method
InvalidUserInputException thrown by, 389–390
ObjectInputStream class, 538

readLine method, 629, 1358–1359
readLong method, 538
readObject method

casting, 654
ClassNotFoundException thrown by, 534
Element class, 1084–1085, 1089
InvalidClassException thrown by, 534
IOException thrown by, 534
ObjectInputStream class, 533–534, 541
OptionalDataException thrown by, 534
StreamCorruptedException thrown by, 534

ReadOnlyBufferException class, 445
readPerson method, 628, 649
ReadPrimes class, 493–494, 524
ReadPrimesMixedData class, 497–498
ReadPrimesMixedData2 class, 500–501
readShort method, 538
readToken method, 389
rectangle. See also Element class, Rectangle member

bounding rectangle, 1014, 1015–1017, 1021,
1046, 1065

class, creating custom for, 267
combining rectangles, 943–944
comparing rectangles, 787
cursor, testing if within, 788
drawing, 935, 937, 941–943, 945–947, 988–990
emptiness, testing for, 787, 944
height, returning, 943
intersection with another rectangle, testing for, 787, 943
positioning, 780, 781, 786
returning, 787
round, 941, 942
serialization, 1085–1086
sizing, 780, 781, 786, 787, 935
transformation, 1058, 1062–1063
width, returning, 943
XML, working with in, 1173, 1188, 1250–1251,

1267–1268

1451

rectangle

In
de

x

Rectangle class
add method, 787
constructor, 785–786
contains method, 788
equals method, 787
getLocation method, 786
getSize method, 786
grow method, 787
intersection method, 787
intersects method, 787
isEmpty method, 787
setLocation method, 786
setSize method, 786
translate method, 786
union method, 787

Rectangle2D class, 941, 943–945, 990
recursion, 233–236
red, green, blue (RGB) value, 789, 790, 891
registerOutParameter method, 1360
regular expression

append position, 694
array, using in, 696
canonical equivalence, 692
case sensitivity, 692, 693
character, matching, 697–700
commenting, 692
compilation, 691, 692, 693, 718
described, 691
digit, matching, 697, 698, 699, 701–702
escape sequence, using, 699–700
group, capturing, 708–713
integer, matching, 702–703
line number, working with, 721
logical operator, using, 698–699
matcher, 693–694
meta-character, 697
pattern, 692–693, 708–713
quantifier, 701–702
resetting, 693–694
scanner, using with, 714–717
search and replace operation, using in, 705–708
state-machine, 691
string

matching, 694–697, 700–701
tokenizing, 179, 703–704, 718–720

Unix line mode, enabling, 692
whitespace, matching, 692, 699, 700
wildcard, 697

relational operator, 86–87, 161, 163, 167
relativeCCW method, 1071

release method, 518
remaining method, 486, 489, 502, 522
RemoteControl interface, 327
remove method
HashMap class, 645–646
IllegalStateException thrown by, 566, 608, 609
IndexOutOfBoundsException thrown by, 623
Iterator interface, 566, 606, 608
LinkedList class, 638
List interface, 764
ListIterator interface, 609
SketchModel class, 975, 1052
TreeNode interface, 1378
UnsupportedOperationException thrown by,

566, 608, 609
Vector class, 623–624

removeAll method, 624
removeAllElements method, 624
removeChoosableFileFilter method, 1099
removeElementAt method, 624
removeFirst method, 638
removeFromParent method, 1378
removeLast method, 638
removePropertyChangeListener method, 904
removeTableModelListener method, 1318
rename method, 402
renameTo method, 417
rendering, 933. See also drawing
repaint method, 935, 959
replace method
String class, 182
StringBuffer class, 192

replaceQuotes method, 1261–1262
requestFocus method, 1375
rescanCurrentDirectory method, 1092, 1093
reset method
Buffer class, 446
GeneralPath class, 963
Matcher class, 693–694
ObjectOutputStream class, 545

resetSyntax method, 387, 388
resolveEntity method, 1204
ResultSet interface
getAsciiStream method, 1305, 1352, 1357
getBigDecimal method, 1352, 1355
getBinaryStream method, 1305, 1352, 1357
getBoolean method, 1305, 1352
getByte method, 1305, 1352
getBytes method, 1305, 1352
getCharacterStream method, 1357

1452

Rectangle class

getDate method, 1305, 1352
getDouble method, 1305, 1352
getFloat method, 1305, 1352
getInt method, 1305, 1352
getLong method, 1305, 1352
getMetaData method, 1308, 1385
getObject method, 1305, 1352
getShort method, 1305, 1352
getString method, 1305, 1307, 1319, 1352
getTime method, 1305, 1352
getTimestamp method, 1305, 1352
getUnicodeStream method, 1352
getWarnings method, 1368
next method, 1305, 1307
previous method, 1305
setResultSet method, 1319, 1320, 1383, 1384
wasNull method, 1353, 1354

ResultSetMetaData interface, 1306, 1308, 1313,
1316, 1330

ResultsModel class, 1319, 1383
retainAll method, 624
return statement, 206, 351, 355
reverse method
Integer class, 75
Long class, 75
StringBuffer class, 194

rewind method, 451
RGB (red, green, blue) value, 789, 790, 891
rint method, 56
roll method, 688
rotate method, 1071–1072, 1073
rotateLeft method, 75, 76
rotateRight method, 75
round method, 56, 59, 223
RoundRectangle2D class, 941, 942
rt.jar file, 7, 24
run method
Clerk class, 760, 761, 763
Runnable interface, 734, 867
Thread class, 726–727, 731, 739

runFinalization method, 266
Runnable interface, 734–736, 744, 867
RuntimeException class, 344, 345, 346, 363, 452

S
save method, 654, 656
saveOperation method, 1094, 1097, 1100, 1101
saveSketch method, 1094, 1095
saveXMLSketch method, 1256, 1257

SAX (Simple API for XML)
creating SAX parser object, 1199
error handling, 1206, 1214–1215
event handling, 1193–1194, 1202–1203, 1205,

1207–1211, 1214–1215
feature, 1200–1202
namespace awareness, 1210–1211
property, setting, 1202
validation, 1197, 1217
whitespace, ignoring, 1205, 1210, 1212
W3C SAX2 standard, 1198

SAXException class, 1201, 1214, 1224
SAXNotRecognizedException class, 1201, 1202
SAXParseException class, 1214, 1215
SAXParser class

creating SAXParser object, 1201, 1216
functionality provided by, 1196
parse method, 1203, 1204
setProperty method, 1202

SAXParserFactory class, 1196–1197, 1198,
1201–1202

Scalable Vector Graphics (SVG), 1155, 1164, 1172
scale method, 1122
Scanner class

constructor, 714
hasNext method, 717–718, 719–720
ioException method, 714
next method, 717
nextBigDecimal method, 715
nextBigInteger method, 715
nextBoolean method, 715
nextByte method, 715
nextDouble method, 715, 718
nextFloat method, 715
nextInt method, 715, 718
nextLong method, 715
nextShort method, 715
Readable interface implementation, 714
token, using with, 717–720
useDelimiter method, 720

ScanString class, 718–719
scatter-gather operation, 478
ScatteringByteChannel interface, 431, 432
SchemaFactory class, 1216
Scope class, 109–110
screen

coordinate system, 773
resolution, 774, 795, 933
size, returning, 795

1453

screen

In
de

x

scrolling
component, 797
database browsing interface, 1376, 1379–1380,

1381, 1384, 1386
list, 1028, 1030–1031

search method, 633
SearchAndReplace class, 707
searching. See also regular expression

array, 666–669
string

character, for, 172–173
pattern, for, 179
substring, for, 173–174

vector, 625–626
SecureProcessing object, 1225
security

applet, 854–855
manager, 417, 854–855
policy file, 855

SecurityException class
clearProperty method, thrown by, 407
exception condition represented, 343
file access method, thrown by, 409, 410
FileInputStream constructor, thrown by, 485
FileOutputStream constructor, thrown by, 420
list method, thrown by, 411
listFiles method, thrown by, 411
newInstance method, thrown by, 587
RandomAccessFile constructor, thrown by, 513
setProperty method, thrown by, 1296

seek method, 513
Selection class, 886, 891–892
semicolon (;)
for statement separator, 112, 116
statement suffix, 19, 38
XML entity name suffix, 1158

Separable Model architecture, 769
sequence, 604–605
SequenceInputStream class, 377
SequenceStrings class, 168–169
Serializable interface
Element class implementation, 1083–1084
EventObject class implementation, 868
file serialization, implementing in, 527–528, 529–532
LinkedList class implementation, 539, 561, 1083
Point class implementation, 538
PolyLine class implementation, 538, 541
SketchModel class implementation, 1083

serialization. See also stream
array, using in, 525, 529
circle, 1086

class
creating custom for, 541–542
determining class of deserialized object, 537–538
transience requirement, 532–533

curve, 1086–1089
default, 541–542
described, 525
deserializing, 525, 535–538, 563, 600, 1089
file, returning object in external, 533–537
file, storing object in external

buffering stream, 527
creating stream, 526–527
implementing Serializable interface, 527,

529–532
resetting output stream, 544–545
types writable, 528–529

handle, writing to stream, 544
line, 538–541, 1084–1085
list, linked, 538–541, 561–565, 1083–1084
rectangle, 1085–1086
Stack class, 600
text, 1089
troubleshooting, 542–544
variation of object, serializing, 542–544

SerializeObjects class, 530–531
set, 603, 610
Set interface, 614, 615
set method
Calendar class, 686
ClassCastException thrown by, 610
GregorianCalendar class, 686
IllegalArgumentException thrown by, 610
IllegalStateException thrown by, 610
LinkedList class, 638
ListIterator interface, 610
UnsupportedOperationException thrown by, 610
Vector class, 620

setAccelerator method, 852, 854, 1127
setAcceptAllFileFilter method, 1099
setApproveButtonText method, 1092
setApproveButtonToolTipText method, 1092
setAsciiStream method, 1349, 1350
setAttribute method, 1247
setAttributeNode method, 1246
setAttributeNodeNS method, 1246
setAttributeNS method, 1247
setAutoResizeMode method, 1325, 1380
setBackground method, 788, 988
setBigDecimal method, 1346
setBinaryStream method, 1349
setBoolean method, 1346

1454

scrolling

setBorder method, 810, 888
setBottomComponent method, 1032
setBounds method
Component class, 781
JFrame class, 773, 775, 808

setByte method, 1346
setBytes method, 1346
setChanged method
Observable class, 672, 674–675
SketchModel class, 975

setCharAt method, 193
setClip method, 938
setCoalescing method, 1225
setColorPane method, 999, 1000
setComposite method, 938
setConstraint method, 830, 839
setCurrentDirectory method, 1092
setCurrentFont method, 1027
setCursor method, 789, 792
setDaemon method, 729, 730, 731
setDate method, 1346
setDefaultCloseOperation method, 774, 775,

857, 873
setDialogTitle method, 1092
setDocumentLocator method, 1205
setDouble method, 1346
setEditable method, 1375
setElementColor method, 1267
setElementPosition method, 1267
setEnabled method
Action interface, 904, 922
Component class, 780
JMenuItem class, 847

setErr method, 384
setErrorHandler method, 1226
setExpandEntityReferences method, 1225
setFeature method, 1201, 1202, 1213
setFileFilter method, 1099
setFileSelectionMode method, 1092
setFloat method, 1346
setFloatable method, 914
setFont method, 789
setForeground method, 788
setHeight method, 838
setHgap method
BorderLayout layout manager, 813
FlowLayout layout manager, 808

setHighlighted method, 1045, 1048
setHorizontalAlignment method, 999
setIcon method, 918, 919, 1043
setIgnoringComments method, 1225

setIgnoringElementContentWhitespace

method, 1225
setImageableArea method, 1137
setIn method, 384
setInt method, 1346
setJMenuBar method, 846
setLayout method, 805, 806, 999
setLeftComponent method, 1032
setLength method, 188–189
setLineWrap method, 1324, 1375
setLocation method
Component class, 781
Marker class, 958
Point class, 785
Point2D class, 941
Rectangle class, 786

setLoginTimeout method, 1300
setLogWriter method, 1299
setLong method, 1346
setLookAndFeel method, 772
setMaxFieldSize method, 1341
setMaximumSize method, 782
setMaxRows method, 1340
setMinimumSize method, 781
setMnemonic method, 852, 854, 1008
setModal method, 1004
setMultiSelectionEnabled method, 1092
setName method, 295, 736
setNamespaceAware method, 1211, 1225
setNext method, 311
setNextException method, 1365
setNull method, 1346
setObject method, 1346
setOrientation method
JSplitPane class, 1032
PageFormat class, 1123, 1136

setOut method, 384
setPageable method, 1134, 1135, 1144
setPaint method, 937, 946, 971
setPaintMode method, 995
setPaper method, 1137
setParent method, 1378
setPreferredSize method, 782, 820, 890, 999
setPrintable method, 1110, 1112, 1125, 1134
setPrintService method, 1110
setPriority method, 761
SetProperty method
Properties class, 1296, 1299
SAXParser class, 1202
SecurityException thrown by, 1296

1455

SetProperty method

In
de

x

SetProperty method (continued)
system class, 407, 1295
XMLReader interface, 1202

setQueryTimeout method, 1341
setReadOnly method, 417
setRect method, 943
setRenderingHints methods, 938
setResizable method, 1005
setResultSet method, 1319, 1320, 1383, 1384
setRightComponent method, 1032
setRoot method, 1379, 1384
setRootVisible method, 1384, 1385
setSchema method, 1220
setSecureProcessing method, 1225
setSeed method, 677
setSelectedFile method, 1092
setSelectedValue method, 1029
setSelectionMode method, 1029
setShort method, 1346
setSize method
Component class, 781
Paper class, 1137
Rectangle class, 786
Vector class, 619

setState method, 902
setString method, 1346
setText method
JButton class, 892, 916, 917
JMenuItem class, 847
JTextField class, 1326
StatusPane class, 999

setTime method
Date class, 686, 1355
PreparedStatement interface, 1346

setTimestamp method, 1346
setTitle method
JDialog class, 1004
SketchFrame class, 846

setTopComponent method, 1032
setToRotation method, 1055–1056
setToScale method, 1056
setToShear method, 1056
setToTranslation method, 1055
setTransform method, 1058
setTypePane method, 999, 1000, 1001
setUnicodeStream method, 1349
setupTree method, 1385–1386, 1389
setUserObject method, 1378
setValidating method
DocumentBuilderFactory class, 1225
SAXParserFactory class, 1197

setValue method, 543, 647, 891, 892
setValueAt method, 1318
setValueIsAdjusting method, 1029
setVgap method, 808
BorderLayout layout manager, 813
FlowLayout layout manager, 808

setVisible method
Component class, 780
FontDialog class, 1036, 1038
JDialog class, 1004
JFrame class, 774, 775, 808
Window class, 842, 865

setWheelScrollingEnabled method, 1031
setWidth method, 838
setWrapStyleWord method, 1375
setX method
Constraints class, 837–838
Point class, 252

setXORMode method, 980
setY method
Constraints class, 837–838
Point class, 252

Shape

class, 337
interface, 938, 939, 963

ShapeList class, 337
Short class, 160
short type

bytes occupied, 32
casting, 48
initializing, 35, 70
integer literal, 35
value

hexadecimal, 70
range, 32

wrapper class, 160
ShortBuffer class, 434, 440
shortcut key combination, 852–854, 859, 903, 920
show method
CardLayout layout manager, 715
JPopupMenu class, 1040, 1042

showConfirmDialog method, 1094
showDialog method
FileAction class, 1100
JColorChooser class, 1076
JFileChooser class, 1093, 1098
SketchFrame class, 1098, 1103

showInputDialog method, 1011–1013
showMessageDialog method, 1009–1010, 1011
showOpenDialog method, 1091
showResults method, 1315

1456

SetProperty method (continued)

showSaveDialog method, 1091
shuffle method, 637–638
signum method, 56
Simple API for XML. See SAX
sin method, 54
sinh method, 55
size method
Clerk class, 763
FileChannel class, 458
Vector class, 618, 629

.ske files, 1080
SketchCoverPage class, 1138, 1140
Sketcher class

adapter class, as, 880–881
createGUI method, 866, 879, 1082–1083
dispose method, 879
getModel method, 976
init method, 857
insertModel method, 1102, 1103
model/view architecture, 928, 929–931
window, referencing, 846
windowClosing method, 879

SketcherConstants class
color definition, 897
directory default definition, 1080
font coding, 1018
operating mode definition, 1066
SketchFrame class, importing SketcherConstants

value into, 898–899
SketchView class, importing SketcherConstants

value into, 983
spinner coding, 1034
XML coding, 1257

sketchFilter class, 1099
SketchFrame class
ActionListener interface implementation, 1007
actionPerformed method, 1008–1009, 1038,

1075, 1147
add method, 846, 850
addToolBarButton method, 918, 1125
checkForSave method, 1100–1101, 1104, 1105
coding, initial, 844–845
constructor, 852–853, 856, 900–901, 931
createSketchModel method, 1264, 1265
dialog coding, 1005–1006, 1010
dispose method, 872
drop-down menu functionality, 847–851
enableEvents method, 870, 871, 878
FileAction object implementation, 907–908
fontItem member, 1037
getCurrentFont method, 1018

getElementColor method, 981
getElementType method, 983
getHeight method, 1148
getSketchName method, 1138
getWidth method, 1148
JPopupMenu object, implementing in, 1048–1049
menu coding, 897–898, 899–900, 905–906, 919, 1007
model/view architecture, 927, 928, 931
Observer interface implementation, 1082
openSketch method, 1101–1102, 1103
openXMLSketch method, 1257, 1262
Printable interface implementation, 1147
processMouseEvent method, 873
processWindowEvent method, 872, 874, 878
replaceQuotes method, 1261–1262
saveOperation method, 1094, 1097, 1100, 1101
saveSketch method, 1094, 1095
saveXMLSketch method, 1256, 1257
setCurrentFont method, 1027
setTitle method, 846
showDialog method, 1098, 1103
SketcherConstants value, importing, 898–899
status bar coding, 1001–1002
textAction member, 1017–1018
this notation, 1091
toolbar coding, 912–913, 914, 915, 917–918
tooltip coding, 920–921
writeXMLFile method, 1258
XML coding, 1255–1256, 1261–1262, 1263, 1265

SketchModel class
add method, 984
createDocument method, 1254
DOM document object, creating in, 1254–1255
getModelExtent method, 1117
Iterable interface implementation, 976
model/view architecture, 928–929
notifyObservers method, 975, 984
NotSerializableException thrown by, 1083
Observer interface implementation, 929
remove method, 975, 1052
Serializable interface implementation, 1083
setChanged method, 975
shape, storing in, 974–975
XML coding, 1254, 1255, 1262

SketchView class
ActionListener interface implementation, 1049
actionPerformed method, 1049, 1050–1052,

1065–1066, 1070, 1115
addMotionListener method, 979
addMouseWheelListener method, 979
createElement method, 982

1457

SketchView class

In
de

x

SketchView class (continued)
getGraphics method, 1020
getNumberOfPages method, 1139, 1143
getPrintable method, 1139
getShape method, 976
model/view architecture, 928, 929
Pageable interface implementation, 1139–1140
paint method, 935–936, 945, 949–950,

975–976, 1015
print method, 1112, 1115, 1116, 1118–1119,

1123–1124
Printable interface implementation, 1110,

1112, 1115
SketcherConstants value, importing, 983
update method, 984

skip method, 376
skippedEntity method, 1205
slash (/)

division operator, 39
path separator, 404

slash, asterisk (/*) comment block prefix, 82
slash, asterisks (/**) documentation comment prefix, 82
slash, equals sign (/=) op= operator, 54
slashes (//) comment prefix, 15, 81
slashSlashComments method, 388
slashStarComments method, 388
sleep method, 520, 731, 732, 733–734, 757
slice method, 442–443
SMIL (Synchronized Multimedia Integration

Language), 1155
SoftBevelBorder class, 810–811
sort method
Arrays class, 662–663, 664
BinaryTree class, 572, 574
ClassCastException thrown by, 663
Collections class, 630, 631, 654–655
comparator, using with, 662–663
IllegalArgumentException thrown by, 662
PhoneBook class, 654

SortedMap interface, 614, 615
SortedSet interface, 615
SpecialList class, 599
Sphere class
changeRadius method, 211, 219
constructor, 215–216, 222, 223–225
creating Sphere object, 217–218
definition, 201, 204, 220–221
duplicating Sphere object, 226
getCount method, 209, 222
objectCount method, 202
volume method, 202, 209–210, 222

spinner, 1033–1035
split method, 179–181, 703
Spring class, 834, 836–837
SQL (Structured Query Language). See also database
BigInteger value, working with, 1355–1357
data type

accessing type not mappable to Java, 1354–1357
corresponding Java types, 1330–1331
mapping to Java, 1331–1339
overview, 1282–1283

date value, working with, 1354–1355
declarative nature of, 1276
DELETE statement, 1291
escape syntax, 1359
INSERT statement, 1287–1288
ISO standard, 1281
null value, 1283, 1352–1354
procedure, 1359–1360
SELECT statement, 1288–1290, 1313, 1397
SQL time value, working with, 1355
state information, returning, 1361–1364
statement

batching, 1303, 1304
callable, 1304, 1359
enabling, 1296
language used, 1286–1287
placeholder, 1345–1346
prepared, 1304, 1345–1351

UPDATE statement, 1291
version considerations, 1281
whitespace, 1288
X/Open standard, 1361

SQLException class
Author object, thrown by, 1337
chaining, 1365–1368
createStatement method, thrown by, 1339
doQuery method, thrown by, 1366, 1368
getColumns method, thrown by, 1389
getConnection method, thrown by, 1298
getErrorCode method, 1364
getNextException method, 1366
getSQLState method, 1361
getTables method, thrown by, 1388
information about, returning, 1361–1365, 1397
setAsciiStream method, thrown by, 1349
setBinaryStream method, thrown by, 1349
setNextException method, 1365
setUnicodeStream method, thrown by, 1349
TryInputStream object, thrown by, 1350

SQLWarning class, 1368–1371
sqrt method, 56, 58, 144

1458

SketchView class (continued)

src.zip file, 7–8, 410
stack, 600, 605, 632–638, 658
Stack class

constructor, 633
described, 602, 611
empty method, 633
hierarchy, 613
List interface implementation, 615
listAll method, 600
peek method, 633
pop method, 600, 633, 635
push method, 600, 632, 633
search method, 633
serialization, 600

star, drawing, 963–966
StarPane class, 966–967
start method
JApplet class, 855
Matcher class, 694, 696
Thread class, 726, 727, 730

startDocument method, 1204
startElement method, 1204, 1206, 1212
startPrefixMapping method, 1205, 1213
startsWith method, 167, 174, 415
stateChanged method, 1034–1035
state-machine, 691
Statement interface, 1303–1304, 1339–1345
StatementTest class, 1314, 1315
static final constants, 244
static keyword, 25, 43, 201, 204, 209
status bar, creating, 997–1002
StatusPane class, 999
stop method, 855
stream. See also file, reading; file, writing to;

serialization
binary, 374–375, 377, 491–495
filtering, 377, 379, 381
flushing, 527
gathering-write operation, 477–481
input stream

array, reading from, 377, 382
audio, 377
byte, returning last read, 378
byte, skipping, 376
channel read operation, 485–488
checksum, 377
class for reading, creating, 388–391
closing, 376
compression, 377
database data source, using as, 1349–1351
database resultset, sending to, 1357–1359

encryption, 377
keyboard, 384–392, 689, 714, 721
line number, tracking, 378
message digest, updating, 377
monitoring, 378
standard, 384

output stream
array, reading to, 376, 380
array, writing to, 380, 383
closing, 420, 455, 527
command line, to, 373, 392
error output stream, 384
field, to, 394, 395–396
formatting, 396–399, 400
gathering-write operation, 477–481
print stream, 297, 373, 392–394
standard, 384
string, 396–399, 455–462
vector object, retrieving to, 629

permission, 373
piped, 377, 379
reader, 379–382
text

reading text file, 488–491
string, 396–399, 455–462

tokenizing, 374, 384–391, 399
Unicode mapping, 374, 375, 381–382, 385
writer, 379–380, 382–384

StreamCorruptedException class, 533, 534
StreamTokenizer class, 384–389, 399
string. See text
String class
charAt method, 170–171
compareTo method, 167–169
copyValueOf method, 184
endsWith method, 167, 415
equals method, 163, 165–166
equalsIgnoreCase method, 163
getBytes method, 183, 459
getChars method, 182–183
hashCode method, 642
indexOf method, 172–176, 177–178
intern method, 166
lastIndexOf method, 172, 173–174, 176
length method, 170
replace method, 182
split method, 179–181, 703
startsWith method, 167, 174, 415
StringBuffer object, creating String object from,

194–196
substring method, 177–178, 340

1459

String class

In
de

x

String class (continued)
Throwable class, passing String object to, 359
toCharArray method, 182–183
toLowerCase method, 171
toString method, 161
toUpperCase method, 171
trim method, 182, 629
valueOf method, 161, 228, 382
variable, String, 153–154, 155

StringBuffer class
append method, 189–191
capacity method, 188, 196
charAt method, 193
CharSequence interface implementation, 334
declaring StringBuffer object, 185–186
delete method, 194
deleteCharAt method, 193–194
ensureCapacity method, 188
getChars method, 193
initializing StringBuffer object, 185
insert method, 192–193
lastIndexOf method, 191–192
length method, 186, 196
Matcher class appendReplacement method,

referencing StringBuffer object in, 705
replace method, 192
reverse method, 194
setCharAt method, 193
setLength method, 188–189
String object, creating from StringBuffer object,

194–196
StringBuilder class versus, 489
threading support, 185
toString method, 194–196
variable, 186

StringBuilder class, 185, 334, 445, 489
StringCharacters class, 170–171
StringIndexOutOfBoundsException class, 170,

177, 189, 340, 343
StringReader class, 381
StringTokenizing class, 180
stringWidth method, 797
StringWriter class, 383
Stroke interface, 937
Structured Query Language. See SQL
strut, 820–823
StyleListener class, 1036
subList method, 622, 624
substring method, 177–178, 340
sum method, 837

Sun Java web site
coding convention resources, 30
graphics repository, 915
javadoc home page, 83
JAXP resources, 1152
JDK download, 5

super keyword, 276, 278
SVG (Scalable Vector Graphics), 1155, 1164, 1172
Swing component

button, 798–799
Component class, functionality inherited from, 779–780
Container class, functionality inherited from, 779
list, 801
look-and-feel provided by, 768, 772
menu, 799
MVC, 768––770
paint method, 1146
printing, 1146–1148
table, 801, 1317
text, 800
tooltip support, 797

SwingUtilities class, 865, 866, 888
switch statement, 102–108
synchronized keyword, 737
Synchronized Multimedia Integration Language

(SMIL), 1155
synchronizedList method, 762
System class
clearProperty method, 407
exit method, 364
FileDescriptor class versus, 425
gc method, 220, 265
getProperties method, 406–407, 1296
getProperty method, 406
out member, 25
setErr method, 384
setIn method, 384
setOut method, 384
setProperty method, 407, 1295

system property, 405–408, 1295
SystemColor class, 791
System.err error stream object, 362

T
T constructor, 548
table Swing component, 801, 1317
TableModel interface, 1318–1321
tan method, 54
tanh method, 55
ternary operator, 100

1460

String class (continued)

TestClassTypes class, 557
TestCloning class, 294
TestData class, 543–544
TestDerived class, 276–277
TestFormattedInput class, 391–392
TestNullValues class, 1353–1354
TestQueryTimeOut class, 1341–1342
TestSQLWarning class, 1369–1370
text. See also buffer, string buffer, font; whitespace

arithmetic, character, 61–63
array

character, 152, 182–184, 191
string, 155–156, 197, 1319

binary value, converting to string, 68, 77
carriage return, 61
case

converting, 93–94, 171
determining, 93–94, 95, 99
Java case sensitivity, 26
regular expression case sensitivity, 692, 693
XML case sensitivity, 1158

color, 791, 1014–1015, 1016
comparison, 92–94, 161–163, 167–168
concatenating strings, 45, 157–161, 228
counting characters, 173
creating string object, 153–155
cursor, 791
date

obtaining date from string, 684
obtaining string from date, 482, 1354

diacritic mark, 793
digit, testing if character is, 100
drawing, 937, 938, 1013–1015, 1017, 1064–1065
DTD, returning as string, 1229
end of string, checking for, 167
escape

Java, 60–61, 153, 402, 453, 699–700
SQL, 1359

extracting
character from string, 170–172, 193
substring, 177–181, 704
word from string, 177–179, 704

field, 800
file

string representation, returning, 408
writing string to, 455–462

glyph, 792, 937
hexadecimal value, converting string to, 63
image, adding to

bounding rectangle, 1014, 1015–1017, 1021
dialog for, creating, 1013–1014, 1023

drawing, 1013–1015, 1017
font, 1015, 1017
menu item for, creating, 1017–1019
positioning, 1015, 1017

immutability, 154, 185
interning, string, 166–167
label

button, 886, 892, 916, 917, 1092
statement, 123

language code, 397, 680
length of string

file write operation, handling length variation during,
460–462

returning, 170, 186
letter, checking if character is, 100, 171
line wrap, 1324, 1375
literal

character, 60, 61
string, 61, 153

menu item, 843, 846–847, 1017–1019, 1326
meta-character, 697
mutability, 184–185, 193–194
null string, 155, 157
ordering string, 167–169, 198
outputting, 25–26, 44–45
plural, adjusting programmatically, 101
Point object, converting to string, 228
position

character at specified position in string, returning,
170–171, 193

character position in string, returning, 174
substring position, returning, 191–192

random character, returning, 93, 134
replacing

character in string, 182
search and replace operation, 182, 705–708

reversing character sequence, 194, 198
searching

character, string for, 172–173
pattern, string for, 179
substring, for, 173–176

sequencing string, 167–168
serialization, 1089
sizing, 793, 794, 1017, 1033, 1252
spacing, 796
splitting string, 179–181, 703
start of string, checking for, 167
status bar, 999
stream

reading text file, 488–491
string, 396–399, 455–462

1461

text

In
de

x

text (continued)
Swing component, 800
tab, 61
Throwable class, passing String object to, 359
tokenizing string, 179–181, 385, 388, 703–704,

718–720
tooltip text, 903, 920, 1092
transformation, 1064–1065
vector, storing string in, 616
XML, working with in

case sensitivity, 1158
Element class Text member, 1174, 1189–1190,

1252–1253, 1269–1270
node, Text, 1244, 1252–1253
parsing, character, 1205, 1210
string, delimiting, 1158, 1160

Text

interface, 1227, 1236
node, 1244, 1252–1253

TextDialog class, 1023
TexturePaint class, 937
this variable, 210–211
thread

communication between threads, 756–758
creating, 726–727
daemon, 729–730
deadlock, 865–867, 888
death, 341
event-dispatching thread, 865–866
functionality provided by, 723
interrupting, 731–733
joining threads, 733
multithreading, 185, 612, 724–726
name, 736
pool, 730
priority, 761–765
scheduling, 733–734
sleep, 520, 731, 732, 733–734, 757
starting, 726–727
stopping, 727, 730, 731–733
string mutability considerations, 185
synchronization

hash table, 611
importance of, 736–737
lock, 738
transaction, storing in synchronized list, 762–763
transaction synchronization, method-based, 741–748
transaction synchronization, statement block-based,

749–754
vector, 611

user thread, 729–730

Thread class
deriving subclass from, 727–729
getName method, 736
getPriority method, 762
interrupt method, 732
interrupted method, 733
isAlive method, 733
isInterrupted method, 732, 733
join method, 733
run method, 726–727, 731, 739
setName method, 736
setPriority method, 761
sleep method, 520, 731, 732, 733–734, 757
start method, 726, 727, 730
yield method, 734

ThreadDeath class, 341
ThreadPoolExecutor class, 730
throw keyword, 359
Throwable class
catch block Throwable type requirement, 346
constructor, 359
execution stack, 359–360
fillInStackTrace method, 360
getMessage method, 360, 362, 364
hierarchy, 340–341
printStackTrace method, 360
String object, passing to, 359

throws keyword, 344
tilde (~) complement operator, 64, 67
time

database
connection login timeout, 1300
query timeout, 1341–1342
SQL time value, working with, 1355

daylight saving time, 678, 687
formatting, 679–683
repaint time limit, 935
returning, 684, 687–688
setting, 684, 686–687, 688
zone, 678, 685

Timestamp class, 1355
TimeZone class, 678, 685
title bar, 770, 1004, 1006, 1080, 1092
TitledBorder class, 825, 1385
tkgWeight class, 268
toArray method, 622–623
toBinaryString method, 68, 76–77
toCharArray method, 182–183
toDegrees method, 55
toHexString method
Integer class, 63
Long class, 63, 74

1462

text (continued)

token
comment, tokenizing, 385, 387, 388
delimiter, 179, 181, 720
resetting, 387, 388
Scanner object, using with, 717–720
stream, tokenizing, 374, 384–391, 399
string, tokenizing, 179–181, 385, 388, 703–704,

718–720
testing for, 717–718
whitespace, tokenizing, 385, 387
XML, 1172

toLowerCase method, 171
toolbar

button, adding, 798, 912–914, 916–918, 1019, 1077
creating, 911–912
docking, 798, 913–914
Exit action, 924
FileAction class coding, 916
floating, 914
Lottery class coding, 925
SketchFrame class toolbar coding, 912–913, 914,

915, 917–918
Toolkit object, 782–783, 792
tooltip

color, 921
creating, 920–922
FileAction class coding, 920
JTextField component, 1324
Lottery class coding, 925
SketchFrame class coding, 920–921
Swing component support, 797
text, 903, 920, 1092
TypeAction class coding, 921

toRadians method, 55
toString method
Author class, 1333–1334, 1336
Card class, 634
CharBuffer class, 489
Class class, 588
Date class, 1354, 1355
Double class, 228
Enum class, 302
File class, 408
Hand class, 638
Line class, 230, 233
listAll method, using with, 584
ListPoint class, 311
MagicHat class, 261
Object class, 288, 289
Point class, 228
PolyLine class, 317

String class, 161
StringBuffer class, 194–196

toUpperCase method, 171
transaction

result, outputting, 746
starting, 744, 745
status, testing, 744, 747
synchronization

list, storing in synchronized, 762–763
method-based, 741–748
statement block-based, 749–754

validation, 742
Transaction class, 742
transferFrom method, 503, 507
transferTo method, 502, 503, 507
transformation, coordinate system. See coordinate

system, transformation
transience, 532–533
translate method
Graphics2D class, 1115, 1119
Point class, 785
Rectangle class, 786

translation, 1052, 1059–1065. See also coordinate
system, transformation

treeCollapsed method, 1391
treeExpanded method, 1391
TreeExpansionEvent class, 1391
TreeExpansionListener interface, 1391
TreeMap class, 612, 615
TreeNode interface, 1377–1378
TreePath object, 1391, 1392
TreeSelectionEvent class, 1391, 1392
TreeSelectionListener interface
DatabaseBrowse class implementation, 1391
valueChanged method, 1391, 1395

TreeSet class, 610, 613
treeSort method, 574–575
treeWillCollapse method, 1391
treeWillExpand method, 1391
TreeWillExpandListener interface, 1391
triangle, drawing, 962, 963
trim method, 182, 629
trimToSize method, 620
try block. See exception, try block
TryApplet class, 809
TryAssertions class, 132
TryAutoboxing class, 556, 569
TryBinarySearch class, 668–669
TryBinaryTree class, 582
TryBitMethods class, 76
TryBlockTest class, 353, 355, 358, 361

1463

TryBlockTest class

In
de

x

TryBorderLayout class, 811–812
TryBoxLayout class, 818–819
TryBoxLayout4 class, 824
TryCalendar class, 689–690
TryCapturingGroups class, 709
TryCardLayout class, 813–814
TryConversions class, 322, 323–324
TryDateFormats class, 682
TryDeal class, 637
TryDOM class, 1231–1232, 1234
TryEncapsulatedMapping class, 1338
TryEnumeration class, 78, 305–306
TryFile class, 410–411
TryFile3 class, 416
TryFile2 class, 412–413
TryFlexibleBinaryTree class, 586
TryFlowLayout class, 805–806
TryGenericLinkedList class, 553
TryGeometry class, 232
TryGridBagLayout class, 829–830
TryGridLayout class, 816–817
TryInitialization class, 212–214
TryInputStream class, 1349–1350
TryInputStream2 class, 1357–1358
TryLimitedVariableArgumentList class, 297–298
tryLock method, 518, 519, 520
TryNestedClass class, 260, 261, 263
TryPackage class, 254
TryParameterizedConstructor class, 597
TryParameterizedMethods class, 594, 595
TryPhoneBook class, 651–653, 656
TryPolyLine class, 312–313, 539–540, 639
TryPolymorphism class, 284, 286
TryProperties class, 407
TryRegex class, 695
TryRemoteControl class, 332
TryScanner class, 716
TrySerializableLinkedList class, 563–564
TrySimpleMapping class, 1335–1336
TrySimpleVector class, 617
TrySortingWithComparator class, 664–665
TrySpringLayout class, 840
TrySwitch class, 106–107
TryThread class, 727–728, 729
TryVariableArgumentList class, 296–297
TryVector class, 626–627, 631
TryWildCard class, 583–584
TryWildCardArray class, 589–590, 592
TryWindow class, 771, 773

TryWindow4 class, 792
TryWindow3 class, 783
TryWindow2 class, 782
tuple, 1278
TV class, 328–329
type. See also casting; specific type

arithmetic expression, mixed, 51–52
class, relation to, 200
covariant, 281
database column type, returning, 1330
erasure, 281, 554
floating-point types, 36–37, 49–51, 56, 117–118,

1406–1407
generic

array, 588–589
autoboxing, 556
binary tree, 569–572
casting, 558–559
collection generic type implementation, 602
constructor, 595–598
defining, 548–549, 559–560, 571–572
field, static, 560
inheritance, 598–599
instance, 557–559
interface, 549, 565
list, linked, 549–555, 565–569
method, 560, 592–595
parameter scope, 560
parameter, type, 548, 561–565
primitive wrapper type argument, using as, 555–556
variable, 548
wildcard, using as parameter argument, 582–585

integer types, 31–33
JDBC data type, 1329–1331
mixed data

reading from file, 496–499
writing to file, 471–472

parameterized, 547
primitive, 31, 52, 80, 244–245, 555–556
raw, 580–581
serialization

types readable, 538
types writable, 528–529

SQL data type
accessing type not mappable to Java, 1354–1357
Java type correspondence, 1330–1331
mapping to Java, 1331–1339
overview, 1282–1283

typesafe class, 548

1464

TryBorderLayout class

wildcard
array, 589–592
binary tree, using with, 582–583, 587, 590–591
bound, 584
generic type parameter argument, using as, 582–585
listAll method, using wildcard specification in, 582

XML data type, 1183
TypeAction class, 907, 908, 917, 921, 1001
TypeListener class, 899–900
Types class, 1330

U
UI delegate, 770
UIManager class, 772
ULP (Unit in the Last Place), 56
unary operator, 39
unboxInteger method, 246
UNC (Universal Naming Convention), 405
underscore (_) identifier prefix, 30
Unicode character set

ASCII conversion to, 31
escape sequence, 60–61, 153
hexadecimal value, 60
Java use of, 27
stream mapping, 374, 375, 381–382, 385
surrogate, 27, 154–155
variable name representation, 31
web site, 60
XML encoding, 1151, 1154

uniform resource identifier (URI), 403, 1165, 1178,
1192–1193, 1206

uniform resource locator. See URL
Uniform Resource Name (URN), 1164
union method, 787
Unit in the Last Place (ULP), 56
Universal Naming Convention (UNC), 405
University of California Donald Bren School of Informa-

tion and Computer Sciences web site, 680
UnsupportedOperationException class
add method, thrown by, 609
array method, thrown by, 445
exception condition represented, 343
newSchema method, thrown by, 1217
remove method, thrown by, 566, 608, 609
set method, thrown by, 610
setValue method, thrown by, 647

update method
Observable object change, calling at, 671, 674–675
SketchView class, 984
View class, 671

URI (uniform resource identifier), 403, 1165, 1178,
1192–1193, 1206

URL (uniform resource locator)
database URL entry, 1375
described, 403
JDBC use of, 1297

URN (Uniform Resource Name), 1164
useDelimiter method, 720
user

coordinate system, 933
space, 933
thread, 729–730

UseStringBuffer class, 195

V
validatePage method, 1135
value method, 244
valueChanged method
ListSelectionListener interface, 1030
TreeSelectionListener interface, 1391, 1395

valueOf method
Date class, 1354, 1355
NumberFormatException exception thrown by, 343
String class, 161, 228, 382

values method
enumeration class type, of, 303
Map interface, 614, 646, 647
PhoneBook class, 655

variable
arithmetic result, storing in, 38–39
array variable, 136, 138–139, 141–142
boolean, 79–80, 86
bound, leftmost, 555
class variable, 111, 200
comparison result, storing in, 86
constant, designating as, 204
counter, 40, 46–47, 97, 112–113, 115–118
declaring

array variable, 136, 141
final, as, 37–38
floating-point variable, 37
integer variable, 34–36
lines, spanning declaration over multiple, 35
method, in, 107, 207
multiple variables in single statement, 35
placement in code, 34
try block, within, 347

described, 29
fixing value, 37–38, 77–78
generic, 548

1465

variable

In
de

x

variable (continued)
incrementing value, 46–47, 112–113, 121
initializing, 34–35, 37–38, 70, 84, 141–142
instance variable, 14, 111, 201, 202
integer, 31–32, 34–36, 77–78
local, 108, 109, 207
naming, 30–31
object lifetime, relation to, 219
range of values, storing in, 32
raw, 580–581
scope, 108–110
String variable, 153–154, 155
StringBuffer variable, 186
type variable, 548
window object, storing in, 846

VCR class, 330–331
vector

adding object, 617, 620–621, 635
array

relation to, 611
returning vector elements as, 622–623

capacity, 615–616, 618–620, 629
creating, 616–618
curve serialization, using in, 1088–1089
emptiness, testing for, 624
index, 611, 618, 620
iteration, 611, 617–618, 621–622
number of objects in, returning, 629
removing object, 623–624
returning object in, 618, 621–623, 628–629
searching, 625–626
sequence, as, 604
sizing, 618–620
sorting, 631
space free, returning, 629
stack, relation to, 632
streaming output, 629
string, storing in, 616
SVG, 1155, 1164, 1172
synchronization, 611

Vector class
add method, 617, 620, 635
addAll method, 621
capacity method, 619
constructor, 616, 633
described, 602, 611
ensureCapacity method, 619
firstElement method, 621
get method, 618, 621
hasNext method, 618

hierarchy, 613
indexOf method, 625–626
isEmpty method, 624
lastElement method, 621
List interface implementation, 615, 638
next method, 618
remove method, 623–624
removeAll method, 624
removeAllElements method, 624
removeElementAt method, 624
retainAll method, 624
set method, 620
setSize method, 619
size method, 618, 629
synchronization, 611
toArray method, 622–623
trimToSize method, 620

Vector interface, 602
version ID, 545
view buffer. See buffer, view buffer
View class, 671
VirtualMachineError class, 341
void keyword, 43
volume, calculating, 84, 202, 209–210, 222

W
wait method, 288, 756–757, 758
warning method, 1214
wasNull method, 1353, 1354
WeakHashMap class, 612, 613
WeatherFan class, 147
weight, calculating, 268
while statement, 113, 114, 119–120
WhileLoop class, 119
whitespace

regular expression, matching in, 692, 699, 700
SQL, 1288
testing for, 100
tokenizing, 385, 387
trimming, 182, 721
XML

ignoring in, 1205, 1210, 1212, 1235–1236
readability, inserting for, 1162

whitespaceChars method, 387
width method, 838
wildcard type. See type, wildcard
winding rule, 960–961, 1087
window. See also event handling, window

border, 770, 791
center point, returning, 784

1466

variable (continued)

closing
event handling, 870–873, 875, 879, 906, 1104
file save, prompting for, 1104–1106
operation carried out at, setting default, 774, 775,

857, 873, 931
color, 791, 792, 999, 1000
creating, 770–775
dialog dependency with parent window, 1002
hiding, 774
iconification, 868, 872, 875, 1104
pane

color, 999, 1000
content pane, 777
glass, 778
layering, 777, 778
root, 778
split, 1024, 1031–1032, 1375–1376, 1381
top, displaying on, 778

positioning, 773, 783–784, 858
realizing, 865
sizing, 782–783, 858
Sketcher class, referencing in, 846
title bar, 770, 1080
variable, storing window object in, 846

Window class
container, Window object as, 801
dispose method, 872
hierarchy, 770, 775
JFrame class compared, 776
processWindowFocusEvent method, 873
processWindowStateEvent method, 873
setVisible method, 842, 865

windowActivated method, 875, 1104
WindowAdapter class, 880, 881, 1104
windowClosed method, 875, 1104
windowClosing method
Sketcher class, 879
WindowHandler class, 906, 931
WindowListener interface, 875, 1104–1105

WindowConstants interface, 774
windowDeactivated method, 875, 1104
windowDeiconified method, 875, 1104
WindowEvent class, 868, 869, 871, 879
WindowFocusListener interface, 875, 877
windowGainedFocus method, 875
WindowHandler class, 881, 906, 931, 1105
windowIconified method, 875, 1104
WindowListener

class, 879
interface, 875, 877, 879, 1104–1105

windowLostFocus method, 875
windowOpened method, 875, 1104
windowStateChanged method, 875
WindowStateListener interface, 875, 877
wordChars method, 387
World Wide Web Consortium. See W3C
wrap method, 443–444, 481
wrapper class, 555–556
WritableByteChannel interface, 431–432
write method
AsynchronousCloseException thrown by,

452, 454
ClosedByInterruptException thrown by,

452, 454
ClosedChannelException thrown by, 451, 454
FileChannel class, 453–454, 507–508
GatheringByteChannel interface, 433
IllegalArgumentException thrown by, 454, 508
IndexOutOfBoundsException thrown by, 478
IOException thrown by, 452, 454
NonWritableChannelException thrown by,

451, 454
ObjectOutputStream class, 529
OutputStream class, 379
WritableByteChannel interface, 432
Writer class, 380

WriteableByteChannel interface, 431–432
WriteAString class, 455–456
WriteAStringAsBytes class, 458–459
writeByte method, 528–529
writeBytes method, 529
writeChar method, 528–529
writeChars method, 529
writeDocumentNode method, 1260
writeDouble method, 528, 1084
writeFloat method, 528
writeInt method, 528
writeLong method, 528
writeObject method
Element class, 1084, 1251
InvalidClassException thrown by, 528
IOException thrown by, 528
NotSerializableException thrown by, 528
ObjectOutputStream class, 527, 540, 541

WriteProverbs class, 460–461
Writer class, 380, 382
writeShort method, 528
writeXMLFile method, 1258
Wrox Web site, 28

1467

Wrox Web site

In
de

x

W3C (World Wide Web Consortium)
DOM standard, 1198
SAX2 standard, 1198
Schema standard, 1179
SVG resources, 1172
XML specification, 1152

X
Xerces parser, 1198, 1199, 1225
XML (Extensible Markup Language). See also DOM

(Document Object Model); DTD (Document Type
Definition)

ATTLIST statement, 1169
attribute

document, attribute-normal, 1161
DTD, declaring within, 1169–1171
element attribute, 1157, 1160–1161, 1169–1171,

1184–1185, 1236–1239
grouping, 1185
information about, returning, 1206
naming, 1160
node, 1246–1247
number of attributes in object, returning, 1206
reference, returning, 1244
value, specifying default, 1171

cardinality operators, 1168–1169
case sensitivity, 1158
CDATA statement, 1159, 1165
character encoding, 1151, 1154, 1176
circle, working with

attribute-normal, 1161
color, 1170, 1173
element attribute, 1169–1170, 1184
Element class Circle member, 1173, 1178, 1189,

1251, 1268
positioning, 1160–1161
radius, 1160–1161, 1170, 1173

color, working with, 1170, 1173, 1184–1185,
1187–1188

commenting code, 1157–1158, 1225, 1244
curve, working with, 1174, 1189, 1251–1252,

1268–1269
data structure, 1162–1163
data type, 1183
declaring, 1153–1154, 1176
DOCTYPE declaration, 1153, 1155, 1164, 1167, 1176
document

attribute-normal, 1161
body, 1153, 1176

combining documents, 1177
creating, 1239–1243
element-normal, 1161
fragment, 1245
naming, 1240
node, 1228, 1260–1261
Schema, defining in accordance with, 1192
well-formed, 1153–1154, 1176–1177

editing, 1151
element

attribute, 1157, 1160–1161, 1169–1171,
1184–1185, 1236–1239

child, 1157, 1229
complex, 1184–1185
content, 1155, 1156, 1161, 1166, 1235–1236
defining, 1166–1169, 1182–1183
document, element-normal, 1161
empty, 1155, 1157
grouping element choices, 1186
ID, 1172
naming, 1158
node, 1228, 1248–1253
number of elements in object, returning, 1221, 1273
optional, designating as, 1166
overlapping, 1157
parent, 1157
parsing, 1205, 1235–1236
reference, returning, 1243
root, 1153, 1155, 1176, 1181, 1229
simple, 1182, 1185

entity
declaring, 1158–1159, 1171, 1172
general, 1158–1159, 1200
list, 1172
node, 1228
parameter entity, 1171, 1200
parsing, skipping in, 1205
predefined, 1156
reference, 1159, 1225, 1245
resolving, 1204

exporting, 1255–1260
feature, 1199, 1200–1202, 1240
importing, 1254–1255, 1257, 1263–1270, 1273
indentation, 1162, 1234
line, working with, 1173, 1187–1188,

1249–1250, 1267
markup, 1152
meta-language, as, 1152

1468

W3C (World Wide Web Consortium)

namespace
collision, 1177
declaring, 1178–1179
default, 1178
DTD considerations, 1179
parsing, 1200, 1210–1211, 1212, 1225
prefix, 1177, 1178, 1200, 1205, 1213
qualification, 1178–1179, 1213
scope, 1178
URI, 1178, 1192–1193, 1206

node
Attr node, 1228
attribute node, 1246–1247
CDATASection node, 1244
child, 1246
Comment node, 1244
Document node, 1228, 1260–1261
Element node, 1228, 1248–1253
Entity node, 1228
EntityReference node, 1228, 1245
indentation, 1234
inserting, 1246
leaf, 1163
listing nodes, 1229, 1230–1235
name, returning, 1234
ProcessingInstruction node, 1245
returning, 1236–1237
Text node, 1244, 1252–1253

notation, 1172
parsing

character, 1205, 1210
comment, ignoring, 1225
creating parser object, 1199, 1201, 1216
element, 1205, 1235–1236
entity, skipping, 1205
event handling, 1193–1194, 1202–1203, 1205,

1207–1211, 1214–1215
feature, 1199, 1200–1202, 1240
namespace, 1200, 1210–1211, 1212, 1225
property, 1199, 1202
secure, 1225
specifying parser used, 1199
validation, instructing parser to perform, 1199, 1225
validation, testing if parser will perform, 1197, 1200
whitespace, ignoring, 1205, 1210, 1212, 1235–1236

PCDATA, 1155, 1165, 1166
PI, 1153, 1205, 1228, 1245
point, defining, 1188
processor, 1153, 1154–1155

prolog, 1153, 1154, 1176
rectangle, working with, 1173, 1188, 1250–1251,

1267–1268
Schema

declaring, 1182
defining, 1182
document, defining in accordance with, 1192
instance document, 1192, 1215–1220
location, specifying, 1192
root element, 1181
validation using, 1217, 1220
W3C standard, 1179
XSD, 1180, 1181–1182

SketcherConstants class XML coding, 1257
SketchFrame class XML coding, 1255–1256,

1261–1262, 1263, 1265
SketchModel class XML coding, 1254, 1255, 1262
standalone statement, 1176
tag structure, 1152, 1155, 1156–1157
text, working with

case sensitivity, 1158
Element class Text member, 1174, 1189–1190,

1252–1253, 1269–1270
font, defining, 1174, 1189–1190, 1252–1253
node, Text, 1244, 1252–1253
parsing, character, 1205, 1210
string, delimiting, 1158, 1160

token, 1172
tree structure, 1163, 1227–1229
Unicode encoding, 1151, 1154
validation

DTD, against, 1154–1155
parser, instructing to perform, 1199, 1225
parser, testing if validation will be performed by,

1197, 1200
processor, validating, 1154–1155
Schema, using, 1217, 1220

whitespace
ignoring, 1205, 1210, 1212, 1235–1236
readability, inserting for, 1162

writing XML file, 1257–1260
W3C specification, 1152
xmlns attribute, 1178, 1179, 1181

XML Schema Definition language (XSD), 1180,
1181–1182

XMLConstants class, 1216
xmlElement object, 1267
XMLExportAction class, 1255
XMLImportAction class, 1257, 1263

1469

XMLImportAction class

In
de

x

XMLReader interface, 1195, 1202
X/Open standard, 1361
XOR

drawing mode, 980–981, 995
operator, 64

XSD (XML Schema Definition language), 1180,
1181–1182

XSLT (Extensible Stylesheet Language Transformations),
1193

Y
yield method, 734

Z
ZeroDivideException class, 365–366

1470

XMLReader interface

	Cover
	Foreword
	Contents
	Introducing Java
	What Is Java All About?
	Features of The Java Language
	Learning Java
	Java Programs
	Learning Java— The Road Ahead

	The Java Environment
	Java Program Development

	Object-Oriented Programming in Java
	So What Are Objects?
	What Defines a Class of Objects?
	Operating on Objects
	Java Program Statements
	Encapsulation
	Classes and Data Types
	Classes and Subclasses
	Advantages of Using Objects

	Java Program Structure
	Java’s Class Library
	Java Applications

	Java and Unicode
	Summary
	Resources

	Programs, Data, Variables, and Calculation
	Data and Variables
	Naming Your Variables
	Variable Names and Unicode
	Variables and Types

	Integer Data Types
	Integer Literals
	Declaring Integer Variables

	Floating-Point Data Types
	Floating-Point Literals
	Declaring Floating-Point Variables

	Fixing the Value of a Variable
	Arithmetic Calculations
	Integer Calculations
	Integer Division and Remainders
	The Increment and Decrement Operators
	Computation with Shorter Integer Types
	Errors in Integer Arithmetic
	Floating-Point Calculations

	Mixed Arithmetic Expressions
	Explicit Casting
	Automatic Type Conversions in Assignments

	The op= Operators
	Mathematical Functions and Constants
	Storing Characters
	Character Escape Sequences
	Character Arithmetic

	Bitwise Operations
	Using the AND and OR Operators
	Using the Exclusive OR Operator
	Shift Operations
	Methods for Bitwise Operations

	Variables with a Fixed Set of Integer Values
	Boolean Variables
	Operator Precedence
	Program Comments
	Documentation Comments

	Summary
	Exercises

	Loops and Logic
	Making Decisions
	Making Comparisons
	The if Statement
	Nested if Statements
	Comparing Enumeration Values

	Logical Operators
	The Conditional Operator
	The switch Statement
	The General Case of the switch Statement

	Variable Scope
	Loops
	Varieties of Loop
	Nested Loops
	The continue Statement
	Using the break Statement in a Loop

	Assertions
	More Complex Assertions

	Summary
	Exercises

	Arrays and Strings
	Arrays
	Array Variables
	Defining an Array
	The Length of an Array
	Accessing Array Elements
	Reusing Array Variables
	Initializing Arrays
	Using Arrays
	Arrays of Arrays
	Arrays of Characters

	Strings
	String Literals
	Creating String Objects
	Arrays of Strings

	Operations on Strings
	Joining Strings
	Comparing Strings
	Sequencing Strings
	Accessing String Characters
	Searching Strings for Characters
	Searching for Substrings
	Extracting Substrings
	Modified Versions of String Objects
	Creating Character Arrays from String Objects
	Using the Collection-Based for Loop with a String
	Obtaining the Characters in a String as an Array of Bytes
	Creating String Objects from Character Arrays

	Mutable Strings
	Creating StringBuffer Objects
	The Capacity of a StringBuffer Object
	Changing the String Length for a StringBuffer Object
	Adding to a StringBuffer Object
	Finding the Position of a Substring
	Replacing a Substring in the Buffer
	Inserting Strings
	Extracting Characters from a Mutable String
	Other Mutable String Operations
	Creating a String Object from a StringBuffer Object

	Summary
	Exercises

	Defining Classes
	What Is a Class?
	Fields in a Class Definition
	Methods in a Class Definition
	Accessing Variables and Methods

	Defining Classes
	Defining Methods
	Returning from a Method
	The Parameter List
	Defining Class Methods
	Accessing Class Data Members in a Method
	The Variable this
	Initializing Data Members

	Constructors
	The Default Constructor
	Creating Objects of a Class

	Defining and Using a Class
	Method Overloading
	Multiple Constructors
	Duplicating Objects Using a Constructor

	Using Objects
	Creating a Point from Two Lines

	Recursion
	Understanding Packages
	Packaging Up Your Classes
	Adding Classes from a Package to Your Program
	Packages and Names in Your Programs
	Importing Static Class Members
	Standard Packages

	Controlling Access to Class Members
	Using Access Attributes
	Specifying Access Attributes
	Choosing Access Attributes

	Nested Classes
	Static Nested Classes
	Using a Non-Static Nested Class
	Using a Nested Class Outside the Top-Level Class
	Local Nested Classes

	The finalize() Method
	Native Methods
	Summary
	Exercises

	Extending Classes and Inheritance
	Using Existing Classes
	Class Inheritance
	Inheriting Data Members
	Inherited Methods
	Overriding a Base Class Method

	Choosing Base Class Access Attributes
	Polymorphism
	Using Polymorphism

	Multiple Levels of Inheritance
	Abstract Classes
	The Universal Superclass
	The toString() Method
	Determining the Type of an Object
	Copying Objects

	Methods Accepting a Variable
	Number of Arguments
	Limiting the Types in a Variable Argument List

	Casting Objects
	When to Cast Objects
	Identifying Objects

	More on Enumerations
	Adding Members to an Enumeration Class

	Designing Classes
	A Classy Example

	Using the final Modifier
	Interfaces
	Encapsulating Constants in a Program
	Interfaces Declaring Methods
	Extending Interfaces
	Using Interfaces
	Method Parameters of Interface Types
	Nesting Classes in an Interface Definition
	Interfaces and the Real World

	Anonymous Classes
	Summary
	Exercises

	Exceptions
	The Idea Behind Exceptions
	Types of Exceptions
	Error Exceptions
	RuntimeException Exceptions
	Other Subclasses of Exception

	Dealing with Exceptions
	Specifying the Exceptions a Method Can Throw
	Handling Exceptions
	The try Block
	The catch Block
	The finally Block
	Structuring a Method
	Execution Sequence
	Nested try Blocks
	Rethrowing Exceptions

	Exception Objects
	The Throwable Class
	Standard Exceptions

	Defining Your Own Exceptions
	Defining an Exception Class
	Throwing Your Own Exception
	An Exception Handling Strategy

	Summary
	Exercises

	Understanding Streams
	Streams and the New I/O Capability
	Understanding Streams
	Input and Output Streams
	Binary and Character Streams

	The Classes for Input and Output
	Basic Input Stream Operations
	Basic Output Stream Operations
	Stream Readers and Writers

	The Standard Streams
	Getting Data from the Keyboard
	Writing to the Command Line
	The printf() Method
	Formatting Data into a String

	Summary
	Exercises

	Accessing Files and Directories
	Working with File Objects
	Creating File Objects
	Accessing System Properties
	Testing and Checking File Objects
	Filtering a File List
	Creating and Modifying Files and Directories

	Creating File Output Streams
	Ensuring a File Exists
	Avoiding Overwriting a File
	FileDescriptor Objects

	Summary
	Exercises

	Writing Files
	File I/O Basics
	File Input and Output
	Channels
	Channel Operations
	File Channels

	Buffers
	Buffer Capacity
	Buffer Position and Limit
	Setting the Position and Limit
	Creating Buffers
	Marking a Buffer
	Buffer Data Transfers
	Transferring Data into a Buffer
	Using View Buffers
	Preparing a Buffer for Output to a File

	Writing to a File
	File Position
	Writing Varying Length Strings to a File
	Direct and Indirect Buffers
	Writing Numerical Data to a File
	Writing Mixed Data to a File
	Gathering-Write Operations

	Summary
	Exercises

	Reading Files
	File Read Operations
	Creating File Input Streams

	File Channel Read Operations
	Reading a Text File
	Getting Data from the Buffer

	Reading Binary Data
	Reading Mixed Data
	Compacting a Buffer

	Copying Files
	Random Access to a File
	Read/Write Operations with a Single File
	Channel
	Memory-Mapped Files
	Locking a File
	Locking Part of a File
	Practical File Locking Considerations

	Summary
	Exercises

	Serializing Objects
	Storing Objects in a File
	Writing an Object to a File
	Writing Basic Data Types to an Object Stream
	Implementing the Serializable Interface
	Reading an Object from a File
	Using Object Serialization
	Serializing Classes Yourself
	Serialization Problems and Complications

	Summary
	Exercises

	Generic Class Types
	What Are Generic Types?
	Defining a Generic Class Type
	Implementing a Generic Type
	Instantiating a Generic Type
	The Runtime Type of Generic Type Instances
	Relationships between Generic Type Instances
	Multiple Type Parameters
	Type Parameter Scope
	Static Fields in a Generic Type
	Type Parameter Bounds

	Generic Types and Generic Interfaces
	Enabling the Collection-Based for Loop
	Implementing an Iterator Capability
	A Parameterized Type for Binary Trees

	Variables of a Raw Type
	Using Wildcards as Type
	Parameter Arguments
	Constraints on a Wildcard
	More on the Class Class

	Arrays and Parameterized Types
	Parameterized Methods
	Generic Constructors

	Parameterized Types and Inheritance
	Summary
	Exercises

	The Collections Framework
	Understanding the Collections
	Framework
	Collections of Objects
	Sets
	Sequences
	Maps

	Iterators
	List Iterators

	Collection Classes
	Collection Interfaces

	Using Vectors
	Creating a Vector
	Storing Objects in a Vector
	Retrieving Objects from a Vector
	Removing Objects from a Vector
	Searching a Vector
	Applying Vectors
	Sorting a Collection
	Stack Storage

	Linked Lists
	Using Maps
	The Hashing Process
	Using Your Own Class Objects as Keys
	Creating a HashMap Container
	Storing, Retrieving, and Removing Objects
	Processing all the Elements in a Map

	Summary
	Exercises

	A Collection of Useful Classes
	Utility Methods for Arrays
	Filling an Array
	Comparing Arrays
	Sorting Arrays
	Searching Arrays

	Observable and Observer Objects
	Defining Classes of Observable Objects
	Observable Class Methods

	Generating Random Numbers
	Random Operations

	Dates and Times
	The Date Class
	Interpreting Date Objects
	Gregorian Calendars

	Regular Expressions
	Defining Regular Expressions

	Using a Scanner
	Creating Scanner Objects
	Getting Input from a Scanner
	Testing for Tokens
	Defining Your Own Patterns for Tokens

	Summary
	Exercises

	Threads
	Understanding Threads
	Creating Threads
	Stopping a Thread
	Connecting Threads
	Thread Scheduling
	Implementing the Runnable Interface

	Managing Threads
	Synchronization
	Deadlocks
	Communicating between Threads

	Thread Priorities
	Using Thread Priorities

	Summary
	Exercises

	Creating Windows
	Graphical User Interfaces in Java
	Model-View-Controller (MVC) Architecture

	Creating a Window
	Components and Containers
	Window and Frame Components
	Window Panes

	Basics of Components
	Component Attributes
	The Size and Position of a Component
	Points and Rectangles
	Visual Characteristics of a Component
	Swing Components

	Using Containers
	Adding Components to a Container

	Container Layout Managers
	The Flow Layout Manager
	Using a Border Layout Manager
	Using a Card Layout Manager
	Using a Grid Layout Manager
	Using a BoxLayout Manager
	Using a GridBagLayout Manager
	Using a SpringLayout Manager

	Adding a Menu to a Window
	Creating JMenu and JMenuItem
	Creating a Menu
	Adding Menu Items to a Menu
	Adding a Shortcut for a Menu Item

	More on Applets
	Converting an Application to an Applet

	Summary
	Exercises

	Handling Events
	Window-Based Java Programs
	Event-Driven Programs

	The Event-Handling Process
	Avoiding Deadlocks in GUI Code
	Event Classes
	Low-Level Event Classes
	Low-Level Event Listeners
	Semantic Events
	Semantic Event Listeners

	Semantic Event Handling in Applets
	Alternative Event-Handling Approaches
	Handling Low-Level and Semantic Events

	Semantic Event Listeners in an Application
	Listening to Menu Items

	Using Actions
	The Action Interface
	Using Actions as Menu Items

	Adding a Toolbar
	Adding Buttons to a Toolbar
	Adding Tooltips
	Disabling Actions

	Summary
	Exercises

	Drawing in a Window
	Using the Model/View Architecture
	Coordinate Systems in Components
	Drawing on a Component
	Graphics Contexts
	The Drawing Process
	Rendering Operations

	Shapes
	Classes Defining Points
	Lines and Rectangles
	Arcs and Ellipses
	Curves
	Complex Paths

	Filling Shapes
	Gradient Fill

	Managing Shapes
	Storing Shapes in the Model
	Drawing Shapes

	Drawing Using the Mouse
	Handling Mouse Events
	Handling Mouse Button Press Events
	Handling Mouse Dragging Events
	Handling Button Release Events
	Locating the Mouse Cursor Using
	MouseInfo Class Methods

	Defining Your Own Shape Classes
	Defining Lines
	Defining Rectangles
	Defining Circles
	Drawing Curves

	Summary
	Exercises

	Extending the GUI
	Creating a Status Bar
	Using Dialogs
	Modal and Non-Modal Dialogs
	A Simple Modal Dialog
	Instant Dialogs
	Input Dialogs
	A Font Selection Dialog

	Pop-Up Menus
	Displaying a Pop-Up Menu
	Implementing a Context Menu

	Transforming the User Coordinate System
	The AffineTransform Class
	Modifying the Transformation for a Graphics Context
	Creating AffineTransform Objects

	Choosing Custom Colors
	Summary
	Exercises

	Filing and Printing Documents
	Serializing the Sketch
	Implementing the Serializable Interface
	Serializing the List of Elements

	Supporting the File Menu
	Using a File Chooser
	File Save Operations
	File Save As Operations
	File Open Operations
	Starting a New Sketch
	Preventing Data Loss on Close

	Printing in Java
	Creating and Using PrinterJob Objects
	Printing Pages
	Printing the Whole Sketch
	Printing in Landscape Orientation
	Improving the Printing Facilities
	Implementing Page Setup
	Using the Java Print Dialog
	Multipage Document Printing
	Printing Using a Book
	Printing Swing Components

	Summary
	Exercises

	Java and XML
	XML
	XML Document Structure
	Valid XML Documents
	Elements in an XML Document
	Element Attributes

	Data Structure in XML
	Document Type Definitions
	Declaring a DTD
	Defining a DTD
	A DTD for Sketcher

	Rules for a Well-Formed Document
	XML Namespaces
	Namespace Declarations
	XML Namespaces and DTDs

	XML Schemas
	Defining a Schema
	Defining Elements
	Defining Attributes for Complex Elements
	Specifying a Group of Element Choices
	A Schema for Sketcher
	A Document That Uses a Schema

	Programming with XML Documents
	SAX Processing
	DOM Processing

	Accessing Parsers
	Using SAX
	Using a Different Parser
	Parser Features and Properties
	Parsing Documents with SAX
	Implementing a SAX Handler
	Handling Other Parsing Events
	Parsing a Schema Instance Document

	Summary
	Exercises

	Creating and Modifying XML Documents
	The Document Object Model (DOM)
	Setting DOM Parser Features
	Parsing a Document
	Navigating a Document Object Tree
	Creating XML Documents
	Storing a Sketch as XML
	Reading an XML Representation of a Sketch

	Summary
	Exercises

	Talking to Databases
	JDBC Concepts and Terminology
	Tables
	Database Catalog

	Introducing SQL
	Designing an Intersection Table
	SQL Statements
	INSERT Statements
	SELECT Statements
	UPDATE Statements
	Delete Statements

	The JDBC Package
	Relating JDBC to ODBC
	JDBC Basics
	Setting Up a Database
	DriverManager
	Creating a Connection to a Data Source
	More on Drivers
	Statement Objects
	ResultSet Objects
	Getting Metadata for a Resultset

	The Essential JDBC Program
	Using a PreparedStatement Object
	Creating an Interactive SQL Tool
	Using Tables
	The Application GUI
	Handling Events
	Handling Command-Line Arguments

	Summary
	Exercises

	The JDBC in Action
	Data Types and JDBC
	Mapping between Java and SQL Data Types

	Mapping Relational Data onto Java Objects
	A Better Mapping Strategy

	The Statement and PreparedStatement
	Interfaces
	The Statement Interface
	The PreparedStatement Interface

	The ResultSet
	Retrieving Column Data for Specified Data Types
	Working with Null Values
	Working with Special Data Types
	Working with Streams

	Calling Procedures
	Handling Errors
	SQLException
	Chaining SQLExceptions
	SQLWarnings

	Browsing a Database
	Displaying Database Data
	Using a JTree Component
	Getting Database Metadata
	Using Tree Listeners

	Summary
	Exercises

	Appendix A. Keywords
	Appendix B. Computer Arithmetic
	Binary Numbers
	Hexadecimal Numbers
	Negative Binary Numbers

	Floating-Point Numbers

	Index
	SYMBOLS AND
	NUMERICS
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	Kkey
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

