Programmer to Programmer

With my book you can leam Java programming using
the la and greatest Java platform — Java 2
Standard Edition n 5.0 (J2SE 5.0). J25E 5.0
is a huge leap forward in

The richne

makes this book somewhat larger than previous
editions, but don't assume the size of the book
reflects the complexity of the challenge. Sure, the
knowledge base you need to be a competent Java
programmer b mn a little, but none of

for programming, you can and will gain the expertise
to become an effective Java programmer.

you'll have acquired a highly marketable skill and the
ed from achieving something
really worthwhile.

Try it — I'm sure you'll like it!

Ivor Horton’s Beginning

ava 2

JDK 5 Edition

Updates, source code, and Wrox technical support at www.wrox.com

Ivor Horton’s Beginning Java™ 2,
JDK™ 5 Edition

Ivor Horton’s Beginning Java™ 2,
JDK™ 5 Edition

Ivor Horton

WILEY
Wiley Publishing, Inc.

Ivor Horton’s Beginning Java™ 2, JDK™ 5 Edition

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2005 by Ivor Horton

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-6874-4

Manufactured in the United States of America

10987654321

5B/RU/RS/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, e-mail: brandreviewewiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Horton, Ivor.
Ivor Horton’s Beginning Java 2, JDK 5 Edition / Ivor Horton.
p. cm.
Includes index.
ISBN 0-7645-6874-4 (paper/website)
1. Java (Computer program language) I. Title: Ivor Horton’s Beginning Java 2, JDK 5 Edition. I1. Title.
QA76.73.J38H6758 2004
005.13"3—dc22
2004017036

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. Java and JDK are trademarks of Sun
Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

About the Author

Ivor Horton started out as a mathematician, but shortly after graduating, he was lured into messing
about with computers by a well-known manufacturer. He has spent many happy years programming
occasionally useful applications in a variety of languages as well as teaching mainly scientists and engi-
neers to do likewise. He has extensive experience in applying computers to problems in engineering
design and to manufacturing operations in a wide range of industries. He is the author of a number of
tutorial books on programming in C, C++, and Java. When not writing programming books or provid-
ing advice to others, he leads a life of leisure.

Credits

Executive Editor
Robert Elliott

Senior Development Editor
Kevin Kent

Technical Editors

Calvin Austin, J2SE 5.0 Specification Lead, Sun
Microsystems

Wiley-Dreamtech India Pvt Ltd

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists

Karl Brandt
Jonelle Burns
Kelly Emkow
Carrie Foster
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Ron Terry

Quality Control Technicians
Joe Niesen

Susan Moritz

Brian H. Walls

Media Development Specialist
Travis Silvers

Proofreading and Indexing
TECHBOOKS Production Services

Cover Photograph
© Ian Capener

Foreword

You are probably reading this foreword with one of several things in mind. First, is this the right book
for me, is the material current, and does the text reflect the final API? Second, what should I expect to
learn and where should I start reading a book of this length?

Many of the forewords I have seen will lead you through an amusing anecdote or story and then men-
tion a little about the author, but then fail to leave you any wiser about the answer to those questions. So,
to get straight to the point and to answer the second question first, this is a book that you can start from
page one and read right through to the end. If you haven’t read any of Ivor Horton’s books before, you
are in for a pleasant surprise. Ivor’s style is very accessible, which makes the content easy to follow and
understand. I know, because I have read this book from cover to cover.

This edition of Ivor Horton’s Beginning Java 2, JDK 5 Edition is based on the J2SE 5.0 platform. The J2SE 5.0
release is one of the most significant updates to the Java platform in many years and has been three
years in the making. The release involved 160 experts worldwide, all working through the Java
Community Process and focused on making the platform better for all developers. I have been involved
with the project since day one as the Specification Lead for JSR 176, which defines the contents of J2SE
5.0. As such, I had a great interest in making sure that this book is accurate and matches the final API set.
I've even compiled and run every code example twice, and there are a lot of great examples, as you will
find out.

So what can you expect to learn from this new edition? First, Ivor covers the basic programming blocks
and gets you started with your first Java program. Ivor then introduces the Java language changes step
by step, including the new generic types, the enhanced for loop, enumerated types, and many others.
You will also get to use the new language changes in later chapters and learn some of the other non-
language features, such as XML DOM3 updates. So whether you are a new developer or already have
some Java programming experience, you will gain the skills needed to work with the latest Java release.

In closing, I encourage you to read and enjoy what JDK 5.0 has to offer and find out how easy using J2SE
5.0 really is.

Calvin Austin
J2SE 5.0 Specification Lead
Sun Microsystems

Acknowledgments

While a book is usually attributed to the author, a book —particularly a large book such as this —is
always the result of the efforts of a sizeable team of people. I'd therefore like to thank all the editorial
and production staff at Wiley who worked so hard to produce this fifth edition of my Java tutorial from
my initial draft.

I'd especially like to thank Calvin Austin of Sun Microsystems for his extensive technical input. He
somehow found the time to go through the complete text and try out all the examples — twice —in spite
of the considerable demands of his day job. Calvin’s suggestions for improvements were invaluable, as
was his ability to spot my mistakes, and I'm particularly grateful for his indications of where I'd missed
some of the inevitable changes arising from the evolution of the J2SE 5.0 API during the beta phases.
Any errors that remain are, of course, my own, but there are surely fewer of them as a consequence of
Calvin’s efforts.

I'd also like to thank readers of past editions of Ivor Horton's Beginning Java for their numerous sugges-
tions for corrections and improvements. In addition to the many changes that I made in response to
these, I also updated and reintroduced the chapters on using JDBC that were omitted from the previous
edition, in response to requests from a number of readers. The greatly increased page count of this edi-
tion over the previous edition is only in part a consequence of restoring the JDBC tutorial. The bulk of
the additional page count is attributable to new material relating to the features introduced by J2SE 5.0
that deliver exciting new capabilities for every Java programmer. The J2SE 5.0 release is truly a major
step forward that encompasses important extensions to the Java language as well as major additions to
the class libraries.

Finally I'd like to thank my wife, Eve, who provides unstinting support for whatever I happen to be
doing and cheerfully accepts my complaints about the workload that I freely elected to undertake. She
always manages to be on hand whenever I need sustenance or sympathy, or both, and undoubtedly I
would never have finished this book without her.

Ivor Horton

Contents

About the Author v
Foreword ix
Acknowledgments Xi
Introduction XXXVii
Chapter 1.: Introducing Java 1
What Is Java All About? 1
Features of the Java Language 2
Learning Java 3
Java Programs 3
Learning Java— The Road Ahead 3
The Java Environment 4
Java Program Development 5
Installing the JDK 6
Compiling a Java Program 8
Executing a Java Application 9
Executing an Applet 10
Object-Oriented Programming in Java 12
So What Are Objects? 13
What Defines a Class of Objects? 14
Operating on Objects 17
Java Program Statements 19
Encapsulation 20
Classes and Data Types 20
Classes and Subclasses 21
Advantages of Using Objects 21
Java Program Structure 21
Java’s Class Library 22
Java Applications 24
Java and Unicode 27
Summary 27
Resources 28

Contents

Chapter 2: Programs, Data, Variables, and Calculation

29

Data and Variables
Naming Your Variables
Variable Names and Unicode
Variables and Types
Integer Data Types
Integer Literals
Declaring Integer Variables
Floating-Point Data Types
Floating-Point Literals
Declaring Floating-Point Variables
Fixing the Value of a Variable
Arithmetic Calculations
Integer Calculations
Producing Output
Integer Division and Remainders
The Increment and Decrement Operators
Computation with Shorter Integer Types
Errors in Integer Arithmetic
Floating-Point Calculations
Other Floating-Point Arithmetic Operators
Error Conditions in Floating-Point Arithmetic
Mixed Arithmetic Expressions
Explicit Casting
Automatic Type Conversions in Assignments
The op= Operators
Mathematical Functions and Constants
Importing the Math Class Methods
Storing Characters
Character Escape Sequences
Character Arithmetic
Bitwise Operations
Using the AND and OR Operators
Using the Exclusive OR Operator
Shift Operations
Methods for Bitwise Operations

Variables with a Fixed Set of Integer Values

Boolean Variables

Operator Precedence

Program Comments
Documentation Comments

Xiv

29
30
31
31
31
33
34
36
36
37
37
38
39
44
45
46
48
49
49
50
51
51
52
52
53
54
59
60
60
61
63
65
68
70
74
77
79
80
81
82

Contents

Summary 83
Exercises 84
Chapter 3: Loops and Logic 85
Making Decisions 85
Making Comparisons 86
The if Statement 87
Statement Blocks 88

The else Clause 90
Nested if Statements 91
Comparing Enumeration Values 94
Logical Operators 95
Logical AND Operations 95

&& versus & 97
Logical OR Operations 98
Boolean NOT Operations 98
Character Testing Using Standard Library Methods 99

The Conditional Operator 100
The switch Statement 102
The General Case of the switch Statement 104
Variable Scope 108
Loops 111
Varieties of Loop 112
Counting Using Floating-Point Values 117
Nested Loops 121
The continue Statement 123
The Labeled continue Statement 123
Using the break Statement in a Loop 124
Breaking Indefinite Loops 127

The Labeled break Statement 128
Assertions 130
More Complex Assertions 132
Summary 133
Exercises 134
Chapter 4: Arrays and Strings 135
Arrays 135
Array Variables 136
Defining an Array 136
The Length of an Array 137

XV

Contents

Accessing Array Elements
Reusing Array Variables
Initializing Arrays
Using a Utility Method to Initialize an Array
Initializing an Array Variable
Using Arrays
Using the Collection-Based for Loop with an Array
Arrays of Arrays
Arrays of Arrays of Varying Length
Multidimensional Arrays
Arrays of Characters

Strings

String Literals
Creating String Objects
Arrays of Strings

Operations on Strings

Joining Strings
Comparing Strings

Comparing Strings for Equality

String Interning

Checking the Start and End of a String
Sequencing Strings
Accessing String Characters

Extracting String Characters
Searching Strings for Characters
Searching for Substrings
Extracting Substrings

Tokenizing a String
Modified Versions of String Objects
Creating Character Arrays from String Objects
Using the Collection-Based for Loop with a String
Obtaining the Characters in a String as an Array of Bytes
Creating String Objects from Character Arrays

Mutable Strings

XVi

Creating StringBuffer Objects
The Capacity of a StringBuffer Object
Changing the String Length for a StringBuffer Object
Adding to a StringBuffer Object
Appending a Substring
Appending Basic Types
Finding the Position of a Substring
Replacing a Substring in the Buffer
Inserting Strings

138
138
139

140

141
142

143
145

149

151
152
152
153
153
155
157
157
161

163

166

167
167
169

170
172
173
177

179
182
182
183
183
184
184
185
186
188
189

189

190
191
192
192

Contents

Extracting Characters from a Mutable String 193
Other Mutable String Operations 193
Creating a String Object from a StringBuffer Object 194
Summary 196
Exercises 197
Chapter 5: Defining Classes 199
What Is a Class? 200
Fields in a Class Definition 200
Methods in a Class Definition 202
Accessing Variables and Methods 203
Defining Classes 204
Defining Methods 205
Returning from a Method 206
The Parameter List 206
How Argument Values Are Passed to a Method 208

Final Parameters 209
Defining Class Methods 209
Accessing Class Data Members in a Method 209
The Variable this 210
Initializing Data Members 211
Using Initialization Blocks 212
Constructors 215
The Default Constructor 216
Creating Objects of a Class 217
Passing Objects to a Method 218

The Lifetime of an Object 219
Defining and Using a Class 220
Method Overloading 222
Multiple Constructors 223
Calling a Constructor from a Constructor 225
Duplicating Objects Using a Constructor 226
Using Objects 227
Creating a Point from Two Lines 230
Recursion 233
Understanding Packages 236
Packaging Up Your Classes 237
Packages and the Directory Structure 237
Compiling a Package 238
Accessing a Package 239
Using Extensions 240
Adding Classes from a Package to Your Program 241

XVii

Contents

Packages and Names in Your Programs 241
Importing Static Class Members 242
Standard Packages 243
Standard Classes Encapsulating the Primitive Data Types 244
Controlling Access to Class Members 246
Using Access Attributes 246
Specifying Access Attributes 248
Choosing Access Attributes 250
Using Package and Access Attributes 251
Nested Classes 256
Static Nested Classes 257
Using a Non-Static Nested Class 262
Using a Nested Class Outside the Top-Level Class 263
Local Nested Classes 264
The finalize() Method 265
Native Methods 266
Summary 266
Exercises 267
Chapter 6: Extending Classes and Inheritance 269
Using Existing Classes 269
Class Inheritance 271
Inheriting Data Members 272
Hidden Data Members 273
Inherited Methods 273
Objects of a Derived Class 274
Deriving a Class 275
Derived Class Constructors 275
Calling the Base Class Constructor 276
Overriding a Base Class Method 277
Choosing Base Class Access Attributes 279
Polymorphism 279
Using Polymorphism 282
Multiple Levels of Inheritance 286
Abstract Classes 287
The Universal Superclass 288
The toString() Method 289
Determining the Type of an Object 289
Copying Objects 291
Methods Accepting a Variable Number of Arguments 295
Limiting the Types in a Variable Argument List 297

xviii

Contents

Casting Objects 298
When to Cast Objects 300
Identifying Objects 301

More on Enumerations 302
Adding Members to an Enumeration Class 303

Designing Classes 307
A Classy Example 307

Designing the PolyLine Class 309
A General-Purpose Linked List 313

Using the final Modifier 317

Interfaces 318
Encapsulating Constants in a Program 319

Constants in an Interface 320
Constants Defined in a Class 321
Interfaces Declaring Methods 323
A Partial Interface Implementation 324
Extending Interfaces 325
Interfaces and Multiple Inheritance 326
Using Interfaces 326
Interfaces and Polymorphism 327
Using Multiple Interfaces 333
Method Parameters of Interface Types 333
Nesting Classes in an Interface Definition 334
Interfaces and the Real World 334

Anonymous Classes 335

Summary 335

Exercises 337

Chapter 7: Exceptions 339

The Idea Behind Exceptions 339

Types of Exceptions 340
Error Exceptions 341
RuntimeException Exceptions 342
Other Subclasses of Exception 343

Dealing with Exceptions 344
Specifying the Exceptions a Method Can Throw 344
Handling Exceptions 345
The try Block 345
The catch Block 345

try catch Bonding 347
Multiple catch Blocks 349
The finally Block 350

Xix

Contents

Structuring a Method 351
Execution Sequence 352
Normal Execution of a Method 355
Execution When an Exception Is Thrown 356
Execution When an Exception Is Not Caught 357
Nested try Blocks 358
Rethrowing Exceptions 359
Exception Objects 359
The Throwable Class 359
Standard Exceptions 362
Defining Your Own Exceptions 362
Defining an Exception Class 363
Throwing Your Own Exception 363
An Exception Handling Strategy 364
An Example of an Exception Class 364
Summary 368
Exercises 368
Chapter 8: Understanding Streams 371
Streams and the New 1/0 Capability 371
Understanding Streams 372
Input and Output Streams 373
Binary and Character Streams 374
The Classes for Input and Output 375
Basic Input Stream Operations 375
Basic Output Stream Operations 379
Stream Readers and Writers 379
Using Readers 381
Using Writers 382

The Standard Streams 384
Getting Data from the Keyboard 384
Tokenizing a Stream 385
Customizing a Stream Tokenizer 387
Writing to the Command Line 392
The printf() Method 392
Formatting Numerical Data 394
Specifying the Width and Precision 395
Formatting Characters and Strings 396

The Locale Class 397
Formatting Data into a String 398
Summary 399
Exercises 399

XX

Contents

Chapter 9: Accessing Files and Directories 401
Working with File Objects 401
Creating File Objects 402
Portable Path Considerations 404
Absolute and Relative Paths 404
Accessing System Properties 405
Setting System Properties 407
Testing and Checking File Objects 408
Querying Files and Directories 409
Filtering a File List 414
Creating and Modifying Files and Directories 417
Creating File Output Streams 419
Ensuring a File Exists 421
Avoiding Overwriting a File 423
FileDescriptor Objects 424
Summary 425
Exercises 425
Chapter 10: Writing Files 427
File 1/0 Basics 427
File Input and Output 429
Channels 430
Channel Operations 431
File Channels 433
Buffers 434
Buffer Capacity 434
Buffer Position and Limit 435
Setting the Position and Limit 437
Creating Buffers 438
View Buffers 439
Duplicating and Slicing Buffers 441
Creating Buffers by Wrapping Arrays 443
Wrapping Strings 445
Marking a Buffer 446
Buffer Data Transfers 446
Transferring Data into a Buffer 447
Using View Buffers 449
Preparing a Buffer for Output to a File 449
Writing to a File 451
File Position 453
Using a View Buffer to Load Data into a Byte Buffer 458

XXi

Contents

Writing Varying Length Strings to a File 460
Using a Formatter Object to Load a Buffer 462
Direct and Indirect Buffers 466
Writing Numerical Data to a File 467
Writing Mixed Data to a File 471
Gathering-Write Operations 477
Summary 481
Exercises 482
Chapter 11: Reading Files 483
File Read Operations 483
Creating File Input Streams 484
File Channel Read Operations 485
Reading a Text File 488
Getting Data from the Buffer 489
Reading Binary Data 491
Reading Mixed Data 496
Compacting a Buffer 499
Copying Files 502
Random Access to a File 507
Read/Write Operations with a Single File Channel 512
Memory-Mapped Files 513
Locking a File 517
Locking Part of a File 519
Practical File Locking Considerations 519
Summary 523
Exercises 524
Chapter 12: Serializing Objects 525
Storing Objects in a File 525
Writing an Object to a File 526
Writing Basic Data Types to an Object Stream 528
Implementing the Serializable Interface 529
Conditions for Serialization 532
Transient Data Members of a Class 533
Reading an Object from a File 533
Determining the Class of a Deserialized Object 537
Reading Basic Data from an Object Stream 538
Using Object Serialization 538
Serializing Classes Yourself 541

xxii

Contents

Serialization Problems and Complications 542
Resetting an Object Output Stream 544
Summary 545
Exercises 546
Chapter 13: Generic Class Types 547
What Are Generic Types? 547
Defining a Generic Class Type 548
Implementing a Generic Type 550
Instantiating a Generic Type 551
Using Primitive Type Wrapper Class Types as Arguments 555

The Runtime Type of Generic Type Instances 557
Relationships between Generic Type Instances 559
Multiple Type Parameters 559
Type Parameter Scope 560
Static Fields in a Generic Type 560
Type Parameter Bounds 561
Generic Types and Generic Interfaces 565
Enabling the Collection-Based for Loop 565
Implementing an Iterator Capability 567

A Parameterized Type for Binary Trees 569
Defining the Generic Type 571
Hidden Constraints in the BinaryTree<> Type 579
Variables of a Raw Type 580
Using Wildcards as Type Parameter Arguments 582
Constraints on a Wildcard 584
More on the Class Class 587
Arrays and Parameterized Types 588
Parameterized Methods 592
Generic Constructors 595
Parameterized Types and Inheritance 598
Summary 599
Exercises 600
Chapter 14: The Collections Framework 601
Understanding the Collections Framework 601
Collections of Objects 602
Sets 603
Sequences 604
Maps 605
Hashing 606

XXiii

Contents

Iterators 606
List Iterators 608
Collection Classes 610
Collection Interfaces 614
Using Vectors 615
Creating a Vector 616
The Capacity and Size of a Vector 618
Storing Objects in a Vector 620
Retrieving Objects from a Vector 621
Accessing Elements in a Vector through a List Iterator 621
Extracting All the Elements from a Vector 622
Removing Objects from a Vector 623
Searching a Vector 625
Applying Vectors 626
Sorting a Collection 630
Stack Storage 632
Linked Lists 638
Using Maps 640
The Hashing Process 640
Using Your Own Class Objects as Keys 642
Generating Hashcodes 642
Creating a HashMap Container 643
Storing, Retrieving, and Removing Objects 644
Processing all the Elements in a Map 646
Summary 657
Exercises 658
Chapter 15: A Collection of Useful Classes 659
Utility Methods for Arrays 659
Filling an Array 660
Comparing Arrays 661
Sorting Arrays 662
Searching Arrays 666
Observable and Observer Objects 670
Defining Classes of Observable Objects 671
Observable Class Methods 671
Generating Random Numbers 675
Random Operations 676
Dates and Times 678
The Date Class 679
Interpreting Date Objects 679
Obtaining a Date Object from a String 684

XXiv

Contents

Gregorian Calendars 684
Setting the Date and Time 686
Getting Date and Time Information 687
Modifying Dates and Times 688
Comparing Calendars 688

Regular Expressions 691

Defining Regular Expressions 691
Creating a Pattern 692
Creating a Matcher 693
Searching a String 694
Matching an Entire String 696
Defining Sets of Characters 697
Matching Boundaries 700
Using Quantifiers 701
Tokenizing a String 703
Search and Replace Operations 705
Using Capturing Groups 708
Juggling Captured Text 710

Using a Scanner 714

Creating Scanner Objects 714

Getting Input from a Scanner 715

Testing for Tokens 717

Defining Your Own Patterns for Tokens 718

Summary 720
Exercises 721
Chapter 16: Threads 723
Understanding Threads 723

Creating Threads 726

Stopping a Thread 731

Connecting Threads 733

Thread Scheduling 733

Implementing the Runnable Interface 734

Managing Threads 736

Synchronization 737
Synchronized Methods 737
Synchronizing Statement Blocks 749

Deadlocks 755

Communicating between Threads 756
Using wait() and notifyAll() in the Bank Program 758

Thread Priorities 761

Using Thread Priorities 762

XXV

Contents

Summary 765
Exercises 766
Chapter 17: Creating Windows 767
Graphical User Interfaces in Java 767
Model-View-Controller (MVC) Architecture 768
Creating a Window 770
Components and Containers 775
Window and Frame Components 776
Window Panes 777
Basics of Components 779
Component Attributes 779
The Size and Position of a Component 780
Points and Rectangles 784
Point Objects 784
Rectangle Objects 785
Visual Characteristics of a Component 788
Defining Color 789
System Colors 791
Creating Cursors 791
Selecting Fonts 792
Swing Components 797
Buttons 798
Menus 799

Text Components 800
Other Swing Components 800
Using Containers 801
Adding Components to a Container 802
Container Layout Managers 803
The Flow Layout Manager 805
Changing the Gap 807
Using a Border Layout Manager 811
Using a Card Layout Manager 813
Using a Grid Layout Manager 815
Using a BoxLayout Manager 817
Struts and Glue 820
Using a GridBagLayout Manager 825
GridBagConstraints Instance Variables 826
Using a SpringLayout Manager 834
Understanding Constraints 835
Defining Constraints 836
Setting Constraints for a Component 837

XXVi

Contents

Adding a Menu to a Window 843
Creating JMenu and JMenultem 843
Creating a Menu 844
Adding Menu Items to a Menu 847
Adding a Shortcut for a Menu Item 852

More on Applets 854
Converting an Application to an Applet 856

Summary 857

Exercises 858

Chapter 18: Handling Events 861

Window-Based Java Programs 861
Event-Driven Programs 862

The Event-Handling Process 863

Avoiding Deadlocks in GUI Code 865

Event Classes 867
Low-Level Event Classes 868

Making a Window Handle Its Own Events 870
Enabling Other Low-level Events 873
Low-Level Event Listeners 874
The WindowListener Interface 875
The WindowFocusListener Interface 875
The WindowStateListener Interface 875
The MouselListener Interface 876
The MouseMotionListener Interface 876
The MouseWheelListener Interface 876
The KeyListener Interface 876
The FocusListener Interface 877
Using Adapter Classes 879
Semantic Events 882
Semantic Event Listeners 883

Semantic Event Handling in Applets 884
Alternative Event-Handling Approaches 893
Handling Low-Level and Semantic Events 895

Semantic Event Listeners in an Application 896
Listening to Menu Items 896

Fixing the Color Menu Check Marks 902

Using Actions 902
The Action Interface 903
Using Actions as Menu Items 905

Defining Action Classes 906

XXvii

Contents

Adding a Toolbar 911
Adding Buttons to a Toolbar 912
Adding Icons 914
Fixing the Menus 918
Adding Tooltips 920
Disabling Actions 922
Summary 924
Exercises 924
Chapter 19: Drawing in a Window 927
Using the Model/View Architecture 927
Coordinate Systems in Components 931
Drawing on a Component 933
Graphics Contexts 934
The Drawing Process 937
Rendering Operations 938
Shapes 939
Classes Defining Points 939
Lines and Rectangles 941
Combining Rectangles 943
Testing Rectangles 944

Arcs and Ellipses 947
Curves 950
Complex Paths 960
Filling Shapes 966
Gradient Fill 968
Managing Shapes 972
Storing Shapes in the Model 974
Drawing Shapes 975
Drawing Using the Mouse 976
Handling Mouse Events o177
Handling Mouse Button Press Events 979
Using XOR Mode 980
Handling Mouse Dragging Events 981
Handling Button Release Events 983
Locating the Mouse Cursor Using Mouselnfo Class Methods 985
Defining Your Own Shape Classes 985
Defining Lines 986
Defining Rectangles 988
Defining Circles 990
Drawing Curves 993

XXViii

Contents

Summary 996
Exercises 996
Chapter 20: Extending the GUI 997
Creating a Status Bar 997
Using Dialogs 1002
Modal and Non-Modal Dialogs 1003

A Simple Modal Dialog 1005
Instant Dialogs 1009
Input Dialogs 1011
Using a Dialog to Create Text Elements 1013

A Font Selection Dialog 1023
Creating the Font Dialog Buttons 1026
Adding the Data Pane 1027
Implementing the Font List 1028
Displaying the Selected Font 1031

Using a Split Pane 1031

Using a Spinner 1033

Using Radio Buttons to Select the Font Style 1035
Listening for Radio Buttons 1036
Pop-Up Menus 1039
Displaying a Pop-Up Menu 1040
Implementing a Context Menu 1044
Tracking Mouse Moves 1045
Defining the Other Context Menu 1048
Deleting Elements 1050
Implementing the Send-to-Back Operation 1051
Transforming the User Coordinate System 1052
The AffineTransform Class 1054
Modifying the Transformation for a Graphics Context 1056
Creating AffineTransform Objects 1058
Translating Lines 1060
Translating Rectangles 1062
Translating Circles 1063
Translating Curves 1063
Translating Text 1064
Moving an Element 1065
Rotating Elements 1070
Choosing Custom Colors 1074
Summary 1076
Exercises 1077

XXiX

Contents

Chapter 21.: Filing and Printing Documents 1079
Serializing the Sketch 1080
Implementing the Serializable Interface 1083

Serializing the List of Elements 1083
Serializing Lines 1084
Serializing Rectangles 1085
Serializing Circles 1086
Serializing Curves 1086
Serializing Text 1089

Supporting the File Menu 1089

Using a File Chooser 1090

File Save Operations 1091
Implementing the Save Operation 1093
Writing a Sketch to a File 1095
Creating a File Filter 1097

File Save As Operations 1099

File Open Operations 1100

Starting a New Sketch 1103

Preventing Data Loss on Close 1104

Printing in Java 1106

Creating and Using PrinterJob Objects 1109
Displaying a Print Dialog 1110
Starting the Printing Process 1111

Printing Pages 1112
The PageFormat Class 1114

Printing the Whole Sketch 1117
Scaling the Sketch to Fit 1120

Printing in Landscape Orientation 1123

Improving the Printing Facilities 1125

Implementing Page Setup 1126

Using the Java Print Dialog 1130
Setting Print Request Attributes Programmatically 1132

Multipage Document Printing 1134
Implementing the Pageable Interface 1134
Creating PageFormat Objects 1135
Dealing with Paper 1136

Printing Using a Book 1143

Printing Swing Components 1146

Summary 1149
Exercises 1150

XXX

Introducing Java

This chapter will give you an appreciation of what the Java language is all about. Understanding
the details of what I'll discuss in this chapter is not important at this stage; you will see all of the
topics again in greater depth in later chapters of the book. The intent of this chapter is to introduce
you to the general ideas that underpin what I'll be covering through the rest of the book, as well as
the major contexts in which Java programs can be used and the kind of program that is applicable
in each context.

In this chapter you will learn:

O The basic characteristics of the Java language

How Java programs work on your computer

Why Java programs are portable between different computers
The basic ideas behind object-oriented programming

How a simple Java program looks and how you can run it using the Java Development Kit

0O 00 0 0D

What HTML is and how it is used to include a Java program in a web page

What Is Java All About?

Java is an innovative programming language that has become the language of choice for programs
that need to run on a variety of different computer systems. First of all, Java enables you to write
small programs called applets. These are programs that you can embed in web pages to provide
some intelligence. Being able to embed executable code in a web page introduces a vast range of
exciting possibilities. Instead of being a passive presentation of text and graphics, a web page can
be interactive in any way that you want. You can include animations, games, interactive transac-
tion processing — the possibilities are almost unlimited.

Chapter 1

Of course, embedding program code in a web page creates special security requirements. As an Internet
user accessing a page with embedded Java code, you need to be confident that it won’t do anything that
might interfere with the operation of your computer, or damage the data you have on your system. This
implies that execution of the embedded code must be controlled in such a way that it will prevent acci-
dental damage to your computer environment, as well as ensure that any Java code that was created with
malicious intent is effectively inhibited. Java implicitly incorporates measures to minimize the possibility
of such occurrences arising with a Java applet.

Java’s support for the Internet and network-based applications generally doesn’t end with applets. For
example, Java Server Pages (JSP) provides a powerful means of building a server application that can
dynamically create and download HTML pages to a client that are precisely customized for the specific
request that is received. Of course, the pages that are generated by JSP can themselves contain Java applets.

Java also allows you to write large-scale application programs that you can run unchanged on any com-
puter with an operating system environment in which Java is supported. This applies to the majority of
computers in use today. You can even write programs that will work both as ordinary applications and
as applets.

Java has matured immensely in recent years, particularly since the introduction of Java 2. The breadth
of function provided by the standard core Java has grown incredibly. Java provides you with compre-
hensive facilities for building applications with an interactive graphical user interface (GUI), extensive
image processing and graphics programming facilities, as well as support for accessing relational data-
bases and communicating with remote computers over a network. Just about any kind of application
can now be programmed effectively in Java, with the implicit plus of complete portability.

Of course, Java is still developing and growing. Amongst a myriad of other enhancements, release 1.4
of Java added a major additional capability, the ability to read and write XML. Java 5.0, which followed
release 1.4, adds further new facilities, including important new language features as well as significant
additions to the class libraries. You'll be learning about all of these in this book.

Features of The Java Language

The most important characteristic of Java is that it was designed from the outset to be machine indepen-
dent. You can run Java programs unchanged on any machine and operating system combination that
supports Java. Of course, there is still the slim possibility of the odd glitch, as you are ultimately depen-
dent on the implementation of Java on any particular machine, but Java programs are intrinsically more
portable than programs written in other languages. An application written in Java will only require a
single set of source code statements, regardless of the number of different computer platforms on which
it is run. In any other programming language, the application will frequently require the source code to
be tailored to accommodate different computer environments, particularly if an extensive graphical user
interface is involved. Java offers substantial savings in time and resources in developing, supporting,
and maintaining major applications on several different hardware platforms and operating systems.

Possibly the next most important characteristic of Java is that it is object-oriented. The object-oriented
approach to programming is also an implicit feature of all Java programs, so we will be looking at what
this implies later in this chapter. Object-oriented programs are easier to understand and less time-
consuming to maintain and extend than programs that have been written without the benefit of using
objects.

Introducing Java

Not only is Java object-oriented, but it also manages to avoid many of the difficulties and complications
that are inherent in some other object-oriented languages, making it easy to learn and very straight-
forward to use. By and large, it lacks the traps and “gotchas” that arise in some other programming
languages. This makes the learning cycle shorter, and you need less real-world coding experience to
gain competence and confidence. It also makes Java code easier to test.

Java has a built-in ability to support national character sets. You can write Java programs as easily for

use in Greece or Japan as you can for English-speaking countries, always assuming you are familiar with
the national languages involved, of course. You can even build programs from the outset to support sev-
eral different national languages with automatic adaptation to the environment in which the code executes.

Learning Java

Java is not difficult to learn, but there is a great deal to it. Although the Java language is very powerful, it
is fairly compact, so acquiring an understanding of it will take less time than you think. However, there’s
more to Java than just the language. To be able to program effectively in Java, you also need to under-
stand the libraries that go with the language, and these are very extensive. In this book, the sequence in
which you learn how the language works and how you apply it has been carefully structured so that
you'll gain expertise and confidence with programming in Java through a relatively easy and painless
process. As far as possible, each chapter avoids the use of things you haven’t learned about already. A
consequence, though, is that you won’t be writing Java applications with a GUI right away. While it may
be an appealing idea, this would be a bit like learning to swim by jumping in the pool at the deep end.
Generally speaking, there is good evidence that by starting in the shallow end of the pool and learning
how to float before you try to swim, you'll minimize the chance of drowning, and there is a high expec-
tation that you'll end up being a competent swimmer.

Java Programs

As I'have already noted, there are two basic kinds of programs you can write in Java. Programs that are
to be embedded in a web page are called Java applets, and normal standalone programs are called Java
applications. You can further subdivide Java applications into console applications, which only support
character output to your computer screen (to the command line on a PC under Windows, for example),
and windowed applications, which can create and manage multiple windows. The latter use the typical
GUI mechanisms of window-based programs — menus, toolbars, dialogs, and so on.

While you are learning the Java language basics, you will be using console applications as examples to
illustrate how things work. These are applications that use simple command-line input and output. With
this approach you can concentrate on understanding the specifics of the language, without worrying
about any of the complexity involved in creating and managing windows. Once you are comfortable
with using all the features of the Java language, you'll move on to windowed applications and applet
examples.

Learning Java— The Road Ahead

Before starting out on any journey, it is always helpful to have an idea of where you're heading and
what route you should take, so let’s take a look at a brief road map of where you'll be going with Java.
There are five broad stages you'll progress through in learning Java using this book:

Chapter 1

1. The first stage is this chapter. It sets out some fundamental ideas about the structure of Java pro-
grams and how they work. This includes such things as what object-oriented programming is
all about and how an executable program is created from a Java source file. Getting these con-
cepts straight at the outset will make learning to write Java programs that much easier for you.

2. Next, you'll learn how statements are put together, what facilities you have for storing basic
data in a program, how you perform calculations, and how you make decisions based on the
results of them. These are the nuts and bolts you need for the next stages.

3. Inthe third stage, you'll learn about classes —how you define them and how you can use them.
Classes are blueprints for objects, so this is where you’ll learn the object-oriented characteristics
of Java. By the time you are through this stage, you will have learned all the basics of how the
Java language works, so you'll be ready to progress further into how you can use it.

4. In the fourth stage, you'll learn how you can segment the activities that your programs carry
out into separate tasks that can execute concurrently. This is particularly important for when
you want to include several applets in a web page, and you don’t want one applet to have
to wait for another to finish executing before it can start. You may want a fancy animation to
continue running while you play a game, for example, with both programs sitting in the same
web page.

5. In the fifth stage, you'll learn in detail how you implement an application or an applet with a
graphical user interface, and how you handle interactions with the user in this context. This
amounts to applying the capabilities provided by the Java class libraries. When you finish this
stage, you will be equipped to write your own fully fledged applications and applets in Java.

At the end of the book, you should be a knowledgeable Java programmer. The rest is down to experience.

Throughout this book I'll be using complete examples to explore how Java works. You should create

and run all of the examples, even the simplest, preferably by typing them in yourself. Don’t be afraid to
experiment with them. If there is anything you are not quite clear on, try changing an example around to
see what happens, or better still — write an example of your own. If you're uncertain how some aspect
of Java that you have already covered works, don’t look it up right away — try it out. Making mistakes is
a very effective way to learn.

The Java Environment

You can run Java programs on a wide variety of computers using a range of operating systems. Your Java
programs will run just as well on a PC running any supported version of Microsoft Windows as it will
on Linux or a Sun Solaris workstation. This is possible because a Java program does not execute directly
on your computer. It runs on a standardized environment called the Java 2 Platform that has been imple-
mented as software on a wide variety of computers and operating systems. The Java Platform consists of
two elements —a software implementation of a hypothetical computer called the Java Virtual Machine
(JVM) and the Java Application Programming Interface (Java API), which is a set of software compo-
nents that provides the facilities you need to write a fully fledged interactive application in Java.

AJava compiler converts the Java source code that you write into a binary program consisting of byte-
codes. Bytecodes are machine instructions for the Java Virtual Machine. When you execute a Java pro-
gram, a program called the Java interpreter inspects and deciphers the bytecodes for it, checks it out to

Introducing Java

ensure that it has not been tampered with and is safe to execute, and then executes the actions that the
bytecodes specify within the Java Virtual Machine. A Java interpreter can run standalone, or it can be
part of a web browser such as Netscape Navigator, Mozilla, or Microsoft Internet Explorer where it can
be invoked automatically to run applets in a web page.

Because your Java program consists of bytecodes rather than native machine instructions, it is completely
insulated from the particular hardware on which it is run. Any computer that has the Java environment
implemented will handle your program as well as any other, and because the Java interpreter sits between
your program and the physical machine, it can prevent unauthorized actions in the program from being
executed.

In the past, there has been a penalty for all this flexibility and protection in the speed of execution of
your Java programs. An interpreted Java program would typically run at only one-tenth of the speed

of an equivalent program using native machine instructions. With present Java machine implementa-
tions, much of the performance penalty has been eliminated, and in programs that are not computation
intensive — which is usually the case with the sort of program you would want to include in a web page,
for example — you really wouldn’t notice this anyway. With the JVM that is supplied with the current
Java 2 Development Kit (JDK) available from the Sun web site, there are very few circumstances where
you will notice any appreciable degradation in performance compared to a program compiled to native
machine code.

Java Program Development

For this book you need the Java 2 Platform, Standard Edition (J2SE) version 5.0 or later. You can down-
load the JDK from Sun for a variety of hardware platforms and operating systems, either directly from
the Sun Java web site at http://java.sun.com (for Windows, Solaris, and Linux operating systems)
or from sites that you can link to from there. The JDK you'll be using is available from http://java.
sun.com/j2se. Versions of the Java Development Kit for Mac OS X are available from http://
devworld.apple.com/java/.

Note that J2SE 5.0 succeeded J2SE 1.4. Normally, release 1.5 would have followed release 1.4, but it was
decided to identify it as release 5.0 in recognition of the significance of the new features that are intro-
duced by release 5.0 and the maturity of the product. Code module names in release 5.0 still use the
denotation 1.5.0 so expect to see folder names incorporating 1.5.0 rather than 5.0, and you'll see 1.5.0
popping up in a few other places too, so don’t let this confuse you.

One aspect of terminology also causes confusion sometimes — the Java Development Kit has been referred
to at various times as the JDK — the Java Development Kit—and as the SDK — the Software Development
Kit. The current usage with release 5.0 is JDK but with release 1.4 it was SDK, so if you see SDK this gen-
erally means the same as JDK. Just for consistency, I'll use JDK to refer to any Java Development Kit in
the book.

To create the Java program source files that you will use with the JDK, you'll need a plaintext editor. Any
editor will do as long as it does not introduce formatting codes into the contents of a file. Quite a num-
ber of shareware and freeware editors around are suitable, some of which are specific to Java, and you
should have no trouble locating one. I find the JCreator editor is particularly good. There’s a free version
and a fee version with more functionality, but the free version is perfectly adequate for learning. You can
download a free copy from http: //www.jcreator.com. A good place to start looking if you want to
investigate what other program text editors are available is the http: / /www.download. com web site.

Chapter 1

A number of excellent professional Java program development environments are available, including
products from Sun, Borland, Metrowerks, and Symantec. These all provide very friendly environments
for creating and editing your Java source code and compiling and debugging your programs. These are
powerful tools for the experienced programmer, but for learning Java using this book, I recommend
that you resist the temptation to use any of these, especially if you are relatively new to programming.
Instead, stick to using the JDK from Sun together with a suitable simple program text editor for creating
your source code. So why am I suggesting that you will be better off not using a tool that makes pro-
gramming easier and faster? There are several reasons. Firstly, the professional development systems
tend to hide a lot of things you need to get to grips with so that you have a full understanding of how
Java works. Secondly, the pro development environments are geared to managing complex applications
with a large amount of code, which introduces complexity that you really are better off without while
you are learning. Virtually all commercial Java development systems provide prebuilt facilities of their
own to speed development. While this is very helpful for production program development, it really
does get in the way when you are trying to learn Java. A further consideration is that productivity fea-
tures supported by a commercial Java development are sometimes tied to a specific version of the Java 2
Platform. This means that some features of the latest version of Java may not work. The professional
Java development tools are intended primarily for knowledgeable and experienced programmers, so
start with one when you get to the end of the book.

Having said that, if you really do prefer to work with a commercial Java development system for what-
ever reason, and you have problems with running a particular example from the book, try it out with the
JDK from the command line. The chances are good it will work okay.

Installing the JDK

You can obtain detailed instructions on how to install the JDK for your particular operating system from
the Sun web site, so I won’t go into all the variations for different systems here. However, you should
watch out for a few things that may not leap out from the pages of the installation documentation.

First of all, the JDK and the documentation are separate, and you install them separately. The JDK for
Windows is available in two versions —as a web install where components are downloaded incremen-
tally, and as a full download of an . exe file that you just execute to start installation. The documentation
for the JDK consists of a large number of HTML files structured in a hierarchy that are distributed in a
ZIP archive. You will find it easier to install the JDK first, followed by the documentation. If you install
the JDK to drive C: under Windows, the directory structure shown in Figure 1-1 will be created.

The jdk1.5. 0 directory in Figure 1-1 is sometimes referred to as the root directory for Java. In some
contexts it is also referred to as the Java home directory. The actual root directory name may have the
release version number appended, in which case the actual directory name will be of the form
jdk1.5.0_n where n is a release number, so in the first maintenance release, it will be jdk1.5.0_01,
for example.

The sample directory contains sample applications that use JNLP, which is the Java Network Launching
Protocol that is used for executing applications or applets from a network server without the need for a
browser or the need to download and install the code.

You don’t need to worry about the contents of most of these directories, at least not when you get
started, but you should add the path for the jdk1.5.0\bin directory to the paths defined in your PATH
environment variable. That way you will be able to run the compiler and the interpreter from anywhere
without having to specify the path to it. If you installed the JDK to C:, then you need to add the path
C:\jdk1l.5.0\bin.

Introducing Java

Root directory
Contains a src.zip file that contains .
the source code files for the Jdk1'5'0
standard library classes |
| bin | | demo | | include | | sample | | jre | | lib |
Compiler Subdirectories C header files JNLP samples Java(runtime Files used
Interpreter containing for native by executables
+ demo code code
other
executables .
Executables for runtime Class libaries

Figure 1-1

A word of warning — if you have previously installed a commercial Java development product, check
that it has not modified your PATH environment variable to include the path to its own Java executables.
If it has, when you try to run the Java compiler or interpreter, you are likely to get the versions supplied
with the commercial product rather that those that came with the JDK. One way to fix this is to remove
the path or paths that cause the problem. If you don’t want to remove the paths that were inserted for
the commercial product, you will have to use the full path specification when you want to run the com-
piler or interpreter from the JDK. The jre directory contains the Java Runtime facilities that are used
when you execute a Java program. The classes in the Java libraries are stored in the jre\1ib directory.
They don’t appear individually though. They are all packaged up in the archive, rt. jar. Leave this alone.
The Java Runtime takes care of retrieving what it needs from the archive when your program executes.

The CLASSPATH environment variable is a frequent source of problems and confusion to newcomers to
Java. The current JDK does NOT require CLASSPATH to be defined, and if it has been defined by some
other Java version or system, it is likely to cause problems. Commercial Java development systems and
versions of the Java Development Kit prior to 1.2 may well define the CLASSPATH environment variable,
so check to see whether CLASSPATH has been defined on your system. If it has and you no longer have
whatever defined it installed, you should delete it. If you have to keep the CLASSPATH environment
variable — maybe because you want to keep the system that defined it or you share the machine with
someone who needs it — you will have to use a command-line option to define CLASSPATH temporarily
whenever you compile or execute your Java code. We will see how to do this a little later in this chapter.

If you want the JDK documentation installed in the hierarchy shown in Figure 1-1, then you

should now extract the documentation from the archive to the root directory. This corresponds to
C:\jdkl.5.0 if you installed the JDK to your C: drive. This will create a new subdirectory, docs,

to the root directory, and install the documentation files in that. To look at the documentation, you just
open the index.html file that is in the docs subdirectory.

Extracting the Source Code for the Class Libraries

The source code for the class libraries is included in the archive src. zip that you'll find in the
jdk1.5.0 root directory. Once you have learned the basics of the Java language, browsing this source is
very educational, and it can also be helpful when you are more experienced with Java in giving a better

7

Chapter 1

understanding of how things work — or when they don’t, why they don’t. You can extract the source
files from the archive using the Winzip utility, the JAR utility that comes with the JDK, or any other util-
ity that will unpack . zip archives —but be warned — there’s a lot of it, and it takes a while!

Extracting the contents of src. zip to the root directory \jdk1.5. 0 creates a new subdirectory, src, and
installs the source code in subdirectories to this. To look at the source code for a particular class, just
open the . java file that you are interested in using any plaintext editor.

Compiling a Java Program

Java source code is always stored in files with the extension . java. Once you have created the source
code for a program and saved itin a . java file, you need to process the source using a Java compiler.
Using the compiler that comes with the JDK, you would make the directory that contains your Java
source file the current directory, and then enter the following command:

javac MyProgram.java

Here, javac is the name of the Java compiler, and MyProgram. java is the name of the program source
file. This command assumes that the current directory contains your source file. If it doesn’t, the com-
piler won’t be able to find your source file. It also assumes that the source file corresponds to the Java
language as defined in the current version of the JDK. There is a command-line option, -source, that
you can use to specify the Java language version, so for JDK 5.0, the command above to execute the com-
piler is equivalent to:

javac -source 5 MyProgram.java

Note that you can also use 1.5 as the value with the source command-line option, in which case you
could write the command like this:

javac -source 1.5 MyProgram.java

In practice you can ignore the -source command-line option unless you are compiling a Java program
that was written using an older version of the JDK. For example, to compile code written for JDK 1.4 you
would write:

javac -source 1.4 oldSourceCode.java
Here’s a simple program you can try out the compiler on:

public class MyProgram {
public static void main(String[] args) {
System.out.println("Rome wasn't burned in a day!");
}

This just outputs a line of text to the command line. As this is just to try out the compiler, I won’t explain
how the program works at this point. Of course, you must type the code in exactly as shown and save
the source file as MyProgram. java. If you have made any mistakes the compiler will issue error
messages.

Introducing Java

If you need to override an existing definition of the CLASSPATH environment variable — perhaps because
it has been set by a Java development system you have installed — the command would be:

javac -classpath . MyProgram.java

The value of CLASSPATH follows the -classpath specification and here it is just a period. This defines
just the path to the current directory, whatever that happens to be. This means that the compiler looks
for your source file or files in the current directory. If you forget to include the period, the compiler will
not be able to find your source files in the current directory. If you include the -classpath . command-
line option in any event, it will do no harm.

Note that you should avoid storing your source files within the directory structure that was created for
the JDK, as this can cause problems. Set up a separate directory of your own to hold the source code for
a program and keep the code for each program in its own directory.

Assuming your program contains no errors, the compiler generates a bytecode program that is the equiva-
lent of your source code. The compiler stores the bytecode program in a file with the same name as the
source file, but with the extension . class. Java executable modules are always stored in a file with the
extension .class. By default, the . class file will be stored in the same directory as the source file.

The command-line options we have introduced here are by no means all the options you have available
for the compiler. You will be able to compile all of the examples in the book just knowing about the
options we have discussed. There is a comprehensive description of all the options within the documen-
tation for the JDK. You can also specify the ~-help command-line option to get a summary of the stan-
dard options you can use.

If you are using some other product to develop your Java programs, you will probably be using a much
more user-friendly, graphical interface for compiling your programs that won’t involve entering com-
mands such as that shown above. However, the file name extensions for your source file and the object
file that results from it will be just the same.

Executing a Java Application

To execute the bytecode program in the . class file with the Java interpreter in the JDK, you make the
directory containing the .class file current and enter the command:

java -enableassertions MyProgram

Note that we use just the name MyProgram to identify the program, not the name of the file generated
by the compiler, MyProgram. class. It is a common beginner’s mistake to use the latter by analogy with
the compile operation. If you put a . class file extension on MyProgram, your program won't execute,
and you will get an error message:

Exception in thread "main" java.lang.NoClassDefFoundError: MyProgram/class
While the compiler expects to find the name of your source file, the java interpreter expects the name of

a class, which is MyProgram in this case, not the name of a file. The MyProgram. class file contains the
MyProgram class. We will explain what a class is shortly.

Chapter 1

The -enableassertions option is necessary for JDK 5.0 programs that use assertions, and since you
will be using assertions once you have learned about them it’s a good idea to get into the habit of always
using this option. You can abbreviate the -enableassertions option to -ea if you wish.

If you want to override an existing CLASSPATH definition, the option is the same as with the compiler.
You can also abbreviate -classpath to -cp with the compiler or the Java interpreter. Here’s how the
command would look:

java -ea -cp . MyProgram

To execute your program, the Java interpreter analyzes and then executes the bytecode instructions. The
Java Virtual Machine is identical in all computer environments supporting Java, so you can be sure your
program is completely portable. As we already said, your program will run just as well on a Unix Java
implementation as it will on that for Microsoft Windows, Solaris, Linux, OS/2, or any other operating
system that supports Java. (Beware of variations in the level of Java supported though. Some environ-
ments, such as the Macintosh, tend to lag a little, so implementations for Java 2 will typically be avail-
able later than under Windows or Solaris.)

Executing an Applet

The Java compiler in the JDK will compile both applications and applets. However, an applet is not exe-
cuted in the same way as an application. You must embed an applet in a web page before it can be run.
You can then execute it either within a Java 2-enabled web browser, or by using the appletviewer,

a bare-bones browser provided as part of the JDK. It is a good idea to use the appletviewer to run
applets while you are learning. This ensures that if your applet doesn’t work, it is almost certainly your
code that is the problem, rather than some problem in integration with the browser.

If you have compiled an applet and included it in a web page stored as MyApplet.html in the current
directory on your computer, you can execute it by entering the command:

appletviewer MyApplet.html

So how do you put an applet in a web page?

The Hypertext Markup Language

10

The Hypertext Markup Language, or HTML as it is commonly known, is used to define a web page.
When you define a web page as an HTML document, it is stored in a file with the extension .html. An
HTML document consists of a number of elements, and each element is identified by tags. The docu-
ment will begin with <html> and end with </html>. These delimiters, <html> and </html>, are tags,
and each element in an HTML document will be enclosed between a similar pair of tags between angle
brackets. All element tags are case-insensitive, so you can use uppercase or lowercase, or even a mixture
of the two, but by convention they are capitalized so they stand out from the text. Here is an example of
an HTML document consisting of a title and some other text:

<html>
<head>
<title>This is the title of the document</title>
</head>
<body>

Introducing Java

You can put whatever text you like here. The body of a document can contain
all kinds of other HTML elements, including Java applets. Note how each
element always begins with a start tag identifying the element, and ends with
an end tag that is the same as the start tag but with a slash added. The pair
of tags around 'Java applets' in the previous sentence will display the text
as bold.
</body>
</html>

There are two elements that can appear directly within the <htm1> element, a <head> element and a
<body> element, as in the example above. The <head> element provides information about the docu-
ment, and is not strictly part of it. The text enclosed by the <title> element tags that appears here
within the <head> element will be displayed as the window title when the page is viewed.

Other element tags can appear within the <body> element, and they include tags for headings, lists,
tables, links to other pages, and Java applets. There are some elements that do not require an end tag
because they are considered to be empty. An example of this kind of element tag is <hr/>, which speci-
fies a horizontal rule, a line across the full width of the page. You can use the <hr/> tag to divide up a
page and separate one type of element from another.

Adding an Applet to an HTML Document

For many element tag pairs, you can specify an element attribute in the starting tag that defines addi-
tional or qualifying data about the element. This is how a Java applet is identified in an <applet> tag.
Here is an example of how you might include a Java applet in an HTML document:

<html>
<head>
<title> A Simple Program </title>
</head>
<body>
<hr/>
<applet code = "MyFirstApplet.class" width = 300 height = 200 >
</applet>
<hr/>
</body>
</html>

The two shaded lines between tags for horizontal lines specify that the bytecodes for the applet are con-
tained in the file MyFirstaApplet.class. The name of the file containing the bytecodes for the applet is
specified as the value for the code attribute in the <applet> tag. The other two attributes, width and
height, define the width and height of the region on the screen that will be used by the applet when it exe-
cutes. These always have to be specified to run an applet. Here is the Java source code for a simple applet:

import javax.swing.JApplet;
import java.awt.Graphics;

public class MyFirstApplet extends JApplet {
public void paint (Graphics g) {

g.drawString ("To climb a ladder, start at the bottom rung", 20, 90);
}

11

Chapter 1

0

12

Note that Java is case-sensitive. You can’t enter public with a capital p—if you do, the program won't
compile. This applet just displays a message when you run it. The mechanics of how the message gets
displayed are irrelevant here —the example is just to illustrate how an applet goes into an HTML page.
If you compile this code and save the previous HTML page specification in the file MyFirstApplet.html
in the same directory as the Java applet code, you can run the applet using appletviewer from the JDK

with the command:

appletviewer MyFirstApplet.html

This will display a window something like that shown in Figure 1-2:

25 Applet Viewer: MyFirstApplet.... g@

Applet

To climb a ladder, start at the bottom rung

Applet started.

Figure 1-2

In this particular case, the window is produced by Internet Explorer under Windows XP. Under other
operating systems and browsers it is likely to look a little different. Since the height and width of the
window for the applet are specified in pixels, the physical dimensions of the window will depend on the
resolution and size of your monitor.

This example should work by default with Internet Explorer since the installation process for the JDK
will install the Java plug-in for you. If it doesn’t work, check the Internet Options . . . on the Tools menu
for Internet Explorer. On the Advanced tab you should find an option titled “Use JRE v1.5.0 for <applet>
(requires restart)”; make sure this option is checked. If you use Mozilla 1.x or Netscape 7.x, follow the
instruction given in the installation documentation for the JDK to enable the plug-in.

bject-Oriented Programming in Java

As I said at the beginning of this chapter, Java is an object-oriented language. When you use a program-
ming language that is not object-oriented, you must express the solution to every problem essentially in
terms of numbers and characters — the basic kinds of data that you can manipulate in the language. In
an object-oriented language like Java, things are different. Of course, you still have numbers and charac-
ters to work with — these are referred to as the primitive data types —but you can define other kinds of
entities that are relevant to your particular problem. You solve your problem in terms of the entities or
objects that occur in the context of the problem. This not only affects how a program is structured, but
also the terms in which the solution to your problem is expressed. If your problem concerns baseball

Introducing Java

players, your Java program is likely to have BaseballPlayer objects in it; if you are producing a pro-
gram dealing with fruit production in California, it may well have objects that are Oranges in it. Apart
from seeming to be an inherently sensible approach to constructing programs, object-oriented programs
are usually easier to understand.

In Java almost everything is an object. If you haven’t delved into object-oriented programming before,

or maybe because you have, you may feel this is a bit daunting. But fear not. Objects in Java are particu-
larly easy. So easy, in fact, that you are going to start out by understanding some of the ideas behind Java
objects right now. In that way you’ll be on the right track from the outset.

This doesn’t mean you are going to jump in with all the precise nitty-gritty of Java that you need for
describing and using objects. You are just going to get the concepts straight at this point. You'll do this
by taking a stroll through the basics using the odd bit of Java code where it helps the ideas along. All the
code that you use here will be fully explained in later chapters. Concentrate on understanding the notion
of objects first. Then you can ease into the specific practical details as you go along.

So What Are Objects?

Anything can be thought of as an object. Objects are all around you. You can consider Tree to be a par-
ticular class of objects: trees in general. The notion of a Tree in general is a rather abstract concept —
although any tree fits the description, it is more useful to think of more specific types of tree. Hence, the
Oak tree in my yard which I call my0Oak, the Ash tree in your yard which you call thatDarnedTree, and
a generalSherman, the well-known redwood, are actual instances of specific types of tree, subclasses of
Tree that in this case happen to be 0Oak, Ash, and Redwood. Note how we drop into the jargon here —
class is a term that describes a specification for a collection of objects with common properties. Figure
1-3 shows some classes of trees and how you might relate them.

A class is a specification, or blueprint— expressed as a piece of program code — that defines what goes
to make up a particular sort of object. A subclass is a class that inherits all the properties of the parent
class, but that also includes extra specialization. Particular classes of Tree, such as Oak or Ash, have all
the characteristics of the most general type, Tree; otherwise, they could not be considered to be such.
However, each subclass of Tree, such as Oak, has its own characteristics that differentiate 0Oak objects
from other types of Tree.

Of course, you define a class specification to fit what you want to do in your application context. There
are no absolutes here. For my trivial problem, the specification of a Tree class might just consist of its
species name and its height. If you are an arboriculturalist, then your problem with trees may require a
much more complex class, or more likely a set of classes, that involves a mass of arboreal characteristics.

Every object that your program will use will have a corresponding class definition somewhere for
objects of that type. This is true in Java as well as in other object-oriented languages. The basic idea of a
class in programming parallels that of classifying things in the real world. It is a convenient and well-
defined way to group things together.

An instance of a class is a technical term for an existing object of that class. Ash is a specification for a
type of object, and yourAsh is an object constructed to that specification. So, yourAsh would be an
instance of the class Ash. Once you have a class defined, then you can come up with objects, or instances,
of that class. This raises the question of what differentiates an object of a given class from an object of
another class, an Ash class object, say, from a Redwood object. In other words, what sort of information
defines a class?

13

Chapter 1

Generic Tree

derived from derived from

derived from

Ash

/7 \

Create Create
instance instance

Objects of a class Tree
will have a given set
of properties in common.
Each object of the class
will have its own values
for these properties.

Objects of
type Ash

yourAsh

Figure 1-3

What Defines a Class of Objects?

14

You may have already guessed the answer. A class definition identifies all the parameters that define an
object of that particular class, at least, so far as your needs go. Someone else might define the class differ-
ently, with a larger or smaller set of parameters to define the same sort of object —it all depends on what
you want to do with the class. You decide what aspects of the objects you include to define that particu-
lar class of object, and you choose them depending on the kinds of problems that you want to address
using the objects of the class. Let’s think about a specific class of objects.

If you were defining a class Hat, for example, you might use just two parameters in the definition. You
could include the type of hat as a string of characters such as "Fedora" or "Baseball cap” and its size
as a numeric value. The parameters that define an object of a class are referred to as instance variables

Introducing Java

or attributes of a class, or class fields. The instance variables can be basic types of data such as numbers,
but they can also be other class objects. For example, the name of a Hat object could be of type String—
the class string defines objects that are strings of characters.

Of course there are lots of other things you could include to define a Hat if you wanted to, color, for
example, which might be another string of characters such as "Blue". To specify a class you just decide
what set of attributes meet your requirements, and those are what you use. This is called data abstraction
in the parlance of the object-oriented aficionado because you just abstract the attributes you want to use
from the myriad possibilities for a typical object.

In Java the definition of the class Hat would look something like this:

class Hat {
// Stuff defining the class in detail goes here.
// This could specify the name of the hat, the size,
// maybe the color, and whatever else you felt was necessary.

}

The name of the class follows the word class, and the details of the definition appear between the curly
braces.

Because the word class has this special role in Java it is called a keyword, and it is
reserved for use only in this context. There are lots of other keywords in Java that
you will pick up as we go along. You just need to remember that you must not use
any of them for any other purposes.

I'won’t go into the detail of how the class Hat is defined, since you don’t need it at this point. The lines
appearing between the braces above are not code; they are actually program comments, because they
begin with two successive forward slashes. The compiler will ignore anything on a line that follows two
successive forward slashes in your Java programs, so you'll use this to add explanations to your pro-
grams. Generally, the more useful comments you can add to your programs, the better. You will see in
Chapter 2 that there are other ways you can write comments in Java.

Each object of your class will have a particular set of values defined that characterize that particular
object. You could have an object of type CowboyHat, which might be defined by values such as "Stetson”
for the type of the hat, "white" for the color, and the size as 7. This is illustrated in Figure 1-4.

Although Figure 1-4 shows CowboyHat objects defined by a set of three values that you would not nor-
mally expect to change for a given instance, in general the parameter values that define an object are not
necessarily fixed. You would expect the type and size attributes for a particular CowboyHat object to
stay fixed since hats don’t usually change their size — at least, not unless it’s raining —but you could
have other attributes, as illustrated in Figure 1-5.

You might have a parameter owner, which would record the owner’s name, so the value stored as the
attribute owner could be changed when the hat was sold or otherwise transferred to someone else. You
might also have a parameter haton, for example, which would indicate whether the hat was on or off
the owner’s head; the value true would indicate that the owner was indeed wearing the hat, whereas
the value false would mean that the hat had been removed and was just lying about somewhere.

15

Chapter 1

16

type: Stetson
color: White
size: 6

class CowboyHat {

String type; /
String color; Class

int size; instances
{
type: Stetson
color: Gray
size: 7
Figure 1-4

owner: Jed
type: Stetson
color: White
size: 6

hatOn: false

class CowboyHat {

String owner; /
String type; Class

String color; instances
int size;
boolean hatOn;

owner: Slim
type: Stetson
color: Gray
size: 7

hatOn: true

Figure 1-5

Introducing Java

Operating on Objects

In spite of what you might think looking at Figure 1-5, a class object is not just a collection of various
items of data. In addition to the parameters that characterize an object, a class specifies what you can

do with an object of the class —that is, it defines the operations that are possible on objects of the class.
Clearly, for objects to be of any use in a program, you need to decide what you can do with them. The
operations that you specify for objects of a given type will depend on what sort of objects you are talking
about, the attributes they contain, and how you intend to use them.

For the CowboyHat class in Figure 1-5, you may want to have operations that you could refer to as
putHatOn and takeHatOff, which would have meanings that are fairly obvious from their names, and
do make sense for CowboyHat objects. These operations on a particular CowboyHat object would set the
value of haton for the object. To determine whether your CowboyHat was on or off, you would just need
to look at this value. Conceivably, you might also have an operation changeOwner by which you could
set the instance variable recording the current owner’s name to a new value. Figure 1-6 shows two oper-
ations applied in succession to a CowboyHat object.

owner: TimB owner: JonF

type: Stetson type: Stetson
color: White color: White
size: 7 size: 7

hatOn: false hatOn: true

owner: JonF
type: Stetson
color: White
size: 7

hatOn: false

Figure 1-6

17

Chapter 1

Of course, for each type of object you can have any operation that makes sense for you. If you want to
have a shootHoleIn operation for Hat objects, that’s no problem. You just have to define what that
operation does to an object.

You are probably wondering at this point how an operation for a class is defined. As you'll see in detail a
bit later, it boils down to a self-contained block of program code called a method that is identified by the
name you give to it. You can pass data items —which can be integers, floating-point numbers, character
strings, or class objects —to a method, and these will be processed by the code in the method. A method
may also return a data item as a result. Performing an operation on an object amounts to executing the
method that defines that operation for the object.

Of course, the only operations you can perform on an instance of a particular class
are those defined within the class, so the usefulness and flexibility of a class is
going to depend on the thought that you give to its definition. We will be looking
into these considerations more in Chapter 5.

Just so you'll recognize one when you see it, let’s take a look at an example of a complete class defini-
tion. The code for the class CowboyHat we have been talking about might be as illustrated in Figure 1-7.

class CowboyHat {
private String owner; // Name of current owner f
private int size; // Stores the hat size The_se spemfy the
private boolean hatOn=false; // Records whether a hat is on or off | attributes for the class
// Constructor to create a Hat object L .
Thelb public Hat(String person, int theSize) { This is a special
€ braces size = theSize; // Set the hat size method that creates
enclose the owner = person; // Set the hat owner Hat objects
class }
definition
// Method to put the hat on
public void putHatOn() {
These braces hatOn = true; // Record hat status as on
enclose the
code for the // Method to put the hat on
method public void putHatOn() {
putHatOn() } hatOn = false; // Record hat status as off
These are the other
// Method to change the owner class methods
public void changeOwner(String newOwner) {
owner = newOwner;
}
// Method to get the hat size
public int getSize() {
return size; // Return the size of the hat
}
}
Figure 1-7

18

Introducing Java

This code would be saved in a file with the name CowboyHat . java. The name of a file that contains the
definition of a class is always the same as the class name, and the extension will be . java to identify
that the file contains Java source code.

The code for the class definition appears between the braces that follow the identification for the class,
as shown in Figure 1-7. The code for each of the methods in the class also appears between braces. The
class has three instance variables, owner, size, and hatOn, and this last variable is always initialized

as false. Each object that is created according to this class specification will have its own independent
copy of each of these variables, so each object will have its own unique values for the owner, the hat size,
and whether the hat is on or off. I omitted the type parameter in this version of the class to make the
code a little bit shorter.

The keyword private, which has been applied to each instance variable, ensures that only code within
the methods of the class can access or change the values of these directly. Methods of a class can also be
specified as private. Being able to prevent access to some members of a class from outside is an impor-
tant facility. It protects the internals of the class from being changed or used incorrectly. Someone using
your class in another program can get access only to the bits to which you want them to have access.
This means that you can change how the class works internally without affecting other programs that
may use it. You can change any of the things inside the class that you have designated as private, and
you can even change the code inside any of the public methods, as long as the method name and the
number and types of values passed to it or returned from it remain the same.

Our cowboyHat class also has five methods, so you can do five different things with a CowboyHat object.
One of these is a special method called a constructor, which creates a CowboyHat object — this is the
method with the name, CowboyHat, that is the same as the class name. The items between the paren-
theses that follow the name of the constructor specify data that is to be passed to the method when it is
executed — that is, when a CowboyHat object is created.

In practice you might need to define a few other methods for the class to be useful;
you might want to compare CowboyHat objects for example, to see if one was larger
than another. However, at the moment you just need to get an idea of how the code
looks. The details are of no importance here, as you'll return to all this in Chapter 5.

Java Program Statements

As you saw in the CowboyHat class example, the code for each method in the class appears between
braces, and it consists of program statements. A semicolon terminates each program statement. A state-
ment in Java can spread over several lines if necessary, since the end of each statement is determined by
the semicolon, not by the end of a line. Here is a Java program statement:

hatOn = false;

If you wanted to, you could also write this as:

hatOn =
false;

19

Chapter 1

You can generally include spaces and tabs, and spread your statements over multiple lines to enhance
readability if it is a particularly long statement, but sensible constraints apply. You can’t put a space in
the middle of a name for instance. If you write hat On, for example, the compiler will read this as two
words.

Encapsulation

At this point we can introduce another bit of jargon you can use to impress or bore your friends —
encapsulation. Encapsulation refers to the hiding of items of data and methods within an object. This
is achieved by specifying them as private in the definition of the class. In the CowboyHat class, the
instance variables owner, type, size, and hatOn were encapsulated. They were accessible only through
the methods defined for the class. Therefore, the only way to alter the values they contain is to call a
method that does that. Being able to encapsulate members of a class in this way is important for the
security and integrity of class objects. You may have a class with data members that can take on only
particular values. By hiding the data members and forcing the use of a method to set or change the val-
ues, you can ensure that only legal values are set.

I mentioned earlier another major advantage of encapsulation — the ability to hide the implementation
of a class. By allowing only limited access to the members of a class, you have the freedom to change the
internals of the class without necessitating changes to programs that use the class. As long as the exter-
nal characteristics of the methods that can be called from outside the class remain unchanged, the inter-
nal code can be changed in any way that you, the programmer, want.

A particular object, an instance of CowboyHat, incorporates, or encapsulates, the owner, the size of the
object, and the status of the hat in the instance variable haton. Only the constructor, and the putHatOn (),
takeHatOff (), changeOwner (), and getSize () methods can be accessed externally.

Whenever I am referring to a method in the text, I will add a pair of parentheses
after the method name to distinguish it from other things that have names. Some
examples of this appear in the preceding paragraph. A method always has parenthe-
ses in its definition and in its use in a program, as you'll see, so it makes sense to
represent it in this way in the text.

Classes and Data Types

20

Programming is concerned with specifying how data of various kinds is to be processed, massaged,
manipulated, or transformed. Since classes define the types of objects that a program will work with,
you can consider defining a class to be the same as defining a data type. Thus, Hat is a type of data,
as is Tree, and any other class you care to define. Java also contains a library of standard classes that
provide you with a whole range of programming tools and facilities. For the most part then, your Java
program will process, massage, manipulate, or transform class objects.

There are some basic types of data in Java that are not classes, and these are called primitive types. I will
go into these in detail in the next chapter, but they are essentially data types for numeric values such as
99 or 3.75, for single characters such as A or ?, and for logical values that can be true or false. Java also
has classes that correspond to each of the primitive data types for reasons that you will see later on, so

Introducing Java

there is an Integer class that defines objects that encapsulate integers, for example. Every entity in your
Java program that is not of a primitive data type will be an object of a class — either a class that you define
yourself, a class supplied as part of the Java environment, or a class that you obtain from somewhere
else, such as from a specialized support package.

Classes and Subclasses

Many sets of objects that you might define in a class can be subdivided into more specialized subsets
that can also be represented by classes, and Java provides you with the capability to define one class as
a more specialized version of another. This reflects the nature of reality. There are always lots of ways of
dividing a cake—or a forest. Conifer, for example, could be a subclass of the class Tree. The Conifer
class would have all the instance variables and methods of the Tree class, plus some additional instance
variables and /or methods that make it a Conifer in particular. You refer to the Conifer class as a sub-
class of the class Tree, and the class Tree as a superclass of the class Conifer.

When you define a class such as Conifer using another class such as Tree as a starting point, the class
Conifer is said to be derived from the class Tree, and the class Conifer inherits all the attributes of
the class Tree.

Advantages of Using Objects

As I said at the outset, object-oriented programs are written using objects that are specific to the problem
being solved. Your pinball machine simulator may well define and use objects of type Table, Ball,
Flipper, and Bumper. This has tremendous advantages, not only in terms of easing the development
process and making the program code easier to understand, but also in any future expansion of such a
program. Java provides a whole range of standard classes to help you in the development of your pro-
gram, and you can develop your own generic classes to provide a basis for developing programs that
are of particular interest to you.

Because an object includes the methods that can operate on it as well as the data that defines it, program-
ming using objects is much less prone to error. Your object-oriented Java programs should be more robust
than the equivalent in a procedural programming language. Object-oriented programs take a little longer
to design than programs that do not use objects since you must take care in the design of the classes that
you will need, but the time required to write and test the code is sometimes substantially less than that
for procedural programs. Object-oriented programs are also much easier to maintain and extend.

Java Program Structure

Let’s summarize how a Java program is structured:

Q AJava program always consists of one or more classes.

Q You typically put the program code for each class in a separate file, and you must give each file
the same name as that of the class that is defined within it.

Q AJava source file name must have the extension . java.

21

Chapter 1

Ja

22

Thus your file containing the class Hat will be called Hat . java and your file containing the class
BaseballPlayer must have the file name BaseballPlayer. java.

A typical program consists of several files as illustrated in Figure 1-8.

class MyProgram { class Coat { class Shoe ({ class Sock { class Hat {

//Class //Class //Class //Class //Class
definition definition definition definition definition

} } } } }

MyProgram.Java Coat.java Shoe.java Sock.java Hat.java
— I
The complete program consists of 5 files
Figure 1-8

This program clearly majors on apparel, with four of the five classes representing clothing. Each source
file contains a class definition, and all of the files that go to make up the program are stored in the same
directory. The source files for your program contain all the code that you wrote, but this is not every-
thing that is ultimately included in the program. There is also code from the Java standard class library,
so let’s take a peek at what that can do.

va’s Class Library

Alibrary in Java is a collection of classes — usually providing related facilities — that you can use in
your programs. The Java class library provides you with a whole range of goodies, some of which are
essential for your programs to work at all, and some of which make writing your Java programs easier.
To say that the standard class library covers a lot of ground would be something of an understatement,
so I won't be going into it in detail here; however, you will be looking into how to apply many of the
facilities it provides throughout the book.

Since the class library is a set of classes, it is stored in sets of files where each file contains a class defini-
tion. The classes are grouped together into related sets that are called packages, and each package is
stored in a separate directory. A class in a package can access any of the other classes in the package. A
class in another package may or may not be accessible. We will learn more about this in Chapter 5.

The package name is based on the path to the directory in which the classes belonging to the package
are stored. Classes in the package java.lang for example are stored in the directory path java\lang
(or java/lang under Unix). This path is relative to a particular directory that is automatically known
by the Java run-time environment that executes your code. You can also create your own packages that
will contain classes of your own that you want to reuse in different contexts, and that are related in
some way.

The JDK includes a growing number of standard packages —well over 100 the last time I counted. Some
of the packages you will meet most frequently are:

Introducing Java

Package Name Description

java.lang These classes support the basic language features and the handling
of arrays and strings. Classes in this package are always available
directly in your programs by default because this package is always
automatically loaded with your program.

java.io Classes for data input and output operations.

java.util This package contains utility classes of various kinds, including
classes for managing data within collections or groups of data items.

javax.swing These classes provide easy-to-use and flexible components for
building graphical user interfaces (GUIs). The components in this
package are referred to as Swing components.

java.awt Classes in this package provide the original GUI components
(JDK 1.1) as well as some basic support necessary for Swing
components.

java.awt.geom These classes define two-dimensional geometric shapes.

java.awt.event The classes in this package are used in the implementation of

windowed applications to handle events in your program. Events
are things like moving the mouse, pressing the left mouse button,
or clicking on a menu item.

As noted previously, you can use any of the classes from the java.lang package in your programs

by default. To use classes from the other packages, you typically use import statements to identify the
names of the classes that you need from each package. This allows you to reference the classes by the
simple class name. Without an import statement you would need to specify the fully qualified name of
each class from a package each time you refer to it. As we will see in a moment, the fully qualified name
for a class includes the package name as well as the basic class name. Using fully qualified class names
would make your program code rather cumbersome, and certainly less readable. It would also make
them a lot more tedious to type in.

You can use an import statement to import the name of a single class from a package into your program,
or all the class names. The two import statements at the beginning of the code for the applet you saw
earlier in this chapter are examples of importing a single class name. The first was:

import javax.swing.JApplet;

This statement imports the JApplet class name that is defined in the javax.swing package. Formally, the
name of the Japplet class is not really JApplet —it is the fully qualified name javax.swing.JApplet.
You can use the unqualified name only when you import the class or the complete package containing it
into your program. You can still reference a class from a package even if you don’t import it though —you
just need to use the full class name, javax.swing.JApplet. You could try this out with the applet you
saw earlier if you like. Just delete the two import statements from the file and use the full class names in the
program. Then recompile it. It should work the same as before. Thus, the fully qualified name for a class is
the name of the package in which it is defined, followed by a period, followed by the name given to the
class in its definition.

23

Chapter 1

Ja

24

You could import the names of all the classes in the javax. swing package with the statement:
import javax.swing.*;

The asterisk specifies that all the class names are to be imported. Importing just the class names that
your source code uses makes compilation more efficient, but when you are using a lot of classes from a
package you may find it more convenient to import all the names. This saves typing reams of import
statements for one thing. We will do this with examples of Java code in the book to keep the number of
lines to a minimum. However, there are risks associated with importing all the names in a package.
There may be classes with names that are identical to names you have given to your own classes, which
would obviously create some confusion when you compile your code.

You will see more on how to use import statements in Chapter 5, as well as more
about how packages are created and used, and you will be exploring the use of
classes from the standard packages in considerable depth throughout the book.

As Iindicated earlier, the standard classes do not appear as files or directories on your hard disk. They
are packaged up in a single compressed file, rt . jar, that is stored in the jre/1ib directory. This direc-
tory is created when you install the JDK on your computer. A jar file is a Java archive —a compressed
archive of Java classes. The standard classes that your executable program requires are loaded automati-
cally from rt. jar, so you don’t have to be concerned with it directly at all.

va Applications

Every Java application contains a class that defines a method called main (). The name of this class is the
name that you use as the argument to the Java interpreter when you run the application. You can call

the class whatever you want, but the method which is executed first in an application is always called
main (). When you run your Java application, the method main () will typically cause methods belong-
ing to other classes to be executed, but the simplest possible Java application program consists of one
class containing just the method main (). As you will see below, the main () method has a particular
fixed form, and if it is not of the required form, it will not be recognized by the Java interpreter as the
method where execution starts.

You can see how this works by taking a look at just such a Java program. You need to enter the program
code using your favorite plaintext editor, or if you have a Java development system with an editor, you
can enter the code for the example using that. When you have entered the code, save the file with the
same name as that used for the class and with the extension . java. For this example the file name will
be OurFirstProgram. java. The code for the program is shown in Figure 1-9

The program consists of a definition for a class I have called OurFirstpProgram. The class definition
contains only one method, the method main (). The first line of the definition for the method main () is

always of the form:

public static void main(String[] args)

Introducing Java

This is the definition of the class
OurFirstProgram. The class
definition only contains the
method main ().

public class OurFirstProgram ({

public static void main(String[] args) {

System.out.println ("Krakatoa, EAST of Java??");

} } /

This is the definition of the method main ().

The keyword public indicates it is globally accessible.
The keyword static ensures it is accessible even
though no objects of the class exist.

The keyword void indicates it does not return a value.

Figure 1-9

The code for the method appears between the pair of curly braces. This version of the method has only
one executable statement:

System.out.println("Krakatoa, EAST of Java??");

So what does this statement do? Let’s work through it from left to right:

Q

System is the name of a standard class that contains objects that encapsulate the standard I/0O
devices for your system — the keyboard for command-line input and command-line output to
the display. It is contained in the package java.lang, so it is always accessible just by using
the simple class name System.

The object out represents the standard output stream — the command line on your display
screen—and is a data member of the class System. The member, out, is a special kind of mem-
ber of the System class. Like the method main () in our OurFirstProgram class, it is static.
This means that out exists even though there are no objects of type System (more on this in
forthcoming chapters). Using the class name, System, separated from the member name out
by a period — System. out —references the out member.

The bit at the rightmost end of the statement, println("Krakatoa, EAST of Java??"),
calls the print1n () method that belongs to the object out, and that outputs the text string that
appears between the parentheses to your display. This demonstrates one way in which you can
call a class method —by using the object name followed by the method name, with a period

25

Chapter 1

26

separating them. The stuff between the parentheses following the name of a method is informa-
tion that is passed to the method when it is executed. As we said, for println () itis the text we
want to output to the command line.

For completeness, the keywords public, static, and void that appear in the method definition are
explained briefly in the annotations to the program code, but you need not be concerned if these still
seem a bit obscure at this point. I will be coming back to them in much more detail in Chapter 5.

You can compile this program using the JDK compiler with the command
javac OurFirstProgram.java

or with the -classpath option specified:
javac -classpath . OurFirstProgram.java

If it didn’t compile, there’s something wrong somewhere. Here’s a checklist of possible sources of the
problem:

Q You forgot to include the path to the jdk1.5.0\bin directory in your PATH, or maybe you did
not specify the path correctly. This will result in your operating system not being able to find the
javac compiler that is in that directory.

O You made an error typing in the program code. Remember Java is case-sensitive, so
OurfirstProgram is not the same as OurFirstProgram, and of course, there must be no spaces
in the class name. If the compiler discovers an error, it will usually identify the line number in the
code where the error was found. In general, watch out for confusing zero, 0, with a small letter o,
or the digit one, 1, with the small letter 1. All characters such as periods, commas, and semicolons
in the code are essential and must be in the right place. Parentheses, (), curly braces, {}, and square
brackets, [], always come in matching pairs and are not interchangeable.

Q The source file name must match the class name exactly. The slightest difference will result in an
error. It must have the extension . java.

Once you have compiled the program successfully, you can execute it with the command:
java —ea OurFirstProgram

The -ea option is not strictly necessary since this program does not use assertions, but if you get used to
putting it in, you won’t forget it when it is necessary. If you need the -classpath option specified:

java -ea -classpath . OurFirstProgram
Assuming the source file compiled correctly, and the jdk1.5.0\bin directory is defined in your path,
the most common reason for the program failing to execute is a typographical error in the class name,
OurFirstProgram. The second most common reason is writing the file name, OurFirstProgram.class,
in the command, whereas it should be just the class name, OurFirstProgram.

When you run the program, it will display the text:

Krakatoa, EAST of Java??

Introducing Java

Java and Unicode

Programming to support languages that use anything other than the Latin character set has always been
a major problem. There are a variety of 8-bit character sets defined for many national languages, but if
you want to combine the Latin character set and Cyrillic in the same context, for example, things can get
difficult. If you want to handle Japanese as well, it becomes impossible with an 8-bit character set because
with 8 bits you have only 256 different codes so there just aren’t enough character codes to go round.
Unicode is a standard character set that was developed to allow the characters necessary for almost all
languages to be encoded. It uses a 16-bit code to represent a character (so each character occupies 2 bytes),
and with 16 bits up to 65,535 non-zero character codes can be distinguished. With so many character
codes available, there is enough to allocate each major national character set its own set of codes, includ-
ing character sets such as Kanji, which is used for Japanese and which requires thousands of character
codes. It doesn’t end there though. Unicode supports three encoding forms that allow up to a million
additional characters to be represented.

As you'll see in Chapter 2, Java source code is in Unicode characters. Comments, identifiers (names in
other words —see Chapter 2), and character and string literals can all use any characters in the Unicode
set that represent letters. Java also supports Unicode internally to represent characters and strings, so the
framework is there for a comprehensive international language capability in a program. The normal
ASCII set that you are probably familiar with corresponds to the first 128 characters of the Unicode set.
Apart from being aware that each character usually occupies 2 bytes, you can ignore the fact that you are
handling Unicode characters in the main, unless of course you are building an application that supports
multiple languages from the outset.

I say each Unicode character usually occupies 2 bytes because Java supports Unicode 4.0, which allows
32-bit characters called surrogates. You might think that the set of 64K characters that you can represent
with 16 bits would be sufficient, but it isn’t. Far-eastern languages such as Japanese, Korean, and Chinese
alone involve more than 70,000 ideographs, and surrogates are used to represent characters that are not
contained within the basic multilingual set that is defined by 16-bit characters.

Summary

In this chapter you've looked at the basic characteristics of Java, and how portability between different
computers is achieved. I have also introduced you to the elements of object-oriented programming.
There are bound to be some aspects of what I've discussed that you don’t feel are completely clear to
you. Don’t worry about it. Everything I have discussed here I will be revisiting again in more detail later
on in the book.

The essential points I have covered in this chapter are:

Q Java applets are programs that are designed to be embedded in an HTML document. Java appli-
cations are standalone programs. Java applications can be console programs that only support
text output to the screen, or they can be windowed applications with a GUIL

Q Java programs are intrinsically object-oriented.

Q Java source code is stored in files with the extension . java.

27

Chapter 1

Q Java programs are compiled to bytecodes, which are instructions for the Java Virtual Machine.
The Java Virtual Machine is the same on all the computers on which it is implemented, thus
ensuring the portability of Java programs.

Q Java object code is stored in files with the extension .class.

Q Java programs are executed by the Java interpreter, which analyses the bytecodes and carries
out the operations they specify.

Q The Java Development Kit (JDK) supports the compilation and execution of Java applications
and applets.

Resources

You can download the source code for the examples in this book from http: //www.wrox. com.
The source code download includes ancillary files, such as . gif files containing icons, for example,

where they are used in the examples. I also include the solutions to the exercises that appear at the end
of most chapters.

28

Programs, Data, Variables,
and Calculation

In this chapter you'll look at the entities in Java that are not objects —numbers and characters.
This will give you all the elements of the language you need to perform numerical calculations,
and you'll apply these in a few working examples.

In this chapter you'll learn:

O

How to declare and define variables of the basic integer and floating-point types
How to write an assignment statement

How integer and floating-point expressions are evaluated

How to output data from a console program

How mixed integer and floating-point expressions are evaluated

What casting is and when you must use it

What boolean variables are

What determines the sequence in which operators in an expression are executed

0000 0o oo

How to include comments in your programs

Data and Variables

A variable is a named piece of memory that you use to store information in your Java program —
a piece of data of some description. Each named piece of memory that you define in your program
is able to store data only of one particular type. If you define a variable to store integers, for exam-
ple, you can’t use it to store a value that is a decimal fraction, such as 0.75. If you've defined a

Chapter 2

variable that you use to refer to a Hat object, you can only use it to reference an object of type Hat (or
any of its subclasses, as you'll see in Chapter 6). Since the type of data that each variable can store is
fixed, the compiler can verify that each variable you define in your program is not used in a manner or
a context that is inappropriate to its type. If a method in your program is supposed to process integers,
the compiler will be able to detect when you inadvertently try to use the method with some other kind
of data— for example, a string or a numerical value that is not integral.

Explicit data values that appear in your program are called literals. Each literal will also be of a particu-
lar type: 25, for example, is an integer literal of type int. I will go into the characteristics of the various
types of literals that you can use as I discuss each variable type.

Before you can use a variable you must specify its name and type in a declaration statement. Before I
describe how you write a declaration for a variable, let’s consider what flexibility you have in choosing
a name.

Naming Your Variables

30

The name that you choose for a variable, or indeed the name that you choose for anything in Java, is
called an identifier. An identifier can be any length, but it must start with a letter, an underscore (_), or
a dollar sign ($). The rest of an identifier can include any characters except those used as operators in
Java (such as +, —, or *), but you will be generally better off if you stick to letters, digits, and the under-
score character.

Java is case-sensitive, so the names republican and Republican are not the same. You must not include
blanks or tabs in the middle of a name, so Betty May is out but you could have BettyMay or even
Betty_May. Note that you can’t have 6pPack as a name since you cannot start a name with a numeric
digit. Of course, you could use sixPack as an alternative.

Subject to the restrictions I have mentioned, you can name a variable almost anything you like, except
for two additional restraints —you can’t use keywords in Java as a name for something, and a name
can’t be anything that could be interpreted as a constant value —as a literal, in other words. Keywords
are words that are an essential part of the Java language. You saw some keywords in the previous chap-
ter, and you will learn a few more in this chapter. If you’d like to know what they all are now, see the
complete list in Appendix A. The restriction on constant values is there because, although it is obvious
why a name can’t be 1234 or 37.5, constants can also be alphabetic, such as true and false, for exam-
ple, which are literals of type boolean. Of course, the basic reason for these rules is that the compiler
has to be able to distinguish between your variables and other things that can appear in a program. If
you try to use a name for a variable that makes this impossible, then it’s not a legal name.

Clearly, it makes sense to choose names for your variables that give a good indication of the sort of data
they hold. If you want to record the size of a hat, for example, hatSize is not a bad choice for a variable
name, whereas ggg would be a bad choice. It is a common convention in Java to start variable names
with a lowercase letter and, where you have a name that combines several words, to capitalize the first
letter of each word, as in hatSize or moneyWellSpent. You are in no way obliged to follow this con-
vention but since almost all the Java world does, it helps to do so.

If you feel you need more guidance in naming conventions (and coding conventions in general) take a
look at http: //www.javasoft.com/docs/codeconv/.

Programs, Data, Variables, and Calculation

Variable Names and Unicode

Even though you may be entering your Java programs in an environment that stores ASCII characters,
all Java source code is in Unicode. Although the original source code that you create may be ASCI], it is
converted to Unicode characters internally, before it is compiled. While you can write any Java language
statement using ASCII, the fact that Java supports Unicode provides you with immense flexibility. It
means that the identifiers that you use in your source program can use any national language character
set that is defined within the Unicode character set, so your programs can use French, Greek, or Russian
variable names, for example, or even names in several different languages, as long as you have the means
to enter them in the first place. The same applies to character data that your program defines.

Variables and Types

As I mentioned earlier, each variable that you declare can store values only of a type consistent with the
data type of that variable. You specify the type of a particular variable by using a type name in the vari-
able declaration. For instance, here’s a statement that declares a variable that can store integers:

int numberOfCats;

The data type in this case is int and the variable name is numberofcats. The semicolon marks the end
of the statement. The variable, numberOfCats, can only store values of type int. Of course, int is a
keyword.

Many of your variables will be used to reference objects, but let’s leave those on one side for the moment,
as they have some special properties. The only things in Java that are not objects are variables that corre-
spond to one of eight basic data types, defined within the language. These fundamental types are referred
to as primitive types, and they allow you to define variables for storing data that fall into one of three

categories:
QO Numeric values, which can be either integer or floating point
Q Variables that store the code for a single Unicode character

Q Logical variables that can assume the values true or false

All of the type names for the basic variable types are keywords in Java so you must not use them for
other purposes. Let’s take a closer look at each of the primitive data types and get a feel for how you can
use them.

Integer Data Types

There are four types of variables that you can use to store integer data. All of these are signed; that is,
they can store both negative and positive values. The four integer types differ in the range of values they
can store, so the choice of type for a variable depends on the range of data values you are likely to need.

31

Chapter 2

32

The four integer types in Java are:

Data Type Description

byte Variables of this type can have values from -128 to +127 and occupy 1 byte
(8 bits) in memory

short Variables of this type can have values from -32768 to 32767 and occupy
2 bytes (16 bits) in memory

int Variables of this type can have values from -2147483648 to 2147483647 and
occupy 4 bytes (32 bits) in memory

long Variables of this type can have values from -9223372036854775808 to

9223372036854775807 and occupy 8 bytes (64 bits) in memory

Although I said the choice of type depends on the range of values that you want to be able to store, in
practice you'll be using variables of type int or type long to store integers most of the time, for reasons
that I'll explain a little later. Let’s take a look at declarations of variables of each of these types:

byte smallerValue;
short pageCount;
int wordCount;
long bigValue;

Each of these statements declares a variable of the type specified.

The range of values that can be stored by each integer type in Java, as shown in the preceding table, is
always the same, regardless of what kind of computer you are using. This is also true of the other primi-
tive types that you will see later in this chapter and has the rather useful effect that your program will
execute in the same way on computers that may be quite different. This is not necessarily the case with
other programming languages.

Of course, although I have expressed the range of possible values for each type as decimal values, inte-
gers are stored internally as binary numbers, and it is the number of bits available to store each type that
determines the maximum and minimum values, as shown in Figure 2-1.

For each of the binary numbers shown here, the leftmost bit is the sign bit, marked with an s. When the
sign bit is 0 the number is positive, and when it is 1 the number is negative. Binary negative numbers are
represented in what is called 2’s complement form. If you are not familiar with this, you will find an
explanation of how it works in Appendix B.

Programs, Data, Variables, and Calculation

S

max [o]1]1]1]1]1]1]1]
s byte

min {1]o[o[oJo[o[o]o]

S
max [o]1]1]1]1]1]1]a]a]1]a]1]1]1]1]1]

3 short
min [1]o]o[o]o]o]o]o[o]o]o[o]o[o]o]o]

s

max [o[1]a]1[1]1]a]a[a]a]a]a]a]a]a]a]a]a]a[a]a]a]a]a]2]a]a]1]2]a]1]1]

s int
min [1]o]o[o]o]o[o]o[o]o]o]o]o]o[o]o]o[o]o]o]o]o[o]o]o[o]o[o]o]o]o]o]

S
max [o]1|a]a]a]a][a]a 2]]a 2 a]a]a]a]a e] e]a]a]a]a]a]a 2] a]a]a]a]a]a]2 2 2] a]2]a]1]4]

s long
min [1]o[o]o]o]o[o]o]o]o]o[o]o]o]o]o]o]o]o]o[o]o]o]o]o[o]o]o]o[o]o]o]o]o]o]o]o]o[o]o]o]o]o]o]o]o]o[o]o]o]o]o[o]o[o]o[o]o]o]o]o[o]o]o]

Figure 2-1

Integer Literals

An integer variable stores an integer value, so before you get to use integer variables you need to under-
stand how you write integer values of various types. As I said earlier, a value of any kind in Java is
referred to as a literal. So 1, 10.5, and “This is text” are all examples of literals.

Any integer literal that you specify as a sequence of decimal digits is of type int by default. Thus 1,
-9999, and 123456789 are all literals of type int. If you want to define an integer literal of type 1ong,
you need to append an L to the value. The values 1L, -9999L, and 123456789L are all of type long. You
can also use a lowercase letter [, but don’t —it is too easily confused with the digit 1.

You are perhaps wondering how you specify literals of type byte or short. Because of the way integer
arithmetic works in Java, they just aren’t necessary in the main. You'll see a couple of instances where an
integer literal may be interpreted by the compiler as type byte or short later in this chapter, but these
situations are the exception.

You can also specify integer literals to base 16 —in other words, as hexadecimal numbers. Hexadecimal
literals in Java have Ox or 0X in front of them and follow the usual convention of using the letters A to F
(or a to f) to represent digits with values 10 to 15, respectively. In case you are a little rusty on hexadeci-
mal values, here are some examples:

33

Chapter 2

0x100 1*162+0*16' +0 * 16° which is 256 in decimal
0x1234 1*163+2*16%+3 * 16! + 4 * 16° which is 4660 in decimal
OxDEAF 13*16° + 14 * 162 + 10 * 16! + 15 * 16° which is 57007 in decimal
0xCAB 12*162 + 10 * 16! + 11 * 16° which is 3243 in decimal

If you are not familiar with hexadecimal numbers, you can find an explanation of how these work in
Appendix B. All the hexadecimal literals in the preceding table are of type int. If you want to specify a
hexadecimal literal of type 1ong, you must append L to the literal just as with decimal literals. For exam-
ple, 0xOFL is a hexadecimal literal that is equivalent to the decimal value 15.

There is a further possibility for integer literals — you can also define them as octal values, which is to
base 8, and legal digits in an octal literal can be from 0 to 7. You write literals that are octal numbers with
a leading zero, so 035 and 067 are examples of octal numbers. Each octal digit defines 3 bits, so this num-
ber base was used a lot more frequently in the days when machines used words of lengths that were a
multiple of 3 bits to store a number. You will rarely find it necessary to use octal numbers these days, but
you should take care not to use them by accident. If you put a leading zero at the start of an integer lit-
eral, the Java compiler will think you are specifying an octal value. Unless one of the digits is greater
than 7, which results in the compiler flagging it as an error, you won’t know that you have done this.

Declaring Integer Variables

34

As you saw earlier, you can declare a variable of type 1long with the statement:
long bigOne;

This statement is a declaration for the variable bigone. This specifies that the variable bigone will store
a value of type 1long. When this statement is compiled, 8 bytes of memory will be allocated for the vari-
able bigOne. Java does not automatically initialize a variable such as this. If you want your variables to
have an initial value rather than a junk value left over from when the memory was last used, you must
specify your own value in the declaration. To declare and initialize the variable bigone to 2999999999,
you just write:

long bigOne = 2999999999L;

The variable will be set to the value following the equal sign. It is good practice to always initialize your
variables when you declare them. Note that if you try to use a variable in a calculation that has not had a
value assigned to it, your program will not compile. There are also circumstances where the compiler
cannot determine whether or not a variable has been initialized before it is used if you don’t initialize it
when you declare it, even though it may be obvious to you that it has been. This will also be flagged as
an error, but if you get into the habit of always initializing variables when you declare them, you'll avoid
all of these problems.

You can declare a variable just about anywhere in your program, but you must declare each variable
before you use it in a calculation. The placement of the declaration has an effect on whether a particular
variable is accessible at a given point in a program, and we will look deeper into the significance of this
in the next chapter. Broadly, you should group related variable declarations together, immediately before
the block of code that uses them.

Programs, Data, Variables, and Calculation

You can declare and define multiple variables in a single statement. For example:
long bigOne = 999999999L, largeOne = 100000000L;

Here I have declared two variables of type long. A comma separates each variable from the next. You
can declare as many variables as you like in a single statement, although it is usually better to stick to
declaring one variable in each statement, as it helps to make your programs easier to read. A possible
exception occurs with variables that are closely related —an (x,) coordinate pair representing a point,
for example, which you might reasonably declare as:

int xCoord = 0, yCoord = 0; // Point coordinates

On the same line as the declaration of these two variables, we have a comment following the double
slash, explaining what they are about. The compiler ignores everything from the double slash (//) until
the end of the line. Explaining in comments what your variables are for is a good habit to get into, as it
can be quite surprising how something that was as clear as crystal when you wrote it transmogrifies into
something as clear as mud a few weeks later. You can add comments to your programs in other ways
that we will see a little later in this chapter.

You can also spread a single declaration over several lines if you want. This also can help to make your
program more readable. For example:

int miles = 0, // One mile is 8 furlongs
furlongs = 0, // One furlong is 220 yards
yards =0, // One yard is 3 feet
feet = 0;

This defines four variables of type int in a single statement with the names miles, furlongs, yards,
and feet. Each variable has 0 as its initial value. Naturally, you must be sure that an initializing value
for a variable is within the range of the type concerned; otherwise, the compiler will complain. Your
compiler is intelligent enough to recognize that you can’t get a quart into a pint pot, or, alternatively, a
long constant into a variable of type int, short, or byte. Because the statement is spread over four
lines, I am able to add a comment on each of the first three lines to explain something about the variable
that appears on it.

To complete the set of variables that store integers you can declare and initialize a variable of type byte
and one of type short with the following two statements:

byte luckyNumber = 7;
short smallNumber = 1234;

Here the compiler can deduce that the integer literals are to be of type byte and short, respectively, and
convert the literals to the appropriate type. It is your responsibility to make sure the initial value will fit
within the range of the variable that you are initializing. If it doesn’t, the compiler will reject the state-
ment and output an error message.

Most of the time you will find that variables of type int will cover your needs for dealing with integers,
with type 1long being necessary now and again when you have some really big integer values to deal
with. Variables of type byte and short do save a little memory, but unless you have a lot of values of
these types to store, that is, values with a very limited range, they won’t save enough to be worth worry-
ing about. They also introduce complications when you use them in calculations, as you'll see shortly, so

35

Chapter 2

generally you should not use them unless it is absolutely necessary. Of course, when you are reading
data from some external source, a disk file for instance, you'll need to make the type of variable for each
data value correspond to what you expect to read.

Floating-Point Data Types

Numeric values that are not integral are stored as floating-point numbers. A floating-point number has
a fixed number of digits of accuracy but with a very wide range of values. You get a wide range of val-
ues, even though the number of digits is fixed, because the decimal point can “float.” For example, the
values 0.000005, 500.0, and 5000000000000.0 can be written as 5x106, 5x102, and 5x10? respectively —
you have just one digit 5 but you get three different numbers by moving the decimal point around.

There are two primitive floating-point types in Java, type £loat and type double. These give you a
choice in the number of digits precision available to represent your data values, and in the range of val-
ues that can be accommodated:

Data Type Description

float Variables of this type can have values from -3.4E38 (-3.4 * 10%) to +3.4E38 (+3.4
*10%) and occupy 4 bytes in memory. Values are represented with approxi-
mately 7 decimal digits accuracy.

double Variables of this type can have values from -1.7E308 (-1.7 * 10%%) to +1.7E308
(+1.7 * 10°%) and occupy 8 bytes in memory. Values are represented with
approximately 17 decimal digits accuracy. The smallest non-zero value that
you can have is roughly (4.9 * 10324,

All floating-point operations and the definitions for values of type f£1oat and type
double conform to the IEEE 754 standard.

As with integer calculations, floating-point calculations in Java will produce the same results on any
computer.

Floating-Point Literals

Floating-point literals are of type double by default, so 1.0 and 345.678 are both of type double. When
you want to specify a value of type float, you just append an f, or an F, to the value, so 1.0f and
345.678F are both literals of type float. If you are new to programming it is important to note that you
must not include commas as separators when specifying numerical values in your program code. Where
you might normally write a value as 99,786.5, in your code you must write it without the comma, as
99786.5.

When you need to write very large or very small floating-point values, you will usually want to write
them with an exponent —that is, as a decimal value multiplied by a power of 10. You can do this in Java

36

Programs, Data, Variables, and Calculation

by writing the number as a decimal value followed by an E, or an e, preceding the power of 10 that you
require. For example, the distance from the Earth to the Sun is approximately 149,600,000 kilometers,
more conveniently written as 1.496E8. Since the E (or ¢) indicates that what follows is the exponent, this
is equivalent to 1.496 * 10%. At the opposite end of the scale, the mass of an electron is around
0.0000000000000000000000000009 grams. This is much more convenient, not to say more readable, when
it is written as 9.0E grams.

Declaring Floating-Point Variables

You declare floating-point variables in a similar way to what you've already used for integers. You can
declare and initialize a variable of type double with the following statement:

double sunDistance = 1.496E8;
This declares the variable with the name sunDistance and initializes it with the appropriate value.
Declaring a variable of type float is much the same. For example:
float electronMass = 9E-28F;
This defines and initializes the variable electronMass.
You can, of course, declare more than one variable of a given type in a single statement:
float hisWeight = 185.2F, herWeight = 108.5F;

Remember that you must put the F or f at the end of literals of type f1oat. If you leave it out, the literal
will be of type double, and the compiler won’t convert it automatically to type float.

Fixing the Value of a Variable

Sometimes you will declare and initialize a variable with a value that should never change. For example:

int feet_per_vyard = 3;
double mm_per_inch = 25.4;

Both these values should be fixed. There are always 3 feet to a yard, and an inch will always be 25.4 mil-
limeters. Although they are fixed values for which you could use a literal in calculations, it is very con-
venient to store them in a variable because using suitable names makes it clear in your program what
they mean. If you use the value 3 in your program code it could mean anything —but the name
feet_per_vyard leaves no doubt as to what it is.

However, ideally you'd like to prevent these variables from varying if possible. Accidental changes to
the number of feet in a yard could make the results of your program suspect to say the least. Java pro-
vides you with a way to fix the value of any variable by using the final keyword when you declare it.
For example:

final int FEET PER_YARD = 3; // Constant values
final double MM_PER_INCH = 25.4; // that cannot be changed

37

Chapter 2

The final keyword specifies that the value of a variable is final and must not be changed. The compiler
will check your code for any violations of this and flag them as errors. I've used uppercase letters for the
names of the variables here because it is a convention in Java to write constants in this way. This makes
it easy to see which variables are defined as constant values. Obviously, any variable you declare as final
must have an initial value assigned, as you can’t specify it later.

Now that you know how to declare and initialize variables of the basic types, you are nearly ready to
write a program. You just need to look at how you express the calculations you want carried out, and
you store the results.

Arithmetic Calculations

38

You store the result of a calculation in a variable by using an assignment statement. An assignment
statement consists of three elements: the name of the variable where you want the result stored; the
assignment operator, =, which indicates that this is indeed an assignment operation; and an arithmetic
expression that defines the calculation you want to perform. The whole thing is terminated by a semi-
colon that marks the end of the assignment statement. Here’s a simple example of an assignment
statement:

numFruit = numApples + numOranges; // Calculate the total fruit

When this statement executes, the value of the expression to the right of the assignment operator, =, is
calculated, and the result is stored in the variable that appears to the left of the = sign. In this case, the
values stored in the variables numApples and numOranges are added together, and the result is stored in
the variable numFruit. Of course, you would have to declare all three variables before this statement.

Incrementing a variable by a given amount is a common requirement in programming. Look at the fol-
lowing assignment statement:

numApples = numApples + 1;

The result of evaluating the expression on the right of the = is one more than the value of numaApples.
This result is stored back in the variable numaApples, so the overall effect of executing the statement is to
increment the value in numaApples by 1. You will see an alternative, more concise, way of producing the
same effect shortly.

You can write multiple assignments in a single statement. Suppose you have three variables a, b, and ¢
that you have defined to be of type int, and you want to set all three to 777. You can do this with the
statement:

a = b= ="77;

Note that an assignment is different from initialization in a declaration. Initialization causes a variable to
have the value of the constant that you specify when it is created. An assignment involves copying data
from one place in memory to another. For the preceding assignment statement, the compiler will have
allocated some memory (4 bytes) to store the constant 777 as type int. This value will then be copied to
the variable c. The value in ¢ will be extracted and copied to b. Finally, the value in b will be copied to a.
(However, strictly speaking, the compiler may optimize these assignments when it compiles the code to

Programs, Data, Variables, and Calculation

reduce the inefficiency of performing successive assignments of the same value in the way I have
described.)

With simple assignments of a constant value to a variable of type short or byte, the constant will be
stored as the type of the variable on the left of the =, rather than type int. For example:

short value = 0;
value = 10;

Here you have a declaration statement for the variable value, followed by an assignment statement.
When the declaration executes, it will allocate space for the variable value, and arrange for its initial
value to be 0. The assignment statement that follows the declaration statement needs to have 10 avail-
able as an integer literal of type short, occupying 2 bytes, because value is of type short. The value 10
will then be copied to the variable value.

Now let’s look in more detail at how you perform calculations with integers.

Integer Calculations

The basic operators you use in calculations involving integers are +, -, *, and /, and these have the usual
meanings —add, subtract, multiply, and divide, respectively. Each of these is a binary operator; that is,
they combine two operands to produce a result—2 + 3 for example will result in 5. An operand is just
the term for a value to which an operator is applied. The priority or precedence that applies when an
expression using these operators is evaluated is the same as you learned at school, so multiplication and
division operations are executed before any addition or subtraction. Evaluating the expression:

20-3 *3 -9/ 3
will produce the value 8, since it is equivalent to 20 — 9 - 3.
As you will also have learned in school, you can use parentheses in arithmetic calculations to change the
sequence of operations. Expressions within parentheses are always evaluated first, starting with the
innermost when they are nested, so you use parentheses to override the default sequence of operations.
Therefore, the expression

(20 - 3) * (3 -9) /3

is equivalent to 17 * (-6) / 3, which results in -34.

Of course, you use these operators with variables that store integer values as well as integer literals. You
could calculate a value to be stored in a variable, area, of type int from values stored in the variables
length and width, also of type int, by writing:

area = length*width;
As I said earlier, these arithmetic operators are binary operators, so called because they require two
operands. There are also unary versions of the + and - operators that apply to a single operand to the

right of the operator. Note that the unary - operator is not just a sign, as in a literal such as -345; itis an
operator that has an effect. When applied to a variable, it results in a value that has the opposite sign to

39

Chapter 2

that of the value stored in the variable. For example, if the variable count has the value -10, the expres-
sion —count has the value +10. Of course, applying the unary + operator to the value of a variable
results in the same value.

Let’s try out some simple arithmetic in a working console application.

Try It Out Apples and Oranges (or Console Yourself)

40

Key in the code for this example and save it in a file with the name Fruit. java. You will remember
from the previous chapter that each source file will contain a class definition, and that the name of the
file will be the same as that of the class with the extension . java. Store the file in a directory that is sepa-
rate from the hierarchy containing the JDK. You can give the directory any name that you want, even the
name Fruit if that helps to identify the program that it contains.

public class Fruit {
public static void main(String[] args) {
// Declare and initialize three variables

int numOranges = 5; // Count of oranges

int numApples = 10; // Count of apples

int numFruit = 0; // Count of fruit

numFruit = numOranges + numApples; // Calculate the total fruit count

// Display the result
System.out.println("A totally fruity program") ;
System.out.println("Total fruit is " + numFruit);

Just to remind you, to compile this program using the JDK, first make sure that the current directory is
the one containing your source file and then execute the following command:

javac Fruit.java
As Inoted in the previous chapter, you may need to use the -classpath option if the CLASSPATH envi-
ronment variable has been defined. If there are no errors, this will generate a file, Fruit.class, in the
same directory, and this file contains the bytecodes for the program. To execute the program you invoke

the Java interpreter with the class name for your application program:

java -ea Fruit

Programs, Data, Variables, and Calculation

In some Java development environments, the output may not be displayed long enough for you to see it.
If this is the case, you can add a few lines of code to get the program to wait until you press Enter before
it ends. The additional lines to do this are shown shaded in the following listing:

import java.io.IOException; // For code that delays ending the program
public class FruitWait ({
public static void main(String[] args) {
// Declare and initialize three variables

int numOranges = 5; // Count of oranges
int numApples = 10; // Count of apples
int numFruit = 0; // Count of fruit

numFruit = numOranges + numApples; // Calculate the total fruit count
// Display the result

System.out.println("A totally fruity program") ;
System.out.println("Total fruit is " + numFruit);

// Code to delay ending the program

System.out.println(" (press Enter to exit)");

try {

System.in.read() ; // Read some input from the keyboard
} catch (IOException e) { // Catch the input exception

return; // and just return

}
}

I have changed the class name to Fruitwait to distinguish it from the previous version of the program,
so I can put it in a separate file in the code download for the book. I won’t go into this extra code here. If
you need to, just put it in for the moment. You will understand exactly how it works later in the book.

The stuff between the parentheses following main—thatis, String[] args—provides a means of
accessing data that is passed to the program from the command line when you run it. I will be going into
this in detail later on in the book so you can just ignore it for now, though you must always include it in
the first line of main (). If you don't, the program will compile but won’t execute.

All that additional code in the body of the main () method just waits until you press Enter before ending
the program. If necessary, you can include this in all of your console programs to make sure they don’t
disappear before you can read the output. It won’t make any difference to how the rest of the program
works. I will defer discussing in detail what is happening in the bit of code that I have added until I get
to explaining exceptions in Chapter 7.

41

Chapter 2

If you run this program with the additional code, the output will be similar to the window in Figure 2-2.

B C:\WINNT\System32\cmd.exe - java -ea FruitWait

BEE
=sBeg Java 1.5\Examplez~ChHZ>java —ea FruitWait
A totally fruity program
Total fruit is 15
(press Entepr to exitd

LI»

4

El
| ol
Figure 2-2

The basic elements of the code in the original version of the program are shown in Figure 2-3.

Programs, Data, Variables, and Calculation

The body
contains the
executable
code for
main() and is
between the

The public keyword specifies that
main() is accessible from outside of the
class.

The static keyword specifies that main()
exists without any objects being defined.

public class Fruit {

public static void main(String args) {
The void keyword specifies that main()

// Declare and initialize three variables does not return a value.
int numOranges=5; . . .
int numApples=10; \ Execution starts with the first

int numFruit=0; statement in the body of main().

numFruit = numOranges+numApples; // Calculate the total fruit

braces. System.out.printin("A totally fruity program"); «——This displays the first output line.
\ﬂ’ System.out.printin("Total fruit is ""+numFruit); // Display the result
} This displays the second output
line.
}
Figure 2-3

The program consists of just one class, Fruit, and just one method, main (). Execution of an application
always starts at the first executable statement in the method main (). There are no objects of the class
Fruit defined, but the method main () can still be executed because I have specified it as static. The
method main () is always specified as public and static and with the return type void. The effects of
these three keywords on the method are as follows:

public

static

void

Specifies that the method is accessible from outside the Fruit class

Specifies that the method is a class method that is to be executable, even though no
class objects have been created. (Methods that are not static can be executed only for
a particular object of the class, as you'll see in Chapter 5.)

Specifies that the method does not return a value

Don’t worry if these are not completely clear to you at this point— you will meet them all again later.

The first three statements in main () declare the variables numOranges, numApples, and numFruit to be
of type int and initialize them to the values 5, 10, and 0, respectively. The next statement adds the val-
ues stored in numOranges and numApples, and stores the result, 15, in the variable numFruit. We then
generate some output from the program.

43

Chapter 2

Producing Output

44

The next two statements use the println () method, which displays text output. The statement looks a
bit complicated but it breaks down quite simply, as Figure 2-4 shows.

This is the name of the class This is a method in
that contains the object out the object out

System.out.println ("A totally fruity program") ;

This is a static variable Whatever you specify between the parentheses
in the class System is passed to the println () method and displayed
Figure 2-4

The text between double quotes, "A totally fruity program",is a character string. Whenever you
need a string constant, you just put the sequence of characters you want in the string between double
quotes.

You can see from the annotations above how you execute methods that belong to an object. Here we exe-
cute the method println (), which belongs to the object out, which, in turn, is a variable that is a static
member of the class System. Because the object out is static, it exists even if there are no objects of type
System in existence. This is analogous to the use of the keyword static for the method main ().
Most objects in a program are not static members of a class though, so calling a method for an object typ-
ically just involves the object name and the method name. For instance, if you guessed, based on the last
example, that to call the putHatoOn () method for an object cowboyHat of the type Hat that I introduced
in Chapter 1, you would write

cowboyHat .putHatOn () ;
you would be right. Don’t worry if you didn’t though. We will be going into this again when we look at
classes in detail. For the moment, any time you want to output something as text to the console, you will
just write

System.out.println(whateverWeWantToDisplay) ;
with whatever character string you want to display plugged in between the parentheses.

Thus, the second statement in the example:

System.out.println("Total fruit is " + numFruit);

Programs, Data, Variables, and Calculation

outputs the character string “Total fruit is “ followed by the value of numFruit converted to characters,
which is 15. So what’s the + doing here —it’s obviously not arithmetic we are doing, is it? The addition
operator has a special effect when used with operands that are character strings —it joins them together
to produce a single string. But numFruit is not a string, is it? No, but the left operand, "Total fruit
is ", is, and this causes the compiler to decide that the whole thing is an expression working on char-
acter strings. Therefore, the compiler inserts code that converts the value of the right operand,
numFruit, to a character string to be compatible with the left operand. The effect of the + operation is to
tack the string representation of the value of numFruit onto the end of the string "Total fruit is ".
The composite string is then passed to the print1n () method to display it on your screen. Dashed
clever, these compilers.

If you wanted to output the value of numOranges as well, you could write:
System.out.println("Total fruit is " + numFruit + " and oranges = " + numOranges) ;
Try it out by adding it to the program if you like. You should get the following output:

Total fruit is 15 and oranges = 5

Integer Division and Remainders

When you divide one integer by another and the result is not exact, any remainder is discarded, so the
final result is always an integer. The division 3/2, for example, produces the result 1, and 11/3 produces
the result 3. This makes it easy to divide a given quantity equally amongst a given number of recipients.
To divide numFruit equally between four children, you could write:

int numFruitEach = 0; // Number of fruit for each child
numFruitEach = numFruit/4;

The result of division when the operands are positive is fairly obvious. It’s the amount left over after divid-
ing the right operand, called the divisor, into the left operand, referred to as the dividend, a whole number
of times. The situation when either or both operands are negative deserves a little more exploration.

If you divide 7 by -3, the result will be -2. Similarly, if you divide -10 by 4 the result is -2. If you divide -5
by -3 the result is +1. The magnitude of the result of dividing a value a, by a value b, is the same, regard-
less of the sign of the operands, but the sign of the result depends on the sign of the operands. The sign
of the result will be positive when the operands both have the same sign and negative when the
operands are of different signs and the divisor is not greater than the dividend (in which case the result
is zero). There is one peculiar exception to this. When the divisor is a negative integer of the largest pos-
sible magnitude and the divisor is -1, the result is the same as the dividend, which is negative and there-
fore violates the rule. You can see why this is so by considering specifics.

The value -2147483648 is the negative value of type int that has the largest magnitude. Dividing this by
-1 should result in the value +2147483648, but the largest positive integer you can have as type int is
2147483647, so this result cannot be represented as type int. Therefore, the result is arbitrarily the origi-
nal dividend, -2147483648.

45

Chapter 2

Dividing by zero is something to be avoided. If you accidentally cause this to be attempted then your
program will be terminated because an exception of type ArithmeticException will be thrown. You'll
learn what exceptions are and what you can do about them in Chapter 7.

Of course, there are circumstances where you may want to obtain the remainder after a division, and on
these occasions you can calculate the remainder using the modulus operator, %. If you wanted to know
how many fruit were left after dividing the total by 4, you could write:

int remainder = 0;
remainder = numFruit%4; // Calculate the remainder after division by 4

When either or both operands to the remainder operator are negative, the result may not seem to be
obvious but keep in mind that it is related to the divide operation, so if you can work out what the result
of a division will be, you can deduce the result of the remainder operation. You can get a clear idea of
what happens by considering a few examples.

The result of the operation 8 % (-3) is +2. This will be evident if you recall that from the earlier discussion
of division you know that the result of 8 / (-3) is -2. If you multiply the result of the division by the divi-
sor, (-2) * (-3), the result is +6, so a remainder of +2 makes sense. The expression (-8) % 3 produces -2,
which again you can deduce from the result of (-8) / 3 being -2. You have to add -2 to the result of (-2) * 3
to get the original value, -8. Lastly, (-8) % (-3) results in -2, which is also consistent with the divide opera-
tion applied to the same operands.

The modulus operator has the same precedence as multiplication and division and therefore executes
before any add or subtract operations in the same expression. You could add these statements to the pro-
gram, too, if you want to see the modulus operator in action. The following statement will output the
results:

System.out.println("The number of fruit each is " + numFruitEach
+ " and there are " + remainder + " left over.");

The Increment and Decrement Operators

46

If you want to increment an integer variable by one, you can use the increment operator instead of using
an assignment. You write the increment operator as two successive plus signs, ++. For example, if you
have an integer variable count that you've declared as:

int count = 10;
you can then write the statement:

++count; // Add 1 to count

This statement will increase the value of count to 11. If you want to decrease the value of count by 1
you can use the decrement operator, --:

--count; // Subtract 1 from count

Programs, Data, Variables, and Calculation

At first sight, apart from reducing the typing a little, this doesn’t seem to have much of an advantage
over writing:

count = count - 1; // Subtract 1 from count

However, a big advantage of the increment and decrement operators is that you can use them in an
expression. Try changing the arithmetic statement calculating the sum of numaApples and numOranges
in the previous example:

public class Fruit {
public static void main(String[] args) {
// Declare and initialize three variables
int numOranges = 5;
int numApples = 10;
int numFruit = 0;

// Increment oranges and calculate the total fruit
numFruit = ++numOranges + numApples;
System.out.println("A totally fruity program");

// Display the result

System.out.println("Value of oranges is " + numOranges) ;
System.out.println("Total fruit is " + numFruit);

}

The lines that have been altered or added have been highlighted. In addition to the change to the
numFruit calculation, an extra statement has been added to output the final value of numOranges. The
value of numOranges will be increased to 6 before the value of numaApples is added, so the value of
numFruit will be 16. Thus, the statement changes the value stored in numOranges as well as the value
stored in numFruit. You could try the decrement operation in the example as well.

A further property of the increment and decrement operators is that they work differently in an expres-
sion depending on whether you put the operator in front of the variable to which it applies, or following
it. When you put the operator in front of a variable, as in the example you have just seen, it’s called the
prefix form. The converse case, with the operator following the variable, is called the postfix form. If
you change the statement in the example to:

numFruit = numOranges++ + numApples;

and run it again, you'll find that numOranges still ends up with the value 6, but the total stored in
numFruit has remained 15. This is because the effect of the postfix increment operator is to change the
value of numOranges to 6 after the original value, 5, has been used in the expression to supply the value
of numFruit. The postfix decrement operator works similarly, and both operators can be applied to any
type of integer variable.

As you see, no parentheses are necessary in the expression numOranges++ + numApples. You could even
write it as numOranges+++numaApples and it will still mean the same thing but it is certainly a lot less obvi-
ous that this is the case. Someone who doesn’t have all the rules for evaluating Java expressions at their fin-
gertips might guess, wrongly, that the expression will execute as numOranges+ (++numApples) . Such
potential confusion is really the programmer’s fault. You can write it as (numOranges++) + numApples
to make it absolutely clear where the ++ operator belongs. It is a good idea to always add parentheses to
clarify things when there is some possibility of misinterpretation.

47

Chapter 2

Computation with Shorter Integer Types

48

I'have deliberately used variables of type int in all the previous examples. Computations with variables
of the shorter integer types introduce some complications. This is because all binary integer operations
in Java work only with both operands of type int or both operands of type 1ong. The result is that with
arithmetic expressions using variables of type byte or short, the values of the variables are first con-
verted to type int, and the calculation is carried out using 32-bit arithmetic. The result will therefore be
type int —a 32-bit integer. This has an interesting effect that you can see in the context of the previous
example. Try changing the types of the variables numOranges, numApples, and numFruit in the original
version of the program to type short, for example:

short numOranges = 5;
short numApples = 10;
short numFruit = 0;

You will find that the program will no longer compile. The problem is with the statement:
numFruit = numOranges + numApples;

Since the expression numOranges + numApples produces a 32-bit result, the compiler cannot store this
value in numFruit, as the variable numFruit is only 16 bits long. To make the code acceptable to the
compiler, you must modify the assignment statement so that the 32-bit result of the addition is converted
back to a 16-bit number. You do this by changing the statement to:

numFruit = (short) (numOranges + numApples) ;

The statement now calculates the sum of numOranges and numapples and then converts, or casts, the
32-bit result to type short before storing it in numFruit. This is called an explicit cast, and the conver-
sion process is referred to as casting. The cast to type short is the expression (short), and the cast
applies to whatever is immediately to the right of (short), so the parentheses around the expression
numOranges + numApples are necessary. Without them the cast would apply only to the variable
numOranges, which is type short anyway, and the code would still not compile.

If the variables here were of type byte, you would need to cast the result of the addition to type byte.
You would write such a cast as (byte). This is a strong clue to how you write casts to other types. In
general, you write a cast to any given type, typename, as the typename between parentheses —thus
(typename).

The effect of the cast to type short in the example is just to take the least significant 16 bits of the result,
discarding the most significant 16 bits. The least significant bits are those at the right-hand end of the
number because the bits in a binary number in Java increase in value from right to left. Thus, the most
significant bits are those at the left-hand end. For the cast to type byte only the least significant 8 bits are
kept. This means that if the magnitude of the result of the addition is such that more than 16 bits are nec-
essary to represent it (or 8 bits in the case of a cast to byte), your answer will be wrong. You will get no
indication from the compiler that this has occurred because it was you, after all, that expressly specified
the cast, and the compiler assumes that you know what you are doing. To minimize the possibility for
such hidden and mystifying errors, you should avoid explicit casts in your programs unless they are
absolutely essential.

Programs, Data, Variables, and Calculation

An integer arithmetic operation involving a value of type 1long will always be carried out using 64-bit
values. If the other number in such an operation is not of type long, the compiler will arrange for it to be
cast to type long before the operation is executed. For example:

long result = 0;

long factor = 10L;

int number = 5;

result = factor*number;

To execute the last statement, because the variable factor is of type 1long, the multiplication will be car-
ried out using long values. The value stored in the variable number will be converted to type 1ong, and
that will be multiplied by the value of factor.

All other integer arithmetic operations involving types other than long are carried out with 32-bit val-
ues. Thus, you really need to consider only two kinds of integer literals:

Q Type long for operations with 64-bit values where the value has an L appended.

Q Type int for operations with 32-bit values for all other cases where there is no L at the end of
the number.

Errors in Integer Arithmetic

If you divide an integer value by zero, no sensible result can be produced so an exception will be
thrown, as I mentioned earlier in the chapter. An exception is the way of signaling errors in Java, which I
will discuss in detail in Chapter 7. Using the % operator with a variable or expression for the right-hand
operand that has a zero value will also cause an exception to be thrown.

Note that if an integer expression results in a value that is outside the range of the type of the result, the
result will be truncated to the number of bits for the type you are using and therefore will be incorrect, but
this will not be indicated in any way. It is up to you to make sure that the integer types that you are using
in your program are always able to accommodate any value that might be produced by your calculations.

Problems can arise with intermediate results in some situations. Even when the ultimate result of an
expression is within the legal range, the result of any intermediate calculation that is outside the range
will be truncated, thus causing an incorrect result to be produced. To take a trivial example —if you
multiply 1000000 by 2000000 and divide by 500000 using type int, you will not obtain the correct result
if the multiplication is executed first This is because the result of the multiplication exceeds the maxi-
mum that can be stored as type int. Obviously where you know this sort of problem can occur, you may
be able to circumvent it by using parentheses to make sure the division takes place first—but you need
to remember that integer division produces an integer result, so a different sequence of execution can
produce a different answer.

Floating-Point Calculations

The four basic arithmetic operators, +, -, *, /, are also available for use in floating-point expressions. You
can try some of these out in another version of the Fruit program, which I'll call AverageFruit.

49

Chapter 2

Try It Out Average Fruit

Make the following changes to the Fruit. java file, and save this as AverageFruit. java. If necessary,
you can add in the code we used earlier to make the program wait for the Enter key to be pressed before
finishing.

public class AverageFruit {
public static void main(String[] args) {
// Declare and initialize three variables

double numOranges = 50.0E-1; // Initial value is 5.0
double numApples = 1.0El; // Initial value is 10.0
double averageFruit = 0.0;

averageFruit = (numOranges + numApples)/2.0;

System.out.println("A totally fruity program") ;
System.out.println("Average fruit is " + averageFruit);

This will produce the output:

A totally fruity program
Average fruit is 7.5

The program just computes the average number of fruits of different kinds by dividing the total by 2.0.

As you can see, I have used various representations for the initializing values for the
variables in the program, which are now of type double. It’s not the ideal way to
write 5.0, but at least it demonstrates that you can write a negative exponent value.

Other Floating-Point Arithmetic Operators

You can use ++ and -- with floating-point variables, and they have the same effect as with integer vari-
ables, incrementing or decrementing the floating-point variable to which they are applied by 1.0. You can
use them in prefix or postfix form, and their operation in each case is the same as with integer variables.

You can apply the modulus operator, %, to floating-point values, too. For an operation of the form:
floatOperandl % floatOperand2

the result will be the floating-point remainder after dividing floatOperand2 into floatOperandl an
integral number of times. For example, the expression 12.6 % 5.1 will give the result 2.4. In general,
the sign of the result of applying the modulus operator to floating-point values is the sign of the divi-
dend. The magnitude of the result of a floating-point remainder operation is the largest integral value
such that the magnitude of the result of multiplying the divisor by the result of the remainder operation
does not exceed the dividend. For the more mathematically minded, if r is the result of a % b, then the
magnitudeof r * b(|r * b|)is not greater than the magnitude of a (|r * b]| lal).

50

Programs, Data, Variables, and Calculation

Error Conditions in Floating-Point Arithmetic

There are two error conditions that can occur with floating-point operations that are signaled by a spe-
cial result value being generated. One occurs when a calculation produces a value that is outside the
range that can be represented by the floating-point type you are using, and the other arises when the
result is mathematically indeterminate, such as when your calculation is effectively dividing zero by
Z€T0.

To illustrate the first kind of error you could use a variable to specify the number of types of fruit. You
could define the variable:

double fruitTypes = 2.0;
and then rewrite the calculation as:
averageFruit = (numOranges + numApples)/fruitTypes;

This in itself is not particularly interesting, but if we happened to set fruitTypes to 0.0, the output from
the program would be:

A totally fruity program
Average fruit is Infinity

The value Infinity indicates a positive but effectively infinite result, in that it represents a value that is
greater than the largest number that can be stored as type double. An effectively infinite result that was
negative would be output as -Infinity. You don’t actually need to divide by zero to produce this
effect; any calculation that generates a value that exceeds the maximum value that can be represented as
type double will have the same effect. For example, repeatedly dividing by a very small number, such
as 1.0E-300, will yield an out-of-range result.

If you want to see what an indeterminate result looks like, you can replace the statement to calculate
averageFruit with the following;:

averageFruit = (numOranges - 5.0)/ (numApples - 10.0);

This statement doesn’t make much sense, but it produces an indeterminate result. The value of
averageFruit is output as NaN. This value is referred to as Not-a-Number, indicating an indeterminate
value. A variable with an indeterminate value will contaminate any subsequent expression in which it is
used, so any operation involving an operand value of NaN will produce the same result of NaN.

Avalue that is Infinity or -Infinity will be unchanged when you add, subtract, or multiply by finite
values, but if you divide any finite value by Infinity or -Infinity the result will be zero.

Mixed Arithmetic Expressions

You have probably guessed from earlier discussions that you can mix values of the basic types together
in a single expression. The way mixed expressions are treated is governed by some simple rules that
apply to each operator in such an expression. The rules, in the sequence in which they are checked, are:

51

Chapter 2

Q If either operand is of type double, the other is converted to double before the operation is
carried out.

Q If either operand is of type float, the other is converted to f1oat before the operation is
carried out.

Q If either operand is of type 1ong, the other is converted to 1ong before the operation is
carried out.

The first rule in the sequence that applies to a given operation is the one that is carried out. If neither
operand is double, float, or long, they must be int, short, or byte, so they will be converted to type
int where necessary and use 32-bit arithmetic to produce the result, as we saw earlier in the chapter.

Explicit Casting

It may well be that the default treatment of mixed expressions listed in the preceding section is not what
you want. For example, suppose you have defined a double variable result; and two variables, three
and two, of type int with the values 3 and 2, respectively. If you compute the value of result with the

statement

result = 1.5 + three/two;
the value stored will be 2.5, since three/two will be executed as an integer operation and will produce
the result 1. You may have wanted the term three/two to produce the value 1.5 so the overall result
would be 3.0. You could do this using an explicit cast:

result = 1.5 + (double)three/two;
This causes the value stored in three to be converted to type double before the divide operation takes

place. Then rule 1 applies for the divide operation, and the operand two is also converted to type
double before the divide operation is executed. Hence, the value of result in this case will be 3.0.

You can cast a value from any primitive type to any other, but you need to take care
that you don’t unintentionally lose information when you do so. Obviously casting
from one integer type to another with a more limited range has the potential for los-
ing information, as does casting any floating-point value to an integer. Casting from
type double to type £loat can also produce an effective infinity when the original
value is greater than the maximum value for a value of type float.

Automatic Type Conversions in Assignments

52

When the type of the result of an arithmetic expression on the right of an assignment operator differs
from the type of the variable on the left, an automatic cast will be applied to the result as long as there is
no possibility of losing information. If you think of the basic types that we have seen so far as being in
the sequence

byte — short — int — long — float — double

Programs, Data, Variables, and Calculation

then an automatic conversion will be made as long as it is upwards through the sequence of types, that
is, from left to right. If you want to go in the opposite direction, from type double to type float or
long, for example, then you must insert an explicit cast into your code for the result of the expression on
the right of the assignment operator.

The op= Operators

The op= operators are used in statements of the form
lhs op= rhs;

where op can be any of the arithmetic operators +, -, *, /, %. It also works with some other operators you
haven’t seen yet. The preceding statement is basically a shorthand representation of the statement

lhs = lhs op (rhs);
The right-hand side (rhs) is in brackets because it is worked out first— then the result is combined with
the left-hand side (1hs) using the operation op. Let’s look at a few examples of this to make sure it’s
clear. To increment an int variable count by 5 you can write:

count += 5;

This has the same effect as the statement:

count = count + 5;

Of course, the expression to the right of the op= operator can be anything that is legal in the context, so
the statement:

result /= a % b/(a + b);
is equivalent to:
result = result/(a % b/(a + b));

What I have said so far about op= operations is not quite the whole story. If the type of the result of the
rhs expression is different from the type of 1hs, the compiler will automatically insert a cast to convert
the rhs value to the same type as 1hs. This would happen with the last example if result was of type
int and a and b were of type double, for example. This is quite different from the way the normal
assignment operation is treated. A statement using the op= operator is really equivalent to:

lhs = (type_of_1lhs) (1hs op (rhs));

The automatic conversion will be inserted by the compiler regardless of what the types of 1hs and rhs
are. Of course, this can result in information being lost due to the cast, and you will get no indication
that it has occurred. This is different from ordinary assignment statements where an automatic cast will
be allowed only when the range of values for the type of 1hs is greater that the range for the type of rhs.

53

Chapter 2

The complete set of op= operators are:

<<= >>= >>>= &= E =

You will meet the operators on the second row later in the book.

Mathematical Functions and Constants

Sooner or later you are likely to need mathematical functions in your programs, even if it’s only to
obtain an absolute value or calculate a square root. Java provides a range of methods that support such
functions as part of the standard library that is stored in the package java.lang, and all these are avail-
able in your program automatically.

The methods that support various additional mathematical functions are implemented in the Math class
as static methods, so to reference a particular function you can just write Math and the name of the
method you wish to use separated by a period. For example, the sqgrt () method calculates the square
root of whatever you place between the parentheses. To use the sart () method to produce the square
root of the floating-point value that you've stored in a variable, aNumber, you would write

Math.sqgrt (aNumber).

The class Math includes a range of methods for standard trigonometric functions:

Method Function Argument Type Result Type
sin(arg) sine of the argument double in radians double
cos (arg) cosine of the argument double in radians double
tan (arg) tangent of the argument double in radians double
asin(arg) sin™! (arc sine) of double double in
the argument radians, with
values from
-n/2tom/2.
acos (arg) cos™! (arc cosine) of double double in radi-
the argument ans, with values

from 0.0 to m.

atan(arg) tan (arc tangent) double double in
of the argument radians, with
values from
-n/2tom/2.
atan2 (argl,arg2) tan (arc tangent) Both double double in
of argl/arg?2 radians, with
values from
—T to T.

54

Programs, Data, Variables, and Calculation

As with all methods, the arguments that you put between the parentheses following the method name
can be any expression that produces a value of the required type. The toRadians () method in the Math
class will convert a double argument that is an angular measurement in degrees to radians. There is a
complementary method, toDegrees (), to convert in the opposite direction. The Math class also defines
double values for e and (, which you can access as Math.E and Math. PI, respectively. If you are not
familiar with these trigonometric operations you can safely ignore them.

You also have methods for evaluating hyperbolic functions, and you can ignore these too if they're not

your bag;:

Method

sinh (arg)

cosh (arg)

tanh (arg)

Function

Hyperbolic sine of the argument, which is:

(earg_e-arg) /2

Hyperbolic cosine of the argument, which is:

(eE+ee) /2

Hyperbolic tangent of the argument, which is:
(earg_e-arg)/ (earg+e-arg)

Argument Type

double

double

double

Result Type

double

double

double

You also have a range of numerical functions implemented as static methods in the Math class, and at
least some of these will be useful to you:

Method

abs (arg)

max (argl,arg?2)

min (argl,arg2)

ceil (arg)

floor (arg)

Function

Calculates the absolute
value of the argument

Returns the larger of the
two arguments, both of
the same type

Returns the smaller of
the two arguments,
both of the same type

Returns the smallest
integer that is greater
than or equal to the
argument

Returns the largest
integer that is less than
or equal to the argument

Argument Type

int, long,
float, or
double

int, long,
float, or
double

int, long,
float, or
double

double

double

Result Type

The same
type as the
argument

The same
type as the
argument

The same
type as the
argument

double

double

Table continued on following page

55

Chapter 2

56

Method Function Argument Type Result Type
round (arg) Calculates the nearest float or Of type int
integer to the argument double fora float
value argument, of
type long for
a double
argument
rint (arg) Calculates the nearest double double
integer to the argument
value
IEEEremainder (argl,arg2) Calculates the remainder Both of type Of type
when argl is divided double double

by arg2

The IEEEremainder () method produces the remainder from argl after dividing arg2 into argl the
integral number of times that is closest to the exact value of argl/arg2. This is somewhat different from
the remainder operator. The operation argl % arg2 produces the remainder after dividing arg2 into
argl the integral number of times that does not exceed the absolute value of argl. In some situations
this can result in markedly different results. For example, executing the expression 9.0 % 5.0 results in
4.0, whereas the expression Math.IEEEremainder (9.0,5.0) results in -1.0. You can pick one approach
to calculating the remainder or the other, to suit your requirements.

Where more than one type of argument is noted in the table, there are actually several methods, one for
each type of argument, but all have the same name. We will see how this is possible in Java when we
look at implementing class methods in Chapter 5.

There are methods defined in the Math class related to floating-point operations. The signum () method
returns the signum of the floating-point argument, which may by of type double or of type £loat. The
signum is returned as the same type as the argument, and the value is zero if the argument is zero, 1.0 if
the argument is greater than zero, and -1.0 if the argument is less than zero. The ulp () method returns
the size of the ULP (Unit in the Last Place) of the argument, which may be of type double or type
float. The ULP is the smallest possible change in a floating-point value to produce the next higher or
lower value. Another way of expressing this is that the ULP is the distance from one floating-point value
to the next. Of course, the real values in between one floating-point value and the next cannot be repre-
sented exactly.

Several methods implement mathematical functions in the Math class. You'll probably be surprised at
how often you find uses for some of these. The mathematical methods you have available are:

Method Function Argument Type Result Type
sqgrt (arg) Calculates the square root of double double

the argument
cbrt (arg) Calculates the cube root of the double double

argument

Programs, Data, Variables, and Calculation

Method Function Argument Type Result Type
pow (argl,arg2) Calculates the first argument raised Both double double
to the power of the second argument,
arglargz
hypot (argl, arg2) Calculates the square root of Both double double
(argl*+arg2?)
exp (arg) Calculates e raised to the power of double double

the argument, e*®

expml (arg) Calculates e raised to the power of double double
the argument minus 1, e -1

log (arg) Calculates the natural logarithm double double
(base e) of the argument

loglp (arg) Calculates the natural logarithm double double
(base e) of arg+1

1ogl0 (arg) Calculates the base 10 logarithm double double

of the argument.

random () Returns a pseudo-random number None double
greater than or equal to 0.0 and
less than 1.0

You can try out a sample of the contents of the Math class in an example to make sure you know how
they are used.

Try It Out The Math Class

You are planning a new circular pond in which you want to keep fish. Your local aquatics supplier tells
you that you can stock the pond with fish at the rate of 2 inches of fish length per square foot of pond
surface area. Your problem is to calculate the radius of the pond that will accommodate 20 fish averaging
10 inches in length. The solution, of course, is to write a Java program — what else? The following pro-
gram will calculate the radius of a pond, in feet and inches, that will provide a home for the number of
fish you would like to keep:

public class PondRadius {
public static void main(String[] args) {
// Calculate the radius of a pond
// which can hold 20 fish averaging 10 inches long

int fishCount = 20; // Number of fish in pond

int fishLength = 10; // Average fish length

int lengthPerSgFt = 2; // Fish length per square foot of surface
double radius = 0.0; // Pond radius in feet

int feet = 0; // Pond radius - whole feet

57

Chapter 2

int inches = 0; // - and whole inches

double pondArea = (double) (fishCount*fishLength)/lengthPerSqgFt;

radius = Math.sqgrt (pondArea/Math.PI) ;

feet = (int)Math.floor (radius); // Get the whole feet and nothing but the feet
inches = (int)Math.round(12.0* (radius - feet)); // Get the inches

System.out.println("To hold " + fishCount + " fish averaging " + fishLength +
" inches long you need a pond with an area of \n" +
pondArea + " square feet.");

System.out.println("The radius of a pond with area " + pondArea +
" square feet is\n " +

feet + " feet " + inches + " inches");

Save the program source file as PondRadius. java. When you compile and run it, you should get:

To hold 20 fish averaging 10 inches long you need a pond with an area of
100.0 square feet.
The radius of a pond with area 100.0 square feet is 5 feet 8 inches

How It Works

58

You first define the variables that specify initial data, followed by the variables feet and inches that
you will use to store the result. You then calculate the pond surface area in feet with this statement:

double pondArea = (double) (fishCount*fishLength)/lengthPerSqgFt;
You cast the total length of fish to be in the pond, £ishCount*£fishLength, to type double to force the
division by the number of inches per square foot of pond surface to be done using floating-point values
rather than integers.
The next calculation uses the sgrt () method to calculate the radius. Since the area of a circle with
radius r is given by the formula (1%, the radius must be ((area/((, so you specify the argument to the
sgrt () method as the expression pondArea/Math.PI, where Math.PI references the value of (that is
defined in the Math class:

radius = Math.sqgrt (pondArea/Math.PI);
The result is in feet as a value of type double.
To get the number of whole feet you use the £loor () method:

feet = (int)Math.floor(radius); // Get the whole feet and nothing but the feet
Note that the cast to type int of the value produced by the £loor () method is essential in this state-
ment; otherwise, you will get an error message from the compiler. The value returned from the floor ()

method is type double, and the compiler will not cast this to type int automatically because the process
potentially loses information.

Programs, Data, Variables, and Calculation

Finally, you get the number of inches by subtracting the value for whole feet from the original radius,
multiplying the fraction of a foot by 12 to get the equivalent inches, and then rounding the result to the
nearest integer using the round () method:

inches = (int)Math.round(12.0* (radius - feet)); // Get the inches

The constant for the number of inches per foot is written as a floating-point literal, 12.0, to be consistent
with the rest of the expression for the value you pass to the round () method. If you were to write it as
simply 12, it would be an integer literal of type int.

To output the result, you specify a combination (or concatenation) of strings and variables as arguments
to the two println () method calls:

System.out.println("To hold " + fishCount + " fish averaging " + fishLength +
" inches long you need a pond with an area of \n" +
pondArea + " square feet.");

System.out.println("The radius of a pond with area " + pondArea +
" square feet is " +
feet + " feet " + inches + " inches");

Each statement is spread over three lines for convenience here. The \n that appears in the first output
statement specifies a newline character, so the output will be on two lines. Anytime you want the next
bit of output to begin a new line, just add \n to the output string. You can’t enter a newline character just
by typing it because when you do that the cursor just moves to the next line. That’s why it’s specified as
\n. There are other characters like this that you cannot enter directly that we’ll look into a little later in
this chapter.

Importing the Math Class Methods

It would be a lot more convenient if you were able to avoid having to qualify the name of every method
in the Math class that you use with the class name. The code would be a lot less cluttered if you could
write floor (radius) instead of Math. floor (radius) for example. Well, you can. All you need to do
is put the following statement at the beginning of the source file:

import static java.lang.Math.*; // Import static class members

This statement makes the names of all the static members of the Math class available for use in your pro-
gram code without having to qualify them with the class name. This includes constants such as PI as
well as static methods. You can try this statement in the PondRadius example. With this statement at the
beginning of the source file, you will be able to remove the qualification by the class name Math from all
the members of this class that the program uses.

The * in the statement indicates that all static names are to be imported. If you wanted to import just the
names from the Math class that the PondRadius program uses, you would write:

import static java.lang.Math.floor; // Import floor
import static java.lang.Math.sqgrt; // Import sqgrt
import static java.lang.Math.round; // Import round
import static java.lang.Math.PI; // Import PI

59

Chapter 2

These statements import individually the four names from the Math class that the program references.
You could use these four statements at the beginning of the program in place of the previous import
statement that imports all the static names. I'll discuss this form of the import statement further in
Chapter 5.

Storing Characters

Variables of type char store a single character code. They each occupy 16 bits, or 2 bytes, in memory
because all characters in Java are stored as Unicode. To declare and initialize a character variable
myCharacter you could use the statement:

char myCharacter = 'X';

This initializes the variable with the Unicode character representation of the letter 'X'. You must always
put single quotes as delimiters for a character literal in a statement as in this example, 'x'. This is neces-
sary to enable the compiler to distinguish between the character 'x' and a variable with the name x.
Note that you can’t use double quotes as delimiters here because they are used to delimit a character
string. A character string such as "X" is quite different from the literal of type char, 'X".

Character Escape Sequences

In general, the characters that you will be able to enter directly from your keyboard will be a function of
the keys you have available and the set of character codes they map to according to your operating sys-
tem. Whatever that is, it will be a small subset of the characters defined by the Unicode encoding. To
enable you to enter any Unicode character as part of your program source code you can define Unicode
characters by specifying the hexadecimal representation of the character codes in an escape sequence.
An escape sequence is simply an alternative means of specifying a character that is often, but not exclu-
sively, defined by its code. A backslash indicates the start of an escape sequence, so you have already
met the escape sequence for a newline character, \n.

You create an escape sequence for a Unicode character by preceding the four hexadecimal digits of the
character code by \u. Since the Unicode coding for the letter X is the hexadecimal value 0x0058 (the low-
order byte is the same as the ASCII code), you could also declare and define myCharacter with the
statement:

char myCharacter = '\u0058"';

You place the escape sequence between single quotes to define the character literal. The result is the
same as the previous statement where you used 'X' as the initial value for myCharacter. You can enter
any Unicode character in this way, as long as you know its code of course.

You can get more information on the full Unicode character set on the Internet by
visiting http: //www.unicode.org/.

60

Programs, Data, Variables, and Calculation

Because the backslash indicates the beginning of an escape sequence, you must always use the escape
sequence, \\, to specify a backslash character as a character literal or in a text string.

As you have seen, you write a character string (a String literal, as we will see in Chapter 4) enclosed
between double quotes, and a character literal between single quotes. For this reason you also need the
escape sequences \ ' and \ " to specify these characters. For example, to produce the output

"It's freezing in here", he said coldly.
you could write

System.out.println("\"It\'s freezing in here\", he said coldly.");
In fact, it’s not strictly necessary to use an escape sequence to specify a single quote within a string, but
obviously it will be when you want to specify a single quote as a character literal. Of course, it is always
necessary to specify a double quote within a string using an escape sequence; otherwise, it would be

interpreted as the end of the string.

There are other escape sequences that you use to define control characters:

\b Backspace

\f Form feed

\n New line

\r Carriage return
\t Tab

Character Arithmetic

You can perform arithmetic on char variables. With myCharacter containing the character 'X', the
statement:

myCharacter += 1; // Increment to next character
will result in the value of myCharacter being changed to 'v'. This is because the Unicode code for 'y'
is one more than the code for 'X'. You could use the increment operator ++ to increase the code stored in
myCharacter by just writing:

++myCharacter; // Increment to next character
When you use variables of type char in an arithmetic expression, their values will be converted to type
int to carry out the calculation. It doesn’t necessarily make a whole lot of sense, but you could write the
following statements that calculate with values of type char:

char aChar = 0;

char bChar = '\u0028';
aChar = (char) (2*bChar + 8);

61

Chapter 2

These statements will leave the achar variable holding the code for the letter X—which is 0x0058.

Try It Out Arithmetic with Character Codes

This example will demonstrate arithmetic operations with values of type char:

public class CharCodeCalcs {
public static void main(String[] args) {

char letterl = 'A'; // letterl is 'A'

char letter2 = (char) (letterl+l); // letter2 is 'B'

char letter3 = letter2; // letter3 is also 'B'
System.out.println("Here\'s a sequence of letters: "+ letterl + letter2 +

(++letterl));
// letter3 is now 'C'
System.out.println("Here are the decimal codes for the letters:\n"+

letterl + ": " + (int)letterl +
" " + letter2 + ": " + (int)letter2 +
" " + letter3 + ": " + (int)letter3);

This example will produce the following output:

Here's a sequence of letters: ABC
Here are the decimal codes for the letters:
A: 65 B: 66 C: 67

How It Works

62

The first three statements inmain () define three variables of type char:

char letterl = 'A'; // letterl is 'A'
char letter2 = (char) (letterl+l); // letter2 is 'B'
char letter3 = letter2; // letter3 is also 'B'

The cast to type char of the initial value for letter?2 is essential. Without it, the code will not compile.
The expression letterl+2 produces a result of type int, and the compiler will not insert an automatic
cast to allow the value to be used as the initial value for letter2.

The next statement outputs three characters:

System.out.println("Here\'s a sequence of letters: "+ letterl + letter2 +
(++letterd));

The first two characters displayed are those stored in letterl and letter2. The third character is the
value stored in 1letter3 after the variable has been incremented by 1.

By default, the println () method treats a variable of type char as a character for output. You can still
output the value stored in a char variable as a numerical value simply by casting it to type int. The
next statement demonstrates this:

Programs, Data, Variables, and Calculation

System.out.println("Here are the decimal codes for the letters:\n"+

letterl + ": " + (int)letterl +
" " 4+ letter2 + ": " 4+ (int)letter2 +
vom 4+ Jetter3 + ": " + (int)letter3);

This statement outputs the value of each of the three variables as a character followed by its decimal
value.

Of course, you may prefer to see the character codes as hexadecimal values. You can display any value
of type int as a hexadecimal string by enlisting the help of a static method that is defined in the
Integer class in the standard library. Add an extra output statement to the example as the last state-
mentinmain():

System.out.println("Here are the hexadecimal codes for the letters:\n"+

letterl + ": " + Integer.toHexString(letterl) +
" " 4+ letter2 + ": " + Integer.toHexString(letter2) +
" " + letter3 + ": " + Integer.toHexString(letter3));

This statement will output the character codes as hexadecimal values, so you'll see this additional out-
put:

Here are the hexadecimal codes for the letters:
A: 41 B: 42 C: 43

The toHexString () method generates a string representation of the argument you supply. Here you
just have the name of a variable of type char as the argument in each of the three uses of the method but
you could put any expression that results in a value of type int. Because the method requires an argu-
ment of type int, the compiler will insert a cast to type int for each of the arguments letterl,
letter2,and letter3.

The Integer class is related to the primitive type int in that an object of type Integer “wraps” a value
of type int. You will understand the significance of this better when you investigate classes in Chapter
5. There are also classes of type—Byte, Short, Long — that relate to values of the corresponding primi-
tive types. The Long class also defines a static method toHexString () that you use to obtain a string
that is a hexadecimal representation of a value of type long. These classes also contain other useful util-
ity methods that I will introduce when a suitable context arises.

Of course, you can use the static import statement that I introduced in the context of the Math class to
import the names of static members of other classes such as Integer and Long. For example, the follow-
ing statement at the beginning of a source file would enable you to use the toHexString () method
without having to qualify it with the Integer class name:

import static java.lang.Integer.toHexString;

Bitwise Operations

As you already know, all these integer variables we have been talking about are represented internally
as binary numbers. A value of type int consists of 32 binary digits, known to us computer fans as bits.
You can operate on the bits that make up integer values using the bitwise operators, of which there are
four available:

63

Chapter 2

64

AND
OR
Exclusive OR

Complement

Each of these operators operates on the individual bits in its operands as follows:

a

Q

The bitwise AND operator, &, combines corresponding bits in its two operands such that if the
first bit AND the second bit are 1, the result is 1 — otherwise, the result is 0.

The bitwise OR operator, |, combines corresponding bits such that if either or both bits are 1,
then the result is 1. Only if both bits are 0 is the result 0.

The bitwise exclusive OR (XOR) operator, ~, combines corresponding bits such that if both bits
are the same the result is 0; otherwise, the result is 1.

The complement operator, ~, takes a single operand in which it inverts all the bits, so that each 1
bit becomes 0, and each 0 bit becomes 1.

You can see the effect of these operators in the examples shown in Figure 2-5.

a (o[[o[o[[[o[Ta[o[o[a[a[ox]
| a&>|o|o|o|o|o|o|o|o|o|o|o|o|1|1|o|1|

b [o[ofo]oJofo[o[o]o]o]ofo]]]1]1]

a [o[1]1]ofo[1]1]o]1]1]o[o[+]1]o]1]

alb_>>[o[1]1]ofo[1]1]o[1|1]o[o[+]1]1]1]

b [o[ofo]ofofo[o[ofo]oofo[]1]+]4]

JOAEERACABEEEACE
| a»|o|1|1|o|o|1|1|o|1|1|o|o|o|o|1|o|

b [o[ofo]oJofo[o[ofo]o]ofo[]1]+]1]

a [o[2]]o[o]]1]o[2]1]ofo]]1]o]4] ~>|1|0|0|1|1|0|0I1I0I0|1|1I0I0I1|0|

Figure 2-5

Figure 2-5 shows the binary digits that make up the operands and the results. Each of the three binary
operations applies to each corresponding pair of bits from its operands in turn. The complement opera-
tor just flips the state of each bit in its operand so that 0 changes to 1 and 1 changes to 0 in the value that

results.

Programs, Data, Variables, and Calculation

Since you are concerned with individual bits when using bitwise operations, writing a constant as a nor-
mal decimal value is not going to be particularly convenient. For example, the bit pattern that is speci-
fied by the decimal value 24576 is not exactly self-evident. A much better way of writing binary values
when you want to work with the bits is to express them as hexadecimal numbers, because you can con-
vert from binary to hexadecimal, and vice versa, very quickly. There’s more on this in Appendix B.

Converting from binary to hexadecimal is easy. Each group of four binary digits from the right corre-
sponds to one hexadecimal digit. You just work out what the value of each four bits is and write the
appropriate hexadecimal digit. For example, the value of a from the previous illustration is:

Binary 0110 0110 1100 1101
Decimal value 6 6 12 13
Hexadecimal 6 6 C D

So the value of the variable a in hexadecimal is 0x66CD, where the 0x prefix indicates that this is a hex-
adecimal value. The variable b in the illustration has the hexadecimal value 0x000F. If you think of the
variable b as a mask applied to a, you can view the & operator as keeping bits unchanged where the
mask is 1 and setting the rest to 0. Mask is a term used to refer to a particular configuration of bits
designed to select out specific bits when it is combined with a variable using a bitwise operator. So, if
you want to select a particular bit out of an integer variable, just AND it with a mask that has that bit set
to 1 and all the others as 0.

Using the AND and OR Operators

You can also envisage what the & operator does from another perspective —it forces a bit to 0 if the cor-
responding mask bit is 0, and leaves a bit unchanged if the mask bit is 1. Thus, the & operator provides
you with a way to switch off specific bits in a word, leaving the rest as they were. Just create a mask with
0 bits in the positions that you want to make 0 and with 1 bits everywhere else. Similarly, the | operator
forces a bit to be 1 when the mask bit is 1, and a mask bit of 0 leaves a bit unchanged so you can use the

| operator to set particular bits in a word on.

The & and | operators are the most frequently used of the bitwise operators, mainly for dealing with
variables where the individual bits are used as state indicators of some kind — for things that can be
either true or false, or on or off. You could use a single bit as a state indicator determining whether some-
thing should be displayed, with the bit as 1, or not displayed, with the bit as 0. To take a simple example,
to select the third bit from the right in the int variable indicators, you can write:

thirdBit = indicators & 0x4; // Select the 3rd bit
The third bit of the variable thirdBit will be the same as the third bit in indicators and all the other

bits will be zero. We can illustrate how this works if we assume the variable indicators contains the
hexadecimal value 0xFF07:

65

Chapter 2

Hexadecimal Binary
indicators 0xFF07 1111 1111 0000 0111
mask value 0x4 0000 0000 0000 0100
indicators & 0x4 0x4 0000 0000 0000 0100

All these values should have 32 bits, and we are only showing 16 bits here, but you see all you need to
know how it works. The mask value sets all the bits in the result to zero except for the third bit, which
will be set to that of the indicators variable. Here, the result of the expression is non-zero because the
third bit in indicatorsis 1.

On the other hand, if the variable indicators contained the value 0xFF09 the result would be different:

Hexadecimal Binary
indicators 0xFF09 1111 1111 0000 1001
mask value 0x4 0000 0000 0000 0100
indicators & 0x4 0x0004 0000 0000 0000 0000

The result of the expression is now zero because the third bit of indicators is zero.

As Isaid, you can use the | operator to set a particular bit on. For example, to set the third bit in indi-
cators on, you can write:

indicators = indicators | 0x4; // Set the 3rd bit on

You can see how this applies to the last value you had for indicators:

Hexadecimal Binary
indicators 0xFF09 1111 1111 0000 1001
mask value 0x4 0000 0000 0000 0100
indicators | 0x4 OxFFOD 1111 1111 0000 1101

As you can see, the effect is just to switch the third bit of indicators on. All the other bits are
unchanged. Of course, if the third bit was already on, it would stay on.

You can also use the bitwise operators in the op= form. Setting the third bit in the variable indicators
is usually written as:

indicators |= 0x4;

Although there is nothing wrong with the original statement, the one above is just a bit more concise.

66

Programs, Data, Variables, and Calculation

To set a bit off you need to use the & operator again, with a mask that has 0 for the bit you want as 0, and
1 for all the others. To set the third bit of indicators off you could write:

indicators &= ~0x4; // Set the 3rd bit off

The ~ operator provides a useful way of specifying a value with all bits 1 apart from one. The literal 0x4
is a value with the third bit as zero and the other bits as 1. Applying the ~ operator to this flips each bit,
so that the 0 bits are 1 and the 1 bit is zero. With indicators having the value 0xFF07, this would work

as follows:
Hexadecimal Binary
indicators 0xFF07 1111 1111 0000 0111
mask value 0x4 0000 0000 0000 0100
~0x4 OxFFFB 1111 1111 1111 1011
indicators & ~0x4 0xFF03 1111 1111 0000 0011

Let’s see some of these bitwise operations in action.

Try It Out Bitwise AND and OR Operations

This example just exercises some of the operations that you saw in the previous section:

import static java.lang.Integer.toBinaryString;

public class BitwiseOps {
public static void main(String[] args) {
int indicators = 0xFFO07;
int selectBit3 = 0x4; // Mask to select the 3rd bit

// Try the

System.out.

System.out

indicators

System.out.

// Try the
indicators

System.out.

System.out.

indicators

System.out.

bitwise AND to select the third bit in indicators
println("indicators =" +
toBinaryString(indicators)) ;

.println("selectBit3 =" 4

toBinaryString (selectBit3)) ;
&= selectBit3;
println("indicators & selectBit3

'
toBinaryString (indicators)) ;

bitwise OR to switch the third bit on

= OxFF09;
println("\nindicators = "+
toBinaryString (indicators)) ;
println("selectBit3 = "+
toBinaryString(selectBit3)) ;
|= selectBit3;
println("indicators | selectBit3 = " +

toBinaryString(indicators)) ;

// Now switch the third bit off again

67

Chapter 2

indicators &= ~selectBit3;
System.out.println("\nThe third bit in the previous value of indicators" +
" has been switched off");
System.out.println("indicators & ~selectBit3 = " +
toBinaryString (indicators)) ;

This example produces the following output:

indicators = 1111111100000111
selectBit3 = 100
indicators & selectBit3 = 100
indicators = 1111111100001001
selectBit3 = 100

indicators | selectBit3 = 1111111100001101

The third bit in the previous value of indicators has been switched off
indicators & ~selectBit3 = 1111111100001001

How It Works

The example uses the code fragments that I discussed in the previous section so you can see they work
as described. One new capability introduced here is the use of the static toBinaryString () method
that is defined in the Integer class. There’s a static import statement for the name of this method so its
use is not qualified by the class name in the example. The toBinaryString () method produces a string
containing a binary representation of the value of type int that is passed as the argument to the method.
You can see from the output for the value of selectBit3 that the string does not include leading zeros.
Obviously, the output would be better with leading zeros displayed but you need to know more about
handling strings to be able to fix this. By the end of Chapter 4, you will be in a position to do so.

Using the Exclusive OR Operator

68

The ~ operator has the slightly surprising ability to interchange two values without moving either value
somewhere else. The need for this turns up most frequently in tricky examination questions. Suppose
you execute the following three statements:

S

S b;
a:

i

L o o

A= Db;

The effect of these statements is to interchange the values of a and b, but remember this works only
for integers. We can try this out with a couple of arbitrary values for a and b, 0xD0O0F and 0xABAD,
respectively —again, we will just look at 16 bits for each variable. The first statement changes a to a
new value:

Programs, Data, Variables, and Calculation

a"=b Hexadecimal Binary

a 0xDOOF 1101 0000 0000 1111
b O0xABAD 1010 1011 1010 1101
a from a*b 0x7BA2 0111 1011 1010 0010

Now the next statement, which calculates a new value of b using the new value of a:

b "= a Hexadecimal Binary

a 0x7BA2 0111 1011 1010 0010
b 0xABAD 1010 1011 1010 1101
b from b*a 0xDOOF 1101 0000 0000 1111

So b now has a value that looks remarkably like the value that a started out with. Let’s look at the last
step, which calculates a new value for a using the new value of b:

a*=b Hexadecimal Binary

a 0x7BA2 0111 1011 1010 0010
b 0xDOOF 1101 0000 0000 1111
a from a*b 0xABAD 1010 1011 1010 1101

Lo and behold, the value of a is now the original value of b. In the old days, when all programmers wore
lab coats, when computers were driven by steam, and when memory was measured in bytes rather than
megabytes, this mechanism could be quite useful since you could interchange two values in memory
without having to have extra memory locations available. So if antique computers are your thing, this
may turn out to be a valuable technique. In fact, it’s really much more useful than that. When you get to
do some graphics programming later in the book, you'll see that this application of the exclusive OR
operator is very relevant.

Don’t forget—all of these bitwise operators can be applied only to integers. They don’t work with any
other type of value. As with the arithmetic expressions, the bitwise operations are carried out with 32
bits for integers of type short and of type byte, so a cast to the appropriate type is necessary for the
result of the expression on the right of the assignment operator.

69

Chapter 2

One note of caution: Special care is needed when initializing variables of type byte and type short with
hexadecimal values to avoid being caught out. For example, you might be tempted to initialize a vari-
able of type byte to binary 1111 1111 with the following statement:

byte allBitsOne = O0XFF; // Wrong!!
In fact, this results in a compiler error message. The literal 0xFF is 1111 1111, so what’s the beef here? The
beef is that 0xFF is not 1111 1111 at all. The literal 0xFF is type int, so it is the binary value 0000 0000
0000 0000 1111 1111. This happens to be equivalent to the decimal value 128, which is outside the range
of type byte. The byte value you are looking for, 1111 1111, is equivalent to the decimal value -1, so the
correct way to initialize al1BitsOne to 1s is to write:

byte allBitsOne = OxXFFFFFFFF; // Correct - well done!!

Now the compiler will happily chop off the high-order bits to produce the result you are looking for.

Shift Operations

70

Another mechanism that you have for working with integer variables at the bit level is shifting. You can
shift the bits in an integer to the right or the left. You can also envisage the process of shifting binary dig-
its right or left as dividing or multiplying by powers of two, respectively. Shifting the binary value of 3,
which is 0011, to the left one bit multiplies it by two. It becomes binary 0110, which is decimal 6. Shifting
it to the right by one bit divides it by 2. It becomes binary 0001, which is 1.

Java has three shift operators:

<< Shift left, filling with zeros from the right.
>> Shift right, propagating the sign bit from the left.
>>> Shift right, filling with zeros from the left.

The effect of each of the shift operators is shown in Figure 2-6.

Of course, if the high-order bit in the >> operation in Figure 2-6 were zero, there would be three zeros at
the leftmost end of the result.

Programs, Data, Variables, and Calculation

These bits are shifted
out and lost

o [g]z]e]ofofa]afofsfajofofafajo]s]

wa [0 [&]aT o [2T& o [o [&[&] o [4] o]0 o]

L

These zeros
are inserted

o

These bits are shifted
out and lost

E——

2 [2fa]afofofa]sfofsfajofofa]alo]a]

[N

a>>3 |0]|o|of1[1]a]ofof2]2]o]a]2]|o]o]1]

These zeros
are inserted

These bits are shifted
out and lost

2 [a]a]efofofa]afofzfajofofafalo]a]

AN

a3 [1|a]a]af1|1]o]ofa]2]o]2|2]o]0]1]

L

The sign is
propagated

Figure 2-6

71

Chapter 2

Shift operations are often used in combination with the other bitwise operators I have discussed to
extract parts of an integer value. In many operating systems, a single 32-bit value is sometimes used to
store multiple values. For example, you could store two 16-bit screen coordinates in a single 32-bit word.
This is illustrated in Figure 2-7.

coordinate x coordinate y

. Y N
value [o]o[1]o[o]1]1]o]1]1]o]o[1]1]o[1]o]1]o]o]o[1]1]o]1[1][1]o]1]1]0[o]

X = value>>>16; // Extract x from value(assumed positive)

x _|o[o[o[oJoJo[o[o]o]o]ofo[ofofo]ofofo[]o]o]+]1]o][1]o]o]1]1]o]1]

y = value & OxFF; // Extract y from value(assumed positive)

v [o[o[o[o]o]ofo[ofo]o]ofofo[o[o[o]o]1]o[ofo]+]1]o]1[1]+]o]1]1]o]o]

y = value>>16; // Extract x from value(positive or negative)

x[0]oJoJo[o]ofo[o]o]ofo[o[ofofo[o]o]o[]o]o]1]]o]+]1]o[o]4]1[o]+]

y = (value <<16)>>16; // Extract y from value(positive or negative)

v [o]o[o[o]o]ofo[ofo]o]ofofo[o[o]o]o]1]o[o[o]+]1]o]1[1]+]o]1]1]o]o]

Figure 2-7

Figure 2-7 shows how the shift operations can be used to extract either the left or the right 16 bits from
the variable value. You can see here why you have an extra shift right operation that propagates the
leftmost bit. It is related to the notion of a shift as multiplying or dividing by a power of 2, and the impli-
cations of that in the context of negative integers represented in 2’s complement form (see Appendix B).
When the sign bit is not propagated, the shift right operation does not have a numerical interpretation
for negative values because the sign bit is treated the same as any other bit, and zeros are inserted from
the right. When the sign bit is propagated, the effect for negative values is the same as for positive values
—namely, that each bit position shifted is a division by 2.

Try It Out Using Shift Operations

72

This example uses the shift operators together with the bitwise operators to pack four values of type
char into a variable of type 1ong. Here’s the code:

import static java.lang.Long.toHexString;
public class PackingCharacters {

public static void main(String[] args) {
char letterA = 'A';

char letterB = 'B';

char letterC = 'C';

char letterD = 'D';

long packed = 0L;

packed = letterD; // Store D

Programs, Data, Variables, and Calculation

packed = (packed << 16) | letterC; // Shift and add the next letter - C
packed = (packed << 16) | letterB; // Shift and add the next letter - B
packed = (packed << 16) | letterA; // Shift and add the next letter - A

System.out.println("packed now contains 0x" + toHexString (packed)) ;

// Now unpack the letters and output them

long mask = OxFFFF; // Rightmost 16 bits as 1

char letter = (char) (packed & mask); // Extract the rightmost letter
System.out.println("From right to left the letters in packed are:");
System.out.println(" " + letter + " 0x" + toHexString(letter));

packed >>= 16; // Shift out the rightmost letter
letter = (char) (packed & mask); // Extract the new rightmost letter
System.out.println(" " + letter + " 0x" + toHexString(letter));

packed >>= 16; // Shift out the rightmost letter
letter = (char) (packed & mask); // Extract the new rightmost letter
System.out.println(" " + letter + " 0x" + toHexString(letter));

packed >>= 16; // Shift out the rightmost letter
letter = (char) (packed & mask); // Extract the new rightmost letter
System.out.println(" " + letter + " 0x" + toHexString(letter));

The output from this example will be:

packed now contains 0x44004300420041
From right to left the letters in packed are:

A 0x41
B 0x42
C 0x43
D 0x44

How It Works

The first four statements in main () define variables initialized with the letters to be packed into the vari-
able, packed, of type long defined in the fifth statement in main (). The packing process begins by stor-
ing the first character in packed:

packed = letterD; // Store D

The rightmost 16 bits in packed now contain the character code D. This will eventually end up in the
leftmost 16 bits of packed. The next statement inserts the next letter, C, into packed:

packed = (packed << 16) | letterC; // Shift and add the next letter - C
The letter is inserted by first shifting the contents of packed left by 16 bits, and then ORing the value of
lettercC with the result. At this point, the leftmost 32 bits of packed are zero and the rightmost 32 bits
contain D followed by c.

The next two statements repeat the same process to insert B and then A:

packed = (packed << 16) | letterB; // Shift and add the next letter - B
packed = (packed << 16) | lettera; // Shift and add the next letter - A

73

Chapter 2

M

74

Now the variable packed holds the codes for all four characters in the sequence D, C, B, and A.
The output produced by the next statement confirms this:
System.out.println("packed now contains 0x" + toHexString (packed)) ;

This statement uses the toHexString () method defined in the Long class to generate a string contain-
ing a hexadecimal representation of the value of packed. Because you have a static import statement for
the name of this method, you don’t need to qualify it with the class name. You can see from the output
that this consists of the character code values 0x44, 0x43, 0x42, and 0x41, which are the codes for the
letters D through A.

The program then demonstrates how you can use the shift operators combined with the bitwise AND to
extract the four char values from packed. The first step is to define a mask to select the rightmost 16 bits
in a value of type long:

long mask = OxXFFFF; // Rightmost 16 bits as 1
The next statement uses mask to pick out the rightmost character code in packed:
char letter = (char) (packed & mask) ; // Extract the rightmost letter

The cast to type char of the value that results from ANDing mask with packed is necessary because the
compiler will not insert an automatic cast from type long to type char.

The next two statements output a heading followed by the first letter as a letter and its code:

System.out.println("From right to left the letters in packed are:");
System.out.println(" " + letter + " O0x" + toHexString(letter));

To get at the next character along, you can shift out the character just extracted and AND the result with
mask once again:

packed >>= 16; // Shift out the rightmost letter
letter = (char) (packed & mask); // Extract the new rightmost letter

The result of the shift right operation is stored back in packed, so ANDing mask with packed extracts
the next letter. Extraction of the next two letters is achieved by repeating exactly the same process of
shifting and then ANDing with mask. From the output you can see that it all works as it should.

ethods for Bitwise Operations

In addition to the basic Java language facilities for operations on integers at the bit level, you also have
some methods available in library classes that provide you with a few extra facilities. I won’t go into
great detail on these as they’re rather specialized, but I'll outline the methods and explain what they do
so you are aware of them.

The methods that implement bitwise operations are defined in the Integer and Long classes in the
java.lang package. The methods in the Integer class apply to values of type int, and the methods
in the Long class apply to values of type long. Both classes define the following methods for bitwise
operations:

Programs, Data, Variables, and Calculation

Method

bitCount (arg)

highestOneBit (arg)

lowestOneBit (arg)

numberOfLeadingZeros (arg)

numberOfTrailingZeros (arg)

reverse (arg)

rotateLeft (arg, distance)

rotateRight (arg, distance)

int data = 0x0F00;

// data is:

Description

Returns the number of 1 bits in the binary integer that you
supply as arg. The count is returned as a value of type int.

Returns an integer with a single 1 bit in the position corre-
sponding to the leftmost 1 bit in arg. The value is returned
as the same type as arg.

Returns an integer with a single 1 bit in the position corre-
sponding to the rightmost 1 bit in arg. The value is returned
as the same type as arg.

Returns the number of 0 bits preceding the leftmost 1 bit in
arg. The value is returned as type int. If arg is zero, then
the method returns the total number of bits in arg, which
will be 32 for type int and 64 for type long.

Returns the number of 0 bits following the rightmost 1 bit in
arg. The value is returned as type int. If arg is zero, then
the method returns the total number of bits in arg, which
will be 32 for type int and 64 for type long.

Returns the value that is obtained by reversing the order of
bits in arg. The value is returned as the same type as arg.

Returns the value obtained by rotating the bits in arg left by
distance bits positions, where distance is a value of type
int. Rotation left means that bits shifted out on the left are
shifted into vacated bit positions on the right. The value is
returned as the same type as arg.

Returns the value obtained by rotating the bits in arg right
by distance bits positions, where distance is a value of
type int. Rotation right means that bits shifted out on the
right are shifted into vacated bit positions on the left. The
value is returned as the same type as arg.

When you want to operate on a value of type int, you call the method for the Integer class, and for a
value of type 1long you call the method in the Long class. The return value is of the same type as the
argument in each case where the result is a transformed version of the argument. Where it is simply a
count, the value returned is of type int.

If you think about what you would need to do yourself to implement what these methods do, you'll
realize they can save a lot of effort. To count how many 1 bits there are in an integer, you would need to
work through each of the bits in a loop checking for a 1 bit in each case. With the bitCount () method,
you get the result with a single statement. It may well be faster than you could implement it for yourself,
too. Let’s consider some examples of how you use these methods.

First, suppose you define an integer variable as follows:

0000 0000 0000 0000 0000 1111 0000 0000

75

Chapter 2

You can now apply the bitCount () method to this. You must use the method in the Integer class
because data is of type int:

int bits = Integer.bitCount (data); // Result is 4
The variable bits will be set to 4 because data contains four 1 bits. You use the method in the Integer
class here because data is of type int. If you were working with an argument of type long, you would
use the method in the Long class.
Here’s a definition of another integer variable, this time of type long:

long number = 0xF00000000000000FL;
The bit pattern in number has the first byte as 1111 0000 and the last byte as 0000 1111; all the other bytes
are zero. Note that the L on the end of the literal is essential here. Without it you are specifying a literal
of type int, and type int only has 32 bits so you'll get an error message from the compiler.
You could rotate the bits in number left by two with the following statement:

long result = Long.rotateLeft (number, 2);
The variable result will be set to a value where the first byte is 0xC0, the last byte is 0x3F, and all the
other bits are zero. The bits in number are shifted left by two bit positions, and the two 1 bits that are

shifted out on the left will be shifted in on the right as this is a rotation operation on the bits.

Let’s see some of these methods working for real.

Try It Out Methods for Operations on Bits

76

You'll be able to see the effects of some of the methods I have discussed by just outputting the results of
some of the operations. The example also makes use of another method that is defined in both the
Integer and Long classes that you've seen in an earlier example —the toBinaryString () method,
which creates a string representation of a binary integer. Here’s the code:

import static java.lang.Long.*;

public class TryBitMethods {
public static void main(String[] args) {

long number = 0xF00000000000000FL;
System.out.println ("number:\n" + toBinaryString (number)) ;
long result = rotateLeft (number,2);
System.out.println ("number rotated left 2 bits:\n" + toBinaryString(result));
result = rotateRight (number, 3);
System.out.println ("number rotated right 3 bits:\n" + toBinaryString(result));
result = reverse(result);
System.out.println("Previous result reversed:\n" + toBinaryString(result));
System.out.println("Bit count in number:\n" + bitCount (number)) ;

Programs, Data, Variables, and Calculation

This program will produce the following output:

number:
1111001111
number rotated left 2 bits:
110011121112
number rotated right 3 bits:
1111111001
Previous result reversed:
1001111111
Bit count in number: 8

I inserted \n characters in the output to put the binary value on the line following its description
because it would not fit within the page width otherwise. You might find it more convenient to remove
the newlines but insert spaces to make the binary values align vertically. They’ll be easier to compare
that way.

How It Works

The program applies a variety of the methods for bit operations in the Long class to the value in number.
The toBinaryString () method in the Long class creates a string representation of the binary value
that is passed to the method, and you output that using the println () method. By comparing the bit
patterns produced by each method with the original, you can clearly see what the methods do. You
might like to try the same thing with the methods in the Integer class. Because there is an import
statement for all the static members of the Long class, none of the methods from the Long class that the
program uses need to be qualified with the class name.

Variables with a Fixed Set of Integer Values

You will often need variables that can have values only from a predefined fixed set. For example, sup-
pose you want to define an integer variable with the name weekday, which will store an integer value
representing a day of the week. The variable ideally needs to be limited to seven possible values, one for
each of Monday through Sunday. This is a situation where a facility called an enumeration is a natural
choice. You could define an enumeration for this situation with the following declaration statement:

enum Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday }

This defines a new type, Day, for variables that can store only one or other of the values specified
between the braces. The names Monday, Tuesday, and so on through to Sunday are called enumeration
constants, and they identify the only values that are allowed for variables of type Day. In fact, these
names will correspond to integer values, starting from 0 in this case, but they are not the same as integer
variables because they exist only within the context of the enumeration, Day. Note the absence of a semi-
colon at the end of the definition of the Day enumeration. Because you are defining a type here, no semi-
colon is required after the closing brace. I used a capital D at the beginning of the type name, Day,
because by convention, types that you define begin with a capital letter. The names for the enumeration
constants would usually be written beginning with a lowercase letter, but in this case I used a capital let-
ter at the beginning because that’s how the days of the week are usually written. You could just as well
write the enumeration constants with a lowercase letter.

77

Chapter 2

With this new type, you can now define the variable weekday like this:
Day weekday = Day.Tuesday;

This declares the variable weekday to be of type Day, and initializes it with the value, Tuesday. Note
that the enumeration constant must be qualified with the name of the enumeration type here. If you
leave the qualifier out, the compiler will not recognize the constant. There is a way to get around this,
but you'll have to wait until Chapter 5 to find out about it. You can set a variable of a given enumeration
type only to one or other of the enumeration constants that you defined for the type.

An enumeration can contain as many or as few enumeration constants as you need. Here’s an enumera-
tion type for the months in the year:

enum Month { January, February, March , April , May , June,
July , August , September, October, November, December }

You could define a variable of this type like this:
Month current = Month.September; // Initialize to September

If you later want to change the value stored in the variable, you can set it to a different enumeration
constant:

current = Month.October;
The current variable will now contain the enumeration constant, October.

Let’s see an enumeration in action in an example.

Try It Out Using an Enumeration

Here’s a program that defines the Day enumeration and some variables of that type:

public class TryEnumeration ({
// Define an enumeration type for days of the week
enum Day {Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday }

public static void main(String[] args) {

// Define three variables of type Day
Day yesterday = Day.Thursday;

Day today = Day.Friday;

Day tomorrow = Day.Saturday;

// Output the values of the Day variables
System.out.println("Today is " + today);
System.out.println("Tomorrow will be " + tomorrow) ;
System.out.println("Yesterday was " + yesterday) ;

78

Programs, Data, Variables, and Calculation

This will produce the following output:

Today is Friday
Tomorrow will be Saturday
Yesterday was Thursday

How It Works

The code itself is essentially what you saw in the previous section. There is the declaration of the enu-
meration type, Day, followed by the main () method that contains definitions of three variables of that
type. You then have output statements for the values of the three variables.

The output is very interesting. It doesn’t display the numerical values of the variables of type Day, but
their names. This is the default way in which a value of an enumeration type is represented as a string
because the names are more important than the values in most enumeration types. After all, the values
that they have are arbitrarily assigned here and serve only to differentiate one enumeration constant
from another.

Note that because the statement that defines Day is defining a new type, you cannot position it within
the body of the main () method, or indeed any other method that you might define. The definition for
Day could appear in a separate source file with the name Day . java, and the example would work just
as well.

This is just a small fraction of the capabilities of enumerations. I introduced them at this point because
enumeration constants — the values that a variable of an enumeration type may have —are always inte-
gers. You will find out more about how you can use them as you progress through subsequent chapters,
but you will have to wait until Chapter 6 for the full story.

Boolean Variables

Variables of type boolean can have only one of two values, true or false. The values true and false
are boolean literals. The boolean type is named after the mathematician George Boole, who invented
Boolean algebra, and variables of this type are described as boolean variables. You can define a variable
of type boolean called state with the following statement:
boolean state = true;
This statement also initializes the variable state with the value true.
You can also set the value of a boolean variable in an assignment statement. For example, the statement
state = false;
sets the value of the variable state to false.
At this point you can’t do much with a boolean variable, other than to set its value to true or false,
but as you will see in the next chapter, boolean variables become much more useful in the context of

decision-making in a program, particularly when we can use expressions that produce a result of type
boolean.

79

Chapter 2

0

80

Several operators combine boolean values, including operators for boolean AND, boolean OR, and
boolean negation (these are &, | |, and !, respectively), as well as comparison operators that produce a
boolean result. Rather than go into these here in the abstract, I will defer discussion until the next chap-
ter, where I will also explain how you can apply them in practice to alter the sequence of execution in a
program.

Note that variables of type boolean differ from the other primitive data types in
that they cannot be cast to any other basic type, and the other primitive types cannot
be cast to type boolean.

perator Precedence

I'have already introduced the idea of a pecking order for operators that determines the sequence in
which they are executed in a statement. A simple arithmetic expression such as 3 + 4*5 results in the
value 23 because the multiply operation is executed first—it takes precedence over the addition opera-
tion. I can now formalize the position by classifying all the operators present in Java according to their
precedence. Each operator in Java has a set priority or precedence in relation to the others, as shown in
the following table. Operators with a higher precedence are executed before those of a lower precedence.
Precedence is highest for operators in the top line in the table, down through to the operators in the bot-
tom line, which have the lowest precedence. Operators that appear on the same line of the table have the
same precedence:

Operator Precedence Group Associativity
(0, [1, postfix ++, postfix -- left
unary +, unary -, prefix ++, prefix --, ~, ! right
(type), new left
* /% left
+, - left
<<, >>, >>> left
< ,<=,>,>=, instanceof left
==, = left
& left
2 left

| left
&& left

| | left
2 left
=, +=,-=, %=, /=, %o=, <<=, >>=,>>>=, &=, |=, = right

Programs, Data, Variables, and Calculation

Most of the operators that appear in the table you have not seen yet, but you will meet them all in this
book eventually, and it is handy to have them all gathered together in a single precedence table that you
can refer to when necessary.

By definition, the postfix ++ operator changes the value of its operand after the other operators in the
expression in which it appears have been executed, despite its high precedence. In this case, precedence
determines what it applies to; in other words, the postfix ++ acts only on the variable that appears imme-
diately before it. For this reason the expression numOranges+++numApples that we saw earlier in the
chapter is evaluated as (oranges++) + apples rather than oranges + (++apples).

The sequence of execution of operators with equal precedence in a statement is determined by a prop-
erty called associativity. The operators that appear on the same line in the table above form a group of
operators that are either left-associative or right-associative. A left-associative operator attaches to its
immediate left operand. This results in an expression involving several left-associative operators with
the same precedence in the same expression being executed in sequence, starting with the leftmost and
ending with the rightmost. Right-associative operators of equal precedence in an expression bind to their
right operand and consequently are executed from right to left. For example, if you write the statement:

a=>b+c+ 10;

the left associativity of the group to which the + operator belongs implies that this is effectively:
a= (b+c) + 10;

On the other hand, = and op= are right-associative, so if you have int variables a, b, ¢, and d each ini-
tialized to 1, the statement:

Note that these statements are intended to illustrate how associativity works and are not a recom-
mended approach to coding.

You will probably find that you will learn the precedence and associativity of the operators in Java by
just using them in your programs, so don’t spend time trying to memorize them. You may need to refer
back to the table from time to time, but as you gain experience you will gain a feel for where the opera-
tors sit and eventually you will automatically know when you need parentheses and when not.

Program Comments

I have been adding comments in all the examples so far, so you already know that everything following

// in a line is ignored by the compiler (except when the // appears in a character string between double
quotes of course). Another use for // is to change lines of code into comments so that they don't get exe-
cuted —to “comment them out” in other words. If you want to remove some code from a program tem-

porarily, you just add // at the beginning of each line that you want to eliminate. Removing the // later

restores the line of code.

81

Chapter 2

It is often convenient to include multiple lines of comment in a program — for example, at the beginning
of a method to explain what it does. An alternative to using // at the beginning of each line in a block of
comments is to put /* at the beginning of the first comment line and */ at the end of the last comment
line. Everything between the /* and the next */ will be ignored. By this means you can annotate your
programs, as shown here for example:

/***************************************

* This is a long explanation of @
* some particularly important *
* aspect of program operation. &

***************************************/

Here I have used asterisks to highlight the comment. Of course, you can frame blocks like this in any
way that you like, or even not at all, just so long as there is / * at the beginning and */ at the end.

Documentation Comments

82

You can also include comments in a program that are intended to produce separate documentation for
the program. These are called documentation comments. A program called javadoc processes the doc-
umentation comments in the source code for a program to generate separate documentation for the
code. All the documentation that you get with the JDK is produced in this way.

The documentation that is generated by javadoc is in the form of HTML web pages that can be viewed
using a browser such as Netscape Navigator or Internet Explorer. A full discussion of documentation
comments is outside the scope of this book —not because they are difficult, they aren’t. However, it
would require a lot of pages to cover them properly, and there are already a lot of pages in the book. I will
just describe them sufficiently so that you will recognize documentation comments when you see them.

A documentation comment begins with /** and ends with */. An example of a simple documentation
comment is:

/**
This is a documentation comment.

*/

Any asterisks at the beginning of each line in a documentation comment are ignored, as are any spaces
preceding the first asterisk.

A documentation comment can also include HTML tags, as well as special tags beginning with @ that are

used to document methods and classes in a standard form. The @ character is followed by a keyword
that defines the purpose of the tag. Here are some of the keywords that you can use:

@author Used to define the author of the code. For example, I could specify that I am
the author by adding the tag:

/**
@author Ivor Horton

*/

Programs, Data, Variables, and Calculation

@deprecated

@exception

{@link}

@param
@return

@see

@throws

@version

Used in the documentation of library classes and methods to indicate that
they have been superseded and generally should not be used in new applica-
tions. This is primarily used within the class libraries to identify obsolete
methods.

Used to document exceptions that the code can throw and the circumstance
which can cause this to occur. For example, you might add the following doc-
umentation comment preceding your definition of a method to indicate the
type of exception that the method may throw:

/**
@exception IOException When an I/0 error occurs.

*/

Generates a link to another part of the documentation within the documenta-
tion that is produced. You can use this tag to embed a link to another class or
method within descriptive text for your code. The curly brackets are used to
separate the link from the rest of the in-line text.

Used to describe the parameters for a method.
Used to document the value returned from a method.

Used to specify cross-references to some other part of the code, such as
another class or a method. It can also reference a URL.

A synonym for @exception.

Used to describe the current version of the code.

You can use any HTML tags within a documentation comment except for header tags. The HTML tags
you insert are used to structure and format the documentation appropriately when it is viewed, and
javadoc will add HTML tags to format the comments that include the special @ tags mentioned in the

preceding table.

The outline here really only gives you a hint as to what documentation comments are and doesn’t do
justice to the power and scope of javadoc. For that you need to look into it in detail. If you want to see
real examples of javadoc comments, take a look at one or other of the source code files for the library
classes. The JDK comes with the javadoc program and its documentation. javadoc also has its own
home page on the Javasoft web site at http: //java.sun.com/j2se/javadoc/.

Summary

In this chapter you have seen all of the basic types of variables that are available in Java. The discussion
of boolean variables will be more meaningful in the context of the next chapter since their primary use
is in decision-making and modifying the execution sequence in a program.

83

Chapter 2

The important points you have learned in this chapter are:

a
a

(]

The integer types are byte, short, int, and long, occupying 1, 2, 4, and 8 bytes, respectively.
Variables of type char occupy 2 bytes and can store a single Unicode character code.

Integer expressions are evaluated using 64-bit operations for variables of type long, and using
32-bit operations for all other integer types. You must, therefore, add a cast for all assignment
operations storing a result of type byte, type short, or type char.

A cast will be automatically supplied where necessary for op= assignment operations.
The floating-point types are f1oat and double, occupying 4 and 8 bytes, respectively.

Values that are outside the range of a floating-point type are represented by a special value that
is displayed as either Infinity or -Infinity.

Where the result of a floating-point calculation is indeterminate, the value is displayed as NaN.
Such values are referred to as Not-a-Number.

You use an enumeration type to define variables that can be assigned values only from a fixed
set that you specified as part of the enumeration.

Variables of type boolean can have only either the value true or the value false.

The order of execution of operators in an expression is determined by their precedence. Where
operators are of equal precedence, the order of execution is determined by their associativity.

Exercises

You can download the source code for the examples in the book and the solutions to the following exer-
cises from http: //www.wrox.com.

84

1.

2.

Write a console program to define and initialize a variable of type byte to 1, and then succes-
sively multiply it by 2 and display its value 8 times. Explain the reason for the last result.

Write a console program to declare and initialize a double variable with some value such as
1234.5678. Then retrieve the integral part of the value and store it in a variable of type long, and
the first four digits of the fractional part and store them in an integer of type short. Display the
value of the double variable by outputting the two values stored as integers.

Write a program that defines a floating-point variable initialized with a dollar value for your
income and a second floating-point variable initialized with a value corresponding to a tax rate
of 35 percent. Calculate and output the amount of tax you must pay with the dollars and cents
stored as separate integer values (use two variables of type int to hold the tax, perhaps
taxDollars and taxCents).

The diameter of the Sun is approximately 865,000 miles. The diameter of the Earth is approxi-
mately 7,600 miles. Use the methods in the class Math to calculate:

O The volume of the Earth in cubic miles
QO The volume of the Sun in cubic miles

QO The ratio of the volume of the Sun to the volume of the Earth

Loops and Logic

In this chapter you'll look at how you make decisions and choices in your Java programs. You will
also learn how to make your programs repeat a set of actions until a specific condition is met. In
this chapter you'll learn:

0 How you compare data values

O

How you can define logical expressions

O

How you can use logical expressions to alter the sequence in which program statements
are executed

How you can select different expressions depending on the value of a logical expression
How to choose between options in a fixed set of alternatives

How long your variables last

How you can repeat a block of code a given number of times

How you can repeat a block of code as long as a given logical expression is true

How you can break out of loops and statement blocks

00000 oo

What assertions are and how you use them
All your programs of any consequence will use at least some, and often most, of the language
capabilities and programming techniques I will cover in this chapter, so make sure you have a

good grasp of them.

But first, how do you make decisions in code, and so affect the way the program runs?

Making Decisions

Making choices will be a fundamental element in all your programs. You need to be able to make
decisions like, “If the user wants to enter more data, then read another value from the keyboard”

Chapter 3

or “If the bank balance is large, buy the car with the go-faster stripes, else renew the monthly

bus ticket.” Whatever decision you want to make, in programming terms it requires the ability to make
comparisons between variables, constants, and the values of expressions and then execute one group of
statements or another, depending on the result of a given comparison. Thus, the first step to understand-
ing how you make decisions in a program is to look at how you make comparisons.

Making Comparisons

86

Java provides you with six relational operators for comparing two data values. The data values you are
comparing can be variables, constants, or expressions with values drawn from Java’s primitive data
types—byte, short, int, long, char, float or double.

Relational Operators Description

> Produces the value true if the left operand is greater than the right
operand, and false otherwise.

>= Produces the value true if the left operand is greater than or equal to
the right operand, and false otherwise.

== Produces the value true if the left operand is equal to the right
operand, and false otherwise.

U= Produces the value true if the left operand is not equal to the right
operand, and false otherwise.

<= Produces the value true if the left operand is less than or equal to the
right operand, and false otherwise.

< Produces the value true if the left operand is less than the right
operand, and false otherwise.

As you see, each operator produces either the value true or the value false, and so is eminently suited
to the business of making decisions. This also implies that you can use a boolean variable to store the
result of a comparison. You saw how to declare variables of type boolean in the previous chapter. For
example, you could define a boolean variable state and set its value to be the result of an expression
using a comparison as follows:

boolean state = false; // Define and initialize the variable
state = x -y < a + b; // Store the result of comparing x-y with a+b

The value of the variable state will be set to true in the assignment statement if x - yislessthana +
b, and to false otherwise.

To understand how the preceding expression is evaluated, take a look back at the precedence table for
operators that I introduced in the last chapter. You'll see that the comparison operators are all of lower
precedence than the arithmetic operators, so arithmetic operations will always be completed before any
comparisons are made, unless of course there are parentheses dictating otherwise. The expression

will produce the result trueif x - yisequaltoa + b, since these arithmetic sub-expressions will be
evaluated first, and the values that result will be the operands for the == operator. Of course, it is helpful

Loops and Logic

to put the parentheses in, even though they are not strictly necessary. It leaves no doubt as to what is
happening if you write:

Note that if the left and right operands of a relational operator are of differing types, values will be pro-
moted in the same way as you saw in the previous chapter for mixed arithmetic expressions. So if
aDouble is of type double and number is of type int in the following expression:

aDouble < number + 1

the result of the expression number + 1 will be calculated as type int, and this value will be promoted
to type double before comparing it with the value of aDouble.

The if Statement

The first statement you’'ll look at that can make use of the result of a comparison is the i f statement. The
if statement, in its simplest configuration, is of the form

if (expression)
statement;

where expression can be any expression that produces a value true or false. You can see a graphical
representation of this logic in Figure 3-1.

expression is
true?

if (expression)
statement;
next statement;

execute
statement

execute
next_statement

Figure 3-1 87

Chapter 3

If the value of expression is true, the statement that follows the if is executed; otherwise, itisn’t. A
practical example of this is as follows:

if (number%2 != 0) // Test if number is odd
++number; // If so make it even

The if condition between the parentheses tests whether the value of number is odd by comparing the
remainder that results from dividing it by 2 with 0. If the remainder isn’t equal to 0, the value of number
is odd, so you add 1 to make it even. If the value of number is even, the statement incrementing number
will not be executed.

Note how the statement on the second line is indented. This is to show that it is sub-
ject to the if condition. You should always indent statements in your Java programs
as cues to the program structure. You will gather more guidelines on the use of state-
ment indenting as you work with more complicated examples.

You may sometimes see a simple if written on a single line. The previous example could have been
written:

if (number%2 != 0) ++number; // If number is odd, make it even

This is perfectly legal. The compiler ignores excess spaces and newline characters — the semicolon acts
as the delimiter for a statement. Writing an if in this way saves a little space, and occasionally it can be
an aid to clarity, when you have a succession of such comparisons, for example, but generally it is better
to write the action statement on a separate line from the condition being tested.

Statement Blocks

88

In general, wherever you can have one executable statement in Java, you can also have a block of state-
ments enclosed between braces. This applies to the statements within a statement block, so you can
always nest a statement block between braces inside another statement block, and you can do this to any
depth. The ability to use a block wherever you can have a statement means that you can use a statement
block within the basic i f statement that you just saw. Therefore, the if statement can equally well be of
the form:

if (expression) {
statement 1;
statement 2;

statement n;

}

Now if the value of expressionis true, all the statements enclosed in the following block will be exe-
cuted. Of course, without the braces to enclose the block, the code no longer has a statement block:

Loops and Logic

if (expression)
statement 1;
statement 2;

statement n;

Here, only the first statement, statement 1, will be omitted when the i f expression is false; the
remaining statements will always be executed regardless of the value of expression. You can see from
this that indenting is just a visual cue to the logic. It has no effect on how the program code executes.
This looks as though the sequence of statements belongs to the if, but only the first statement does
because there are no braces. The indenting is incorrect and misleading here and the code should be writ-
ten as:

if (expression)
statement 1;

statement 2;

statement n;

In this book, I have adopted the convention of having the opening brace on the
same line as the if condition. The closing brace will then be aligned with the first
character, i, in the keyword if. I will indent all the statements within the block
from the braces so that they are easily identified as belonging to the block. This is
consistent with the pattern I have been using with a block defining a class and a
block belonging to a method. There are other conventions that you can use if you
prefer. In another common convention, the braces bounding a block appear on their
own line and are aligned. The most important consideration is that you are consis-
tent in whatever convention you adopt.

As a practical example of an if statement that includes a statement block, you could write:

if (number%2 != 0) { // Test if number is odd
// If so make it even and output a message
++number ;
System.out.println ("Number was forced to be even and is now " + number);
}

Now both statements between the braces are executed if the i f expression is true, and neither of them
is executed if the 1 f expression is false.

It is good practice to always put opening and closing braces around the code dependent on an if condi-
tion, even when there is only a single action statement. This helps to make the code easier to follow and
will minimize the possibility of the program logic being confused.

Statement blocks are more than just a convenient way of grouping statements together — they affect the

life and accessibility of variables. You'll learn more about statement blocks when I discuss variable scope
later in this chapter. In the meantime, let’s look a little deeper into what you can do with the i f statement.

89

Chapter 3

The else Clause

You can extend the basic if statement by adding an else clause. This provides an alternative choice of
statement, or statement block, that is executed when the expression in the if statementis false. You
can see the syntax of this statement, and how the program’s control flow works, in Figure 3-2.

expression is
true?

if (expression) ({

statementl;

1
€ ziat{:ement2 ; execute execute
) ! statementl statement?2
next statement;
execute

next statement

Figure 3-2

This provides an explicit choice between two courses of action — one for when the if expression is true
and another for when it is false.

You can apply this in a console program and try out the random () method from the Math class at the
same time.

Try It Out if-else

When you have entered the program text, save it in a file called NumberCheck. java. Compile it and
then run it a few times to see what results you get.

public class NumberCheck {

public static void main(String[] args) {
int number = 0;

20

Loops and Logic

number = 1+ (int) (100*Math.random()); // Get a random integer between 1 & 100
if (number%2 == 0) { // Test if it is even
System.out.println("You have got an even number, " + number); // It is even
} else {
System.out.println("You have got an odd number, " + number); // It is odd

}

How It Works

You saw the random () method that is defined in the standard class Math in the previous chapter. It
returns a random value of type double between 0.0 and 1.0, but the result is always less than 1.0, so the
largest number you will get is 0.9999... (with the number of recurring digits being limited to the maxi-
mum number that the type double will allow, of course). Consequently, when you multiply the value
returned by 100.0 and convert this value to type int with the explicit cast, you discard any fractional
part of the number and produce a random integer between 0 and 99. Adding 1 to this will result in a ran-
dom integer between 1 and 100, which you store in the variable number. You then generate the program
output in the if statement. If the value of number is even, the first println () call is executed; other-
wise, the second println () call in the else clause is executed.

Note the use of indentation here. It is evident that main () is within the class definition because of the
indentation relative to the first line of the class definition. The code for main () is clearly distinguished
because it is indented relative to the first line of the method. You can also see immediately which state-
ment is executed when the i £ expression is true, and which applies when it is false.

Nested if Statements

The statement that is executed when an i f expression is true can be another if, as can the statement in
an else clause. This enables you to express such convoluted logic as “if my bank balance is healthy, then
I will buy the car if I have my check book with me, else I will buy the car if I can get a loan from the
bank.” An if statement that is nested inside another can also itself contain a nested i f. You can continue
nesting ifs one inside the other like this for as long as you still know what you are doing — or even
beyond if you enjoy confusion.

To illustrate the nested if statement, I can modify the if from the previous example:

if (number%2 == 0) { // Test if it is even
if (number < 50) { // Output a message if number is < 50
System.out.println("You have got an even number < 50, " + number) ;
}
} else {
System.out.println("You have got an odd number, " + number); // It is odd

}

Now the message for an even value is displayed only if the value of number is also less than 50. There
are three possible outcomes from this code fragment—if number is even and less than 50, you will see a
message to that effect; if number is even and is not less than 50, there will be no output; and finally, if
number is odd, a message will be displayed.

91

Chapter 3

The braces around the nested if are necessary here because of the else clause. The braces constrain the
nested if in the sense that if it had an else clause, it would have to appear between the braces enclos-
ing the nested if. If the braces were not there, the program would still compile and run but the logic
would be different. Let’s see how.

With nested ifs, the question of to which if statement a particular else clause belongs often arises. If
you remove the braces from the code above, you have:

if (number%2 == 0) // Test if it is even
1f (number < 50) // Output a message if number is < 50
System.out.println("You have got an even number < 50, " + number) ;
else
System.out.println("You have got an odd number, " + number); // It is odd

This has substantially changed the logic from the previous version, in spite of the fact that the indenta-
tion implies otherwise. The else clause now belongs to the nested if that tests whether number is less
than 50, so the second println() call is executed only for even numbers that are greater than or equal to
50. This is clearly not what was intended since it makes nonsense of the output in this case, but it does
illustrate the rule for connecting elses to ifs, which is:

An else always belongs to the nearest preceding if in the same block that is not
already spoken for by another else.

You need to take care that the indenting of statements with nested i fs is correct. It is easy to convince
yourself that the logic is as indicated by the indentation, even when this is completely wrong.

Let’s try the i f-else combination in another program:

Try It Out Deciphering Characters the Hard Way

Create the class LetterCheck, and code its main () method as follows:

public class LetterCheck ({
public static void main(String[] args) {
char symbol = 'A';

symbol = (char) (128.0*Math.random()) ; // Generate a random character
if (symbol >= 'A') { // Is it A or greater?
if (symbol <= 'z') { // yes, and is it Z or less?

// Then it is a capital letter
System.out.println("You have the capital letter " + symbol);

} else { // It is not Z or less
if (symbol >= 'a') { // So is it a or greater?
if (symbol <= 'z') { // Yes, so is it z or less?

// Then it is a small letter
System.out.println("You have the small letter " + symbol);

} else { // It 1s not less than z
System.out.println (

92

Loops and Logic

"The code is greater than a but it's not a letter");

}

} else {
System.out.println (
"The code is less than a and it's not a letter");

}

} else {
System.out.println("The code is less than A so it's not a letter");

}

How It Works

This program figures out whether the character stored in the variable symbo1 is an uppercase letter, a
lowercase letter, or some other character. The program first generates a random character with a numeric
code between 0 and 127, which corresponds to the characters in the basic 7-bit ASCII (ISO 646) character
set. The Unicode coding for the ASCII characters is numerically the same as the ASCII code values.
Within this character set, the letters 'A' to ' z' are represented by a contiguous group of ASCII codes
with decimal values from 65 to 90. The lowercase letters are represented by another contiguous group
with ASCII code values that have decimal values from 97 to 122. So to convert any capital letter to a low-
ercase letter, you just need to add 32 to the character code.

The if statements are a bit convoluted so let’s look at the diagram of the logic in Figure 3-3.

Symbol>="A"? It is a capital letter
n
It is a lower case letter
else
It is not a letter It is not a letter It is not a letter
Figure 3-3

93

Chapter 3

You have four if statements altogether. The first i f tests whether symbol is 'A' or greater. If it is, it
could be a capital letter, a small letter, or possibly something else. But if it isn't, it is not a letter at all, so
the else for this if statement (toward the end of the program) produces a message to that effect.

The nested i £ statement, which is executed if symbol is 'A' or greater, tests whether itis 'z' or less. If
it is, then symbo1l definitely contains a capital letter, and the appropriate message is displayed. If it isn’t
then it may be a small letter, so another if statement is nested within the else clause of the first nested
1if to test for this possibility.

The if statement in the else clause tests for symbol being greater than 'a'.If it isn’t, you know that
symbol is not a letter, and a message is displayed. If it is, another i f checks whether symbolis 'z' or
less. If it is you have a small letter, and if not you don’t have a letter at all.

You will have to run the example a few times to get all the possible messages to come up. They all will —
eventually.

After having carefully crafted our convoluted and cumbersome condition checking, I can now reveal
that there is a much easier way to achieve the same result. You'll see that in the section “Logical
Operators” that follows immediately after a brief word on working with enumeration values.

Comparing Enumeration Values

94

You can’t compare variables of an enumeration type using the comparison operators but you can using a
method that every enumeration object provides. Suppose you define an enumeration type as:

enum Season { spring, summer, fall, winter }

You could now define and initialize a variable of type Season with the following statement:
Season season = Season.summer;

If you later want to check what the season variable currently holds, you could write

if (season.equals (Season.spring) {

System.out.println("Spring has sprung, the grass is riz.");
} else {

System.out.println("It isn\'t Spring!");
}

This calls the equals () method for the enumeration referred to by season. This method will compare
the value in season with the value between the parentheses and result in true if they are equal or
false if they are unequal. You could use the equals () method to compare season with another vari-
able of type Season, for example:

Season best = Season.winter; // A new variable initialized to winter
if (season.equals (best)) {
System.out.println("season is the same as best, and is equal to "+ best);
} else {
System.out.println(" season has the value "+season +
" and best has the value " + best);

Loops and Logic

After defining the variable, best, you test whether the value of season is the same value as best. If it
is, the first output statement will be executed. If best and season are not equal, the output statement in
the else block will be executed.

Logical Operators

The tests you have put in the i f expressions have been relatively simple so far. Real life is typically more
complicated. You will often want to combine a number of conditions so that you execute a particular
course — for example, if they are all true simultaneously. You can ride the roller coaster if you are over
12 years old, over 4 feet tall, and less than 6 feet 6. Failure on any count and it’s no-go. Sometimes,
though, you may need to test for any one of a number of conditions being true —for example, you get a
lower price entry ticket if you are under 16, or over 65.

You can deal with both of these cases, and more, using logical operators to combine several expressions
that have a value true or false. Because they operate on boolean values, they are also referred to as
boolean operators. There are five logical operators that operate on boolean values:

Symbol Long Name

& logical AND

&& conditional AND

| logical OR

| conditional OR

! logical negation (NOT)

These are very simple; the only point of potential confusion is the fact that you have the choice of two
operators for each of AND and OR. The extra operators are the bitwise & and | from the previous chap-
ter that you can also apply to boolean values where they have an effect that is subtly different from &&
and | |. I'll first consider what each of these is used for in general terms; then I'll look at how you can
use them in an example.

Logical AND Operations

You can use either AND operator, && or &, where you have two logical expressions that must both be true
for the result to be true —that is, you only want to be rich and healthy. Either AND operator will pro-
duce the same result from the logical expression. I will come back to how they differ in a moment. First,
let’s explore how they are used. All of the following discussion applies equally well to & as well as &&.

Let’s see how logical operators can simplify the last example. You could use the && operator if you were
testing a variable of type char to determine whether it contained an uppercase letter or not. The value
being tested must be both greater than or equal to 'A' AND less than or equal to ' z'. Both conditions
must be true for the value to be a capital letter. Taking the example from our previous program, with a
value stored in a char variable symbo1l, you could implement the test for an uppercase letter in a single
if by using the && operator:

if (symbol >= 'A' && symbol <= 'Z'")
System.out.println("You have the capital letter " + symbol);

95

Chapter 3

If you look at the precedence table in Chapter 2, you'll see that the relational operators will be executed
before the && operator, so no parentheses are necessary. Here, the output statement will be executed only
if both of the conditions combined by the operator && are true. However, as I have said before, it is a
good idea to add parentheses if they make the code easier to read. It also helps to avoid mistakes.

In fact, the result of an && operation is very simple. It is true only if both operands are true; otherwise,
the result is false.

You can now rewrite the set of i fs from the last example.

Try It Out Deciphering Characters the Easy Way

You can replace the outer if-else loop and its contents in LetterCheck. java as shown in the follow-
ing code:

public class LetterCheck2 {
public static void main(String[] args) {
char symbol = 'A';

symbol = (char) (128.0*Math.random()) ; // Generate a random character
if (symbol >= 'A' && symbol <= 'Z') { // Is it a capital letter
System.out.println("You have the capital letter " + symbol);
} else {
if (symbol >= 'a' && symbol <= 'z') { // or is it a small letter?
System.out.println("You have the small letter " + symbol);
} else { // It is not less than z

System.out.println("The code is not a letter");

}

The output should be the same as the previous version of the code.

How It Works

Using the && operator has condensed the example down quite a bit. You now can do the job with two
ifs, and it’s certainly easier to follow what’s happening.

You might want to note that when the statement in an else clause is another if, the if is sometimes
written on the same line as the else, as in:

if (symbol >= 'A' && symbol <= 'Z') { // Is it a capital letter
System.out.println("You have the capital letter " + symbol);

} else if(symbol >= 'a' && symbol <= 'z') { // or is it a small letter?
System.out.println("You have the small letter " + symbol);

} else { // It is not less than z

System.out.println("The code is not a letter");

}

I think the original is clearer in this particular case, but writing else if can sometimes make the code
easier to follow.

96

Loops and Logic

&& versus &

So what distinguishes && from & ? The difference between them is that the conditional && will not bother
to evaluate the right-hand operand if the left-hand operand is false, since the result is already deter-
mined in this case to be false. This can make the code a bit faster when the left-hand operand is false.

For example, consider the following statements:

int number = 50;

if (number<40 && (3*number - 27)>100) {
System.out.println ("number = " + number) ;

}

Here the expression (3 *number - 27)>100 will never be executed since the expression number<40 is
always false. On the other hand, if you write the statements as

int number = 50;

if (number<40 & (3*number - 27)>100) {
System.out.println ("number = " + number) ;

}

the effect is different. The whole logical expression is always evaluated, so even though the left-hand
operand of the & operator is false and the result is a forgone conclusion once that is known, the right-
hand operand ((3 *number - 27)>100) will still be evaluated.

So, you can just use && all the time to make your programs a bit faster and forget about &, right? Wrong —
it all depends on what you are doing. Most of the time you can use &&, but there are occasions when you
will want to be sure that the right-hand operand is evaluated. Equally, in some instances, you want to be
certain the right-hand operand won't be evaluated if the left operand is false.

For example, the first situation can arise when the right-hand expression involves modifying a variable —
and you want the variable to be modified in any event. An example of a statement like this is:

if (++value%2 == 0 & ++count < limit) {
// Do something
}

Here, the variable count will be incremented in any event. If you use && instead of &, count will be
incremented only if the left operand of the AND operator is true. You get a different result depending
on which operator is used.

I can illustrate the second situation with the following statement:

if (count > 0 && total/count > 5) {
// Do something. ..
}

In this case, the right operand for the && operation will be executed only if the left operand is true —
that is, when count is positive. Clearly, if you were to use & here, and count happened to be zero, you
would be attempting to divide the value of total by 0, which in the absence of code to prevent it would
terminate the program.

97

Chapter 3

Logical OR Operations

The OR operators, | and | |, apply when you want a true result if either or both of the operands are
true. The logical OR, | |, has a similar effect to the logical AND, in that it omits the evaluation of the
right-hand operand when the left-hand operand is true. Obviously if the left operand is true, the result
will be true regardless of whether the right operand is true or false.

Let’s take an example. A reduced entry ticket price is issued to under 16-year-olds and to those aged 65
or over; this could be tested using the following i £:

if(age < 16 || age>= 65) {
ticketPrice *= 0.9; // Reduce ticket price by 10%
}

The effect here is to reduce ticketPrice by 10 percent if either condition is true. Clearly in this case,
both conditions cannot be true.

With an | or an | | operation, you get a false result only if both operands are false. If either or both
operands are true, the result is true.

Boolean NOT Operations

98

The third type of logical operator, !, applies to one boolean operand, and the result is the inverse of the
operand value. So if the value of a boolean variable, state, is true, then the expression ! state has the
value false, and if it is false, then !state evaluates to true. To see how the operator is used with an
expression, you could rewrite the code fragment you used to provide discounted ticket price as:

if (! (age >= 16 && age < 65)) {
ticketPrice *= 0.9; // Reduce ticket price by 10%
}

The expression (age >= 16 && age < 65) is true if age is from 16 to 64. People of this age do not
qualify for the discount, so the discount should be applied only when this expression is false.
Applying the ! operator to the result of the expression does what you want.
You could also apply the ! operator in an expression that was a favorite of Charles Dickens:

! (Income>Expenditure)
If this expression is true, the result is misery, at least as soon as the bank starts bouncing your checks.
Of course, you can use any of the logical operators in combination if necessary. If the theme park decides
to give a discount on the price of entry to anyone who is under 12 years old and under 48 inches tall, or
to someone who is over 65 and over 72 inches tall, you could apply the discount with this test:

if ((age < 12 && height < 48) || (age > 65 && height > 72)) {

ticketPrice *= 0.8; // 20% discount on the ticket price

}

The parentheses are not strictly necessary here, as && has a higher precedence than | |, but adding the
parentheses makes it clearer how the comparisons combine and makes it a little more readable.

Loops and Logic

Don’t confuse the bitwise operators &, |, and ! with the logical operators that look
the same. Which type of operator you are using in any particular instance is deter-
mined by the type of operand with which you use it. The bitwise operators apply to
integer types and produce an integer result. The logical operators apply to operands
that have boolean values and produce a result of type boolean— true or false.
You can use both bitwise and logical operators in an expression if it is convenient
to do so.

Character Testing Using Standard Library Methods

While testing characters using logical operators is a useful way of demonstrating how these operators
work, in practice there is an easier way. The standard Java packages provide a range of standard meth-
ods to do the sort of testing for particular sets of characters such as letters or digits that you have been
doing with if statements. They are all available within the Character class, which is automatically
available in your programs. For example, you could have written the if statement in the Let terCheck2
program as shown in the following example.

Try It Out Deciphering Characters Trivially

In the following example, the if expressions inmain () that were in the Let terCheck2 class have been
replaced by expressions that call methods in the Character class to do the testing;:

import static java.lang.Character.isLowerCase;
import static java.lang.Character.isUpperCase;

public class LetterCheck3 {
public static void main(String[] args) {
char symbol = 'A';
symbol = (char) (128.0*Math.random()) ; // Generate a random character

if (isUpperCase (symbol)) {
System.out.println("You have the capital letter " + symbol);

} else {
if (isLowerCase (symbol)) {
System.out.println("You have the small letter " + symbol);

} else {
System.out.println("The code is not a letter");

}

How It Works

Because you have the import statements for the isUppercCase and isLowerCase method names at the
beginning of the source file, you can call these methods without using the Character class name as
qualifier. The isUpperCase () method returns true if the char value that you pass to it is uppercase,
and false if it is not. Similarly, the isLowerCase () method returns true if the char value you pass to
it is lowercase.

99

Chapter 3

The following table shows some of the other methods included in the Character class that you may
find useful for testing characters. In each case, you put the argument of type char that is to be tested
between the parentheses following the method name.

Method Description

isDigit () Returns the value true if the argument is a digit (0 to 9), and
false otherwise.

isLetter () Returns the value true if the argument is a letter, and false
otherwise.

isLetterOrDigit () Returns the value true if the argument is a letter or a digit, and

false otherwise.

isWhitespace () Returns the value true if the argument is whitespace, which is any
one of the following characters:
space (' ')
tab ("\t")
newline (' \n")
carriage return (' \r")
form feed (" \£"')
The method returns false otherwise.

You will find information on other methods in the class Character in the JDK documentation for
the class.

The Conditional Operator

The conditional operator is sometimes called a ternary operator because it involves three operands. It is
best understood by looking at an example. Suppose you have two variables of type int with the names

yourAge and myAge, and you want to assign the greater of the values stored in yourAge and myAge to a
third variable, older, which is also of type int. You can do this with the following statement:

older = yourAge>myAge ? yourAge : myAge;

The conditional operator has a logical expression as the first of its three operands —in this case, it is the
expression yourAge>myAge. If this expression is true, the operand that follows the ? symbol —in this
case, yourAge —is evaluated to produce the value resulting from the operation. If the expression
yourAge>myAge is false, the third operand which comes after the colon —in this case, myage —is
evaluated to produce the value from the operation. Thus, the result of this conditional expression is
yourAge, if yourAge is greater than myAge, and myAge otherwise. This value is then stored in the vari-
able older. The use of the conditional operator in this assignment statement is equivalent to the 1 £
statement:

if (yourAge > myAge) {
older = yourAge;

100

Loops and Logic

} else {
older = myAge;
}

Remember, though, the conditional operator is an operator and not a statement, so you can use itin a
more complex expression involving other operators.

The conditional operator can be written generally as:
logical_expression ? expressionl : expression2

If the logical_expression evaluates as true, the result of the operation is the value of expressionl,
and if logical_expression evaluates to false, the result is the value of expression2. Note that if

expressionl is evaluated because logical_expression is true, then expression2 will not be, and
vice versa.

You can use the conditional operator in lots of circumstances, and one common application of it is to
control output, depending on the result of an expression or the value of a variable. You can vary a mes-
sage by selecting one text string or another depending on the condition specified.

Try It Out Conditional Plurals

Type in the following code, which will add the correct ending to 'hat' depending on how many hats
you have:

public class ConditionalOp {
public static void main(String[] args) {

int nHats = 1; // Number of hats

System.out.println("I have " + nHats + " hat" + (nHats == 1 ? "." : "s."));
nHats++; // Increment number of hats
System.out.println("I have " + nHats + " hat" + (nHats == 1 ? "." : "s."));

The output from this program will be:

I have 1 hat.
I have 2 hats.

How It Works

The result of executing the conditional operator in the program is a string containing just a period when
the value of nHats is 1, and a string containing an s followed by a period in all other cases. The effect of
this is to cause the output statement to automatically adjust the output between singular and plural. You
can use the same technique in other situations, such as where you need to choose “he” or “she” for
example, as long as you are able to specify a logical expression to differentiate the situation in which you
should use one rather than the other. A more challenging application you could try is to append “st”,
“nd”, “rd”, or “th” to a date value, such as in “3rd November” or “4th July”.

101

Chapter 3

The switch Statement

You use the switch statement to select from multiple choices based on a set of fixed values for a given
expression. The expression must produce a result of an integer type other than long, or a value of an
enumeration type. Thus, the expression that controls a switch statement can result in a value of type
char, byte, short, or int, or an enumeration constant.

In normal use the switch statement operates rather like a rotary switch in that you can select one of a
fixed number of choices. For example, on some makes of washing machine you choose between the vari-
ous possible machine settings in this way, with positions for cotton, wool, synthetic fiber, and so on,
which you select by turning the knob to point to the option that you want.

Here’s a switch statement reflecting this logic for a washing machine:

switch (wash) {

case 1: // wash is 1 for Cotton
System.out.println("Cotton selected") ;
break;

case 2: // wash is 2 for Linen
System.out.println("Linen selected");
break;

case 3: // wash is 3 for Wool
System.out.println("Wool selected");
break;

default: // Not a valid value for wash
System.out.println("Selection error") ;
break;

The selection in the switch statement is determined by the value of the expression that you place
between the parentheses after the keyword switch. In this case it’s simply the variable wash that would
need to be previously declared as of type char, byte, short, or int. You define the possible switch
options by one or more case values, also called case labels, which you define using the keyword case.
In general, a case label consists of the case keyword followed by a constant value that is the value that
will select the case, followed by a colon. The statements to be executed when the case is selected follow
the case label. You place all the case labels and their associated statements between the braces for the
switch statement. You have three case values in the preceding example, plus a special case with the
label default, which is another keyword. A particular case value is selected if the value of the switch
expression is the same as that of the particular case value. The default case is selected when the value
of the switch expression does not correspond to any of the values for the other cases. Although I've
written the cases in the preceding switch sequenced by their case values, they can be in any order.

When a particular case is selected, the statements that follow that case label are executed. So if wash has
the value 2, the statements that follow:

case 2: // wash is 2 for Linen
are executed. In this case, these are:

System.out.println("Linen selected");
break;

102

Loops and Logic

When a break statement is executed here, it causes execution to continue with the statement following
the closing brace for the switch. The break is not mandatory as the last statement for each case, but if
you don’t put a break statement at the end of the statements for a case, the statements for the next case
in sequence will be executed as well, through to whenever another break is found or the end of the
switch block is reached. This is not usually what you want. The break after the default statements in
our example is not strictly necessary, but it does protect against the situation when you might add
another case label at the end of the switch statement block, and overlook the need for the break at the
end of the last case.

You need a case label for each choice to be handled in the switch, and the case values must all be differ-
ent. The default case you have in the preceding example is, in general, optional. As I said, it is selected
when the value of the expression for the switch does not correspond with any of the case values that
you have defined. If you don’t specify a default case and the value of the switch expression does not
match any of the case labels, none of the statements in the switch will be executed, and execution con-
tinues at the statement following the closing brace of the switch statement.

You could rewrite the previous switch statement to use a variable of an enumeration type as the expres-
sion controlling the switch. Suppose you have defined the WashChoice enumeration type like this:

enum WashChoice { cotton, linen, wool } // Define enumeration type
You can now code the switch statement like this:

WashChoice wash = WashChoice.linen; // Initial definition of variable
// Some more code that might change the value of wash...

switch (wash) {

case cotton:
System.out.println("Cotton selected");
break;

case linen:
System.out.println("Linen selected");
break;

case wool:
System.out.println("Wool selected");
break;

The switch is controlled by the value of the wash variable. Note how you use the enumeration con-
stants as case values. You must write them without the enumeration type name as a qualifier in this con-
text; otherwise, the code will not compile. Using enumeration constants as the case values makes the
switch much more self-explanatory. It is perfectly clear what each case applies to. Because you cannot
assign a value to a variable of an enumeration type that is not a defined enumeration constant, it is not
necessary to include a default case here.

103

Chapter 3

The General Case of the switch Statement

I'have illustrated the logic of the general switch statement in the flowchart shown in Figure 3-4.

expression
equals Do valuel thing [—> break
valuel?
switch (expression) {
case value:
// Do valuel thing
break;
case value2:
// Do value2 thing
break;
expression
equals Do value2 thing [—> break
default value2?
// Do default action
break;

}

// Continue the program

Do default action

1

break —>{ Continue the program

l

Figure 3-4

Each case value is notionally compared with the value of an expression. If one matches, then the code
for that case is executed, and the break branches to the first statement after the switch. As I said earlier,
if you don’t include the break statements, the logic is quite different, as shown in Figure 3-5.

Now when a case label value is equal to the switch expression, the code for that case is executed, and
followed by the statements for all the other cases that succeed the case that was selected, including that
for the default case if that follows. This is not usually what you want, so make sure you don’t forget the
break statements.

104

Loops and Logic

}

case value:
// Do valuel thing

case value2:
// Do value2 thing

default;
// Do default action

switch (expression)

{

// Continue the program

expression
equals
valuel?

expression
equals
value2?

A

Do valuel thing

Do value2 thing

Do default action

Continue the program

Figure 3-5

You can arrange to execute the same statements for several different case labels, as in the following
switch statement:

char yesNo = 'N';

// more program logic...

switch (yesNo) {

case

'n': case

N

System.out.println("No selected") ;

break;

105

Chapter 3

case 'y': case 'Y':
System.out.println("Yes selected");
break;

Here the variable yesNo receives a character from the keyboard somehow. You want a different action
depending on whether the user enters 'Y' or 'N', but you want to be able to accept either uppercase or
lowercase entries. This switch does just this by putting the case labels together. Note that there is no
default case here. If yesNo contains a character other than those identified in the case statements, the
switch statement has no effect. In practice, you might add a default case in this kind of situation to out-
put a message indicating when the value in yesNo is not valid.

Of course, you could also implement this logic using if statements:

if (yesNo=='n' || yesNo=='N') {
System.out.println("No selected");

} else {
if (yesNo=='y' || yesNo=='Y') {
System.out.println("Yes selected");
}

I prefer the switch statement as I think it’s easier to follow, but you decide for yourself. Let’s try an
example.

Try It Out Making the switch

This example uses a switch controlled by an integer type and a switch controlled by a variable of an
enumeration type:

public class TrySwitch {
enum WashChoice {cotton, linen, wool, synthetic} // Define enumeration type

public static void main(String[] args) {
WashChoice wash = WashChoice.cotton; // Variable to define the choice of wash

// The clothes variable specifies the clothes to be washed by an integer value
// l:shirts 2:sweaters 3:socks 4:sheets 5:pants
int clothes = 3;

switch(clothes) {

case 1:
System.out.println("Washing shirts.");
wash = WashChoice.cotton;
break;

case 2:
System.out.println("Washing sweaters.");
wash = WashChoice.wool;
break;

case 3:
System.out.println("Washing socks.");
wash = WashChoice.wool;

106

Loops and Logic

break;
case 4:
System.out.println("Washing sheets.");
wash = WashChoice.linen;
break;
case b:
System.out.println("Washing pants.");
wash = WashChoice.synthetic;
break;
default:
System.out.println ("Unknown washing - default synthetic.");
wash = WashChoice.synthetic;
break;
}
// Now select the wash temperature
System.out.println("Wash is "+ wash) ;
switch(wash) {
case wool:
System.out.println("Temperature is 120.");
break;
case cotton:
System.out.println("Temperature is 170.");
break;
case synthetic:
System.out.println("Temperature is 130.");
break;
case linen:
System.out.println("Temperature is 180.");
break;

You should get the following output from this example:
Washing socks.

Wash is wool
Temperature is 120.

How It Works

This looks like a lot of code, but it’s because of the number of cases in the two switch statements. You
first define an enumeration type, WashChoice. You then define a variable of this type in the main ()
method with the following statement:

WashChoice wash = WashChoice.cotton; // Variable to define the choice of wash

The initial value for wash here is arbitrary. You could have chosen any of the possible enumeration con-
stants for the washChoice type.

Next, you define and initialize a variable identifying the type of clothes to be washed:

int clothes = 3;

107

Chapter 3

The initial value for clothes corresponds to socks and in a more practical example would be arrived at
by means other than just assigning the value. You use the clothes variable to control the next switch
statement. For each case in the switch, you output what is to be washed and set the value for the wash
variable to the appropriate enumeration constant. You would usually put a default case in this sort of
switch statement because its control expression is numeric, and if the value was derived by some com-
putation or other, there is always the possibility of an invalid value being produced. If there is no default
case and the switch expression results in a value that does not correspond to any of the cases, execution
will just continue with the statement following the switch block.

After the first switch, you output the wash type:
System.out.println("Wash is "+ wash);

You saw in the previous chapter that the string representation of a value that is an enumeration constant
is the name of the value as it appears in the type definition.

Lastly, you use the wash variable as the expression selecting a case in the next switch. Because a vari-
able of an enumeration type must have an enumeration constant as a value, and all possible values are
represented by cases in the switch, you don’t need a default case here.

Note that you could have defined the values for the various types of clothes as constant values:

final int SHIRTS = 1;
final int SWEATERS =
final int SOCKS = 3;
final int SHEETS = 4;
final int PANTS = 5;

23

The value set for the clothes variable would then have been much more obvious:
int clothes = SOCKS;

Of course, you could also have used an enumeration for the clothes type, too, but I'll leave you to
work out what that would look like.

Variable Scope

The scope of a variable is the part of the program over which the variable name can be referenced —in
other words, where you can use the variable in the program. Every variable that I have declared so far in
program examples has been defined within the context of a method, the method main (). Variables that
are declared within a method are called local variables, as they are only accessible within the confines of
the method in which they are declared. However, they are not necessarily accessible everywhere in the
code for the method in which they are declared. Look at the next code fragment, which shows variables
defined within nested blocks:

{

int n = 1; // Declare and define n

// Reference to n is OK here

108

Loops and Logic

// Reference to m here is an error because m does not exist yet

{
// Reference to n here is OK too
// Reference to m here is still an error

int m = 2; // Declare and define m

// Reference to m and n are OK here - they both exist
} // m dies at this point

// Reference to m here is now an error
// Reference to n is still OK though
} // n dies at this point so you can't refer to it in following statements

A variable does not exist before its declaration; you can refer to it only after it has been declared. It con-
tinues to exist until the end of the block in which it is defined, and that includes any blocks nested
within the block containing its declaration. The variable n is created as the first statement in the outer
block. It continues to exist within the inner block too. The variable m exists only within the inner block
because that’s where its declaration appears. After the brace at the end of the inner block, m no longer
exists so you can’t refer to it. The variable n is still around though and it survives until the closing brace
of the outer block.

So, the rule that determines the accessibility of local variables is simple. Local variables are accessible
only from the point in the program where they are declared to the end of the block that contains the dec-
laration. At the end of the block in which they are declared, they cease to exist. I can demonstrate this
with an example:

Try It Out Scoping

Here’s a version of the main () method that demonstrates how variable scope works:

public class Scope {
public static void main(String[] args) {
int outer = 1; // Exists throughout the method

// You cannot refer to a variable before its declaration
// System.out.println("inner = " + inner); // Uncomment this for an error

int inner = 2;
System.out.println("inner = " + inner); // Now it is OK
System.out.println("outer = " + outer); // and outer is still here

// All variables defined in the enclosing outer block still exist,
// so you cannot redefine them here
// int outer = 5; // Uncomment this for an error

}

// Any variables declared in the previous inner block no longer exist
// so you cannot refer to them
// System.out.println("inner = " + inner); // Uncomment this for an error

109

Chapter 3

// The previous variable, inner, does not exist so you can define a new one
int inner = 3;

System.out.println("inner = " + inner); // ... and output its value
System.out.println("outer = " + outer); // outer is still around

As it stands, this program will produce the following output:

inner = 2
outer = 1
inner = 3
outer =1

If you uncomment any or all of the three statements as suggested, it won’t compile:

javac Scope.java
Scope.java:11l: Undefined variable: inner
System.out.println("inner = " + inner); // Uncomment this for an error

~

1 error
javac Scope.java
Scope.java:19: Variable 'outer' is already defined in this method.
int outer = 5; // Uncomment this for an error

S

1 error

javac Scope.java
Scope.java:23: Undefined variable: inner
System.out.println("inner = " + inner); // Uncomment this for an error

S

1 error

How It Works

The main () method in this program has one block nested inside the block that contains the code for the
method. The variable outer is defined right at the start, so you can refer to this anywhere within the
method main (), including inside the nested block. You are not allowed to re-declare a variable, so the
commented statement that re-declares outer within the inner block will cause a compiler error if you
remove the double slash at the beginning of the line.

The variable inner is defined inside the nested block with the initial value 2, and you can refer to it any-
where from its declaration to the end of the inner block. After the closing brace of the inner block, the
variable inner no longer exists, so the commented output statement that refers to inner is illegal.
However, since the variable inner has expired, you can declare another one with the same name and
with the initial value 3.

Note that all this is just to demonstrate the lifetime of local variables. It is not good practice to redefine

variables that have expired, because of the obvious potential for confusion. Also, although I have only
used variables of type int in the preceding example, scoping rules apply to variables of any type.

110

Loops and Logic

There are other variables called class variables that have much longer lifetimes when
they are declared in a particular way. The variables PI and E in the standard library
class Math are examples of these. They hang around as long as your program is exe-
cuting. There are also variables that form part of a class object called instance
variables. You’ll learn more about these in Chapter 5.

Loops

Aloop allows you to execute a statement or block of statements repeatedly. The need to repeat a block of
code arises in almost every program. If you did the first exercise at the end of the last chapter, based on
what you had learned up to that point, you would have come up with a program along the lines of the
following:

public class TryExamplel_ 1 {
public static void main(String[] args) {

byte value = 1;

value *= 2;

System.out.println("Value is now "+value);
value *= 2;

System.out.println("Value is now "+value);
value *= 2;

System.out.println("Value is now "+value);
value *= 2;

System.out.println("Value is now "+value);
value *= 2;

System.out.println("Value is now "+value);
value *= 2;

System.out.println("Value is now "+value);
value *= 2;

System.out.println("Value is now "+value);
value *= 2;

System.out.println("Value is now "+value);

The same pair of statements has been entered eight times. This is a rather tedious way of doing things. If
the program for the company payroll had to include separate statements to do the calculation for each
employee, it would never get written. A loop removes this sort of difficulty. You could write the method
main () to do the same as the code above as follows:

public static void main(String[] args) {
byte value = 1;
for (int 1=0; 1i<8 ; i++) {
value *= 2;
System.out.println("Value is now " + value);

}

111

Chapter 3

This uses one particular kind of loop —called a for loop. The for loop statement on the third line
causes the statements in the following block to be repeated eight times. The number of times it is to be
repeated is determined by the stuff between parentheses following the keyword for —you'll see how in
a moment. The point is you could, in theory, repeat the same block of statements as many times as you
want—a thousand or a million or a billion —it is just as easy and it doesn’t require any more lines of
code. The primary purpose of the for loop is to execute a block of statements a given number of times.

In general, a loop has two parts to it; it has a loop body, which is a single statement or block of state-
ments defining the code that is to be repeated, and it has a loop control mechanism that determines how
many times the loop body will execute.

Varieties of Loop

There are four kinds of loop statements you can use. I'll introduce these in outline first to give an
overview of all the possibilities:

112

The numerical for loop:

(initialization_expression ; loop_condition ; increment_expression) {

// statements

I have described this loop as the numerical £or loop as a rough indication of how it is used, and
to distinguish it from another variety of for loop that I'll come to in a moment. The numerical
for loop is usually just referred to as a for loop. The loop body for this loop is the block of
statements between the braces. This can be just a single statement, in which case the braces are
optional. The code to control the for loop appears in parentheses following the keyword for.

As you can see, the loop control mechanism has three parts separated by semicolons. The first
part, the initialization_expression, executes once before the loop starts. You typically use
this expression to initialize a counter for the number of loop iterations —for example, i = 0.
With a loop controlled by a counter, which can be an integer or a floating-point variable, you
can count up or down by whatever increment or decrement you choose until the variable
reaches some defined limit.

Execution of this loop continues as long as the condition you specify in the second part of the
control mechanism, the 1oop_condition, is true. This expression is checked at the beginning
of each loop iteration, and as long as it is true, the loop body executes. When loop_condition
is false, the loop ends and execution continues with the statement following the loop block.
For example, if you used i<10 as the loop_condition expression, the loop would continue as
long as the variable i has a value less than 10. The third part of the control information between
the parentheses, the increment_expression, is usually used to increment the loop counter.
This is executed at the end of each loop iteration. This could be i++, which would increment the

Loops and Logic

loop counter, i, by one. Of course, you might want to increment the loop counter in steps other
than 1. For example, you might write 1 += 2 as the increment_expression to go in steps of 2,
or even something more complicated such as i = 2*i+1.

2. The collection-based for loop:

for (type identifier : iterable_expression) {
// statements

}

You won't be able to fully appreciate the capabilities of this loop until you have learned about
Collection classes in Chapter 14, so I'll just give you a brief indication here of what you can
do with it so you know about all the loop statements you have available. This for loop has two
control elements separated by a colon that appear between the parentheses following the for
keyword. The first element is an identifier of the type that you specify, and the second is an
expression specifying a collection of objects or values of the specified type. The loop will exe-
cute once for each item of the specified type that appears in the collection, and you can refer to
the current item in the loop body using the identifier that you specified as the first control
element. You can apply this form of for loop to arrays as well as collections. You will learn
about arrays —and how you can use this loop with an array —in Chapter 4.

3. Thewhile loop:

while (expression) {
// statements

}

This loop executes as long as the logical expression between the parentheses is true. When
expressionis false, the loop ends and execution continues with the statement following the
loop block. The expression is tested at the beginning of the loop, so if it is initially false, the
loop body will not be executed at all. An example of a while loop condition might be
yesNo=='Y"' | | yesNo=="y"'. This expression would be true if the variable yesNo contained
'y'or 'Y',soyesNo might hold a character entered from the keyboard in this instance.

4. Thedo whileloop:

do {
// statements
} while (expression);

This loop is similar to the while loop, except that the expression controlling the loop is tested at

the end of the loop block. This means that the loop body always executes at least once, even if
the expression is always false.

113

Chapter 3

The basic logic of each of the four kinds of loop is shown in Figure 3-6.

The numerical The collection-based The while loop The do-while loop
for loop for loop
Execute Create
L Execute loop
initialization loop "
expression identifier Test condition statement(s)
is true?

condition

All items in
loop_condition collection expression
- Execute loop p
? d? i
Is true’ processe statement(s) is true?
Execute . .
loop body Set |deqt|f|er Next statement «— Next statement
to next item
statement(s)
Execute Execute
—— increment —— loop body
expression statement(s)
Next statement «— Next statement «—
Figure 3-6

The two versions of the for loop have quite different mechanisms controlling the number of iterations.
You can also see quite clearly that the primary difference between the while loop and the do while

loop is where the test is carried out.

Let’s explore each of these loops in turn and see how they work in a practical context.

Try It Out The Numerical for Loop

Let’s start with a very simple example. Suppose you want to calculate the sum of the integers from 1 to a
given value. You can do this using the for loop as shown in the following example:

public class ForLoop {
public static void main(String[] args) {
int limit = 20; // Sum from 1 to this value
int sum = 0; // Accumulate sum in this variable

// Loop from 1 to the value of limit, adding 1 each cycle
for(int 1 = 1; 1 <= limit; i++) {

sum += 1; // Add the current value of i to sum

114

Loops and Logic

}
System.out.println("sum = " + sum);
}
}

This program will produce the output
sum = 210
but you can try it out with different values for 1imit.

How It Works

All the work is done in the for loop. The loop counter is i, and this is declared and initialized within the
for loop statement. The syntax of this for loop is shown in Figure 3-7.

This expression is executed This must be an This is executed at the
once on entry to the loop. expression having the end of each iteration of
You usually use it to set the value true or false. It is the loop body. It is
initial value for the loop checked on each iteration. usually used as here to
counter variable, and in this As long as it is true, the increment the loop
case it declares it as well. loop body is repeated. counter, i.

for(| inti=1|; | i<=limit | ; | i++]) {

sum+=i;
}

This is the statement in the loop
body. The loop body can also be
a block of several statements.

Figure 3-7
As you see, there are three elements that control the operation of the for loop, and they appear between
the parentheses that follow the keyword for. In sequence, their purpose is to:

Q Set the initial conditions for the loop, particularly the loop counter
Q Specify the condition for the loop to continue

Q Increment the loop counter

115

Chapter 3

They are always separated by semicolons, but as you will see later, any or all of them can be omitted.

The first control element is executed when the loop is first entered. Here you declare and initialize the
loop counter i. Because it is declared within the loop, it will not exist outside it. If you try to output the
value of i after the loop with a statement such as

System.out.println("Final value of i = " + i); // Will not work outside the loop
you'll find that the program will no longer compile.

Where the loop body consists of just a single statement, you can omit the braces and write the loop like
this:

for (int 1 = 1; 1 <= limit; 1i++)
sum += 1; // Add the current value of i to sum

In general, it’s better practice to keep the braces in as it makes it clearer where the loop body ends.

If you need to initialize and/or declare other variables for the loop, you can do it here by separating the
declarations by commas. For example, you could write:

for (int i =1, j = 0; 1 <= limit; i++) {
sum += 1 * j++; // Add the current value of i*j to sum
}

In this fragment, I initialize an additional variable j, and, to make the loop vaguely sensible, I have
modified the value to add the sum to i*3j++, which is the equivalent of i * (i-1) in this case. Note that j
will be incremented after the product i *3j has been calculated. You could declare other variables here,
but note that it would not make sense to declare sum at this point. If you can’t figure out why, delete or
comment out the original declaration of sum in the example and put it in the for loop instead to see
what happens. The program won’t compile —right? After the loop ends, the variable sum no longer
exists, so you can’t reference it. This is because all variables that you declare within the loop control
expressions are logically within the block that is the body of the loop.

The second control element in a for loop is a logical expression that is checked at the beginning of each
iteration through the loop. If the expression is true, the loop continues, the loop body executes, and as
soon as it is false, the loop is finished. In our program, the loop ends when 1 is greater than the value
of limit.

The third control element in a for loop typically increments the loop variable, as you have seen in the
example. You can put multiple expressions here, too, so you could rewrite the previous code fragment
that added j to the loop as:

for (int i =1, j = 0; 1 <= limit; i++, J++) {
sum+=1i*7j; // Add the current value of i*j to sum

}
Again, there can be several expressions here, and they do not need to relate directly to the control of the

loop. You could even rewrite the original loop for summing integers so that the summation occurs in the
loop control element:

116

Loops and Logic

for (int 1 = 1; i <= limit; sum += 1, i++) {

7

Now the loop statement is empty — you just have the semicolon to terminate it. This version of the code
doesn’t really improve things though as it’s certainly not so easy to see what is happening and there are
hazards in writing the loop this way. If you were to reverse the sequence of adding to sum and incre-
menting i as follows:

for (int i = 1; i <= limit; i++, sum += i) { // Wrong!!!

1

you would generate the wrong answer. This is because the expression i++ will be executed before sum
+= 1, so the wrong value of i is used.

You can omit any or all of the elements that control the for loop, but you must include the semicolons. It
is up to you to make sure that the loop does what you want. I could rewrite the loop in the program as:

for(int 1 = 1; 1 <= limit;) {
sum += i++; // Add the current value of i to sum

}

I have simply transferred the operation of incrementing i from the for loop control expression to the
loop body. The for loop works just as before. However, this is not a good way to write the loop, as it
makes it much less obvious how the loop counter is incremented.

Counting Using Floating-Point Values

You can use a floating-point variable as the loop counter if you need to. This may be needed when you
are calculating the value of a function for a range of fractional values. Suppose you wanted to calculate
the area of a circle with values for the radius from 1 to 2 in steps of 0.2. You could write this as:

for (double radius = 1.0; radius <= 2.0; radius += 0.2) {
System.out.println("radius = " + radius + " area = " + Math.PI*radius*radius);

}

This will produce the following output:

radius = 1.0 area = 3.141592653589793

radius = 1.2 area = 4.523893421169302

radius = 1.4 area = 6.157521601035994

radius = 1.5999999999999999 area = 8.04247719318987
radius = 1.7999999999999998 area = 10.178760197630927
radius = 1.9999999999999998 area = 12.566370614359169

The area has been calculated using the formula (12 with the standard value PI defined in the Math class,
which is 3.14159265358979323846. Although you may have intended the values of radius to increment
from 1.0 to 2.0 in steps of 0.2, they don’t quite make it. The value of radius is never exactly 2.0 or any of
the other intermediate values because 0.2 cannot be represented exactly as a binary floating-point value.
If you doubt this, and you are prepared to deal with an infinite loop, change the loop to:

117

Chapter 3

// BE WARNED - THIS LOOP DOES NOT END

for (double radius = 1.0; radius != 2.0; radius += 0.2) {
System.out.println("radius = " + radius + " area = " + Math.PI*radius*radius);
}
If the value of radius reaches 2.0, the condition radius ! =2.0 will be false and the loop will end,

but unfortunately, it doesn’t. Its last value before 2 will be approximately 1.999 . . . and the next value
will be something like 2.1999 . . . and so it will never be 2.0. From this you can deduce a golden rule:

Never use tests that depend on an exact value for a floating-point variable to control
aloop.

Try It Out The Collection-Based for Loop

You can’t do a whole lot with the collection-based for loop yet. This will come into its own later in the
book, especially after Chapter 14, and you'll be learning more about what you can do with it in the next
chapter. One thing that it does apply to and that you have learned something about is an enumeration.
Here’s how you could apply the collection-based for loop to iterate through all the possible values in an
enumeration:

public class CollectionForLoop {
enum Season { spring, summer, fall, winter } // Enumeration type definition

public static void main(String[] args) {
for (Season season : Season.values()) { // Vary over all values
System.out.println(" The season is now " + season);

}

This will generate the following output:

The season is now spring
The season is now summer
The season is now fall

The season i1s now winter

How It Works

Figure 3-8 shows the way the collection-based for loop works.

The season variable of type Season that appears in the first control expression between the parentheses
for the for loop will be assigned a different enumeration constant value of each iteration of the loop.
The second control expression, following the colon, identifies the collection that is the source of values
for the variable declared in the first control expression. In this case it is an enumeration, but in general,
there are other collections you can use, as you'll see in Chapter 14. In the next chapter you’'ll be learning
about arrays where both forms of for loop can be used.

118

Loops and Logic

This expression specifies
the variable, season, of
type Season in this case,
that will be assigned each
of the values in the
collection in turn.

A colon separates the two
control expressions in this
type of for loop - not a
semicolon.

This expression identifies
the collection that is the
source of data values to
be iterated over. In this
case it is all the values in

the enumeration, Season.

for(| Season season |

| Season.values() |) {

| System.out.printin("The season is now" + season); |

}

This statement will execute with
the current value of season.

Figure 3-8

In this example, the enumeration defines four values, spring, summer, fall, and winter, so the vari-
able season will be assigned each of these values in turn, as the output shows.

Try It Out

The while Loop

You can write the program for summing integers again using the while loop, which will show you how
the loop mechanism differs from the for loop:

public class WhileLoop {

}

You should get the following result:

sum

int limit = 20;
int sum = 0;
int 1 = 1;

// Loop from 1 to the value of limit,

while(i <= limit) {
sum += i++;

}

public static void main(String[] args) {

// Sum from 1 to this value
// Accumulate sum in this variable

// Loop counter

adding 1 each cycle

// Add the current value of i to sum

System.out.println("sum = " + sum);

= 210

119

Chapter 3

How It Works

The while loop is controlled wholly by the logical expression that appears between the parentheses that
follow the keyword while. The loop continues as long as this expression has the value true, and how it
ever manages to arrive at the value false to end the loop is up to you. You need to be sure that the
statements within the loop will eventually result in this expression being false. Otherwise, you have a
loop that continues indefinitely.

How the loop ends in the example is clear. You have a simple count as before, and you increment i in
the loop statement that accumulates the sum of the integers. Sooner or later 1 will exceed the value of
limit, and the while loop will end.

You don’t always need to use the testing of a count limit as the loop condition. You can use any logical
condition you want.

Try It Out The do while Loop

And last, but not least, you have the do while loop.
As I said at the beginning of this topic, the do while loop is much the same as the while loop, except

for the fact that the continuation condition is checked at the end of the loop. You can write an integer-
summing program with this kind of loop too:

public class DoWhileLoop {
public static void main(String[] args) {

int limit = 20; // Sum from 1 to this value
int sum = 0; // Accumulate sum in this variable
int 1 = 1; // Loop counter

// Loop from 1 to the value of limit, adding 1 each cycle

do {
sum += 1; // Add the current value of i to sum

i++;
} while(i <= limit);

System.out.println("sum = " + sum);

The output will be the same as the previous example.

How It Works

The statements within the loop are always executed at least once because the condition that determines
whether the loop should continue is tested at the end of each iteration. Within the loop you add the
value of i to sum, and then increment it. When i exceeds the value of 1imit, the loop ends, at which
point sum will contain the sum of all the integers from 1 to 1imit.

The loop statement here has braces around the block of code that is within the loop. You could rewrite

the loop so that only one statement was within the loop body, in which case the braces are not required.
For example:

120

Loops and Logic

do
sum += 1i; // Add the current value of i to sum
while(++1 <= limit);

Of course, you can and should still put the braces in. I advise that you always use braces around the
body of a loop, even when it is only a single statement.

There are often several ways of writing the code to produce a given result, and this is true here —you
could also move the incrementing of the variable i back inside the loop and write it as follows:

do {
sum += 1++; // Add the current value of i to sum
} while (i <= limit);

The value of i is now incremented using the postfix increment operator. If you were to use the prefix
form, you would get the wrong result. Note that the semicolon after the while condition is present in
each version of the loop. This is part of the loop statement so you must not forget to put it in. The pri-
mary reason for using this loop over the while loop would be if you want to be sure that the loop code
always executes at least once.

Nested Loops

You can nest loops of any kind one inside another to any depth. Let’s look at an example where you can
use nested loops.

A factorial of an integer, 7, is the product of all the integers from 1 to n. It is written as n!. It may seem a
little strange if you haven’t come across it before, but the factorial of an integer is very useful for calcu-
lating combinations and permutations of things. For example, ! is the number of ways you can arrange
n different things in sequence, so a deck of cards can be arranged in 52! different sequences. Let’s try cal-
culating some factorial values.

Try It Out Calculating Factorials

This example will calculate the factorial of every integer from 1 up to a given limit. Enter the following
code:

public class Factorial {
public static void main(String[] args) {
long limit = 20L; // Calculate factorials of integers up to this value
long factorial = 1L; // A factorial will be stored in this variable

// Loop from 1 to the value of limit
for (long 1 = 1L; 1 <= limit; i++) {
factorial = 1L; // Initialize factorial

for (long factor = 2; factor <= i; factor++) {
factorial *= factor;
}

System.out.println(i + "! is " + factorial);

}

121

Chapter 3

This program will produce the following output:

1! is 1

2! is 2

31 is 6

41 is 24

5! is 120
6! is 720
7! is 5040
8! is 40320

9! is 362880

10! is 3628800

11! is 39916800

12! is 479001600

13! is 6227020800

14! is 87178291200

15! is 1307674368000

16! is 20922789888000

17! is 355687428096000
18! is 6402373705728000
19! is 121645100408832000
20! is 2432902008176640000

How It Works

All the variables used in this example are of type long. Factorial values grow very rapidly so by using
type long you allow much larger factorials to be calculated than if you used type int. You still could
have declared factor and i as type int without limiting the size of the factorial value that the program
can produce, but the compiler would then need to insert casts to make the int values type 1ong when-
ever they were involved in an operation with a value of type long.

The outer loop, controlled by i, walks through all the integers from 1 to the value of 1imit. In each itera-
tion of the outer loop, the variable factorial is initialized to 1, and the nested loop calculates the facto-
rial of the current value of i using factor as the control counter that runs from 2 to the current value of i.
The resulting value of factorial is then displayed before going to the next iteration of the outer loop.

Although you have nested a for loop inside another for loop here, as I said at the outset, you can nest
any kind of loop inside any other. You could have written the nested loop as:

for (long 1 = 1L; 1 <= limit; 1i++) {
factorial = 1L; // Initialize factorial
long factor = 2L;
while (factor <= 1) {
factorial *= factor++;
}
System.out.println(i + "! is " + factorial);

Now you have a while loop nested in a for loop. It works just as well, but it is rather more naturally
coded as two nested for loops because they are both controlled by a counter.

122

Loops and Logic

If you have been concentrating, you may well have noticed that you don’t really
need nested loops to display the factorial of successive integers. You can do it with a
single loop that multiplies the current factorial value by the loop counter. However,
this would be a very poor demonstration of a nested loop.

The continue Statement

There are situations where you may want to skip all or part of a loop iteration. Suppose you want to sum
the values of the integers from 1 to some limit, except that you don’t want to include integers that are
multiples of three. You can do this using an if and a continue statement:

for(int 1 = 1; 1 <= limit; 1i++) {
if(1 % 3 == 0) {
continue; // Skip the rest of this iteration
}
sum += 1i; // Add the current value of i to sum

}

The continue statement is executed in this example when i is an exact multiple of 3, causing the rest of
the current loop iteration to be skipped. Program execution continues with the next iteration if there is one,
and if not, with the statement following the end of the loop block. The continue statement can appear
anywhere within a block of loop statements. You may even have more than one continue in a loop.

The Labeled continue Statement

Where you have nested loops, there is a special form of the continue statement that enables you to stop
executing the inner loop —not just the current iteration of the inner loop —and continue at the begin-
ning of the next iteration of the outer loop that immediately encloses the current loop. This is called the
labeled continue statement.

To use the labeled continue statement, you need to identify the loop statement for the enclosing outer
loop with a statement label. A statement label is simply an identifier that is used to reference a particu-
lar statement. When you need to reference a particular statement, you write the statement label at the
beginning of the statement in question, separated from the statement by a colon. Let’s look at an
example:

Try It Out Labeled continue

You could add a labeled continue statement to omit the calculation of factorials of odd numbers greater
than 10. This is not the best way to do this, but it does demonstrate how the labeled continue statement
works:

public class Factorial2 {
public static void main(String[] args) {
long limit = 20L; // to calculate factorial of integers up to this value

long factorial = 1L; // factorial will be calculated in this variable

// Loop from 1 to the value of limit

123

Chapter 3

OuterLoop:
for(long i = 1L; i <= limit; i++) {
factorial = 1; // Initialize factorial
for(long j = 2L; j <= 1i; j++) {
if(i > 10L && i % 2L == 1L) {
continue OuterLoop; // Transfer to the outer loop
}
factorial *= j;
}
System.out.println(i + "! is " + factorial);

}

If you run this it will produce the following output:

1! is 1

2! is 2

31 is 6

41 is 24

5! is 120
6! is 720
7! is 5040
8! is 40320

9! is 362880

10! is 3628800

12! is 479001600

14! is 87178291200

16! is 20922789888000

18! is 6402373705728000
20! is 2432902008176640000

How It Works

The outer loop has the label outerLoop. In the inner loop, when the condition in the if statement is
true, the labeled continue is executed causing an immediate transfer to the beginning of the next itera-
tion of the outer loop. The condition in the if statements causes the calculation of the factorial to be
skipped for odd values greater than 10.

In general, you can use the labeled continue to exit from an inner loop to any enclosing outer loop, not
just the one immediately enclosing the loop containing the labeled continue statement.

Using the break Statement in a Loop

You have seen how to use the break statement in a swi tch block. Its effect is to exit the switch block
and continue execution with the first statement after the switch. You can also use the break statement
to break out from a loop. When break is executed within a loop, the loop ends immediately, and execu-
tion continues with the first statement following the loop. To demonstrate this, you will write a program
to find prime numbers. In case you have forgotten, a prime number is an integer that is only exactly
divisible by itself and 1.

124

Loops and Logic

Try It Out Calculating Primes |

There’s a little more code to this than the previous example. This program will find all the primes from 2
to 50:

public class Primes {
public static void main(String[] args) {
int nvValues = 50; // The maximum value to be checked
boolean isPrime = true; // Is true if we find a prime

// Check all values from 2 to nvValues
for(int 1 = 2; 1 <= nValues; 1i++) {
isPrime=true; // Assume the current i is prime

// Try dividing by all integers from 2 to i-1
for(int j = 2; J < i; J++) {

if(1 % j == 0) { // This is true if j divides exactly
isPrime = false; // If we got here, it was an exact division
break; // so exit the loop
}
}
// We can get here through the break, or through completing the loop
if (isPrime) // So is it prime?
System.out.println (i) ; // Yes, so output the value

You should get the following output:

U w N

7

11
13
17
19
23
29
31
37
41
43
47

How It Works

There are much more efficient ways to calculate primes, but this program does demonstrate the break
statement in action. The first step inmain () is to declare two variables:

int nvalues = 50; // The maximum value to be checked
boolean isPrime = true; // Is true if we find a prime

125

Chapter 3

The first variable is the upper limit for integers to be checked to see if they are prime. The isPrime vari-
able will be used to record whether a particular value is prime or not.

The basic idea of the program is to go through the integers from 2 to the value of nvalues and check
each one to see if it has an integer divisor less than itself. The nested loops do this:

for(int 1 = 2; 1 <= nValues; i++) {
isPrime=true; // Assume the current i is prime

// Try dividing by all integers from 2 to i-1
for(int j = 2; j < i; j++) {

if(i % j == 0) { // This is true if j divides exactly
isPrime = false; // If we got here, it was an exact division
break; // so exit the loop

}
}
// We can get here through the break, or through completing the loop
if (isPrime) // So is it prime?

System.out.println(i); // Yes, so output the value

The outer loop is indexed by i and steps through the possible values that need to be checked for prime-
ness. The inner loop is indexed by j, the value of j being a trial divisor. This determines whether any
integer less than the value being tested for primality is an exact divisor.

The checking is done in the if statement in the inner loop. If j divides i exactly, %3 will be 0, so
isPrime will be set to false. In this case the break will execute to exit the inner loop — there is no
point in continuing as you now know that the value being tested is not prime. The next statement to be
executed will be the if statement after the closing brace of the inner loop block. You can also reach this
point by a normal exit from the loop that occurs when the value is prime so you need a way to deter-
mine whether the current value of i was found to be prime or not. The ispPrime variable solves this
problem. You just check the value of isPrime and if it has the value true, you have a prime to display
so you execute the println() call.

You could simplify this example if you used the labeled continue statement instead of the break
statement:

Try It Out Calculating Primes Il

Try the following changes to the code in the Primes class:

public class Primes2 {
public static void main(String[] args) {
int nvalues = 50; // The maximum value to be checked

// Check all values from 2 to nvValues
OuterLoop:
for(int i = 2; i <= nValues; i++) {
// Try dividing by all integers from 2 to i-1
for(int j = 2; j < i; j++) {
if(i%j == 0) { // This is true if j divides exactly

126

Loops and Logic

continue OuterLoop; // so exit the loop
}
}
// We only get here if we have a prime
System.out.println (i) ; // so output the value
}

If you've keyed it in correctly, you'll get the same output as the previous example.

How It Works

You no longer need the isPrime variable to indicate whether you have a prime or not, as the output state-
ment can be reached only through a normal exit from the inner loop. When this occurs it means you have
found a prime. If you get an exact divisor in the inner loop, it implies that the current value of i is not
prime, so the labeled continue statement transfers immediately to the next iteration of the outer loop.

Breaking Indefinite Loops

You will find that sometimes you need to use a loop where you don’t know in advance how many itera-
tions will be required. This can arise when you are processing external data items that you might be
reading in from the keyboard, for example, and you cannot know in advance how many there will be.
You can often use a while loop in these circumstances, with the loop condition determining when the
loop should end, but sometimes it can be convenient to use an indefinite loop instead and use a break
statement in the loop body to end the loop. An indefinite loop is a loop where the control condition is
such that the loop apparently continues to execute indefinitely. In this case, the mechanism to end the
loop must be in the body of the loop.

Try It Out Calculating Primes llI

Suppose you want the Primes program to generate a given number of primes, rather than check up to
a given integer value. In this case, you don’t know how many numbers you need to check to generate
the required number of primes. This is a case where an indefinite loop is useful. You can code this as
follows:

public class FindPrimes {
public static void main(String[] args) ({

int nPrimes = 50; // The maximum number of primes required
OuterLoop:
for(int 1 = 2; ; i++) { // This loop runs forever

// Try dividing by all integers from 2 to i-1
for(int j = 2; j < i; Jj++) {
if(i 8 j == 0) { // This is true if j divides exactly
continue OuterLoop; // so exit the loop
}
}
// We only get here if we have a prime
System.out.println(i); // so output the value

127

Chapter 3

if (--nPrimes == 0) { // Decrement the prime count
break; // It is zero so we have them all
}
}
}
}

This program will output the first 50 primes.

How It Works

This program is very similar to the previous version. The principal differences are that nPrimes contains
the number of primes required, so the program will produce the first 50 primes, instead of finding the
primes between 2 and 50, and the for outer loop, controlled by i, has the loop condition omitted, so the
loop has no direct mechanism for ending it. The loop must be terminated by the code within the loop;
otherwise, it will continue to execute indefinitely.

Here the termination of the outer loop is controlled by the if statement following the output statement.
As you find each prime, the value is displayed, after which the value of nPrimes is decremented in the
if statement:

if (--nPrimes == 0) { // Decrement the prime count
break; // It is zero so we have them all

}

The break statement will be executed when nPrimes has been decremented to zero, and this will exit
the outer loop.

The Labeled break Statement

Java also makes a labeled break statement available to you. This enables you to jump immediately to
the statement following the end of any enclosing statement block or loop that is identified by the label in
the labeled break statement. The label precedes the opening brace of the block that it identifies. Figure
3-9 illustrates how the labeled break statement works.

The labeled break enables you to break out to the statement following an enclosing block or loop that
has an identifying label, regardless of how many levels of nested blocks there are. You might have sev-
eral loops nested one within the other, for example, where you could use the labeled break to exit from
the innermost loop (or indeed any of them) to the statement following the outermost loop. You just need
to add a label to the beginning of the relevant block or loop that you want to break out of, and use that
label in the break statement.

128

Loops and Logic

Blockl:
Block2: {
OuterLoop:
for(...) {
break Blockl;
while(...) {
- breaks our beyond
break Block2; Block1
break OuterLoop; —| breaks our beyond
} breaks our beyond Block2
: QOuterLoop

} |

} yy'end of Block2

} // end of Blockl

Figure 3-9

Just to see it working you can alter the previous example to use a labeled break statement:

public class FindPrimes2 {
public static void main(String[] args) {
int nPrimes = 50; // The maximum number of primes required

// Check all values from 2 to nvValues

OuterLoop:
for(int 1 = 2; ; i++) { // This loop runs forever

// Try dividing by all integers from 2 to i-1
for(int j = 2; j < i; J++) {
if(i & j ==0) { // This is true if j divides exactly
continue OuterLoop; // so exit the loop
}

}
// We only get here if we have a prime

System.out.println (i) ; // so output the value
if (--nPrimes == 0) { // Decrement the prime count
break OuterLoop; // It is zero so we have them all

}

}
// break OuterLoop goes to here

}

129

Chapter 3

The program works in exactly the same way as before. The labeled break ends the loop operation begin-
ning with the label outerLoop, and so effectively branches to the point indicated by the comment.

Of course, in this instance its effect is no different from that of an unlabeled break. However, in general
this would work wherever the labeled break statement was within outerLoop. For example, it could be
nested inside another inner loop, and its effect would be just the same — control would be transferred to
the statement following the end of OuterLoop. The following code fragment illustrates this sort of situa-
tion. The label this time is Outside:

Outside:
for(int 1 = 0 ; i< countl ; 1i++) {

for(int j = 0 ; j< count2 ; j++) {

for (int k

0 ; k< count3 ; k++) {

break Outside;

}
}
// The labeled break transfers to here...

The labeled break is not needed very often, but when you need to break out of a deeply nested set of
loops, it can be invaluable since it makes it a simple operation.

Assertions

Every so often you will find that the logic in your code leads to some logical condition that should
always be true. If you test an integer and establish that it is odd, it is certainly true that it cannot be
even, for example. You may also find yourself writing a statement or statements that, although they
could be executed in theory, in practice they never really should be. I don’t mean by this the usual sorts
of errors that occur, such as some incorrect data being entered somehow, which should be handled ordi-
narily by the normal code. I mean circumstances where if the statements were to be executed, it would
imply that something was very seriously wrong with the program or its environment. These are pre-
cisely the circumstances to which assertions apply.

A simple assertion is a statement of the form

assert logical_expression;
Here, assert is a keyword, and logical_expression is any expression that results in a value of true
or false. When this statement executes, if 1ogical_expression evaluates to true, then the program
continues normally. If logical_expression evaluates to false, the program will be terminated with

an error message starting with:

java.lang.AssertionError

130

Loops and Logic

This will be followed by more information about where the error occurred in the code. When this occurs,
the program is said to assert.

Let’s consider an example. Suppose you have a variable of type int that stores the number of days in
the current month. You might use it like this:

if (daysInMonth == 30) ({
System.out.println("Month is April, June, September, or November") ;

} else if (daysInMonth == 31) {
System.out.println (
"Month is January, March, May, July, August, October, or December.");
} else {

assert daysInMonth == 28 || daysInMonth == 29;
System.out.println("Month is February.");

You are presuming that daysInMonth is valid — that is, it has one of the values 28, 29, 30, or 31. Maybe it
came from a file that is supposed to be accurate so you should not need to check it, but if it turns out not
to be valid, the assertion will detect it and end the program.

You could have written this slightly differently:

if (daysInMonth == 30) {
System.out.println("Month is April, June, September, or November") ;

} else if (daysInMonth == 31) {
System.out.println (
"Month is January, March, May, July, August, October, or December.");

} else if(daysInMonth == 28 || daysInMonth == 29) {
System.out.println("Month is February.");

} else {
assert false;

Here, if daysInMonth is valid, the program should never execute the last else clause. An assertion with
the logical expression as false will always assert, and terminate the program.

For assertions to have an effect when you run your program, you must specify the -enableassertions
option. For example:

java -enableassertions MyProg
You can also use its abbreviated form -ea:
java -ea MyProg

If you don’t specify this option when you run the program, assertions will be ignored.

131

Chapter 3

More Complex Assertions

There is a slightly more complex form of assertions that have this form:
assert logical_expression : string expression;

Here, logical_expression must evaluate to a boolean value, either true or false. If
logical_expressionis false then the program will terminate with an error message including the
string that results from string_expression.

For example, you could have written the assertion in the last code fragment as:
assert false : "daysInMonth has the value " + daysInMonth;
Now if the program asserts, the output will include information about the value of daysInMonth.

Let’s see how it works in practice.

Try It Out A Working Assertion

Here’s some code that is guaranteed to assert—if you compile and execute it right:

public class TryAssertions {
public static void main(String argsl[]) {
int daysInMonth = 32;
if (daysInMonth == 30) {
System.out.println("Month is April, June, September, or November") ;

} else if(daysInMonth == 31) {
System.out.println (

"Month is January, March, May, July, August, October, or December.");

} else if(daysInMonth == 28 || daysInMonth == 29) {
System.out.println("Month is February.");

} else {
assert false;

Don’t forget that, once you have compiled the program, you must execute it with assertions enabled, like
this:

java -enableassertions TryAssertions
You should then get the following output:
java.lang.AssertionError

at TryAssertions.main (TryAssertions.java:15)
Exception in thread "main"

132

Loops and Logic

How It Works

Since you have set daysInMonth to an invalid value, the assertion statement is executed, and that
results in the error message. You could try out the other form of the assertion in the example:

assert false : "daysInMonth has the value " + daysInMonth;

Now you should see that the output includes the string resulting from the second expression in the
assertion statement:

java.lang.AssertionError: daysInMonth has the value 32

at TryAssertions.main(TryAssertions.java:15)

Exception in thread "main"

I will use assertions from time to time in the examples in subsequent chapters.

Summary

In this chapter you have learned about all of the essential mechanisms for making decisions in Java. You
have also learned all of the looping facilities that you have available when programming in Java. The
essential points I have covered are:

Qa

Q

You can use relational operators to compare values, and such comparisons result in values of
either true or false.

You can combine basic comparisons and logical variables in more complex logical expressions
by using logical operators.

The if statement is a basic decision-making tool in Java. It enables you to choose to execute a
block of statements if a given logical expression has the value true. You can optionally execute
another block of statements if the logical expression is false by using the else keyword.

You can use the conditional operator to choose between two expressions depending on the
value of a logical expression.

You can use the switch statement to choose from a fixed number of alternatives.

The variables in a method come into existence at the point at which you declare them and cease
to exist after the end of the block that immediately encloses their declaration. The program
extent where the variable is accessible is the scope of the variable.

You have four ways of repeating a block of statements: a numerical for loop, a collection-based
for loop, awhile loop, or a do while loop.

The continue statement enables you to skip to the next iteration in the loop containing the
continue statement.

The labeled continue statement enables you to skip to the next iteration in a loop enclosing the
labeled continue that is identified by the label. The labeled loop need not be that immediately
enclosing the labeled continue.

The break statement enables you to break out of a loop or block of statements in which it
appears.

133

Chapter 3

Q The labeled break statement enables you to break out of a loop or block of statements that
encloses it that is identified by the label. This is not necessarily the block that encloses it directly.

0 You use an assertion statement to verify logical conditions that should always be true, or as
code in parts of a program that should not be reached, but theoretically can be.

Exercises

You can download the source code for the examples in the book and the solutions to the following exer-
cises from http: //www.wrox.com.

1. Write a program to display a random choice from a set of six choices for breakfast (you could
use any set; for example, scrambled eggs, waffles, fruit, cereal, toast, or yogurt).

2. When testing whether an integer is a prime, it is sufficient to try to divide by integers up to the
square root of the number being tested. Rewrite the program example from this chapter to use
this approach.

3. Alottery requires that you select six different numbers from the integers 1 to 49. Write a pro-
gram to do this for you and generate five sets of entries.

4. Writea program to generate a random sequence of capital letters that does not include vowels.

134

Arrays and Strings

In this chapter you'll start to use Java objects. You'll first be introduced to arrays, which enable you
to deal with a number of variables of the same type through a single variable name, and then
you’'ll look at how to handle character strings. By the end of this chapter you'll have learned:

O

What arrays are and how you declare and initialize them
How you access individual elements of an array

How you can use individual elements of an array

How to declare arrays of arrays

How you can create arrays of arrays with different lengths
How to create String objects

How to create and use arrays of String objects

What operations are available for String objects

What StringBuf fer objects are and how they relate to operations on String objects

00000 oo oo

What operations are available for StringBuffer objects

Some of what I discuss in this chapter relates to objects, and as I have not yet covered in detail
how you define a class (which is an object type definition), I will have to skate over some aspects
of how objects work, but all will be revealed in Chapter 5.

Arrays

With the basic built-in Java data types that you've seen in the previous chapters, each identifier
corresponds to a single variable. But when you want to handle sets of values of the same type —
the first 1,000 primes, for example —you really don’t want to have to name them individually.
What you need is an array.

Chapter 4

Let’s first get a rough idea of what an array is and how it works. An array is an object that is a named set
of variables of the same type. Each variable in the array is called an array element. To reference a partic-
ular element in an array, you use the array name combined with an integer value of type int, called an
index. You put the index between square brackets following the array name; for example, data[99]
refers to the element in the data array corresponding to the index value 99. The index for an array ele-
ment is the offset of that particular element from the beginning of the array. The first element will have
an index of 0, the second will have an index of 1, the third an index of 2, and so on. Thus, data[99]
refers to the hundredth element in the data array. The index value does not need to be an integer literal.
It can be any expression that results in a value of type int that is equal to or greater than zero.
Obviously a for loop is going to be very useful for processing array elements —which is one reason
why you had to wait until now to hear about arrays.

Array Variables

An array variable and the array it refers to are separate entities. The memory that is allocated for an
array variable stores a reference to an array object, not the array itself. The array object itself is a distinct
entity that will be elsewhere in memory. All variables that refer to objects store references that record the
memory locations of the objects they refer to.

You are not obliged to create an array when you declare an array variable. You can first create the array
variable and later use it to store a reference to a particular array.

You could declare the integer array variable primes with the following statement:
int[] primes; // Declare an integer array variable

The variable primes is now a placeholder for an integer array that you have yet to define. No memory
has been allocated to hold an array itself at this point. The primes variable is simply a location in mem-
ory that can store a reference to an array. You will see in a moment that to create the array itself you must
specify its type and how many elements it is to contain. The square brackets following the type in the
previous statement indicates that the variable is for referencing an array of int values, and not for stor-
ing a single value of type int. The type of the array variable is int [].

You may come across an alternative notation for declaring an array variable:
int primes[]; // Declare an integer array variable
Here the square brackets appear after the variable name, rather than after the type name. This is exactly

equivalent to the previous statement so you can use either notation. Many programmers prefer the origi-
nal notation, as int [] tends to indicate more clearly that the type is an array of values of type int.

Defining an Array

Once you have declared an array variable, you can define an array that it will reference:
primes = new int[10]; // Define an array of 10 integers

This statement creates an array that will store 10 values of type int, and stores a reference to the array
in the variable primes. The reference is simply where the array is in memory. You could also declare the
array variable and define the array of type int to hold 10 prime numbers with a single statement, as
shown in Figure 4-1.

136

Arrays and Strings

Specifies an array of
variables of type int

We are creating
a new array object
—
int[] primes = new int[10]; //An array of 10 integers
e
The name of

the array

The array object is of type int e el

and has ten elements \

primes(0) primes(1l) primes(2) primes(3) primes(4) primes(5) primes(6) primes(7) primes(8) primes(9)
| |]

Figure 4-1

The first part of the definition specifies the type of the array. The element type name, int in this case, is
followed by an empty pair of square brackets to indicate you are declaring an array rather than a single
variable of type int. The part the statement that follows the equals sign defines the array. The keyword
new indicates that you are allocating new memory for the array, and int [10] specifies you want capacity
for 10 variables of type int in the array. Since each element in the primes array is a variable of type int
that requires 4 bytes, the whole array will occupy 40 bytes, plus 4 bytes for the primes variable to store
the reference to the array. When an array is created like this, all the array elements are initialized to a
default value automatically. The initial value is zero in the case of an array of numerical values, is false
for boolean arrays, is ' \u0000" for arrays storing type char, and is null for an array of a class type.

Consider the statement:

double[] myArray = new double[100];

This statement is a declaration of the array variable myArray. The statement also defines the array, since
the array size is specified. The variable myArray will refer to an array of 100 values of type double, and
each element will have the value 0.0 assigned by default. Because there are 100 elements in this array, the
legal index values range from 0 to 99.

The Length of an Array

You can refer to the length of the array — the number of elements it contains —using length, a data
member of the array object. For example, for the array myArray that you defined in the previous sec-
tion, you can refer to its length as myaArray . length, which will have the value 100. You can use the
length member of an array to control a numerical for loop that iterates over the elements of an array.

137

Chapter 4

Accessing Array Elements

As I mentioned earlier, you refer to an element of an array by using the array name followed by the ele-
ment’s index value enclosed between square brackets. You can specify an index value by any expression
that produces a zero or positive result of type int. If you use a value of type long as an index, you will
get an error message from the compiler; if your calculation of an index uses long variables and the
result is of type long, you will need to cast it to type int. You will no doubt recall from Chapter 2 that
arithmetic expressions involving values of type short and type byte produce a result of type int, so
you can use those in an index expression.

You refer to the first element of the primes array that was declared previously as primes[0], and you
reference the fifth element in the array as primes[4]. The maximum index value for an array is one less
than the number of elements in the array. Java checks that the index values you use are valid. If you use
an index value that is less than 0, or greater than the index value for the last element in the array, an
exception will be thrown — throwing an exception is just the way errors at execution time are signaled,
and there are different types of exceptions for signaling various kinds of errors. The exception type in
this case is an IndexOutOfBoundsException. When such an exception is thrown, your program will
normally be terminated. You'll be looking at exceptions in detail in Chapter 7, including how you can
deal with exceptions and prevent termination of your program.

The primes array is an example of what is sometimes referred to as a one-dimensional array, because
each of its elements is referenced using one index —running from 0 to 9 in this case. You'll see later that
arrays can also have two or more dimensions, the number of dimensions being the same as the number
of indexes required to access an element of the array.

Reusing Array Variables

As I explained at the beginning of this chapter, an array variable is separate from the array that it refer-
ences. Rather like the way an ordinary variable can store different values at different times, you can use
an array variable to store a reference to different arrays at different points in your program. Suppose you
have declared and defined the variable primes as before, like this:

int[] primes = new int[10]; // Allocate an array of 10 integer elements

This produces an array of 10 elements of type int. Perhaps a bit later in your program you want to use
the array variable primes to refer to a larger array, with 50 elements, say. You could simply write:

primes = new int[50]; // Allocate an array of 50 integer elements
Now the primes variable refers to a new array of values of type int that is entirely separate from the
original. When this statement is executed, the previous array of 10 elements is discarded, along with all

the data values you may have stored in it. The variable primes can now be used to reference only ele-
ments of the new array. This is illustrated in Figure 4-2.

138

Arrays and Strings

primes[0] primes[1] primes] es[3] primes[4] primes[5] prim fimes[7] primes[8] primes[9]

b Bt I\HI\HIH\I\HIMHHHHHHHHI

Old array is discarded

New array is created

Refers to
new array primes[0] primes[1] primes(2] primes(3} primes[47] primes[48]
I RN R
Reassigning an Array Variable
Figure 4-2

After executing the statement shown in Figure 4-2, the array variable primes now points to a new inte-
ger array of 50 elements with index values running from 0 to 49. Although you can change the array that
an array variable references, you can’t alter the type of value that an element stores. All the arrays refer-
enced by a given variable must correspond to the original type that you specified when you declared the
array variable. The variable primes, for example, can only reference arrays of type int []. You have
used an array of elements of type int in the illustration, but the same thing applies equally well when
you are working with arrays of elements of type long or double or of any other type. Of course, you are
not restricted to working with arrays of elements of primitive types. You can create arrays of elements to
store references to any type of object, including objects of the classes that you will be defining yourself in
Chapter 5.

Initializing Arrays

You can initialize the elements in an array with your own values when you declare it, and at the same
time determine how many elements it will have. To do this, you simply add an equals sign followed by
the list of element values enclosed between braces following the specification of the array variable. For
example, you could define and initialize an array with the following statement:

int[] primes = {2, 3, 5, 7, 11, 13, 17}; // An array of 7 elements

This creates the primes array with sufficient elements to store all of the initializing values that appear
between the braces —seven in this case. The array size is determined by the number of initial values so
no other information is necessary to define the array. The values are assigned to the array elements in
sequence so in this example primes [0] will have the initial value 2, primes [1] will have the initial
value 3, primes [2] will have the initial value 5, and so on through the rest of the elements in the array.

139

Chapter 4

If you specify initializing values for an array, you must include values for all the elements. If you want to
set only some of the array elements to specific values explicitly, you must use an assignment statement
for each element for which you supply a value. For example:

int[] primes = new int[100];
primes[0] = 2;
primes[1l] = 3;

The first statement declares and defines an integer array of 100 elements, all of which will be initialized
to zero by default. The two assignment statements then set values for the first two array elements.

You can also initialize the elements in an array using a for loop to iterate over all the elements and set
the value for each:

double[] data = new double[50]; // An array of 50 values of type double
for(int i = 0 ; i<data.length ; i++) { // i from 0 to data.length-1

datal[i] = 1.0;
}

For an array with length elements, the index values for the elements run from 0 to length-1. The for
loop control statement is written so that the loop variable i starts at 0 and will be incremented by 1 on
each iteration up to data.length-1. When i is incremented to data. length, the loop will end. Thus,
this loop sets each element of the array to 1. Using a for loop in this way is one standard idiom for
iterating over the elements in an array. You'll see later that you can use the collection-based for loop
for iterating over and accessing the values of the array elements. Here you are setting the values so the
collection-based for loop cannot be applied.

Using a Utility Method to Initialize an Array
You can also use a method that is defined in the Arrays class in the java.util package to initialize an
array. For example, to initialize the data array defined as in the previous fragment, you could use the fol-
lowing statement:

Arrays.fill (data, 1.0); // Fill all elements of data with 1.0
The first argument to the £111 () method is the name of the array to be filled. The second argument is
the value to be used to set the elements. This method will work for arrays of any primitive type. Of
course, for this statement to compile correctly you would need an import statement at the beginning of
the source file:

import java.util.Arrays;

This statement imports the Arrays class name into the source file so you can use it as you have in the
preceding code line. Without the import statement, you can still access the Arrays class using the fully
qualified name. In this case the statement to initialize the array would be:

java.util.Arrays.fill(data, 1.0); // Fill all elements of data with 1.0

This is just as good as the previous version of the statement.

140

Arrays and Strings

Of course, because £111 () is a static method in the Arrays class, you could import the method name
into your source file:

import static java.util.Arrays.fill;
Now you can call the method with the name unadorned with the class name:

fill(data, 1.0); // Fill all elements of data with 1.0

Initializing an Array Variable
You can initialize an array variable with a reference to an existing array. For example, you could declare

the following array variables:

long[] even = {2L, 4L, 6L, 8L, 10L};
long[] value = even;

Here the array reference stored in even is used to initialize the array value in its declaration. This has
the effect shown in Figure 4-3.

long[] even = (2L, 4L, 6L, 8L, 10L);

even

even [0] even[1] even[2] even [3] even [4]

| [[zl [[Jel [[Je] [[Je] [[[30f

value [0] value [1] value[2] value [3] value [4]

long[] value = even;

Figure 4-3

You have created two array variables, but you have only one array. Both arrays refer to the same set of
elements, and you can access the elements of the array through either variable name — for example,
even[2] refers to the same variable as value[2]. One use for this is when you want to switch the
arrays referenced by two variables. If you were sorting an array by repeatedly transferring elements
from one array to another, by flipping the array you were copying from with the array you were copying
to, you could use the same code. For example, if you declared array variables as:

double[] inputArray = new double[100]; // Array to be sorted
double[] outputArray = new double[100]; // Reordered array
double[] temp; // Temporary array reference

when you want to switch the array referenced by outputArray to be the new input array, you could
write:

141

Chapter 4

temp = inputArray; // Save reference to inputArray in temp
inputArray = outputArray; // Set inputArray to refer to outputArray
outputArray = temp; // Set outputArray to refer to what was inputArray

None of the array elements are moved here. Just the addresses of where the arrays are located in mem-
ory are swapped, so this is a very fast process. Of course, if you want to replicate an array, you have to
define a new array of the same size and type, and then copy the value of each element of the old array
individually to your new array.

Using Arrays

You can use array elements in expressions in exactly the same way as you might use a single variable of
the same data type. For example, if you declare an array samples, you can fill it with random values
between 0.0 and 100.0 with the following code:

double[] samples = new double[50]; // An array of 50 double values
for(int 1 = 0; 1 < samples.length; i++) {
samples([i] = 100.0*Math.random() ; // Generate random values

}

This shows how the numerical for loop is ideal when you want to iterate though the elements in an
array to set their values. Of course, this is not an accident. A major reason for the existence of the for
loop is precisely for iterating over the elements in an array.

To show that array elements can be used in exactly the same way as ordinary variables, I could write the
following statement:

double result = (samples[1l0]*samples[0] - Math.sqgrt(samples[49]))/samples[29];

This is a totally arbitrary calculation, of course. More sensibly, to compute the average of the values
stored in the samples array, you could write:

double average = 0.0; // Variable to hold the average

for(int 1 = 0; 1 < samples.length; i++) {
average += samples[i]; // Sum all the elements

}
average /= samples.length; // Divide by the total number of elements

Within the loop, you accumulate the sum of all the elements of the array samples in the variable
average. You then divide this sum by the number of elements.

Notice how you use the length of the array, samples.length, all over the place. It appears in the for
loop, and in floating-point form as a divisor to calculate the average. When you use arrays, you will
often find that references to the length of the array are strewn all through your code. As long as you
use the length member of the array, the code is independent of the number of array elements. If you
change the number of elements in the array, the code will automatically deal with that. You should
always use the 1length member when you need to refer to the length of an array —never use explicit
values.

142

Arrays and Strings

Using the Collection-Based for Loop with an Array

You can use a collection-based for loop as an alternative to the numerical for loop when you want to
process the values of all the elements in an array. For example, you could rewrite the code fragment
from the previous section that calculated the average of the values in the samples array like this:

double average = 0.0; // Variable to hold the average
for (double value : samples) {
average += value; // Sum all the elements
}
average /= samples.length; // Divide by the total number of elements

The for loop will iterate through the values of all elements of type double in the samples array in
sequence. The value variable will be assigned the value of each element of the samples array in turn.
Thus, the loop achieves the same result as the numerical for loop that you used earlier — the sum of all
the elements will be accumulated in average. Of course, when you want to process only data from part
of the array, you still must use the numerical for loop with the loop counter ranging over the indexes
for the elements you want to access.

It’s important to remember that the collection-based for loop iterates over the values stored in an array.
It does not provide access to the elements for the purpose of setting their values. Therefore, you use it
only when you are accessing all the values stored in an array to use them in some way. If you want to
recalculate the values in the array, use the numerical for loop.

Let’s try out an array in an improved program to calculate prime numbers:

Try It Out Even More Primes

Try out the following code, derived, in part, from the code you used in Chapter 3:

import static java.lang.Math.ceil;
import static java.lang.Math.sqgrt;

public class MorePrimes {
public static void main(String[] args) {

long[] primes = new long[20]; // Array to store primes

primes[0] = 2L; // Seed the first prime

primes[1l] = 3L; // and the second

int count = 2; // Count of primes found - up to now,
// which is also the array index

long number = 5L; // Next integer to be tested

outer:

for(; count < primes.length; number += 2L) {

// The maximum divisor we need to try is square root of number
long limit = (long)ceil (sgrt ((double)number)) ;

// Divide by all the primes we have up to limit
for(int 1 = 1; i < count && primes[i] <= limit; i++) {
if (number%primes[i] == 0L) { // Is it an exact divisor?
continue outer; // Yes, so try the next number

}

143

Chapter 4

}
primes[count++] = number; // We got one!

}

for(long n : primes) {
System.out.println(n) ; // Output all the primes
}

This program computes as many prime numbers as the capacity of the primes array will allow.

How It Works

Any number that is not a prime must be a product of prime factors, so you only need to divide a prime
number candidate by prime numbers that are less than or equal to the square root of the candidate to
test for whether it is prime. This is fairly obvious if you think about it. For every factor a number has
that is greater than the square root of the number, the result of division by this factor is another factor
that is less than the square root. You perhaps can see this more easily with a specific example. The num-
ber 24 has a square root that is a bit less than 5. You can factorize it as 2 * 12, 3 * 8, 4 * 6; then you come to
cases where the first factor is greater than the square root so the second is less, 6 * 4, 8 * 3, etc., and so
you are repeating the pairs of factors you already have.

You first declare the array primes to be of type 1long, and define it as having 20 elements. You set the
first two elements of the primes array to 2 and 3, respectively, to start the process off, as you will use the
primes you have in the array as divisors when testing a new candidate.

The variable count is the total number of primes you have found, so this starts out as 2 because you
have already stored 2 and 3 in the first two elements of the primes array. Note that because you use
count as the for loop control variable, you omit the first expression between parentheses in the loop
statement, as the initial value of count has already been set.

You store the candidate to be tested in number, with the first value set as 5. The for loop statement
labeled outer is slightly unusual. First of all, the variable count that determines when the loop ends is
not incremented in the for loop statement, but in the body of the loop. You use the third control expres-
sion between the for loop parentheses to increment number in steps of two, since you don’t want to
check even numbers. The for loop ends when count is equal to the length of the array. You test the
value in number in the inner for loop by dividing number by all of the prime numbers you have in the
primes array that are less than, or equal to, the square root of the candidate. If you get an exact division,
the value in number is not prime, so you go immediately to the next iteration of the outer loop via the
continue statement.

You calculate the limit for divisors you need to try with the following statement:

long limit = (long)ceil (sgrt((double)number)) ;
The sgrt () method from the Math class produces the square root of number as a double value, so if
number has the value 7, for example, a value of about 2.64575 will be returned. This is passed to the

ceil () method, which is also a member of the Math class. The ceil () method returns a value of type
double that is the minimum whole number that is not less than the value passed to it. With number as 7,

144

Arrays and Strings

this will return 3.0, the smallest integral value not less than the square root of 7. You want to use this
number as the limit for your integer divisors, so you cast it to type long and store the result in 1imit.
You are able to call the sgrt () and ceil () methods without qualifying their names with the class to
which they belong because you have imported their names into the source file.

If you don’t get an exact division, you exit normally from the inner loop and execute the statement
primes[count++] = number; // We got one!

Because count is the number of values you have stored, it also corresponds to the index for the next free
element in the primes array. Thus, you use count as the index to the array element in which you want
to store the value of number, and then increment count.

When you have filled the primes array, the outer loop will end and you output all the values in the
array in the loop:

for(long n : primes) {
System.out.println(n); // Output all the primes
}

This loop will iterate through all the elements of type 1ong in the primes array in sequence. On each
iteration n will contain the value of the current element, so that will be written out by the println()
method.

You can express the logical process of this program as the following sequence of steps:

1. Take the numberin question and determine its square root.
2. Set the limit for divisors to be the smallest integer that is greater than this square root value.

3. Test to see if the number can be divided exactly (without remainder) by any of the primes
already in the primes array that are less than the limit for divisors.

4. 1t any of the existing primes divide into the current number, discard the current number and
start a new iteration of the loop with the next candidate number.

5. Ifnone of the divisors divide into number without a remainder, it is a prime, so enter the exist-
ing number in the first available empty slot in the array and then move to the next iteration for
a new candidate number.

6. When the array of primes is full, stop looking for new primes and output all the prime number
values from the array.

Arrays of Arrays

You have worked only with one-dimensional arrays up to now, that is, arrays that use a single index.
Why would you ever need the complications of using more indexes to access the elements of an array?

Consider a specific example. Suppose that you have a fanatical interest in the weather, and you are

intent on recording the temperature each day at 10 separate geographical locations throughout the year.
Once you have sorted out the logistics of actually collecting this information, you can use an array of 10

145

Chapter 4

elements corresponding to the number of locations, where each of these elements is an array of 365 ele-
ments to store the temperature values. You would declare this array with the statement

float[]1[] temperature = new float[10][365];

This is called a two-dimensional array, since it has two dimensions — one with index values running
from 0 to 9, and the other with index values from 0 to 364. The first index relates to a geographical loca-
tion, and the second index corresponds to the day of the year. That's much handier than a one-dimen-
sional array with 3650 elements, isn’t it?

Figure 4-4 shows the organization of the two-dimensional array.

temperature [0]

temperature [1]

temperature [0] [0]

temperature [0] [1]

temperature [0] [2]

temperature [0] [363]

temperature [0] [364]

temperature [1] [0]

temperature [1] [1]

temperature [1] [2]

temperature [1] [363]

temperature [1] [364]

temperature [9] [0]

temperature [9] [1]

temperature [9] [2]

temperature [9] [363]

temperature [9] [364]

temperature [9] [T 1 [T 1 [T 1 [T 1 [T 1

float[] [] temperature = new float[10] [365];

Figure 4-4

There are 10 one-dimensional arrays that make up the two-dimensional array, and they each have 365
elements. In referring to an element, the first pair of square brackets encloses the index for a particular
array and the second pair of square brackets encloses the index value for an element within that array.
So to refer to the temperature for day 100 for the sixth location, you would use temperature[5][99].
Since each float variable occupies 4 bytes, the total space required to store the elements in this two-
dimensional array is 10x365x4 bytes, which is a total of 14,600 bytes.

For a fixed value for the second index in a two-dimensional array, varying the first index value is often
referred to as accessing a column of the array. Similarly, fixing the first index value and varying the sec-
ond, you access a row of the array. The reason for this terminology should be apparent from Figure 4-4.

You could equally well have used two statements to create the last array, one to declare the array vari-
able and the other to define the array:

// Declare the array variable
// Create the array

float [][] temperature;
temperature = new float[10][365];

The first statement declares the array variable temperature for two-dimensional arrays of type float.
The second statement creates the array with ten elements, each of which is an array of 365 elements of
type float.

146

Arrays and Strings

Let’s exercise this two-dimensional array in a program to calculate the average annual temperature for
each location.

Try It Out The Weather Fanatic

To save you having to wander around 10 different locations armed with a thermometer, you'll generate
the temperatures as random values between -10 degrees and 35 degrees. This assumes you are recording
temperatures in degrees Celsius. If you prefer Fahrenheit, you could generate values from 14 degrees to
95 degrees to cover the same range.

public class WeatherFan {
public static void main(String[] args) {
float[][] temperature = new float[10][365]; // Temperature array

// Generate random temperatures
for(int 1 = 0; i<temperature.length; i++) {
for(int j = 0; j < temperature[i].length; j++) {
temperature[i] [j] = (float) (45.0*Math.random() - 10.0);

}

// Calculate the average per location
for(int i = 0; i<temperature.length; i++) {
float average = 0.0f; // Place to store the average

for(int j = 0; j < temperature[i].length; j++) {
average += temperaturel[i][]];

}
// Output the average temperature for the current location

System.out.println("Average temperature at location "
+ (i+1) + " = " + average/ (float)temperaturel[i].length);

When I ran the program, I got the following output:

= 12.2733345
= 12.012519

Average temperature at location 1

Average temperature at location 2

Average temperature at location 3 = 11.54522

Average temperature at location 4 = 12.490543
Average temperature at location 5 = 12.574791
Average temperature at location 6 = 11.950315
Average temperature at location 7 = 11.492908
Average temperature at location 8 = 13.176439
Average temperature at location 9 = 12.565457
Average temperature at location 10 = 12.981103

You should get different results.

147

Chapter 4

How It Works

After declaring the array temperature you fill it with random values using nested for loops. Note how
temperature. length used in the outer loop refers to the length of the first dimension, 10 in this case.
In the inner loop you use temperature[i].length to refer to the length of the second dimension, 365.
You could use any index value here; temperature[0].length would have been just as good for all the
elements, since the lengths of the rows of the array are all the same in this case.

The Math.random () method generates a value of type double from 0.0 up to, but excluding, 1.0. This
value is multiplied by 45.0 in the expression for the temperature, which results in values between 0.0
and 45.0. Subtracting 10.0 from this value gives you the range you require, -10.0 to 35.0.

You then use another pair of nested for loops, controlled in the same way as the first, to calculate the
averages of the stored temperatures. The outer loop iterates over the locations and the inner loop sums
all the temperature values for a given location. Before the execution of the inner loop, the variable
average is declared and initialized, and this is used to accumulate the sum of the temperatures for a
location in the inner loop. After the inner loop has been executed, you output the average temperature
for each location, identifying the locations by numbers 1 to 10, one more than the index value for each
location. Note that the parentheses around (i+1) here are essential. To get the average, you divide the
variable average by the number of samples, which is temperature[i].length, the length of the array
holding temperatures for the current location. Again, you could use any index value here since, as you
have seen, they all return the same value, 365.

You could write the nested loop to calculate the average temperatures as nested collection-based for
loops, like this:

int location = 0; // Location number
for(float[] temperatures : temperature) {
float average = 0.0f; // Place to store the average

for(float t : temperatures) {
average += t;

}

// Output the average temperature for the current location
System.out.println("Average temperature at location "
+ (++location) + " = " + average/ (float)temperatures.length);

The outer loop iterates over the elements in the array of arrays, so the loop variable temperatures will
reference each of the one-dimensional arrays in temperature in turn. The type of the temperatures
variable is £1loat [] because it stores a reference to a one-dimensional array from the array of one-
dimensional arrays, temperature.

148

Arrays and Strings

The inner for loop iterates over the elements in the array that is currently referenced by temperatures,
and the loop variable t will be assigned the value of each element from the temperatures in turn. You
have to define an extra variable, location, to record the location number as this was previously pro-
vided by the loop variable i, which is not present in this version. You increment the value of location
in the output statement using the prefix form of the increment operator so the location values will be 1,
2,3, and so on.

Arrays of Arrays of Varying Length

When you create an array of arrays, the arrays in the array do not need to be all the same length. You
could declare an array variable, samples, with the statement:

float[][] samples; // Declare an array of arrays

This declares the array object samples to be of type £1loat [] []. You can then define the number of ele-
ments in the first dimension with the statement:

samples = new float[6][]; // Define 6 elements, each is an array

The samples variable now references an array with six elements, each of which can hold a reference to a
one-dimensional array. You can define these arrays individually if you want:

samples[2] = new float[6]; // The 3rd array has 6 elements
samples[5] = new float[101]; // The 6th array has 101 elements

This defines two of the six possible one-dimensional arrays that can be referenced through elements of
the samples array. The third element in the samples array now references an array of 6 elements of type
float, and the sixth element of the samples array references an array of 101 elements of type float.
Obviously, you cannot use an array until it has been defined, but you could conceivably use these two
and define the others later —not a likely approach though!

If you wanted the array samples to have a triangular shape, with one element in the first row, two ele-
ments in the second row, three in the third row, and so on, you could define the arrays in a loop:

i<samples.length; i++) {
= new float[i+l]; // Allocate each array

for(int 1 =

0;
samples[i]

}

149

Chapter 4

The effect of this is to produce the array layout that is shown in Figure 4-5.

samples[0][0O]

samples[2].length is 3

samples[1][0] samples[2][1]

samples[1] |

samples[4].length is 5
samples[2][0] samples[2][1]

samples[2][2]

samples[2] |

samples.length is 6
samples[3][0] samples[3][1] samples[3][2] samples[3][3]

samples[3] | |

samples[4][0] samples[4][1] samples[4][2] samples[4][3] samples[4][4]
samples[4] | P | [| R | | [|

samples[5][0] samples[5][1] samples[5][2] samples[5][3] samples[5][4] samples[5][5]
samples[5] | R N T | R R T

4

Figure 4-5

The 21 elements in the array will occupy 84 bytes. When you need a two-dimensional array with rows of
varying length, allocating them to fit the requirement can save a considerable amount of memory com-
pared to just using rectangular arrays where the row lengths are all the same.

To check out that the array is as shown in Figure 4-5, you could define it in a program using the code
fragments you have just seen and include statements to display the 1ength member for each of the one-
dimensional arrays.

You could use a numerical for loop to initialize the elements in the samples array, even though the
rows may differ in length:

for(int 1 = 0; 1 < samples.length; i++) {
for(int j = 0 ; j<samples[i].length ; j++) {
samples[i][j] = 99.0f; // Initialize each element to 99
}

}

150

Arrays and Strings

The upper limit for the control variable in the inner loop is samples[i] . length. The expression
samples[1i] references the current row in the two-dimensional array so samples[i].length is the
number of elements in the current row. The outer loop iterates over the rows in the samples array,
and the inner loop iterates over all the elements in a row.

You can also achieve the same result with slightly less code using the £111 () method from the Arrays
class that you saw earlier:

for(int 1 = 0; 1 < samples.length; i++) {
java.util.Arrays.fill (samples([i], 99.0f); // Initialize elements in a row to 99

}

Because the £i111 () method fills all the elements in a row, you need only one loop that iterates over the
rows of the array.

Multidimensional Arrays

You are not limited to two-dimensional arrays either. If you are an international java bean grower with
multiple farms across several countries, you could arrange to store the results of your bean counting in
the array declared and defined in the following statement:

long[][][] beans = new long([5][10]1([30];

The array, beans, has three dimensions. It provides for holding bean counts for each of up to 30 fields
per farm, with 10 farms per country in each of 5 countries.

You can envisage this as just a three-dimensional array, but remember that beans is really an array
of five elements, each of which holds a reference to a two-dimensional array, and each of these two-
dimensional arrays can be different. For example, if you really want to go to town, you can declare
the array beans with the statement:

long[][]1[] beans = new long[3][]1[]; // Three two-dimensional arrays

Each of the three elements in the first dimension of beans can hold a different two-dimensional array,
so you could specify the first dimension of each explicitly with the following statements:

beans[0] = new longl4][];
beans[1l] = new longl[2][];
beans([2] = new long[5][];

These three arrays have elements that each hold a one-dimensional array, and you can also specify the
sizes of these independently. Note how the empty square brackets indicate there is still a dimension
undefined. You could give the arrays in each of these elements random dimensions between 1 and 7
with the following code:

for(int 1 = 0; i<beans.length; i++) // Vary over lst dimension
for(int j = 0; j<beans[i].length; j++) // Vary over 2nd dimension
beans[i][j] = new long[(int) (1.0 + 6.0*Math.random())];

If you can find a sensible reason for doing so, or if you are just a glutton for punishment, you can extend
this to four or more dimensions.

151

Chapter 4

Arrays of Characters

All the arrays you have defined have contained elements storing numerical values so far. You can also
have arrays of characters. For example, you can declare an array variable of type char[] to hold 50
characters with the following statement:

char[] message = new char[50];
Keep in mind that characters are stored as Unicode in Java so each element occupies 2 bytes.
If you wanted to initialize every element of this array to a space character, you could either use a for
loop to iterate over the elements of the array, or just use the £i11 () method in the Arrays class, like
this:

java.util.Arrays.fill (message, ' '); // Store a space in every element
Of course, you could use the £i11 () method to initialize the elements with any character you wish. If
you put '\n' as the second argument to the £111 () method, the array elements would all contain a
newline character.
You can also define the size of an array of type char [] by the characters it holds initially:

char[] vowels = { 'a', 'e', '"i', 'o', 'u'};

This defines an array of five elements, initialized with the characters appearing between the braces. This
is fine for things like vowels, but what about proper messages?

Using an array of type char, you can write statements such as:

char[] sign = {'F', 'l', 'u', 'e', 'n', 't', "',
g, "dv, e, Ulp", ‘@', mv, "i’, 'g’, v, " 7,
"gv, "', "@", "K', "@"', "'m", " ",
'h', 'e', 'r', 'e'};

Well, you get the message —just—but it’s not a very friendly way to deal with it. It looks like a collec-
tion of characters, which is what it is. What you really need is something a bit more integrated —some-
thing that looks like a message, but still gives you the ability to get at the individual characters if you
want. What you need is a String.

Strings

You will need to use character strings in most of your programs —headings, names, addresses, product
descriptions, messages — the list is endless. In Java, ordinary strings are objects of the class String. The
String class is a standard class that comes with Java, and it is specifically designed for creating and pro-
cessing strings. The definition of the String class is in the java.lang package so it will be accessible in
all your programs by default.

152

Arrays and Strings

String Literals

You have already made extensive use of string literals for output. Just about every time the println()
method was used in an example, you used a string literal as the argument. A string literal is a sequence
of characters between double quotes:

"This is a string literal!"

This is actually a String literal with a capital S—in other words, a constant object of the class string
that the compiler creates for use in your program.

As I mentioned in Chapter 2, some characters can’t be entered explicitly from the keyboard so you can’t
include them directly in a string literal. You can’t include a newline character by pressing the Enter key
since this will move the cursor to a new line. You also can’t include a double quote character as it is in a
string literal because this is used to indicate where a string literal begins and ends. You can specify all of
these characters in a string in the same way as you did for char constants in Chapter 2—you use an
escape sequence. All the escape sequences you saw when you looked at char constants apply to strings.
The statement

System.out.println("This is \na string constant!");
will produce the output

This is
a string constant!

since \n is interpreted as a newline character. Like values of type char, strings are stored internally as
Unicode characters. You can also include Unicode character codes in a string as escape sequences of the
form \unnnn where nnnn are the four hexadecimal digits of the Unicode coding for a particular charac-
ter. The Greek letter m, for example, is \u03CO0.

You will recall from my preliminary discussion of classes and objects in Chapter 1 that a class usually
contains data members and methods, and naturally, this is true of the String class. The sequence of
characters in the string is stored in a data member of the String object and the methods for the String
object enable you to process the data in a variety of ways. I'll go into the detail of how a class is defined
in Chapter 5, so in this chapter I'll concentrate on how you can create and use objects of the class String
without explaining the mechanics of why things work the way that they do. You already know how to
define a String literal. The next step is to learn how you declare a String variable and how you create
String objects.

Creating String Objects

Just to make sure there is no confusion in your mind, a String variable is simply a variable that stores a
reference to an object of the class String. You declare a String variable in much the same way as you
define a variable of one of the basic types. You can also initialize it in the declaration, which is generally
a good idea:

String myString = "My inaugural string";

153

Chapter 4

This declares the variable myString as type String and initializes it with a reference to a String object
encapsulating the string "My inaugural string".You can store a reference to another string in a
String variable, once you have declared it, by using an assignment. For example, you can change the
value of the String variable myString to the statement:

myString = "Strings can be knotty";

The effect of this is illustrated in Figure 4-6:

String myString = "My inaugural string";
Mly| |i|nfafulglulrafa] [s]e|r]i[n[q]
myString = "Strings can be knotty";
Mly| |i|nfafulglupal1] [s]e|r]|i[n[q]
- discarded
newtink LSt r[i[nlals] [efafn] [ole] [k[n]oft]e]v]

Figure 4-6

The string object itself is distinct from the variable you use to refer to it. In the same way as you saw
with array objects, the variable myString stores a reference to a String object, not the object itself, so in
other words, a String variable records where the String object is in memory. When you declare and
initialize myString, it references the object corresponding to the initializing string literal. When you exe-
cute the assignment statement, the original reference is overwritten by the reference to the new string
and the old string is discarded. The variable myString then contains a reference to the new string.

String objects are said to be immutable —which just means that they cannot be changed. This means
that you cannot extend or otherwise modify the string that an object of type String represents. When
you execute a statement that combines existing String objects, you are always creating a new String
object as a result. When you change the string referenced by a String variable, you throw away the ref-
erence to the old string and replace it with a reference to a new one. The distinction between a String
variable and the string it references is not apparent most of the time, but you will see situations later in
this chapter where it is important to understand this, so keep it in mind.

You should also keep in mind that characters in a string are Unicode characters, so each one typically
occupies 2 bytes, with the possibility that they can be 4 bytes if you are using characters represented as

154

Arrays and Strings

surrogates. This is also not something you need worry about most of the time, but there are occasions
where you need to be conscious of that, too.

Of course, you can declare a variable of type String in a method without initializing it:

String anyString; // Uninitialized String variable
The anyString variable that you have declared here does not refer to anything. However, if you try to
compile a program that attempts to use anyString before it has been initialized by some means, you
will get an error. If you don’t want a String variable to refer to anything at the outset— for example, if
you may or may not assign a String object to it before you use the variable — then you must initialize it
to a special null value:

String anyString = null; // String variable that doesn't reference a string

The literal null is an object reference value that does not refer to anything. Because an array is essen-
tially an object, you can also use null as the value for an array variable that does not reference anything.

You can test whether a String variable refers to anything or not by a statement such as:

if (anyString == null) {

System.out.println("anyString does not refer to anything!");

}
The variable anyString will continue to be null until you use an assignment to make it reference a par-
ticular string. Attempting to use a variable that has not been initialized is an error. When you declare a
String variable, or any other variable that is not an array, in a block of code without initializing it, the
compiler can detect any attempts to use the variable before it has a value assigned and will flag it as an

error. As a rule, you should always initialize variables as you declare them.

You can use the literal null when you want to discard a String object that is currently referenced by a
variable. Suppose you define a String variable like this:

String message = "Only the mediocre are always at their best";

Alittle later in the program, you want to discard the string that message references. You can just write
this statement:

message = null;

The value null replaces the original reference stored so message now does not refer to anything.

Arrays of Strings

You can create arrays of strings. You declare an array of String objects with the same mechanism that
you used to declare arrays of elements for the basic types. You just use the type String in the declara-
tion. For example, to declare an array of five String objects, you could use the statement:

String[] names = new String[5];

155

Chapter 4

It should now be apparent that the argument to the method main () is an array of String objects
because the definition of the method always looks like this:

public static void main(String[] args) {
// Code for method...
}

You could also declare an array of String objects where the initial values determine the size of the
array:

String[] colors = {"red", "orange", "yellow", "green", "blue", "indigo", violet"};
This array will have 7 elements because there are 7 initializing string literals between the braces.

Of course, as with arrays storing elements of primitive types, you can create arrays of strings with any
number of dimensions.

You can try out arrays of strings with a small example.

Try It Out Twinkle, Twinkle, Lucky Star

Let’s create a console program to generate your lucky star for the day:

public class LuckyStars {
public static void main(String[] args) {
String[] stars = {

"Robert Redford" , "Marilyn Monroe",
"Boris Karloff" , "Lassie",
"Hopalong Cassidy", "Trigger"

b g
System.out.println("Your lucky star for today is "
+ stars] (int) (stars.length*Math.random())]);

When you compile and run this program, it will output your lucky star. For example, I was fortunate
enough to get the following result:

Your lucky star for today is Marilyn Monroe

How It Works

This program creates the array stars of type string[]. The array length will be set to however many
initializing values appear between the braces in the declaration statement, which is 6 in this case.

You select a random element from the array by creating a random index value within the output state-

ment with the expression (int) (stars.length*Math.random()). Multiplying the random number
produced by the method Math. random () by the length of the array, you will get a value between 0.0

156

Arrays and Strings

and 6.0 because the value returned by random () will be between 0.0 and 1.0. The result won't ever be
exactly 6.0 because the value returned by the random () method is strictly less than 1.0, which is just as
well as this would be an illegal index value. The result is then cast to type int and will result in a value
from 0 to 5, making it a valid index value for the stars array.

Thus the program selects a random string from the array and displays it, so you should see different out-
put if you execute the program repeatedly.

Operations on Strings

There are many kinds of operations that can be performed on strings, but let’s start with one you have
used already, joining two or more strings together to form a new, combined string. This is often called
string concatenation.

Joining Strings

To join two String objects to form a new, single string you use the + operator, just as you have been
doing with the argument to the println () method in the program examples thus far. The simplest use
of this is to join two strings together:

myString = "The quick brown fox" + " jumps over the lazy dog";

This will join the two strings on the right of the assignment and store the result in the String variable
myString. The + operation generates a completely new String object that is separate from the two orig-
inal string objects that are the operands, and this new object is stored in myString. Of course, you also
use the + operator for arithmetic addition, but if either of the operands for the + operator isa String
object or literal, then the compiler will interpret the operation as string concatenation and will convert
the operand that is not a String object to a string.

Here’s an example of concatenation strings referenced by String variables:

String date = "31st ";

String month = "December";

String lastDay = date + month; // Result is "31st December"
If a String variable that you use as one of the operands to + contains null, then this will automatically
be converted to the string "null". So if the month variable contained null instead of a reference to the
string “December", the result of the concatenation with date would be the string "31st null".

Note that you can also use the += operator to concatenate strings. For example:

String phrase = "Too many";
phrase += " cooks spoil the broth";

157

Chapter 4

After executing these statements, the variable phrase will refer to the string "Too many cooks spoil
the broth". Of course, this does not modify the string "Too many". The string that is referenced by
phrase after this statement has been executed is a completely new string object. This is illustrated in
Figure 4-7.

String object String object

"Too many" + " cooks spoil the broth."

Reference to original
string

String objects are
combined to form
a new object

Reference to new

. String object
String replaces old

"Too many cooks spoil the broth."

Figure 4-7

Let’s see how some variations on the use of the + operator with String objects work in an example.

Try It Out String Concatenation

Enter the following code for the class JoinStrings:

public class JoinStrings {
public static void main(String[] args) {

String firstString = "Many ";
String secondString = "hands ";
String thirdString = "make light work";

String myString; // Variable to store results
// Join three strings and store the result

myString = firstString + secondString + thirdString;
System.out.println (myString) ;

// Convert an integer to String and join with two other strings
int numHands = 99;

myString = numHands + " " + secondString + thirdString;

System.out.println (myString) ;

// Combining a string and integers

158

Arrays and Strings

myString = "fifty five is " + 5 + 5;
System.out.println (myString) ;

// Combining integers and a string
myString = 5 + 5 + " is ten";
System.out.println (myString) ;

If you run this example, it will produce some interesting results:

Many hands make light work
99 hands make light work

fifty five is 55
10 is ten

How It Works

The first line of output is quite straightforward. It simply joins the three string values stored in the
String variables, firstString, secondString, and thirdString, into a single string and stores
this in the variable myString.

The second line of output is a use of the + operator you have used regularly with the println()
method, but clearly something a little more complicated is happening here. This is illustrated in

Figure 4-8.
myString = numHands + " " + secondString + thirdString;
Convert value
to a string
ll99ll + n n
@ Join strings
"99 " + secondString
I
@ Join strings
"99 hands" + thirdString,
I
@ Join strings
myString store "99 hands make light work"
result
Figure 4-8

159

Chapter 4

Behind the scenes, the value of the variable numHands is being converted to a string that represents this
value as a decimal number. This is prompted by the fact that it is combined with the string literal, " .
Dissimilar types in a binary operation cannot be operated on, so one operand must be converted to the
type of the other if the operation is to be possible. Here the compiler arranges that the numerical value
stored in numHands is converted to type String to match the type of the right operand of the + operator.
If you look back at the table of operator precedences, you'll see that the associativity of the + operator is
from left to right, so the strings are combined in pairs starting from the left, as shown in Figure 4-8.

The left-to-right associativity of the + operator is important in understanding the next two lines of out-
put. The two statements involved in creating these strings look very similar. Why does 5 + 5 resultin

55 in one statement, and 10 in the other? The reason is illustrated in Figure 4-9.

myString = "fifty five is " + 5 + 5?

I
@ Combines a string and
an integer

l

"fifty five is 5" + 5;

I
@ Combines a string and
an integer

l

myString = 5 + 5 + " is ten"?

@ Combines two integers,
so a normal add

10 + " is ten";

@ Combines a string and
an integer

l

myStrin store "fifty five is 55" myStrin store "10 is ten"
i & result ¥ W & result
The associativity of the + operator accounts for the differences
between these two statements
Figure 4-9

The essential difference between the two is that the first statement always has at least one operand of
type string, so the operation is one of string concatenation, whereas in the second statement the first
operation is an arithmetic addition because both operands are integers. In the first statement, each of the
integers is converted to type String individually. In the second, the numerical values are added, and
the result, 10, is converted to a string representation to allow the literal * is ten" to be concatenated.

You don’t need to know about this at this point, but in case you were wondering, the conversion of val-
ues of the basic types to type String is actually accomplished by using a static method, toString(),
of a standard class that corresponds to the basic type. Each of the primitive types has an equivalent class
defined, so for the primitive types I have already discussed are the following wrapper classes:

Basic Type Wrapper Class
byte Byte
short Short

160

Arrays and Strings

Basic Type Wrapper Class
int Integer
long Long

float Float
double Double
boolean Boolean
char Character

The classes in the table are called wrapper classes because objects of each of these class types “wrap” a
value of the corresponding primitive type. Whenever a value of one of the basic types appears as an
operand to + and the other operand is a String object, the compiler arranges to pass the value of the
basic type as the argument to the toString () method that is defined in the corresponding wrapper
class. The toString () method returns the String equivalent of the value. All of this happens automat-
ically when you are concatenating strings using the + operator. As you will see, not only these classes
have a toString () method —all classes do. I won’t go into the further significance of these classes now,
as I'll be covering these in more detail in Chapter 5.

The string class also defines a method, valueOf£ (), that will create a String object from a value of any
of the basic types. You just pass the value you want converted to a string as the argument to the method.
For example:

String doubleString = String.valueOf (3.14159);

You call the valueOf () method using the name of the class String, as shown in the preceding line.
This is because the method is a static member of the String class. You’ll learn what static means in
this context in Chapter 5. A literal or variable of any of the basic types can be passed to the valueOf ()
method, and it will return a String representation of the value.

Comparing Strings

Here’s where the difference between the String variable and the string it references will become appar-
ent. To compare values stored in variables of the primitive types for equality, you use the == operator.
This does not apply to String objects (or any other objects). The expression

stringl == string2

will check whether the two String variables refer to the same string. If they reference separate strings,
this expression will have the value false, regardless of whether or not the strings happen to be identi-
cal. In other words, the expression above does not compare the strings themselves; it compares the refer-
ences to the strings, so the result will be true only if stringl and string2 both refer to one and the
same string. You can demonstrate this with a little example.

161

Chapter 4

Try It Out Two Strings, Identical but Not the Same

In the following code, you test to see whether stringl and string3 refer to the same string:

public class MatchStrings {
public static void main(String[] args) {

String stringl = "Too many ";
String string2 = "cooks";
String string3 = "Too many cooks";

// Make stringl and string3 refer to separate strings that are identical
stringl += string2;

// Display the contents of the strings
System.out.println("Test 1");

System.out.println("string3 is now: " + string3);
System.out.println("stringl is now: " + stringl);
if(stringl == string3) // Now test for identity
System.out.println("stringl == string3 is true." +
" stringl and string3 point to the same string");
else
System.out.println("stringl == string3 is false." +

" stringl and string3 do not point to the same string");

// Now make stringl and string3 refer to the same string
string3 = stringl;

// Display the contents of the strings
System.out.println("\n\nTest 2");

System.out.println("string3 is now: " + string3);
System.out.println("stringl is now: " + stringl);
if (stringl == string3) // Now test for identity
System.out.println("stringl == string3 is true." +
" stringl and string3 point to the same string");
else
System.out.println("stringl == string3 is false." +
" stringl and string3 do not point to the same string");
}

You have created two scenarios in this example. In the first, the variables stringl and string3 refer to
separate String objects that happen to encapsulate identical strings. In the second, they both reference
the same String object. The program will produce the following output:

Test 1

string3 is now: Too many cooks

stringl is now: Too many cooks

stringl==string3 is false. stringl and string3 do not point to the same string

Test 2

string3 is now: Too many cooks

stringl is now: Too many cooks

stringl==string3 is true. stringl and string3 point to the same string

162

Arrays and Strings

How It Works

The three variables stringl, string2, and string3 are initialized with the string literals you see. After
executing the assignment statement, the string referenced by stringl will be identical to that referenced
by string3, but as you see from the output, the comparison for equality in the if statement returns
false because the variables refer to two separate strings. Note that if you were to just initialize stringl
and string2 with the same string literal, "Too many cooks", only one String object would be cre-
ated, which both variables would reference. This would result in both comparisons being true.

Next you change the value of string3 so that it refers to the same string as stringl. The output
demonstrates that the if expression has the value true, and that the stringl and string3 objects do
indeed refer to the same string. This clearly shows that the comparison is not between the strings them-
selves, but between the references to the strings. So how do you compare the strings?

Comparing Strings for Equality

To compare two String variables, that is, to decide whether the strings they reference are equal or not,
you must use the equals () method, which is defined for objects of type String . For example, to com-
pare the String objects referenced by the variables stringl and string3 you could write the state-
ment:

if (stringl.equals (string3)) ({
System.out.println("stringl.equals (string3) is true." +
" so strings are equal.");

}

This calls the equals () method for the String object referenced by stringl and passes string3 as
the argument. The equals () method does a case-sensitive comparison of corresponding characters in
the strings and returns true if the strings are equal and false otherwise. Two strings are equal if they
are the same length, that is, have the same number of characters, and each character in one string is iden-
tical to the corresponding character in the other.

Of course, you could also use the equals () method for the string referenced by string3 to do the com-
parison:

if (string3.equals (stringl)) {

System.out.println("string3.equals (stringl) is true." +
" so strings are equal.");

This is just as effective as the previous version.

To check for equality between two strings ignoring the case of the string characters, you use the method
equalsIgnoreCase (). Let’s put these methods in the context of an example to see them working.

Try It Out String Identity

Make the following changes to the MatchStrings. java file of the previous example:

public class MatchStrings2 ({
public static void main(String[] args) {

String stringl = "Too many ";

163

Chapter 4

String string2 = "cooks";
String string3 = "Too many cooks";

// Make stringl and string3 refer to separate strings that are identical
stringl += string2;

// Display the contents of the strings
System.out.println("Test 1");

System.out.println("string3 is now: " + string3);
System.out.println("stringl is now: " + stringl);
if (stringl.equals(string3)) { // Now test for equality

System.out.println("stringl.equals(string3) is true." +
" so strings are equal.");
} else {
System.out.println("stringl.equals(string3) is false." +
" so strings are not equal.");

// Now make stringl and string3 refer to strings differing in case
string3 = "TOO many cooks";

// Display the contents of the strings
System.out.println("\n\nTest 2");

System.out.println("string3 is now: " + string3);
System.out.println("stringl is now: " + stringl);
if (stringl.equals (string3)) { // Compare for equality

System.out.println("stringl.equals(string3) is true " +
" so strings are equal.");
} else {
System.out.println("stringl.equals (string3) is false" +
" so strings are not equal.");

if (stringl.equalsIgnoreCase (string3)) { // Compare, ignoring case
System.out.println("stringl.equalsIgnoreCase(string3) is true" +
" so strings are equal ignoring case.");
} else {
System.out.println("stringl.equalsIgnoreCase(string3) is false" +
" so strings are different.");

Of course, if you don’t want to have to create another source file, leave the class name as it was before, as
MatchStrings. If you run this example, you should get the following output:

Test 1

string3 is now: Too many cooks

stringl is now: Too many cooks

stringl.equals(string3) is true. so strings are equal.

Test 2
string3 is now: TOO many cooks

164

Arrays and Strings

stringl is now: Too many cooks
stringl.equals(string3) is false so strings are not equal.
stringl.equalsIgnoreCase(string3) is true so strings are equal ignoring case.

How It Works

In the if expression, you've called the equals () method for the object stringl to test for equality with
string3. This is the syntax you’ve been using to call the method println() in the object out. In gen-
eral, to call a method belonging to an object, you write the object name, then a period, and then the name
of the method. The parentheses following the method name enclose the information to be passed to the
method, which is string3 in this case. The general form for calling a method for an object is shown in
Figure 4-10.

Name of the
method
L — |
objectName . methodName (argl, arg2, ...)
L — L]
Object owning Expressions specifying data to be
the method passed to the method

Figure 4-10

You'll learn more about this in Chapter 5, when you look at how to define your own
classes. For the moment, just note that you don’t necessarily need to pass any argu-
ments to a method because some methods don’t require any. On the other hand, sev-
eral arguments can be required. It all depends on how the method was defined in
the class.

The equals () method requires one argument that you put between the parentheses. This must be the
String object that is to be compared with the original object. As you saw earlier, the method returns
true if the string passed to it (string3 in the example) is identical to the string pointed to by the
String object that owns the method; in this case, stringl. As you also saw in the previous section, you
could just as well call the equals () method for the object string3, and pass stringl as the argument
to compare the two strings. In this case, the expression to call the method would be:

string3.equals (stringl)
and you would get exactly the same result.
The next line in the program code after outputting the values of string3 and stringl is:
if (stringl.equals (string3)) { // Now test for equality
System.out.println("stringl.equals(string3) is true." +
" so strings are equal.");
} else {

System.out.println("stringl.equals (string3) is false." +
" so strings are not equal.");

165

Chapter 4

The output from this shows that calling the equals () method for stringl with string3 as the argu-
ment returns true. After the if statement you make string3 reference a new string. You then compare
the values of stringl and string3 once more, and, of course, the result of the comparison is now
false.

Finally, you compare stringl with string3 using the equalsIgnoreCase () method. Here the result
is true since the strings differ only in the case of the first three characters.

String Interning

Having convinced you of the necessity for using the equals method for comparing strings, I can now
reveal that there is a way to make comparing strings with the == operator effective. The mechanism to
make this possible is called string interning. String interning ensures that no two String objects encap-
sulate the same string, so all String objects encapsulate unique strings. This means that if two String
variables reference strings that are identical, the references must be identical, too. To put it another way,
if two string variables contain references that are not equal, they must refer to strings that are different.
So how do you arrange that all String objects encapsulate unique strings? You just call the intern ()
method for every new String object that you create. To show how this works, I can amend a bit of an
earlier example:

String stringl = "Too many ";
String string2 = "cooks";
String string3 = "Too many cooks";

// Make stringl and string3 refer to separate strings that are identical
stringl += string2;
stringl = stringl.intern(); // Intern stringl

The intern () method will check the string referenced by stringl against all the String objects cur-
rently in existence. If it already exists, the current object will be discarded, and stringl will contain a
reference to the existing object encapsulating the same string. As a result, the expression stringl ==
string3 will evaluate to true, whereas without the call to intern () it evaluated to false.

All string constants and constant String expressions are automatically interned. That’s why stringl
and string3 would reference the same object if you were to use the same initializing string literal.
Suppose you add another variable to the previous code fragment:

String string4 = "Too " +'"many ";
The reference stored in string4 will be automatically the same as the reference stored in stringl. Only
String expressions involving variables need to be interned explicitly by calling intern (). You could
have written the statement that created the combined string to be stored in stringl with this statement:

stringl = (stringl + string2).intern();

This now interns the result of the expression (stringl + string2),ensuring that the reference stored
in stringl will be unique.

String interning has two benefits. First, it reduces the amount of memory required for storing String
objects in your program. If your program generates a lot of duplicate strings then this will be significant.

166

Arrays and Strings

Second, it allows the use of == instead of the equals () method when you want to compare strings for
equality. Since the == operator just compares two references, it will be much faster than the equals ()
method, which involves a sequence of character-by-character comparisons. This implies that you may
make your program run much faster, but only in certain cases. Keep in mind that the intern () method
has to use the equals () method to determine whether a string already exists. More than that, it will
compare the current string against a succession of, and possibly all, existing strings in order to deter-
mine whether the current string is unique. Realistically, you should stick to using the equals () method
in the majority of situations and use interning only when you are sure that the benefits outweigh the
cost.

Checking the Start and End of a String

It can be useful to be able to check just part of a string. You can test whether a string starts with a partic-
ular character sequence by using the startswith () method for the String object. The argument to the
method is the string that you want to look for at the beginning of the string. The argument string can be
of any length, from one character up to the length of the original string you are testing. If stringl has
been defined as "Too many cooks", the expression stringl.startswith("Too") will have the value
true. So would the expression stringl.startsWith("Too man").Here’s an example of using the
method:

String stringl = "Too many cooks";
if (stringl.startsWith("Too")) {

System.out.println("The string does start with \"Too\" too!");
}

The comparison is case-sensitive so the expression stringl.startsWith("t00") would result in the
value false.

A complementary method endswith () checks for what appears at the end of a string, so the expression
stringl.endsWith ("cooks") will have the value true. The test is case-sensitive here, too.

Sequencing Strings

You'll often want to place strings in order — for example, when you have a collection of names. Testing
for equality doesn’t help because to sort strings you need to be able to determine whether one string is
greater than or less than another. What you need is the compareTo () method in the String class. This
method compares the String object for which it is called with the String argument you pass to it and
returns an integer that is negative if the String object is less than the argument that you passed, zero if
the String object is equal to the argument, and positive if the String object is greater than the argu-
ment. Of course, sorting strings requires a clear definition of what the terms less than, equal to, and greater
than mean when applied to strings, so I'll explain that first.

The compareTo () method compares two strings by comparing successive corresponding characters,
starting with the first character in each string. The process continues until either corresponding charac-
ters are found to be different, or the last character in one or both strings is reached. Characters are com-
pared by comparing their Unicode representations — so two characters are equal if the numeric values of
their Unicode representations are equal. One character is greater than another if the numerical value of
its Unicode representation is greater than that of the other. A character is less than another if its Unicode
code is less than that of the other.

167

Chapter 4

One string is greater than another if the first character that differs from the corresponding character in
the other string is greater than the corresponding character in the other string. So if stringl has the
value "mad dog", and string2 has the value "mad cat", then the expression

stringl.compareTo (string2)

will return a positive value as a result of comparing the fifth characters in the strings: the 'a" in
stringl with the 'c' in string2.

What if the corresponding characters in both strings are equal up to the end of the shorter string, but the
other string has more characters? In this case the longer string is greater than the shorter string, so
"catamaran" is greater than "cat".

One string is less than another string if it has a character less than the corresponding character in the
other string, and all the preceding characters are equal. Thus, the following expression will return a neg-
ative value:

string2.compareTo (stringl)

Two strings are equal if they contain the same number of characters and corresponding characters are
identical. In this case the compareTo () method returns 0.

You can exercise the compareTo () method in a simple example.

Try It Out Ordering Strings

In this example you'll create three strings that you can compare using the compareTo () method. Enter
the following code:

public class SequenceStrings {
public static void main(String[] args) {

// Strings to be compared
String stringl = "A";
String string2 = "To";
String string3 = "Z";

// Strings for use in output

String stringlOut = "\"" + stringl + "\""; // stringl with quotes
String string20ut = "\"" + string2 + "\""; // string2 with quotes
String string30ut = "\"" + string3 + "\""; // string3 with quotes

// Compare stringl with string3
if (stringl.compareTo (string3) < 0) {
System.out.println(stringlOut + " is less than " + string30ut);

} else {
if (stringl.compareTo (string3) > 0) {
System.out.println(stringlOut + " is greater than " + string3Out) ;
} else {
System.out.println(stringlOut + " is equal to " + string30ut);
}

168

Arrays and Strings

}

// Compare string2 with stringl
if (string2.compareTo (stringl) < 0) {
System.out.println(string20ut + " is less than " + stringlOut);

} else {
if (string2.compareTo (stringl) > 0) {

System.out.println(string20ut + " is greater than " + stringlOut);
} else {

System.out.println(string20ut + " is equal to " + stringlOut);
}

The example will produce the following output:

"A" is less than "Z"
"To" is greater than "A"

How It Works

You should have no trouble with this example. It declares and initializes three String variables,
stringl, string2, and string3. You then create three further String variables that correspond to the
first three strings with double quote characters at the beginning and the end. This is just to simplify the
output statements. You then have an if with a nested i £ to compare stringl with string3:

if (stringl.compareTo (string3) < 0) {
System.out.println(stringlOut + " is less than " + string30ut);

} else {
if (stringl.compareTo(string3) > 0) {

System.out.println(stringlOut + " is greater than " + string3Out);
} else {

System.out.println(stringlOut + " is equal to " + string30ut);
}

The outer if statement determines whether stringl is less than string3. If it is, then a message is dis-
played. If stringl is not less than string3, then either they are equal or stringl is greater than
string3. The inner if statement determines which is the case and outputs a message accordingly.

You compare string2 with stringl in the same way.

As with the equals () method, the argument to the method compareTo () can be any expression that
results in a String object.

Accessing String Characters

When you are processing strings, sooner or later you will need to access individual characters in a
String object. To refer to a character at a particular position in a string you use an index of type int
that is the offset of the character position from the beginning of the string.

169

Chapter 4

This is exactly the same principle you used for referencing an array element. The first character in a
string is at position 0, the second is at position 1, the third is at position 2, and so on. However, although
the principle is the same, the practice is not. You can’t use square brackets to access characters in a
string— you must use a method.

Extracting String Characters

You can extract a character from a String object by using the charat () method. This accepts an integer
argument that is the offset of the character position from the beginning of the string—in other words, an
index. If you attempt to use an index that is less than 0 or greater than the index for the last position in
the string, you will cause an exception to be thrown, which will cause your program to be terminated. I
will discuss exactly what exceptions are, and how you should deal with them, in Chapter 7. For the
moment, just note that the specific type of exception thrown in this case is called
StringIndexOutOfBoundsException. Its name is rather a mouthful, but quite explanatory.

To avoid unnecessary errors of this kind, you obviously need to be able to determine the length of a
String object. To obtain the length of a string, you just need to call its 1ength () method. Note the dif-
ference between this and the way you got the length of an array. Here you are calling a method,
length (), for a String object, whereas with an array you were accessing a data member, length. You
can explore the use of the charat () and length () methods in the String class with another example.

Try It Out Getting at Characters in a String

In the following code, the soliloquy is analyzed character-by-character to determine the vowels, spaces,
and letters that appear in it:

public class StringCharacters ({
public static void main(String[] args) {

// Text string to be analyzed

String text = "To be or not to be, that is the question;"
+"Whether 'tis nobler in the mind to suffer"
+" the slings and arrows of outrageous fortune,"
+" or to take arms against a sea of troubles,"
+" and by opposing end them?";

int spaces = 0, // Count of spaces
vowels = 0, // Count of vowels
letters = 0; // Count of letters

// Analyze all the characters in the string
int textLength = text.length(); // Get string length

for(int 1 = 0; 1 < textLength; i++) {
// Check for vowels
char ch = Character.toLowerCase (text.charAt(i));
if(ch == 'a' || ch == 'e' || ch == '"i' || ch ==
vowels++;

}

‘o' || ch == 'u') {

//Check for letters
if (Character.isLetter(ch)) {
letters++;

}

170

Arrays and Strings

// Check for spaces
if (Character.isWhitespace(ch)) {

spaces++;
}
}
System.out.println("The text contained vowels: " + vowels + "\n" +
" consonants: " + (letters-vowels) + "\n"+
U spaces: " + spaces) ;

Running the example, you'll see:

The text contained vowels: 60
consonants: 93
spaces: 37

How It Works

The string variable text is initialized with the quotation you see. All the counting of letter characters
is done in the for loop, which is controlled by the index i. The loop continues as long as i is less than
the length of the string, which is returned by the method text.length () and which you saved in the
variable textLength.

Starting with the first character, which has the index value 0, you retrieve each character from the string
by calling its charat () method. You use the loop index i as the index to the character position string.
The method returns the character at index position i as a value of type char, and you convert this to
lowercase, where necessary, by calling the static method toLowercCase () in the class Character. The
character to be converted is passed as an argument, and the method returns either the original character
or, if it is uppercase, the lowercase equivalent. This enables you to deal with all the characters in the
string as if they were lowercase.

There is an alternative to using the toLowerCase () method in the Character class. The string class
also contains a toLowerCase () method that will convert a whole string to lowercase and return a refer-
ence to the converted string. You could convert the string text to lowercase with the statement:

text = text.toLowerCase(); // Convert string to lower case

This statement replaces the original string with the lowercase equivalent. If you wanted to retain the
original, you could store the reference to the lowercase string in another variable of type String. The
String class also defines the toUpperCase () method for converting a string to uppercase, which you
use in the same way as the toLowercCase () method.

The if expression checks for any of the vowels by ORring the comparisons with the five vowels together.
If the expression is true, you increment the vowels count. To check for a letter of any kind you use the
isLetter () method in the Character class, and accumulate the total letter count in the variable
letters. This enables you to calculate the number of consonants by subtracting the number of vowels
from the total number of letters. Finally, the loop code checks for a space by using the iswhitespace ()
method in the class Character. This method returns true if the character passed as an argument is a

171

Chapter 4

Unicode whitespace character. As well as spaces, whitespace in Unicode also includes horizontal and
vertical tab, newline, carriage return, and form-feed characters. If you just wanted to count the spaces in
the text, you could explicitly compare for a space character. After the for loop ends, you just output the
results.

Searching Strings for Characters

There are two methods available to you in the String class that will search a string: index0f () and
lastIndexOf (). Each of these comes in four different flavors to provide a range of search possibilities.
The basic choice is whether you want to search for a single character or for a substring, so let’s look first
at the options for searching a string for a given character.

To search a string text for a single character, 'a' for example, you could write:

int index = 0; // Position of character in the string
index = text.indexOf('a'); // Find first index position containing 'a'

The method index0f () will search the contents of the string text forwards from the beginning and
return the index position of the first occurrence of 'a'.If 'a' is not found, the method will return the
value -1.

This is characteristic of both search methods in the class String. They always return
either the index position of what is sought or -1 if the search objective is not found.
It is important that you check the index value returned for -1 before you use it to
index a string; otherwise, you will get an error when you don’t find what you are
looking for.

If you wanted to find the last occurrence of 'a' in the String variable text, you just use the method
lastIndexOf ():

index = text.lastIndexOf('a'); // Find last index position containing 'a’'

The method searches the string backwards, starting with the last character in the string. The variable
index therefore contains the index position of the last occurrence of 'a', or -1 if it is not found.

You can now find the first and last occurrences of a character in a string, but what about the ones in the
middle? Well, there’s a variation of each of the preceding methods that has a second argument to specify
a “from position” from which to start the search. To search forwards from a given position, startIndex,

you would write:

index = text.indexOf('a', startIndex);

172

Arrays and Strings

This version of the method index0f () searches the string for the character specified by the first argu-
ment starting with the position specified by the second argument. You could use this to find the first 'b"
that comes after the first 'a' in a string with the following statements:

int aIndex = -1; // Position of 1lst 'a’'

int bIndex = -1; // Position of 1lst 'b' after 'a’

aIndex = text.indexOf('a'); // Find first 'a’

if (aIndex >= 0) { // Make sure you found 'a’
bIndex = text.indexOf('b', ++alndex); // Find 1lst 'b' after 1lst 'a’

}

Once you have the index value from the initial search for 'a', you need to check that 'a' was really
found by verifying that aIndex is not negative. You can then search for 'b' from the position following
"a'. As you can see, the second argument of this version of the method indexOf () is separated from
the first argument by a comma. Since the second argument is the index position from which the search is
to start, and aIndex is the position at which 'a' was found, you should increment aIndex to the posi-
tion following 'a' before using it in the search for 'b' to avoid checking for 'b' in the position you
already know contains 'a'.

If 'a' happened to be the last character in the string, it wouldn’t matter, since the index0f () method
just returns -1 if the index value is beyond the last character in the string. If you somehow supplied a
negative index value to the method, it would simply search the whole string from the beginning.

Of course, you could use the indexOf () method to count how many times a particular character
occurred in a string:

int aIndex = -1; // Search start position
int count = 0; // Count of 'a' occurrences
while((aIndex = text.indexOf('a', ++alIndex)) > -1) {

++count;

}

The while loop condition expression calls the index0f () method for the String object referenced by
text and stores the result in the variable aIndex. If the value stored is greater than -1, it means that 'a"
was found, so the loop body executes and count is incremented. Because aIndex has -1 as its initial
value, the search starts from index position 0 in the string, which is precisely what you want. When a
search reaches the end of the string without finding 'a', -1 will be returned by the index0f () method
and the loop will end.

Searching for Substrings

The indexOf () and lastIndexOf () methods also come in versions that accept a string as the first
argument, which will search for this string rather than a single character. In all other respects they work
in the same way as the character searching methods you have just seen. I can summarize the complete
set of indexOf () methods in the following table:

173

Chapter 4

Method Description

indexOf (int ch) Returns the index position of the first occurrence of the
character ch in the String for which the method is called. If
the character ch does not occur, -1 is returned.

indexOf (int ch, Same as the preceding method, but with the search starting
int index) at position index in the string. If the value of index is out-
side the legal limits for the String object, -1 is returned.

indexOf (String str) Returns the index position of the first occurrence of the sub-
string str in the String object for which the method is
called. If the substring str does not occur, -1 is returned.

indexOf (String str, Same as the preceding method, but with the search starting
int index) at position index in the string. If the value of index is out-
side the legal limits for the String object, -1 is returned.

The four flavors of the lastIndexOf () method have the same parameters as the four versions of the
indexOf () method. The difference is that the last occurrence of the character or substring that is sought
is returned by the 1astIndexOf () method.

The startswith () method that I mentioned earlier in the chapter also comes in a version that accepts
an additional argument that is an offset from the beginning of the string being checked. The check for
the matching character sequence then begins at that offset position. If you have defined a string as

String stringl = "The Ides of March";
then the expression Stringl.startsWith("Ides", 4) will have the value true.

I can show the index0f () and lastIndexOf () methods at work with substrings in an example.

Try It Out Exciting Concordance Entries

You'll use the index0f () method to search the quotation you used in the last “Try It Out” example for
"and" and the lastIndexOf () method to search for "the".

public class FindCharacters ({
public static void main(String[] args) {
// Text string to be analyzed
String text = "To be or not to be, that is the question;"
" Whether 'tis nobler in the mind to suffer"
" the slings and arrows of outrageous fortune,"
" or to take arms against a sea of troubles,"
and by opposing end them?";

+ o+ o+ o+

174

Arrays and Strings

int andCount = 0; // Number of and's

int theCount = 0; // Number of the's

int index = -1; // Current index position
String andStr = "and"; // Search substring
String theStr = "the"; // Search substring

// Search forwards for "and"

index = text.indexOf (andStr); // Find first 'and'
while (index >= 0) {
++andCount;
index += andStr.length(); // Step to position after last 'and'

index = text.indexOf (andStr, index);

// Search backwards for "the"
index = text.lastIndexOf (theStr); // Find last 'the'
while (index >= 0) {
++theCount;
index -= theStr.length(); // Step to position before last 'the'
index = text.lastIndexOf (theStr, index);
}
System.out.println("The text contains " + andCount + " ands\n"
+ "The text contains " + theCount + " thes");

The program will produce the following output:

The text contains 2 ands
The text contains 5 thes

If you were expecting the "the" count to be 3, note that there is one instance in
"whether" and another in "them". If you want to find three, you need to refine your
program to eliminate such pseudo-occurrences by checking the characters on either
side of the "the" substring.

How It Works

You define the String variable, text, as before, and set up two counters, andCount and theCount, for
the two words. The variable index keeps track of the current position in the string. You then have
String variables andStr and theStr holding the substrings you will be searching for.

To find the instances of "and", you first find the index position of the first occurrence of "and" in the
string text. If this index is negative, text does not contain "and", and the while loop will not execute,
as the condition is false on the first iteration. Assuming there is at least one "and", the while loop
block executes and andCount is incremented for the instance of "and" you have just found. The
indexOf () method returns the index position of the first character of the substring, so you have to

175

Chapter 4

move the index forward to the character following the last character of the substring you have just
found. This is done by adding the length of the substring, as shown in Figure 4-11.

Searching forwards through a string for "and"

text.indexOf (theStr)
returns the index of
this position

Search direction >

[clnle] |s[afs]nfg]s] [a]naf |ar[r]ofw]s]

Add andStr.length () to the
index to get the new search
start position

Searching backwards through a string for "the"

text.lastindexOf (theStr)
returns the index of

this position
< Search direction
[plv][[elelelofs]i[n]a] |e[n[a] [t]n][e]n]=]
Add andStr.length () to the
index to get the new search
start position
Figure 4-11

You are then able to search for the next occurrence of the substring by passing the new value of index to
the index0f () method. The loop continues as long as the index value returned is not -1.

To count the occurrences of the substring "the" the program searches the string text backwards, by
using the method lastIndexOf () instead of indexOf (). This works in much the same way, the only
significant difference being that you decrement the value of index, instead of incrementing it. This is
because the next occurrence of the substring has to be at least that many characters back from the first
character of the substring you have just found. If the string "the" happened to occur at the beginning of
the string you are searching, the 1astIndexOf () method would be called with a negative value for
index. This would not cause any problem — it would just result in -1 being returned in any event.

176

Arrays and Strings

Extracting Substrings

The string class includes the substring () method, which will extract a substring from a string. There
are two versions of this method. The first version will extract a substring consisting of all the characters
from a given index position up to the end of the string. This works as illustrated in the following code
fragment:

String place = "Palm Springs";
String lastWord = place.substring(5);

After executing these statements, 1astWord will contain the string "Springs", which corresponds to
the substring starting at index position 5 in place through to the end of the string. The method copies
the substring from the original to form a new String object. This version of the method is useful when a
string has basically two constituent substrings, but a more common requirement is to be able to extract
several substrings from a string in which each substring is separated from the next by a particular delim-
iter character such as a comma, a slash, or even just a space. The second version of substring () will
help with this.

The second version of the substring () method enables you to extract a substring from a string by
specifying the index positions of the first character in the substring and one beyond the last character of
the substring as arguments to the method. With the variable place being defined as before, the follow-
ing statement will result in the variable segment being set to the string "ring":

String segment = place.substring(7, 11);

The substring () method is not like the index0Of () method when it comes to ille-
gal index values. The index0f () method returns -1 when you supply an invalid
index value to it. With either version of the substring () method, an exception will
be thrown if you specify an index that is outside the bounds of the string. As with
the charat () method, the substring () method will throw a
StringIndexOutOfBoundsException exception.

You can see how substring () works with a more substantial example.

Try It Out Word for Word

You can use the indexOf () method in combination with the substring () method to extract a
sequence of substrings that are separated by spaces in a single string:

public class ExtractSubstrings {
public static void main(String[] args) {

String text = "To be or not to be"; // String to be segmented
int count = 0; // Number of substrings
char separator = ' '; // Substring separator

// Determine the number of substrings
int index = 0;
do {
++count; // Increment count of substrings

177

Chapter 4

++index; // Move past last position
index = text.indexOf (separator, index);
} while (index != -1);

// Extract the substring into an array

String[] subStr = new String[count]; // Allocate for substrings
index = 0; // Substring start index
int endIndex = 0; // Substring end index
for(int 1 = 0; i < count; i++) {
endIndex = text.indexOf (separator,index); // Find next separator
if (endIndex == -1) { // If it is not found
subStr[i] = text.substring(index) ; // extract to the end
} else { // otherwise
subStr[i] = text.substring(index, endIndex) ; // to end index
}
index = endIndex + 1; // Set start for next cycle

}

// Display the substrings

for(String s : subStr) { // For each string in subStr
System.out.println(s) ; // display it

}

When you run this example, you should get the following output:

To
be
or
not
to
be

How It Works

After setting up the string text to be segmented into substrings, a count variable to hold the number of
substrings, and the separator character, separator, the program has three distinct phases:

1. The first phase counts the number of substrings by using the index0f () method to find separa-
tors. The number of separators is always one less than the number of substrings. By using the
do-while loop, you ensure that the value of count will be one more than the number of separa-
tors because there will always be one loop iteration for when the separator is not found.

2. The second phase extracts the substrings in sequence from the beginning of the string and stores
them in an array of String variables that has count elements. A separator follows each sub-
string from the first to the penultimate so you use the version of the substring () method that
accepts two index arguments for these. The last substring is signaled by a failure to find the sep-
arator character when index will be -1. In this case you use the substring () method with a
single argument to extract the substring through to the end of the string text.

178

Arrays and Strings

3. The third phase simply outputs the contents of the array by displaying each element in turn,
using a collection-based for loop. The string variable, s, defined in the loop will reference
each string in the array in turn. You display each string by passing s as the argument to the
println () method.

What you have been doing here is breaking a string up into tokens — substrings in other words — that
are separated by delimiters — characters that separate one token from the next. This is such a suffi-
ciently frequent requirement that Java provides you with an easier way to do this—using the split ()
method in the String class.

Tokenizing a String

The split () method in the String class is specifically for splitting a string into tokens. It does this in a
single step, returning all the tokens from a string as an array of String objects. To do this it makes use
of a facility called regular expressions that I'll discuss in detail in Chapter 15. However, you can still
make use of the split () method without knowing about how regular expressions work so I'll largely
ignore this aspect here. Just keep the split () method in mind when you get to Chapter 15.

The split () method expects two arguments. The first argument is a String object that specifies a
pattern for a delimiter. Any delimiter that matches the pattern is assumed to be a separator for a token.
Here I will talk only about patterns that are simply a set of possible delimiter characters in the string. But
as you'll see in Chapter 15, the pattern for delimiters can be much more sophisticated than this. The sec-
ond argument to the split () method is an integer value that is a count of the maximum number of
times the pattern can be applied to find tokens and, therefore, affects the maximum number of tokens
that can be found. If you specify the second argument as zero, the pattern will be applied as many times
as possible, and any trailing empty tokens will be discarded. This can arise if several delimiters at the
end of the string are being analyzed. If you specify the limit as a negative integer, the pattern will also be
applied as many times as possible, but trailing empty tokens will be retained and returned. As I said ear-
lier, the tokens found by the method are returned in an array of type String[].

The key to tokenizing a string is providing the appropriate pattern defining the set of possible delim-
iters. At its simplest, a pattern can be a string containing a sequence of characters, each of which is a
delimiter. You must specify the set of delimiters in the string between square brackets. This is necessary
to distinguish a simple set of delimiter characters from more complex patterns. Examples are the string
"[abc] " defining 'a', 'b',and 'c' as delimiters, or " [, .:;]" specifying a comma, a period, a space,
a colon, or a semicolon as delimiters. There are many more powerful ways of defining a pattern, but I
will defer discussing that until Chapter 15.

To see how the split () method works, consider the following code fragment:

String text = "to be or not to be, that is the question.";
String[] words = text.split("[, .1", 0); // Delimiters are comma, space, or period

The first statement defines the string to be analyzed and split into tokens. The second statement calls the
split () method for the text object to tokenize the string. The first argument to the method specifies a
comma, a space, or a period as possible delimiters. The second argument specifies the limit on the num-
ber of applications of the delimiter pattern as zero, so it will be applied as many times as necessary to
tokenize the entire string. The split () method returns a reference to an array of strings that will be
stored in the words variable. In case you hadn’t noticed, these two lines of code do the same thing as
most of the code inmain () in the previous working example!

179

Chapter 4

Another version of the split () method requires a single argument of type String specifying the pat-
tern. This is equivalent to using the version with two arguments, where the second argument is zero, so
you could write the second statement in the previous code fragment as:

String[] words = text.split("[, .]1"); // Delimiters are comma, space, or period

This will produce exactly the same result as when you specify the second argument as 0. Now, it’s time
to explore the behavior of the split () method in an example.
Try It Out Using a Tokenizer

Here you'll split a string completely into tokens with alternative explicit values for the second argument
to the split () method to show the effect:

public class StringTokenizing {
public static void main(String[] args) {

String text = "To be or not to be, that is the question."; // String to segment
String delimiters = "[, .]"; // Delimiters are comma, space, and period
int[] limits = {0, -1}; // Limit values to try

// Analyze the string
for(int limit : limits) {

System.out.println("\nAnalysis with limit = " + limit);
String[] tokens = text.split(delimiters, limit);
System.out.println("Number of tokens: " + tokens.length);

for (String token : tokens) {
System.out.println (token) ;

}

The program will generate two blocks of output. The first block of output corresponding to a limit value
of 0 is:

Analysis with limit = 0
Number of tokens: 11

To

be

or

not

to

be

that

is

the
question

The second block of output corresponding to a limit value of -1 is:

Analysis with limit = -1
Number of tokens: 12

180

Arrays and Strings

To
be
or
not
to
be

that

is

the
question

In this second case, you have an extra empty line at the end.

How It Works
The string identifying the possible delimiters for tokens in the text is defined by the statement

String delimiters = "[, .1"; // Delimiters are comma, space, and period

The characters between the square brackets are the delimiters, so here you have specified that comma,
space, and period are delimiters. If you want to include other characters as delimiters, just add them
between the square brackets. For example, the string " [, .:;!?]" adds a colon, a semicolon, an excla-
mation point, and a question mark to the original set of three delimiters.

You also have an array of values for the second argument to the split () method call:
int[] limits = {0, -1}; // Limit values to try

Iincluded only two initial values for array elements to keep the amount of output in the book at a mini-
mum, but you should try a few extra values.

The outer collection-based for loop iterates over the limit values in the 1imits array. The 1imit vari-
able will be assigned the value of each element in the 1imits array in turn. The same string is split into
tokens on each iteration, with the current limit value as the second argument to the split () method.
You display the number of tokens produced by the split () method by outputting the length of the
array that it returns. You then output the contents of the array that the split () method returns in the
nested collection-based for loop. The loop variable, token, will reference each string in the tokens
array in turn.

If you look at the first block of output, you will see that an array of 11 tokens was returned by the

split () method. The text being analyzed contains 10 words, and the extra token arises because there
are two successive delimiters, a comma followed by a space, in the middle of the string, which causes an
empty token to be produced. It is possible to make the split () method recognize a comma followed (or
preceded) by one or more spaces as a single delimiter but you’ll have to wait until Chapter 15 to find out
how it’s done.

The second block of output has 12 tokens. This is because there is an extra empty token at the end of the
list of tokens that is eliminated when the second argument to the split () method is 0. The extra token
is there because the end of the string is always a delimiter, so the period followed by the end of the
string identifies an empty token.

181

Chapter 4

Modified Versions of String Objects

You can use a couple of methods to create a new String object that is a modified version of an existing
String object. These methods don’t change the original string, of course —as I said, String objects are
immutable.

To replace one specific character with another throughout a string, you can use the replace () method.
For example, to replace each space in the string text with a slash, you could write:

String newText = text.replace(' ', '/'); // Modify the string text

The first argument of the replace () method specifies the character to be replaced, and the second argu-
ment specifies the character that is to be substituted in its place. I have stored the result in a new variable
newText here, but you could save it back in the original String variable, text, if you wanted to effec-
tively replace the original string with the new modified version.

To remove whitespace from the beginning and end of a string (but not the interior) you can use the
trim() method. You could apply this to a string as follows:

String sample " This is a string g
String result = sample.trim();

After these statements execute, the String variable result will contain the string "This is a
string". This can be useful when you are segmenting a string into substrings and the substrings may
contain leading or trailing blanks. For example, this might arise if you were analyzing an input string
that contained values separated by one or more spaces.

Creating Character Arrays from String Objects

You can create an array of variables of type char from a String object by using the toChararray ()
method that is defined in the String class. Because this method creates an array of type char and
returns a reference to it, you only need to declare the array variable of type char[] to hold the array
reference—you don’t need to allocate the array. For example:

String text = "To be or not to be";
char[] textArray = text.toCharArray(); // Create the array from the string

The toCharArray () method returns an array containing the characters of the String variable text,
one per element, so textArray[0] will contain ' T', textArray[1] will contain 'o', textArray[2]
will contain ' ', and so on.

You can also extract a substring as an array of characters using the method getChars (), but in this case
you do need to create an array that is large enough to hold the characters and pass it as an argument to
the method. Of course, you can reuse a single array to store characters when you want to extract and
process a succession of substrings one at a time and thus avoid having to repeatedly create new arrays.
Of necessity, the array you are using must be large enough to accommodate the longest substring. The
method getChars () expects four arguments. In sequence, these are:

Q The index position of the first character to be extracted from the string (type int)

Q The index position following the last character to be extracted from the string (type int)

182

Arrays and Strings

Q The name of the array to hold the characters extracted (type char[])
Q The index of the array element to hold the first character (type int)

You could copy a substring from text into an array with the following statements:

String text = "To be or not to be";
char[] textArray = new char[3];
text.getChars (9, 12, textArray, 0);

This will copy characters from text at index positions 9 to 11 inclusive, so textArray[0] willbe 'n',
textArray[1] willbe 'o', and textArray[2] willbe 't'.

Using the Collection-Based for Loop with a String

You can’t use a String object directly as the source of values for a collection-based for loop, but you
have seen already that you can use an array. The toCharArray () method therefore provides you with a
way to iterate over the characters in a string using a collection-based for loop. Here’s an example:

String phrase = "The quick brown fox jumped over the lazy dog.";
int vowels = 0;
for (char ch : phrase.toCharArray()) {
ch = Character.toLowerCase(ch) ;
if(ch == 'a' || ch == 'e' || ch == '"i' || ch == 'o' || ch == 'u") {
++vowels;

}
}

System.out.println("The phrase contains " + vowels + " vowels.");

This fragment calculates the number of vowels in the String phrase by iterating over the array of type
char[] that the toCharArray () method for the string returns. The result of passing the value of the
loop variable ch to the static toLowerCase () method in the Character class is stored back in ch. Of
course, you could also use a numerical for loop to iterate over the element’s characters in the string
directly using the charat () method.

Obtaining the Characters in a String as an Array of Bytes

You can extract characters from a string into a byte [] array using the getBytes () method in the class
string. This converts the original string characters into the character encoding used by the underlying
operating system — which is usually ASCII. For example:

String text = "To be or not to be"; // Define a string
byte[] textArray = text.getBytes(); // Get equivalent byte array

The byte array textArray will contain the same characters as in the String object, but stored as 8-bit
characters. The conversion of characters from Unicode to 8-bit bytes will be in accordance with the
default encoding for your system. This will typically mean that the upper byte of the Unicode character
is discarded, resulting in the ASCII equivalent. Of course, it is quite possible that a string may contain
Unicode characters that cannot be represented in the character encoding in effect on the local machine.
In this case, the effect of the getBytes () method is unspecified.

183

Chapter 4

Creating String Objects from Character Arrays

The string class also has a static method, copyValueOf (), to create a String object from an array of
type char []. You will recall that a static method of a class can be used even if no objects of the class
exist.

Suppose you have an array defined as follows:

char[] textArray = {'T', 'o', ' ', 'b', 'e', " ', 'o', 'vr', ' ',
ln|, Io|l |tl, 1 II ltl, 'O‘, 1 l’ |bl, |e| };

You can then create a String object encapsulating these characters as a string with the following
statement:

String text = String.copyValueOf (textArray) ;
This will result in the object text referencing the string "To be or not to be".
You could achieve the same result like this:

String text = new String(textArray);
This calls a constructor for the String class, which creates a new object of type String that encapsu-
lates a string containing the characters from the array. The String class defines several constructors for
defining String objects from various types of arrays. You'll learn more about constructors in Chapter 5.
Another version of the copyValueOf () method can create a string from a subset of the array elements.
It requires two additional arguments to specify the index of the first character in the array to be extracted
and the count of the number of characters to be extracted. With the array defined as previously, the
statement

String text = String.copyValueOf (textArray, 9, 3);

extracts three characters starting with textArray[9], so text will contain the string "not " after this
operation.

There’s a class constructor that will do the same thing:
String text = new String(textArray, 9, 3);

The arguments are the same here as for the copyvalue0f () method, and the result is the same.

Mutable Strings

String objects cannot be changed, but you have been creating strings that are combinations and modifi-
cations of existing String objects, so how is this done? Java has two other standard classes that encap-
sulate strings, the StringBuffer class and the StringBuilder class, and both StringBuffer and
StringBuilder objects can be altered directly. Strings that can be changed are referred to as mutable

184

Arrays and Strings

strings, in contrast to String objects that are immutable strings. Java uses objects of the StringBuffer
class type internally to perform many of the operations that involve combining String objects. Once the
required string has been formed as a StringBuffer object, it is then converted to an object of type
String.

You have the choice of using either a StringBuffer object or a StringBuilder object whenever you
need a string that you can change directly, so what's the difference? In terms of the operations these two
classes provide, there is no difference, but stringBuffer objects are safe for use by multiple threads,
whereas StringBuilder objects are not. You'll be learning about threads in Chapter 16, but in case
you're not familiar with the term, threads are just independent execution processes within a program
that can execute concurrently. For example, an application that involves acquiring data from several
remote sites could implement the data transfer from each remote site as a separate thread. This would
allow these relatively slow operations to execute in parallel, sharing processor time in a manner deter-
mined by the operating system. This usually means that the elapsed time for acquiring all the data from
the remote sites would be much less than if the operations were executed sequentially in a single thread
of execution.

Of course, if concurrent threads of execution access the same object, there is potential for problems.
Complications can arise when one thread might be accessing an object while another is in the process of
modifying it. When this sort of thing is possible in your application, you must use the StringBuffer
class to define mutable strings if you want to avoid trouble. The StringBuf fer class operations have
been coded to prevent errors arising from concurrent access by two or more threads. If you are sure that
your mutable strings will be accessed only by a single thread of execution, then you should use
StringBuilder objects because operations on these will be faster than with StringBuf fer objects.

So when should you use mutable String objects rather than immutable String objects? StringBuffer
and stringBuilder objects come into their own when you are transforming strings frequently —
adding, deleting, or replacing substrings in a string. Operations will be faster and easier using mutable
objects. If you have mainly static strings that you occasionally need to concatenate in your application,
then string objects will be the best choice. Of course, if you want to, you can mix the use of both muta-
ble and immutable in the same program.

AsIsaid, the stringBuilder class provides the same set of operations as the StringBuffer class. I'll
describe mutable string operations in terms of the StringBuffer class for the rest of this chapter
because this is always a safe choice, but don’t forget that all the operations that I discuss in the context of
StringBuffer are available with the StringBuilder class, which will be faster but not thread-safe.

Creating StringBuffer Objects

You can create a StringBuf fer object that contains a given string with the following statement:
StringBuffer aString = new StringBuffer ("A stitch in time");

This declares a StringBuf fer object, aString, and initializes it with the string "A stitch in time".
When you are initializing a StringBuf fer object, you must use this syntax, with the keyword new, the
StringBuffer class name, and the initializing value between parentheses. You cannot just use the
string as the initializing value as you did with String objects. This is because there is rather more to a
StringBuffer object than just the string that it contains initially, and, of course, a string literal is a
String object by definition.

185

Chapter 4

You can also create a StringBuffer object using a reference stored in a variable of type String:

String phrase = "Experience is what you get when you're expecting something else.";
StringBuffer buffer = new StringBuffer (phrase) ;

The stringBuffer object, buffer, will contain a string that is the same as that encapsulated by the
String object, phrase.

You can just create the StringBuffer variable, in much the same way as you created a String variable:
StringBuffer myString = null;

This variable does not refer to anything until you initialize it with a defined StringBuf fer object. For
example, you could write:

myString = new StringBuffer ("Many a mickle makes a muckle");

This statement creates a new StringBuffer object encapsulating the string "Many a mickle makes a
muckle" and stores the reference to this object in myString. You can also initialize a StringBuffer
variable with an existing StringBuf fer object:

StringBuffer aString = myString;

Both myString and astring will now refer to a single StringBuffer object.

The Capacity of a StringBuffer Object

The string objects that you have been using each contain a fixed string, and when you create a String
object, memory is allocated to accommodate however many Unicode characters are in the string it
encapsulates. Everything is fixed so memory usage is not a problem. A StringBuf fer object is a little
different. It contains a block of memory called a buffer, which may or may not contain a string, and if it
does, the string need not occupy the entire buffer. Thus, the length of a string in a StringBuf fer object
can be different from the length of the buffer that the object contains. The length of the buffer is referred
to as the capacity of the StringBuffer object.

Once you have created a StringBuffer object, you can find the length of the string it contains, by using
the 1ength () method for the object:

StringBuffer aString = new StringBuffer ("A stitch in time");
int theLength = aString.length();

If the object astring were defined as in the preceding declaration, the variable theLength would have
the value 16. However, the capacity of the object is larger, as illustrated in Figure 4-12.

186

Arrays and Strings

StringBuffer aString = new StringBuffer ("A stitch in time");

aString.length ()
is 16

(2] [elefifefefn] [iln[Jefafufe] [[]| |

aString.capacity ()
is 32

Figure 4-12

When you create a StringBuffer object from an existing string, the capacity will be the length of the
string plus 16. Both the capacity and the length are in units of Unicode characters, so twice as many
bytes will be occupied in memory.

The capacity of a sStringBuffer object is not fixed though. It grows automatically as you add to the
string to accommodate a string of any length. You can also specify the initial capacity when you create a
StringBuffer object. For example, the following statement creates a StringBuf fer object with a spe-
cific value for the capacity:

StringBuffer newString = new StringBuffer (50);

This will create an object, newString, with the capacity to store 50 characters. If you omitted the capac-
ity value in this declaration, the object would have a default capacity of 16 characters. Thus, the
StringBuffer object that you create here has a buffer with a capacity of 50 characters that is initially
empty —no string is stored in it.

A string object is always a fixed string, so capacity is irrelevant —it is always just enough to hold the
characters in the string. A stringBuffer object on the other hand is a container in which you can store
a string of any length, and it has a capacity at any given instant for storing a string up to a given size.
Although you can set the capacity, it is unimportant in the sense that it is just a measure of how much
memory is available to store Unicode characters at this particular point in time. You can get by without
worrying about the capacity of a StringBuf fer object at all since the capacity required to cope with
what your program is doing will always be provided automatically. It just gets increased as necessary.

So why have I mentioned the capacity of a StringBuffer object at all? While it’s true you can use
StringBuf fer objects ignoring their capacity, the capacity of a StringBuffer object is important in the
sense that it affects the amount of overhead involved in storing and modifying a string. If the initial capac-
ity is small, and you store a string that is long, or you add to an existing string significantly, extra memory
will need to be allocated. Allocating additional memory will take time, and if it occurs frequently, it can
add a substantial overhead to the processor time your program needs to complete the task. It is more effi-
cient to make the capacity of a StringBuffer sulfficient for the needs of your program.

187

Chapter 4

To find out what the capacity of a StringBuf fer object is at any given time, you use the capacity ()
method for the object:

int theCapacity = aString.capacity();

This method will return the number of Unicode characters the object can currently hold. For astring
defined as shown, this will be 32. When you create a StringBuf fer object containing a string, its capac-
ity will be 16 characters greater than the minimum necessary to hold the string.

The ensureCapacity () method enables you to change the default capacity of a StringBuf fer object.
You specify the minimum capacity you need as the argument to the method. For example:

asString.ensureCapacity (40) ;

If the current capacity of the astring object is less than 40, this will increase the capacity of astring by
allocating a new larger buffer, but not necessarily with a capacity of 40. The capacity will be the larger of
either the value that you specify, 40 in this case, or twice the current capacity plus 2, which is 66, given
that astring is defined as before. You might want to do this sort of thing when you are reusing an exist-
ing StringBuffer object in a new context where the strings are longer.

Changing the String Length for a StringBuffer Object

You can change the length of the string contained in a StringBuffer object with the method
setLength (). Note that the length is a property of the string the object holds, as opposed to the capac-
ity, which is a property of the string buffer. When you increase the length for a StringBuf fer object,
you are adding characters to the existing string and the extra characters will contain ' \u0000"'. A more
common use of this method would be to decrease the length, in which case the string will be truncated.
If astring contains "A stitch in time", the statement

aString.setLength(8) ;

will result in aString containing the string "A stitch", and the value returned by the length ()
method will be 8. The characters that were cut from the end of the string by this operation are lost.

To increase the length to what it was before, you could write:

aString.setLength(16) ;
Now asString will contain the string

"A stitch\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000"
The setLength () method does not affect the capacity of the object unless you set the length to be
greater than the capacity. In this case the capacity will be increased to accommodate the new string
length to a value that is twice the original capacity plus two if the length you set is less than this value. If
you specify a length that is greater than twice the original capacity plus two, the new capacity will be the

same as the length you set. If the capacity of aString is 66, executing the statement

aString.setLength(100) ;

188

Arrays and Strings

will set the capacity of the object, astring, to 134. If you supplied a value for the length of 150, then the
new capacity would be 150. You must not specify a negative length here. If you do, a
StringIndexOutOfBoundsException exception will be thrown.

Adding to a StringBuffer Object

The append () method enables you to add a string to the end of the existing string stored in a
StringBuffer object. This method comes in quite a few flavors, but perhaps the simplest adds a
String constant to a StringBuffer object.

Suppose you define a StringBuf fer object with the following statement:
StringBuffer aString = new StringBuffer("A stitch in time");
You can add to it with the statement:
aString.append (" saves nine");

after which astring will contain "A stitch in time saves nine". The length of the string con-
tained in the StringBuffer object is increased by the length of the string that you add. You don’t need
to worry about running out of space though. The capacity will always be increased automatically when-
ever necessary to accommodate the longer string.

The append () method returns a reference to the extended StringBuf fer object, so you could also
assign it to another stringBuffer object. Instead of the previous statement, you could have written:

StringBuffer bString = aString.append(" saves nine");
Now both astring and bString point to the same StringBuf fer object.

If you take a look at the operator precedence table back in Chapter 2, you will see that the ' . ' operator
(sometimes called the member selection operator) that you use to execute a particular method for an
object has left-to-right associativity. You can therefore write multiple append operations in a single
statement:

StringBuffer proverb = new StringBuffer(); // Capacity is 16
proverb.append ("Many") .append (" hands") .append(" make").
append (" light") .append(" work.");

The second statement is executed from left to right, so that the string contained in the object proverb is
progressively extended until it contains the complete string. The reference that each call to append ()
returns is used to call append () again for the same object, proverb.

Appending a Substring

Another version of the append () method adds part of a String object to a StringBuf fer object. This
version of append () requires you to specify two additional arguments: the index position of the first
character in the String object that is to be appended and the total number of characters to be appended.

189

Chapter 4

To illustrate the workings of this, suppose you create a StringBuf fer object and a String object with
the following statements:

StringBuffer buf = new StringBuffer ("Hard ");
String aString = "Waxworks";

You can then append part of the astring object to the buf object with this statement:
buf.append(aString, 3, 4);

This operation is shown in Figure 4-13.

StringBuffer buf = new StringBuffer ("Hard ");

LIl el el Qo T T TP IITTPTT ITITT TIITTIITTTITITITIT]

length is 5 >
capacity is 21
String aString = "Waxworks";
LIl Tal T [l {of [=] [ef [e]
offset is 3

count of characters is 4

buf.append (aString, 3, 4);

[l Tal Tel fal T [l Jol I I TT T T T T T T T T TTITTITITITITITITITITITITITIITTIT]

>

length is 9

capacity is 25

Figure 4-13

This operation appends a substring of astring consisting of four characters starting at index position 3
to the stringBuf fer object buf. The object buf will then contain the string "Hard work". The capacity
of the stringBuf fer object is automatically increased by the length of the appended substring, if
necessary.

Appending Basic Types
You have a set of versions of the append () method that will enable you to append () the string equiva-
lent of values of any of the primitive types to a StringBuf fer object. These versions of append () will
accept arguments of any of the following types: boolean, char, byte, short, int, long, float, or
double. In each case, the value is converted to a string equivalent of the value, which is appended to the
object, so a boolean variable will be appended as either “true” or “false”, and for numeric types the
string will be a decimal representation of the value. For example:

StringBuffer buf = new StringBuffer ("The number is ");
long number = 999;
buf.append (number) ;

will result in buf containing the string "The number is 999".

190

Arrays and Strings

There is nothing to prevent you from appending constants to a StringBuffer object. For example, if
you now execute the statement

buf.append(12.34) ;
the object buf will contain "The number is 99912.34".

There is also a version of the append () method that accepts an array of type char as an argument. The
contents of the array are appended to the StringBuf fer object as a string. A further variation on this
enables you to append a subset of the elements from an array of type char by using two additional
arguments: one to specify the index of the first element to be appended, and another to specify the total
number of elements to be appended. An example of how you might use this is as follows:

char[] text = { 'i', 's', ' ', 'e', 'x', 'a', 'e¢', 't', '1', 'v'};
buf.append (text, 2, 8);

This appends the string "exactly" to buf, so after executing this statement buf contains "The number
is 99912.34 exactly".

You may be somewhat bemused by the plethora of append () method options, so let’s collect all the pos-
sibilities together. You can append any of the following types to a StringBuffer object:

boolean char String Object
int long float double
byte short

You can also append an array of type char [] and a subset of the elements of an array of type char[].In
each case the String equivalent of the argument is appended to the string in the StringBuf fer object.

I haven’t discussed type Object yet—Iincluded it in the table here for the sake of completeness. You
will learn about this type of object in Chapter 6.

Finding the Position of a Substring

You can search the buffer of a StringBuffer object for a given substring by calling the 1astIndexOf ()
method. The simpler of the two versions of this method requires just one argument, which is the string
you are looking for, and the method returns the index position of the last occurrence of the string you are
searching for as a value of type int. The method returns -1 if the substring is not found. For example:

StringBuffer phrase = new StringBuffer ("one two three four");
int position = phrase.lastIndexOf ("three");

The value returned is the index position of the first character of "three" in phrase, which will be 8.
Remember, the first character is at index position 0. Of course, if the argument to the 1astIndexOf ()
method were "t ", the result would be the same because the method finds the last occurrence of the sub-
string in the buffer.

191

Chapter 4

The second version of the 1astIndexOf () method requires an additional argument that specifies the
index position in the buffer where the search is to start. For example:

position = phrase.lastIndexOf ("three", 6);

This statement starts the search at index position 6 so the first six characters (index values 0 to 5) in the
buffer will not be examined. Obviously, because the lastIndexOf () method finds the last occurrence of
the substring, this version of the method does not help you find multiple occurrences. It just provides a
way for you to avoid searching some initial part of the buffer when you know in advance where you
expect the substring to be found.

Replacing a Substring in the Buffer

You use the replace () method for a StringBuf fer object to replace a contiguous sequence of charac-
ters with a given string. The string that you specify as the replacement can contain more characters than
the substring being replaced, in which case the string will be extended as necessary. The replace ()
method requires three arguments. The first two are of type int and specify the start index in the buffer
and one beyond the end index of the substring to be replaced. The third argument is of type String and
is the string to be inserted. Here’s an example of how you might use the replace () method:

StringBuffer phrase = new StringBuffer("one two three four");

String substring = "two";

String replacement = "twenty";

int position = phrase.lastIndexOf (substring) ; // Find start of "two"
phrase.replace(position, position+substring.length(), replacement) ;

The first three statements define the original StringBuf fer object, the substring to be replaced, and
the string to replace the substring. The next statement uses the last IndexOf () method to find the
position of the first character of the last occurrence of substring in phrase. The last statement uses the
replace () method to substitute replacement in place of substring. To get the index value for one
beyond the last character of substring, you just add the length of substring to its position index.
Because replacement is a string containing more characters than substring, the length of the string in
phrase will be increased, and the new contents will be "one twenty three four".

I'have not bothered to insert code to check for the possibility of -1 being returned in the preceding code

fragment, but naturally in a real-world context it is essential to do this to avoid the program being termi-
nated when the substring is not present.

Inserting Strings

To insert a string into a StringBuffer object, you use the insert () method of the object. The first
argument specifies the index of the position in the object where the first character is to be inserted. For
example, if buf contains the string "Many hands make light work", the statement

buf.insert (4, " old");

will insert the string " o1d" starting at index position 4, so buf will contain the string "Many old
hands make light work" after executing this statement.

192

Arrays and Strings

Many versions of the insert () method accept a second argument of any of the same range of types that
apply to the append () method, so you can use any of the following with the insert () method:

boolean char String Object
int long float double
byte short

In each case the string equivalent of the second argument is inserted starting at the index position speci-
fied by the first argument. You can also insert an array of type char [], and if you need to insert a subset
of an array of type char[] into a StringBuffer object, you can call the version of insert () that
accepts four arguments:

Method Description

insert (int index, Inserts a substring into the StringBuf fer object starting
char[] str, at position index. The substring is the String
int offset, representation of length characters from the str[]
int length) array, starting at position offset.

If the value of index is outside the range of the string in the StringBuffer object, or the offset or
length values result in illegal indexes for the array str, then an exception of type
StringIndexOutOfBoundsException will be thrown.

Extracting Characters from a Mutable String

The stringBuffer class includes the charat () and getChars () methods, both of which work in the
same way as the methods of the same name in the String class which you’ve already seen. The

charat () method extracts the character at a given index position, and the getChars () method extracts
a range of characters and stores them in an array of type char starting at a specified index position. You
should note that there is no equivalent to the getBytes () method for StringBuffer objects.

Other Mutable String Operations

You can change a single character in a StringBuf fer object by using the setCharat () method. The
first argument indicates the index position of the character to be changed, and the second argument
specifies the replacement character. For example, the statement

buf.setCharAt (3, 'Z2');

will set the fourth character in the string to 'z .

You use the deleteCharAt () method to remove a single character from a StringBuffer object at the
index position specified by the argument. For example:

StringBuffer phrase = new StringBuffer ("When the boats come in");
phrase.deleteCharAt (10) ;

193

Chapter 4

After these statements have executed, phrase will contain the string "when the bats come in".

If you want to remove several characters from a StringBuffer object you use the delete () method.
This method requires two arguments: The first is the index of the first character to be deleted and the
second is the index position following the last character to be deleted. For example:

phrase.delete(5, 9);

This statement will delete the substring "the " from phrase, so it will then contain the string "when
bats come in".

You can completely reverse the sequence of characters in a StringBuf fer object with the reverse ()
method. For example, if you define the object with the declaration

StringBuffer palindrome = new StringBuffer ("so many dynamos") ;
you can then transform it with the statement
palindrome.reverse() ;

which results in palindrome containing the useful phrase “somanyd ynam os”.

Creating a String Object from a StringBuffer Object

You can produce a String object from a StringBuffer object by using the toString () method of the
StringBuffer class. This method creates a new String object and initializes it with the string con-

tained in the StringBuffer object. For example, to produce a String object containing the proverb that

you created in the previous section, you could write:
String saying = proverb.toString() ;
The object saying will contain "Many hands make light work".

The tosString () method is used extensively by the compiler together with the append () method to
implement the concatenation of String objects. When you write a statement such as:

String saying = "Many" + " hands" + " make" + " light" + " work";
the compiler will implement this as:
String saying = new StringBuffer() .append("Many") .append(" hands") .
append (" make") .append (" light").

append (" work").toString() ;

The expression to the right of the = sign is executed from left to right, so the segments of the string are

appended to the StringBuffer object that is created until finally the toString () method is invoked to

convert it to a String object. String objects can’t be modified, so any alteration or extension of a
String object will involve the use of a StringBuffer object, which can be changed.

It’s time to see a StringBuf fer object in action.

194

Arrays and Strings

Try It Out Using a StringBuffer Object to Assemble a String

This example just exercises some of the stringBuffer operations you have seen by assembling a string
from an array of words and then inserting some additional characters into the string:

public class UseStringBuffer {
public static void main(String[] args) {
StringBuffer sentence = new StringBuffer (20);
System.out.println("\nStringBuffer object capacity is "+ sentence.capacity()+
" and string length is "+sentence.length());

// Append all the words to the StringBuffer object

String[] words = {"Too" , "many", "cooks", "spoil", "the" , "broth"};

sentence.append (words[0]) ;

for(int 1 = 1 ; i<words.length ; i++) {
sentence.append (' ') .append(words[i])

7

// Show the result
System.out.println("\nString in StringBuffer object is:\n" +
sentence.toString());
System.out.println("StringBuffer object capacity is now "+ sentence.capacity()+
" and string length is "+sentence.length()) ;

// Now modify the string by inserting characters

sentence.insert (sentence.lastIndexOf ("cooks")+4, "ie") ;

sentence.insert (sentence.lastIndexOf ("broth")+5, "er");

System.out.println("\nString in StringBuffer object is:\n" + sentence);

System.out.println("StringBuffer object capacity is now "+ sentence.capacity()+
" and string length is "+sentence.length());

The output from this example will be:
StringBuffer object capacity is 20 and string length is 0
String in StringBuffer object is:
Too many cooks spoil the broth
StringBuffer object capacity is now 42 and string length is 30
String in StringBuffer object is:

Too many cookies spoil the brother
StringBuffer object capacity is now 42 and string length is 34

How It Works

You first create a StringBuf fer object with a buffer capacity of 20 characters with the following
statement:

StringBuffer sentence = new StringBuffer(20);

195

Chapter 4

The output statement that follows just displays the buffer capacity and the initial string length. You
obtain these by calling the capacity () and length () methods, respectively, for the sentence object.
The string length is zero because you have not specified any buffer contents.

The next four statements create an array of words and append those words to sentence:

String[] words = {"Too" , "many", "cooks", "spoil", "the" , "broth"};
sentence.append (words[0]) ;
for(int 1 = 1 ; i<words.length ; i++)

sentence.append (' ') .append(words[i]);

To start the process of building the string, you append the first word from the words array to sentence.
You then append all the subsequent words in the for loop, preceding each word with a space character.

The next output statement displays the buffer contents as a string by calling the toString () method for
sentence to create a String object. You then output the buffer capacity and string length for sentence
once more. The output shows that the capacity has been automatically increased to 42 and the length of
the string is 30.

In the last phase of the program you insert the string "ie" after the substring "cook" with the statement

sentence.insert (sentence.lastIndexOf ("cooks")+4,"ie");

The lastIndexOf () method returns the index position of the last occurrence of "cooks" in sentence
so you add 4 to this to specify the insertion position after the last letter of "cook". You use the same
mechanism to insert the string "er" following "broth" in the buffer.

Finally, you output the string and the capacity and string length with the last two statements inmain ():

System.out.println("\nString in StringBuffer object is:\n" + sentence);
System.out.println("StringBuffer object capacity is now "+ sentence.capacity()+
" and string length is "+sentence.length());

Note that the first output statement does not call the toString () method explicitly. The compiler will
insert the call for you to convert the StringBuffer object to a String object. This is necessary to make
it compatible with the + operator for String objects.

Summary

You should now be thoroughly familiar with how to create and use arrays. Most people have little trou-
ble dealing with one-dimensional arrays, but arrays of arrays are a bit trickier so try to practice using
these.

You have also acquired a good knowledge of what you can do with string objects, as well as
StringBuffer and StringBuilder objects. Most operations with these objects are very straightfor-
ward and easy to understand. Being able to decide which methods you should apply to the solution of
specific problems is a skill that will come with a bit of practice.

196

Arrays and Strings

The essential points that I have discussed in this chapter are:

Q

You use an array to hold multiple values of the same type, identified through a single variable
name.

You reference an individual element of an array by using an index value of type int. The index
value for an array element is the offset of that element from the first element in the array.

An array element can be used in the same way as a single variable of the same type.

You can obtain the number of elements in an array by using the 1ength member of the array
object.

An array element can also contain an array, so you can define arrays of arrays, or arrays of
arrays of arrays, and so on.

A string object stores a fixed character string that cannot be changed. However, you can assign
a given String variable to a different String object.

You can obtain the number of characters stored in a String object by using the length ()
method for the object.

The String class provides methods for joining, searching, and modifying strings — the modifi-
cations being achieved by creating a new String object.

StringBuffer and StringBuilder objects can store a string of characters that you can modify.

StringBuffer and StringBuilder objects support the same set of operations. StringBuf fer
objects are safe when accessed by multiple threads of execution whereas stringBuilder object
are not.

You can get the number of characters stored in a StringBuf fer object by calling its length ()
method, and you can find out the current maximum number of characters it can store by using
its capacity () method.

You can change both the length and the capacity for a StringBuffer object.

You can create a String object from a StringBuffer object by using the toString () method
of the stringBuffer object.

Exercises

You can download the source code for the examples in the book and the solutions to the following exer-
cises from http: //www.wrox.com.

1.

Create an array of String variables and initialize the array with the names of the months from
January to December. Create an array containing 12 random decimal values between 0.0 and
100.0. Display the names of each month along with the corresponding decimal value. Calculate
and display the average of the 12 decimal values.

Write a program to create a rectangular array containing a multiplication table from 1 * 1 up to
12 *12. Output the table as 13 columns with the numeric values right-aligned in columns. (The
first line of output will be the column headings, the first column with no heading, then the
numbers 1 to 12 for the remaining columns. The first item in each of the succeeding lines is the
row heading, which ranges from 1 to 12.)

197

Chapter 4

198

3.

Write a program that sets up a String variable containing a paragraph of text of your choice.
Extract the words from the text and sort them into alphabetical order. Display the sorted list of
words. You could use a simple sorting method called the bubble sort. To sort an array into
ascending order the process is as follows:

a. Starting with the first element in the array, compare successive elements (0 and 1, 1 and
2,2 and 3, and so on).

b. If the first element of any pair is greater than the second, interchange the two elements.

c. Repeat the process for the whole array until no interchanges are necessary. The array
elements will now be in ascending order.

Define an array of ten String elements each containing an arbitrary string of the form
"month/day/year"; for example,"10/29/99" or "12/5/01". Analyze each element in the
array and output the date represented in the form 29th October 1999.

Write a program that will reverse the sequence of letters in each word of your chosen paragraph
from Exercise 3. For instance, "To be or not to be." would become
"oT eb ro ton ot eb."

Defining Classes

In this chapter you'll explore the heart of the Java language — classes. Classes specify the objects
you use in object-oriented programming. These form the basic building blocks of any Java pro-
gram, as you saw in Chapter 1. Every program in Java involves classes, since the code for a
program can appear only within a class definition.

You'll be exploring the details of how a class definition is put together, how to create your own
classes, and how to use classes to solve your own computing problems. And in the next chapter,
you’ll build on this to look at how object-oriented programming helps you work with sets of
related classes.

By the end of this chapter you will have learned:

O

What a class is, and how you define a class

How to implement class constructors

How to define class methods

What method overloading is

What a recursive method is and how it works

How to create objects of a class type

What packages are and how you can create and use them

What access attributes are and how you should use them in your class definitions
What nested classes are and how you use them

When you should add the finalize () method to a class

00000000 oo

What native methods are

Chapter 5

What Is a Class?

As you saw in Chapter 1, a class is a prescription for a particular kind of object — it defines a new type.
You use the definition of a class to create objects of that class type — that is, to create objects that incorpo-
rate all the components specified as belonging to that class.

In case that’s too abstract, look back to the previous chapter where you used the String class. The String
class is a comprehensive definition for a String object, with all the operations you are likely to need speci-
fied. Whenever you create a new String object, you are creating an object with all the characteristics and
operations specified by the class definition. Every String object has all the methods that the String class
defines built in. This makes String objects indispensable, and string handling within a program easy.

The String class lies toward one end of a spectrum in terms of complexity in a class. The String class
is intended to be usable in any program. It includes facilities and capabilities for operating on String
objects to cover virtually all circumstances in which you are likely to use strings. In most cases your own
classes won’t need to be this elaborate. You will typically be defining a class to suit your particular appli-
cation, and you will make it as simple or complex as necessary. Some classes, such as a Plane or a
Person, for example, may well represent objects that can potentially be very complicated, but the appli-
cation requirements may be very limited. A Person object might just contain a name, address, and
phone number, for example, if you are just implementing an address book. In another context, in a pay-
roll program perhaps, you might need to represent a Person with a whole host of properties, such as
age, marital status, length of service, job code, pay rate, and so on. How you define a class depends on
what you intend to do with objects of your class.

In essence, a class definition is very simple. There are just two kinds of things that you can include in a
class definition:

Q Fields —These are variables that store data items that typically differentiate one object of the
class from another. They are also referred to as data members of a class.

0O Methods —These define the operations you can perform for the class —so they determine what
you can do to, or with, objects of the class. Methods typically operate on the fields — the vari-
ables of the class.

The fields in a class definition can be of any of the primitive types, or they can be references to objects of
any class type, including the one that you are defining.

The methods in a class definition are named, self-contained blocks of code that typically operate on the
fields that appear in the class definition. Note, though, that this doesn’t necessarily have to be the case,
as you might have guessed from the main () methods you have written in all the examples up to now.

Fields in a Class Definition

An object of a class is also referred to as an instance of that class. When you create an object, the object
will contain all the fields that were included in the class definition. However, the fields in a class defini-
tion are not all the same — there are two kinds.

One kind of field is associated with the class, and is shared by all objects of the class. There is only one
copy of each of these kinds of fields no matter how many class objects are created, and they exist even if
no objects of the class have been created. This kind of variable is referred to as a class variable because
the field belongs to the class and not to any particular object, although as I've said, all objects of the class

200

Defining Classes

will share it. These fields are also referred to as static fields because you use the static keyword when
you declare them.

The other kind of field in a class is associated with each object uniquely — each instance of the class will
have its own copy of each of these fields, each with its own value assigned. These fields differentiate one
object from another, giving an object its individuality — the particular name, address, and telephone
number in a given Person object, for example. These are referred to as non-static fields or instance vari-
ables because you specify them without using the static keyword, and each instance of a class type
will have its own independent set.

Because this is extremely important to understand, let's summarize the two kinds of fields that you can
include in your classes:

0 Non-static fields, also called instance variables — Each object of the class will have its own
copy of each of the non-static fields or instance variables that appear in the class definition. Each
object will have its own values for each instance variable. The name instance variable originates
from the fact that an object is an instance or an occurrence of a class, and the values stored in the
instance variables for the object differentiate the object from others of the same class type. An
instance variable is declared within the class definition in the usual way, with a type name and a
variable name, and can have an initial value specified.

O Static fields, also called class variables — A given class will have only one copy of each of its
static fields or class variables, and these will be shared between and among all the objects of the
class. Each class variable exists even if no objects of the class have been created. Class variables
belong to the class, and they can be referenced by any object or class method, not just methods
belonging to instances of that class. If the value of a static field is changed, the new value is
available equally in all the objects of the class. This is quite different from non-static fields,
where changing a value for one object does not affect the values in other objects. A static field
must be declared using the keyword static preceding the type name.

Look at Figure 5-1, which illustrates the difference between class variables and instance variables.

Class Sphere Definition Shared between all objects
Sphere.PI

public class Sphere { globe

xCenter
yCenter
zCenter
radius

// class variable
static double PI=3.14;

// instance wvariables
double xCenter;
double yCenter; ____ Each object gets
double zCenter; its own copy
double radius;

Sphere Objects

ball
xCenter
yCenter
zCenter
radius

Figure 5-1 201

Chapter 5

Figure 5-1 shows a schematic of a class, Sphere, that has one class variable, PI, and four instance vari-
ables, radius, xCenter, yCenter, and zCenter. Each of the objects, globe and ball, will have its own
set of variables with the names radius, xCenter, yCenter, and zCenter, but both will share a single
copy of the class variable PI.

Why would you need two kinds of variables in a class definition? The instance variables are clearly nec-
essary since they store the values that distinguish one particular object from another. The radius and the
coordinates of the center of the sphere are fundamental to determining how big a particular Sphere
object is, and where it is in space. However, although the variable PI is a fundamental parameter for
every sphere —to calculate the volume, for example — it would be wasteful to store a value for PI in
every Sphere object, since it is always the same. As you know, it is also available from the standard class
Math so it is somewhat superfluous in this case, but you get the general idea. So one use for class vari-
ables is to hold constant values such as (that are common to all objects of the class.

Another use for class variables is to track data values that are common to all objects of a class and that
need to be available even when no objects have been defined. For example, if you wanted to keep a
count of how many objects of a class have been created in your program, you could define a variable to
store the count of the number of objects as a class variable. It would be essential to use a class variable,
because you would still want to be able to use your count variable even when no objects have been
declared.

Methods in a Class Definition

The methods that you define for a class provide the actions that can be carried out using the variables
specified in the class definition. Analogous to the variables in a class definition are two varieties of meth-
ods —instance methods and class methods. You can execute class methods even when no objects of a
class exist, whereas instance methods can be executed only in relation to a particular object, so if no
objects exist, you have no way to execute any of the instance methods defined in the class. Again, like
class variables, class methods are declared using the keyword static, so they are sometimes referred to
as static methods. You saw in the previous chapter that the valueOf () method is a static member of the
String class.

Since static methods can be executed when there are no objects in existence, they cannot refer to instance
variables. This is quite sensible if you think about it— trying to operate with variables that might not
exist would be bound to cause trouble. In fact the Java compiler won't let you try. If you reference an
instance variable in the code for a static method, it won’t compile —you’'ll just get an error message. The
main () method, where execution of a Java application starts, must always be declared as static, as you
have seen. The reason for this should be apparent by now. Before an application starts execution, no
objects exist, so to start execution, you need a method that is executable even though there are no objects
around — a static method therefore.

The sphere class might well have an instance method volume () to calculate the volume of a particular
object. It might also have a class method objectCount () to return the current count of how many
objects of type sphere have been created. If no objects exist, you could still call this method and get the
count 0.

Note that although instance methods are specific to objects of a class, there is only ever one copy of each
instance method in memory that is shared by all objects of the class, as it would be extremely expensive
to replicate all the instance methods for each object. A special mechanism ensures that each time you call
a method the code executes in a manner that is specific to an object, but I'll defer explaining how this is
possible until a little later in this chapter.

202

Defining Classes

Apart from the main () method, perhaps the most common use for static methods is when you use a
class just as a container for a bunch of utility methods, rather than as a specification for a set of objects.
All executable code in Java has to be within a class, but lots of general-purpose functions you need don’t
necessarily have an object association — calculating a square root, for example, or generating a random
number. The mathematical functions that are implemented as class methods in the standard Math class
are good examples. These methods don’t relate to class objects at all —they operate on values of the
primitive types. You don’t need objects of type Math; you just want to use the methods from time to
time, and you can do this as you saw in Chapter 2. The Math class also contains some class variables
containing useful mathematical constants such as e and (.

Accessing Variables and Methods

You'll normally want to access variables and methods that are defined within a class from outside it. You
will see later that it is possible to declare class members with restrictions on accessing them from out-
side, but let’s cover the principles that apply where the members are accessible. I'll consider accessing
static members — that is, static fields and methods —and instance members separately.

You can access a static member of a class using the class name, followed by a period, followed by the
member name. With a class method you also need to supply the parentheses enclosing any arguments to
the method after the method name. The period here is called the dot operator. So, if you wanted to calcu-
late the square root of (, you could access the class method sgrt () and the class variable PI that are
defined in the Math class as follows:

double rootPi = Math.sqgrt (Math.PI);

This shows how you call a static method — you just prefix it with the class name and put the dot opera-
tor between them. You also reference the static data member, PI, in the same way —as Math. PI. If you
have a reference to an object of a class type available, then you can also use that to access a static mem-
ber of the class because every object always has access to the static members of its class. You just use the
variable name, followed by the dot operator, followed by the member name.

Of course, as you've seen in previous chapters, you can import the names of the static members of the
class by using an import statement. You can then refer to the names of the static members you have
imported into your source file without qualifying their names at all.

Instance variables and methods can be called only using an object reference, because by definition they
relate to a particular object. The syntax is exactly the same as I have outlined for static members. You put
the name of the variable referencing the object followed by a period, followed by the member name. To
use a method volume () that has been declared as an instance method in the Sphere class, you might
write:

double ballVolume = ball.volume() ;
Here the variable ball is of type Sphere and it contains a reference to an object of this type. You call its

volume () method, which calculates the volume of the ball object, and the result that is returned is
stored in the variable bal1lvolume.

203

Chapter 5

Defining Classes

To define a class you use the keyword class followed by the name of the class, followed by a pair of
braces enclosing the details of the definition. Let’s consider a concrete example to see how this works in
practice. The definition of the Sphere class that I mentioned earlier could be:

class Sphere {
static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables

double radius; // Radius of a sphere
double xCenter; // 3D coordinates
double yCenter; // of the center
double zCenter; // of a sphere

// Plus the rest of the class definition...

}

You name a class using an identifier of the same sort you’ve been using for variables. By convention,
though, class names in Java begin with a capital letter, so the class name is Sphere with a capital s. If
you adopt this approach, you will be consistent with most of the code you come across. You could enter
this source code and save it as the file Sphere. java. You'll be adding to this class definition and using it
in a working example a little later in this chapter.

You may have noticed that in the examples in previous chapters the keyword public in this context pre-
ceded the keyword class in the first line of the class definition. The effect of the keyword public is
bound up with the notion of a package containing classes, but I'll defer discussing this until a little later
in this chapter when you have a better idea of what makes up a class definition.

The keyword static in the first line of the Sphere class definition specifies the variable PI as a class
variable rather than an instance variable. The variable PI is also initialized with the value 3.14. The key-
word final tells the compiler that you do not want the value of this variable to be changed, so the com-
piler will check that this variable is not modified anywhere in your program. Obviously, this is a very
poor value for (. You would normally use Math.PI —which is defined to 20 decimal places, close
enough for most purposes.

Whenever you want to fix the initial value that you specify for a variable — that is,
make it a constant—you just need to declare the variable with the keyword final.
By convention, constants have names in capital letters.

You have also declared the next variable, count, using the keyword static. All objects of the Sphere
class will have access to and share the one copy of count and the one copy of PI that exist. You have ini-
tialized the variable count to 0, but since you have not declared it using the keyword final, you can
change its value.

The next four variables in the class definition are instance variables, as they don’t have the keyword
static applied to them. Each object of the class will have its own separate set of these variables, storing

204

Defining Classes

the radius and the coordinates of the center of the sphere. Although you haven’t put initial values for
these variables here, you could do so if you wanted. If you don’t specify an initial value, a default value
will be assigned automatically when the object is created. Fields of numeric types will be initialized with
zero, fields of type char will be initialized with '\u000', and fields that store class references or refer-
ences to arrays will be initialized with null.

There has to be something missing from the definition of the Sphere class—there is no way to set the
value of radius and the other instance variables once a particular Sphere object is created. There is
nothing to update the value of count either. Adding these things to the class definition involves using
methods, so the next step is to understand how a method is put together.

Defining Methods

You have been producing versions of the main () method since Chapter 1, so you already have an idea
of how a method is constructed. Nonetheless, I'll go through how you define methods from the begin-
ning to make sure everything is clear.

I'll start with the fundamental concepts. A method is a self-contained block of code that has a name, and
has the property that it is reusable — the same method can be executed from as many different points in
a program as you require. Methods also serve to break up large and complex calculations that might
involve many lines of code into more manageable chunks. You execute a method by calling it using its
name, and the method may or may not return a value when its execution finishes. Methods that do not
return a value are always called in a statement that just specifies the call. Methods that do return a value
are usually called from within an expression, and the value that is returned by such a method is used in
the evaluation of the expression. If a method that returns a value is called by itself in a statement, not in
an expression in other words, then the value it returns is discarded.

The basic structure of a method is shown in Figure 5-2.

The type of the value to be
returned which can be any
type or class. If you specify
this as void, the method

The specifications of the
parameters for the method,
separated by commas. If the
method has no parameters,

Name of the
does not return a value. you leave the parentheses
method.
/ empty.
T /T ™
return type methodName(argl, argz, ., argn){
This is
called the
body of // Executable code goes here
the
method. 1
Figure 5-2

205

Chapter 5

When you specify the return type for a method, you are defining the type for the value that will be
returned by the method when you execute it. The method must always return a value of this type. To
define a method that does not return a value, you specify the return type as void. Something called an
access attribute can optionally precede the return type in a method definition, but I'll defer looking into
this until later in this chapter.

The parameters to a method appear in its definition between the parentheses following the method
name. These specify what information is to be passed to the method when you execute it, and the values
that you supply for the parameters when you call a method are described as arguments. The parameter
names are used in the body of the method to refer to the corresponding argument values that you sup-
ply when you call the method. Your methods do not have to have parameters specified. A method that
does not require any information to be passed to it when it is executed has an empty pair of parentheses
after the name.

Returning from a Method

To return a value from a method when its execution is complete you use a return statement. For
example:

return return_value; // Return a value from a method

After executing the return statement in a method, the program continues from the point where the
method was called. The value return_value that is returned by the method can be any expression that
produces a value of the type specified for the return value in the declaration of the method. Methods
that return a value — that is, methods declared with a return type other than void —must always finish
by executing a return statement that returns a value of the appropriate type. Note, though, that you can
put several return statements within a method if the logic requires this. If a method does not return a
value, you can just use the keyword return by itself to end execution of the method:

return; // Return from a method

For methods that do not return a value, falling through the closing brace enclosing the body of the
method is equivalent to executing a return statement.

The Parameter List

The parameter list appears between the parentheses following the method name. This specifies the type
of each value that can be passed as an argument to the method, and the variable name that is used in the
body of the method to refer to each argument value passed to the method when it is called. The differ-
ence between a parameter and an argument is sometimes confusing because people often, incorrectly,
use them interchangeably. I will try to differentiate them consistently, as follows:

Q Aparameter has a name and a type and appears in the parameter list in the definition of a
method. A parameter defines the type of value that can be passed to the method when it is
called.

Q Anargument is a value that is passed to a method when it is executed, and the value of the argu-
ment is referenced by the parameter name during execution of the method. Of course, the type
of the argument value must be consistent with the type specified for the corresponding parame-
ter in the definition of the method.

206

Defining Classes

This is illustrated in Figure 5-3.

public static void main(String[] args) {

x = obj.mean(3.0 , 5.0); .
This value

} o is used for
value2

This value

is used for
This value substitutes valuel This variable exists
for the method name only while the method
where it was called is executing

double mean(double valuel , double value2){

double result = (valuel + value2)/ 2.0;

]
return result;

This is the value }
returned by the
method

Figure 5-3

In Figure 5-3 you have the definition of a method mean () . The definition of this method can appear only
within the definition of a class, but the rest of the class definition has been omitted so as not to clutter up
the diagram. You can see that the method has two parameters, valuel and value2, both of which are of
type double. The parameter names are used to refer to the arguments 3.0 and 5. 0, respectively, within
the body of the method when it is called by the statement shown. Since this method has not been
defined as static, you can call it only for an object of the class. In the example, the mean () method for
the object obj is called.

When you call the mean () method from another method (from main () in this case, but it could be from
some other method), the values of the arguments you pass are the initial values assigned to the corre-
sponding parameters before execution of the body of the method begins. You can use any expression
you like for an argument when you call a method, as long as the value it produces is of the same type as
the corresponding parameter in the definition of the method. With the method mean (), both parameters
are of type double, so both argument values must always be of type double.

The method mean () declares the variable result, which exists only within the body of the method. This
variable will be newly created each time you execute the method and will be destroyed when execution
of the method ends. All the variables that you declare within the body of a method are local to the
method, and are only around while the method is being executed. Variables declared within a method
are called local variables because they are local to the method. The scope of a local variable is as I dis-
cussed in Chapter 2, from the point at which you declare it to the closing brace of the immediately
enclosing block, and local variables are not initialized automatically. If you want your local variables to
have initial values, you must supply the initial value when you declare them.

207

Chapter 5

How Argument Values Are Passed to a Method

You need to be clear about how the argument values are passed to a method; otherwise, you may run
into problems. In Java, all argument values are transferred to a method using what is called the pass-by-
value mechanism. Figure 5-4 illustrates how this works.

public static void main(Stringl[largs) { 5
int 1 = 10; > 10
int x = obj.change (i) ; w7
}
acts on j refers to
3 the copy
aint change (int 3) {
This statement \
modifies the copy, it
not the original
return j;
}
Figure 5-4

Pass-by-value just means that for each argument value that you pass to a method, a copy of the value is
made, and it is the copy that is passed to the method and referenced through the parameter name, not
the original value. This implies that if you use a variable of any of the primitive types as an argument,
the method cannot modify the value of this variable in the calling program. In the example shown in
Figure 5-4, the change () method will modify the copy of i that is created automatically and referenced
using the parameter name j. Thus, the value of j that is returned will be 11, and this will be stored in the
variable x when the return from the method executes. However, the original value of i will remain at 10.

While the pass-by-value mechanism applies to all types of arguments, the effect for
objects is different from that for variables of the primitive types. You can change an
object, as you will see a little later in this chapter, because a variable of a class type
contains a reference to an object, not the object itself. Thus, when you use a variable
of a class type as an argument to a method, a copy of a reference to the object is
passed to the method, not a copy of the object itself. Because a copy of a reference
still refers to the same object, the parameter name used in the body of a method will
refer to the original object that was passed as the argument.

208

Defining Classes

Final Parameters

You can specify any of the parameters for a method as £inal. This has the effect of preventing modifica-
tion of any argument value that is substituted for the parameter when you call the method. The compiler
will check that your code in the body of the method does not attempt to change any final parameters.
Since the pass-by-value mechanism makes copies of values of the basic types, final really makes sense
only when it is applied to parameters that are references to class objects, as you'll see later on.

Specifying a parameter of a class as £inal is of limited value. It does prevent accidental modification of
the object reference that is passed to the method, but it does not prevent modification of the object itself.

A much more important use for the final keyword is for declaring classes or method as final, and
you'll learn more about this in Chapter 6.

Defining Class Methods

You define a class method by adding the keyword static to its definition. For example, the class
Sphere could have a class method to return the value stored in the static variable count:

class Sphere {
// Class definition as before...
// Static method to report the number of objects created
static int getCount () {
return count; // Return current object count

}
}

This method needs to be a class method because you want to be able to get at the count of the number of
objects that exist even when it is zero. You can amend the Sphere. java file to include the definition of
getCount ().

Remember that you cannot directly refer to any of the instance variables in the class
within a static method. This is because a static method can be executed when no
objects of the class have been created, and therefore no instance variables exist.

Accessing Class Data Members in a Method

An instance method can access any of the data members of the class, just by using the appropriate name.
Let’s extend the class Sphere a little further by adding a method to calculate the volume of a Sphere
object:

class Sphere {
static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables
double radius; // Radius of a sphere

209

Chapter 5

double xCenter; // 3D coordinates
double yCenter; // of the center
double zCenter; // of a sphere

// Static method to report the number of objects created
static int getCount () {

return count; // Return current object count

}

// Instance method to calculate volume
double volume () {
return 4.0/3.0*PI*radius*radius*radius;

}

// Plus the rest of the class definition...

You can see that the volume () method is an instance method because it is not declared as static. It has
no parameters, but it does return a value of type double — the required volume. The method uses the
class variable PI and the instance variable radius in the volume calculation — this is the expression
4.0/3.0*PI*radius*radius*radius (corresponding to (4/3)(1%) in the return statement. The value
that results from this expression will be returned to the point where the method is called for a Sphere
object.

You know that each object of the class will have its own separate set of instance variables, so how is an
instance variable for a particular object selected in a method? How does the volume () method pick up
the value of a radius variable for a particular Sphere object?

The Variable this

Every instance method has a variable with the name this that refers to the current object for which the
method is being called. The compiler uses this implicitly when your method refers to an instance vari-
able of the class. For example, when the method volume () refers to the instance variable radius, the
compiler will insert the this object reference so that the reference will be equivalent to this.radius.
The return statement in the definition of the volume () method is actually:

return 4.0/3.0*PI*this.radius*this.radius*this.radius;
The statement actually refers to the radius field for the object referenced by the variable this. In gen-
eral, every reference to an instance variable is in reality prefixed with this. You could put it in yourself,
but there’s no need, the compiler does it for you. In fact, it is not good practice to clutter up your code
with this unnecessarily. However, there are occasions where you have to include it, as you will see.
When you execute a statement such as

double ballVolume = ball.volume() ;

where ball is an object of the class Sphere, the variable this in the method volume () will refer to the
object ball, so the instance variable radius for the ball object will be used in the calculation.

210

Defining Classes

I mentioned earlier that only one copy of each instance method for a class exists in
memory, even though there may be many different objects. You can see that the vari-
able this allows the same instance method to work for different class objects. Each
time an instance method is called, the this variable is set to reference the particular
class object to which it is being applied. The code in the method will then relate to
the specific members of the object referred to by this.

You have seen that there are four different potential sources of data available to you when you write the
code for a method:

Q Arguments passed to the method, which you refer to by using the parameter names

Q Data members, both instance variables and class variables, which you refer to by their names
Q Local variables that you declare in the body of the method
Q

Values that are returned by other methods that are called from within the method

The names of variables that are declared within a method are local to the method. You can use a name
for a local variable or a parameter in a method that is the same as that of a instance variable. If you find
it necessary or convenient to do this, then you must use the name this when you refer to the data mem-
ber of the class from within the method. The variable name by itself will always refer to the variable that
is local to the method, not the instance variable.

For example, suppose you wanted to add a method to change the radius of a Sphere object to a new
radius value that is passed as an argument. You could code this as:

void changeRadius (double radius) {
// Change the instance variable to the argument value
this.radius = radius;

}

In the body of the changeRadius () method, this.radius refers to the instance variable, and radius
by itself refers to the parameter. No confusion in the duplication of names exists here. It is clear that you
are receiving a radius value as a parameter with the name radius and storing it in the radius variable
for the class object.

Initializing Data Members

You have seen how you were able to supply an initial value for the static members PI and count in the
Sphere class with the following declaration:

class Sphere {
static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Rest of the class...

211

Chapter 5

You can also initialize ordinary non-static data members in the same way. For example:
class Sphere {
static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables

double radius = 5.0; // Radius of a sphere
double xCenter = 10.0; // 3D coordinates
double yCenter = 10.0; // of the center
double zCenter = 10.0; // of a sphere

// Rest of the class...

Now every object of type Sphere will start out with a radius of 5.0 and have the center at the point 10.0,
10.0, 10.0.

Some things can’t be initialized with a single expression. For example, if you had a large array as a data
member that you wanted to initialize, with a range of values that required some kind of calculation, this
could be a job for an initialization block.

Using Initialization Blocks

An initialization block is a block of code between braces that is executed before an object of the class is
created. There are two kinds of initialization blocks:

Q A static initialization block is a block defined using the keyword static and is executed once
when the class is loaded. A static initialization block can initialize only static data members of
the class.

QO Anon-static initialization block is executed for each object that is created and thus can initial-

ize instance variables in a class.

This is easiest to understand by considering a working example.

Try It Out Using an Initialization Block

Let’s define a simple class with a static initialization block first of all:

class TryInitialization {
static int[] values = new int[10]; // Static array member

// Initialization block
static {
System.out.println("Running initialization block.");
for (int 1=0; i<values.length; i++) {
values[i] = (int) (100.0*Math.random()) ;
}

212

Defining Classes

// List values in the array for an object
void listvValues() {

System.out.println() ; // Start a new line
for (int value : values) {
System.out.print (" " + value); // Display values
}
System.out.println(); // Start a new line

}

public static void main(String[] args) {
TryInitialization example = new TryInitialization();
System.out.println("\nFirst object:");
example.listValues();

example = new TryInitialization();
System.out.println("\nSecond object:");
example.listValues();

When you compile and run this, you will get identical sets of values for the two objects —as might be
expected since the values array is static:

Running initialization block.
First object:
40 97 88 63 58 48 84 5 32 67
Second object:

40 97 88 63 58 48 84 5 32 67

How It Works

The TryInitialization class has a static member, values, that is an array of 10 integers. The static
initialization block is the code

static {
System.out.println("Running initialization block.");
for(int i1=0; i<values.length; i++) {
values[i] = (int) (100.0*Math.random()) ;
}

This initializes the values array with pseudo-random integer values generated in the for loop. The out-
put statement in the block is there just to record when the initialization block executes. Because this ini-

tialization block is static, it is only ever executed once during program execution, when the class is
loaded.

The 1istvalues () method provides you with a means of outputting the values in the array. The
print () method you are using in the 1istvalues () method works just like println (), but without
starting a new line before displaying the output, so you get all the values on the same line.

213

Chapter 5

Inmain (), you generate an object of type TryInitialization and then callits 1istvalues ()
method. You then create a second object and call the 1istvalues () method for that. The output
demonstrates that the initialization block only executes once, and that the values reported for both
objects are the same.

Because the values array is a static member of the class, you could list the element’s values through a
static method that would not require any objects to have been created. Try temporarily adding the key-

word static to the declaration of the 1istvalues () method in the class:

static void listValues() {

System.out.println(); // Start a new line
for (int value : values) {
System.out.print (" " + value); // Display values
}
System.out.println() ; // Start a new line

}

You can now call the method using the class name, so add two extra statements at the beginning of
main():

System.out.println("\nNo object:");
TryInitialization.listValues() ;

If you compile and execute the program with these changes, you will get an additional record of the val-
ues in the values array. You still get the output from calling 1istvalues () using the two object refer-
ences. Every object has access to the static members of its class. Of course, the values in the output will
be different from the previous execution because they are pseudo-random values.

If you restore the program to its original state, and then delete the static modifier before the initializa-
tion block and recompile and run the program again, you will get the output along the lines of:

Running initialization block.
First object:

66 17 98 59 99 18 40 96 40 21
Running initialization block.
Second object:

57 86 79 31 75 99 51 5 31 44

Now you have a non-static initialization block. You can see from the output that the values are different
for the second object because the non-static initialization block is executed each time an object is created.
In fact, the values array is static, so the array is shared between all objects of the class. You could
demonstrate this by amending main () to store each object separately and calling 1istvalues () for the
first object after the second object has been created. Amend the main () method in the program to read
as follows:

214

Defining Classes

public static void main(String[] args) {
TryInitialization example = new TryInitialization();
System.out.println("\nFirst object:");
example.listValues();
TryInitialization nextexample = new TryInitialization();
System.out.println("\nSecond object:");
nextexample.listValues() ;

example.listValues() ;

While you have demonstrated that this is possible, you will not normally want to initialize static vari-
ables with a non-static initialization block.

As I said at the outset, a non-static initialization block can initialize instance variables, too. If you want to
demonstrate this, you just need to remove the static modifier from the declaration of values and
compile and run the program once more.

You can have multiple initialization blocks in a class, in which case they execute in the sequence in
which they appear. The static blocks execute when the class is loaded, and the non-static blocks execute
when each object is created. Initialization blocks are useful, but you need more than that to create objects

properly.

Constructors

When you create an object of a class, a special kind of method called a constructor is always invoked. If
you don’t define any constructors for your class, the compiler will supply a default constructor in the
class, which does nothing. The default constructor is also described as the no-arg constructor because it
requires no arguments to be specified when it is called. The primary purpose of a constructor is to pro-
vide you with the means of initializing the instance variables uniquely for the object that is being cre-
ated. If you are creating a Person object with the name John Doe, then you want to be able to initialize
the member holding the person’s name to "John Doe". This is precisely what a constructor can do. Any
initialization blocks that you have defined in a class are always executed before a constructor.

A constructor has two special characteristics that differentiate it from other class methods:

Q A constructor never returns a value, and you must not specify a return type —not even of
type void.

Q A constructor always has the same name as the class.
To see a practical example you could add a constructor to the Sphere class definition:
class Sphere {
static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables
double radius; // Radius of a sphere

215

Chapter 5

double xCenter; // 3D coordinates
double yCenter; // of the center
double zCenter; // of a sphere

// Class constructor
Sphere (double theRadius, double x, double y, double z) {
radius = theRadius; // Set the radius

// Set the coordinates of the center

xCenter = x;

yCenter = y;

zCenter = z;

++count; // Update object count
}

// Static method to report the number of objects created
static int getCount () {
return count; // Return current object count

}

// Instance method to calculate volume
double volume () {
return 4.0/3.0*PI*radius*radius*radius;

}

The definition of the constructor is shaded above. You are accumulating quite a lot of code to define the
Sphere class, but as it’s just an assembly of the pieces you have been adding, you should find it all quite
straightforward.

As you can see, the constructor has the same name as the class and has no return type specified. A con-
structor can have any number of parameters, including none. The default constructor has no parameters,
as is indicated by its alternative description — the no-arg constructor. In this case the Sphere class con-
structor has four parameters, and each of the instance variables is initialized with the value of the appro-
priate parameter. Here’s a situation where you might have used the name radius for the parameter, in
which case you would need to use the keyword this to refer to the instance variable of the same name.
The last action of the constructor is to increment the class variable count by 1, so that count accumu-
lates the total number of objects created.

The Default Constructor

As I'said, if you don’t define any constructors for a class, the compiler will supply a default constructor
that has no parameters and does nothing. Before you defined a constructor for the Sphere class, the
compiler would have supplied one, defined like this:

Sphere () {
}

It has no parameters and no statements in its body so it does nothing —except enable you to create an

object of type Sphere, of course. The object created by the default constructor will have fields with their
default values set. If you have defined any non-static initialization blocks within a class, they will be exe-

216

Defining Classes

cuted each time any constructor executes, immediately before the execution of the code in the body of
the constructor. Whenever you create an object, a constructor will be called. When you have not defined
any constructors for a class, the default constructor will be called each time you create an object of that
class type.

Note that if you define a constructor of any kind for a class, the compiler will not supply a default con-

structor. If you still need a default constructor —and you will find many occasions when you do—you
must define it explicitly in addition to the other constructors in the class.

Creating Objects of a Class
When you declare a variable of type sphere with the following statement:
Sphere ball; // Declare a variable
no constructor is called because no object is created. All you have created at this point is the variable

ball, which can store a reference to an object of type Sphere, if and when you create one. Figure 5-5
shows this.

Sphere ball; ball=new Sphere(10.0,1.0,1.0,1.0);
creates a memory location creates a Sphere object in
to hold a reference to an memory and sets ball to
object of type Sphere. reference it.
ball
radius 10.0
L xCenter 1.0
No object. is created and no > yCenter
memory is allocated for an Cent 15
object. zlenter -

Figure 5-5

You will recall from the discussion of String objects and arrays that the variable and the object it refer-
ences are distinct entities. To create an object of a class you must use the keyword new followed by a call
to a constructor. To initialize ball with a reference to an object, you could write:

ball = new Sphere(10.0, 1.0, 1.0, 1.0); // Create a sphere

Now you have a Sphere object with a radius of 10.0 located at the coordinates (1.0, 1.0, 1.0). The object is
created in memory and will occupy a sufficient number of bytes to accommodate all the data necessary

217

Chapter 5

to define the object. The variable ball records where in memory the object is—it acts as a reference to
the object. This is illustrated in Figure 5-5.

Of course, you can do the whole thing in one step, with the following statement:
Sphere ball = new Sphere(10.0, 1.0, 1.0, 1.0); // Create a sphere
This declares the variable ball and defines the Sphere object to which it refers.
You can create another variable that refers to the same object as ball:
Sphere myBall = ball;
Now the variable myBal1l refers to the same object as ball. You still have only one object, but you have
two different variables that reference it. You could have as many variables as you like referring to the

same object.

As I mentioned earlier, the separation of the variable and the object has an important effect on how
objects are passed to a method, so let’s look at that in more detail.

Passing Objects to a Method

When you pass an object as an argument to a method, the mechanism that applies is called pass-by-
reference, because a copy of the reference contained in the variable is transferred to the method, not a
copy of the object itself. The effect of this is shown in Figure 5-6.

public static void main(String[] args) { Sphere object
EE radius: 10.0
Sphere ball = new Sphere(10.0, 1.0, 1.0, 1.0); xCenter: 1.0
obj .change (ball) ; yCenter: 1.0
> 7 ' zCenter: 1.0

This causes a copy ball and the copy

of ball to be made, _ both refer to
reference
but not the Sphere ; the original object .
object H of ball
.................. 0Py Made -
- s refers to
acts’on the copy of
ball

Sphere change(Sphere s) {

This statement
modifies the \)
. 5.changeRadius (1.0) ;

original object
through a copy return s;
of ball

Figure 5-6

218

Defining Classes

Figure 5-6 presumes you have defined a method, changeRadius (), in the class Sphere, that will alter
the radius value for an object, and that you have a method change () in some other class that calls
changeRadius (). When the variable ball is used as an argument to the method change (), the pass-
by-reference mechanism causes a copy of the contents of ball to be made and stored in s. The variable
ball just stores a reference to the Sphere object, and the copy contains that same reference and there-
fore refers to the same object. No copying of the actual object occurs. This is a major plus in terms of effi-
ciency when passing arguments to a method. Objects can be very complex, involving a lot of instance
variables. If objects themselves were always copied when passed as arguments, it could be very time-
consuming and make the code very slow.

Since the copy of the reference from ball refers to the same object as the original, when the
changeRadius () method is called, the original object will be changed. You need to keep this in mind
when writing methods that have objects as parameters because this is not always what you want.

In the example shown, the method change () returns the modified object. In practice, you would proba-
bly want this to be a distinct object, in which case you would need to create a new object from s. You
will see how you can write a constructor to do this a little later in this chapter.

Remember that this only applies to objects. If you pass a variable of type int or
double to a method, for example, a copy of the value is passed. You can modify the
value passed as much as you want in the method, but it won’t affect the original
value.

The Lifetime of an Object
The lifetime of an object is determined by the variable that holds the reference to it—assuming there is
only one. If you have the declaration

Sphere ball = new Sphere(10.0, 1.0, 1.0, 1.0); // Create a sphere

then the Sphere object that the variable ball refers to will die when the variable ball goes out of scope.
This will be at the end of the block containing this declaration. Where an instance variable is the only
one referencing an object, the object survives as long as the instance variable owning the object survives.

A slight complication can arise with objects, though. As you have seen, several vari-
ables can reference a single object. In this case, the object survives as long as a vari-
able still exists somewhere that references the object.

As you have seen before, you can reset a variable to refer to nothing by setting its value to null. If you
write the statement

ball = null;
the variable ball no longer refers to an object, and assuming there is no other object referencing it, the
Sphere object it originally referenced will be destroyed. Note that while the object has been discarded, the

variable bal1l still continues to exist and you can use it to store a reference to another Sphere object. The
lifetime of an object is determined by whether any variable anywhere in the program still references it.

219

Chapter 5

The process of disposing of dead objects is called garbage collection. Garbage collection is automatic in
Java, but this doesn’t necessarily mean that objects disappear from memory straight away. It can be
some time after the object becomes inaccessible to your program. This won't affect your program
directly in any way. It just means you can’t rely on memory occupied by an object that is done with
being available immediately. For the most part it doesn’t matter; the only circumstances where it might
would be if your objects were very large, millions of bytes, say, or you were creating and getting rid of
very large numbers of objects. In this case, if you are experiencing problems you can try to call the static
gc () method that is defined in the System class to encourage the Java Virtual Machine (JVM) to do
some garbage collecting and recover the memory that the objects occupy:

System.gc() ;

This is a best efforts deal on the part of the JVM. When the gc () method returns, the JVM will have tried
to reclaim the space occupied by discarded objects, but there’s no guarantee that it will all be recovered.
There’s also the possibility that calling the gc () method may make things worse. If the garbage collector
is executing some preparations for recovering memory, your call will undo that and in this way slow
things up.

Defining and Using a Class

To put what you know about classes to use, you can use the Sphere class in an example.

You will be creating two source files. In a moment you'll create the file CreateSpheres. java, which
will contain the definition of the CreateSpheres class that will have the method main () defined as a
static method. As usual, this is where execution of the program starts. The other file will be the

Sphere. java file, which contains the definition of the Sphere class that you have been assembling. The
Sphere class definition should look like this:

class Sphere {
static final double PI = 3.14; // Class variable that has a fixed value

static int count = 0; // Class variable to count objects

// Instance variables

double radius; // Radius of a sphere
double xCenter; // 3D coordinates
double yCenter; // of the center
double zCenter; // of a sphere

// Class constructor
Sphere (double theRadius, double x, double y, double z) {
radius = theRadius; // Set the radius

// Set the coordinates of the center

xCenter = x;

yCenter = y;

zCenter = z;

++count; // Update object count

}

// Static method to report the number of objects created

220

Defining Classes

static int getCount () {
return count; // Return current object count

}
// Instance method to calculate volume

double volume() {
return 4.0/3.0*PI*radius*radius*radius;

Both files need to be in the same directory or folder —I suggest you name the directory
CreateSpheres. Then copy or move the latest version of Sphere. java to this directory.

Try It Out Using the Sphere Class

Enter the following code for the file CreateSpheres. java:

class CreateSpheres {
public static void main(String[] args) {

System.out.println ("Number of objects = " + Sphere.getCount());

Sphere ball = new Sphere(4.0, 0.0, 0.0, 0.0); // Create a sphere
System.out.println ("Number of objects = " + ball.getCount());

Sphere globe = new Sphere(12.0, 1.0, 1.0, 1.0); // Create a sphere
System.out.println ("Number of objects = " + Sphere.getCount());

// Output the volume of each sphere
System.out.println("ball volume = " + ball.volume());
System.out.println("globe volume = " + globe.volume());

Compile the source files and then run CreateSpheres, and you should get the following output:

Number of objects = 0
Number of objects = 1
Number of objects = 2
ball volume = 267.94666666666666
globe volume = 7234.559999999999

This is the first time you have run a program involving two source files. If you are using the JDK
compiler, then compile CreateSpheres. java with the current directory as CreateSpheres using the

command:

javac CreateSpheres.java
The compiler will find and compile the Sphere. java source file automatically. If all the source files for a

program are in the current directory, then compiling the file containing a definition of main () will com-
pile all the source files for the program.

221

Chapter 5

Note that by default the . class files generated by the compiler are stored in the current directory — that
is, the directory containing your source code. If you want the . class files stored in a different directory,
then you can use the -d option with the Java compiler to specify where they should go. For example, to
store the class files in a directory called C: \classes, you would type:

javac -d C:/classes CreateSpheres.java

How It Works

The Sphere class definition includes a constructor that will create objects, and the method volume () to
calculate the volume of a particular sphere. It also contains the static method getCount () you saw
earlier, which returns the current value of the class variable count. You need to define this method as
static because you want to able to call it regardless of how many objects have been created, including
the situation when there are none.

The method main () in the Createspheres class puts the Sphere class through its paces. When the pro-
gram is compiled, the compiler will look for a file with the name Sphere. class. If it does not find the
.class file, it will look for Sphere. java to provide the definition of the class Sphere. As long as this
file is in the current directory, the compiler will be able to find it and compile it.

The first thing the program does is call the static method getCount (). Because no objects exist, you
must use the class name to call it at this point. You then create the object ball, which is a Sphere object,
with a radius of 4.0 and its center at the origin point (0.0, 0.0, 0.0). You call the getCount () method
again, this time using the object name. This demonstrates that you can call a static method through an
object. You create another Sphere object, globe, with a radius of 12.0. You call the getCount () method
again, this time using the class name. Static methods like this are usually called using the class name.
After all, the reason for calling this particular method would be to find out how many objects exist, so
presumably you cannot be sure that any objects exist at that point. A further reason to use the class name
rather than a reference to an object when calling a static method is that it makes it quite clear in the
source code that it is a static method that is being called. You can’t call a non-static method using the
class name.

The program finally outputs the volume of both objects by calling the volume () method for each, from
within the expressions, specifying the arguments to the println () method calls.

Method Overloading

Java allows you to define several methods in a class with the same name, as long as each method has a
unique set of parameters. Defining two or more methods with the same name in a class is called method
overloading.

The name of a method together with the types and sequence of the parameters form the signature of the
method; the signature of each method in a class must be distinct to allow the compiler to determine
exactly which method you are calling at any particular point. The return type has no effect on the signa-
ture of a method. You cannot differentiate between two methods just by the return type. This is because
the return type is not necessarily apparent when you call a method. For example, suppose you write a
statement such as:

Math.round (value) ;

222

Defining Classes

Although the preceding statement is pointless since it discards the value that the round () method pro-
duces, it does illustrate why the return type cannot be part of the signature for a method. The compiler
has no way to know from this statement what the return type of the method round () is supposed to be.
Thus, if there were several different versions of the method round (), and the return type were the only
distinguishing aspect of the method signature, the compiler would be unable to determine which ver-
sion of round () you wanted to use.

You will find many circumstances where it is convenient to use method overloading. You have already
seen that the Math class contains two versions of the method round (), one that accepts an argument of
type f£loat and the other that accepts an argument of type double. You can see now that method over-
loading makes this possible. It would be rather tedious to have to use a different name for each version
of round () when they both do essentially the same thing. The valueOf () method in the String class is
another example. There is a version of this method for each of the basic types. One context in which you
will regularly need to use overloading is when you write constructors for your classes, which you'll look
at now.

Multiple Constructors

Constructors are methods that can be overloaded, just like any other method in a class. In most situa-
tions, you will want to generate objects of a class from different sets of initial defining data. If you just
consider the Sphere class, you could conceive of a need to define a Sphere object in a variety of ways.
You might well want a constructor that accepted just the (x, y, z) coordinates of a point, and have a
Sphere object created with a default radius of 1.0. Another possibility is that you may want to create a
default sphere with a radius of 1.0 positioned at the origin, so no arguments would be specified at all.
This requires two constructors in addition to the one you have already written. Let’s try it then.

Try It Out Multiple Constructors for the Sphere Class

The code for the extra constructors is as follows:

class Sphere {
// First Constructor and variable declarations

// Construct a unit sphere at a point
Sphere (double x, double y, double z) {
xCenter = x;
yCenter = y;
zCenter 75
radius = 1.0;
++count; // Update object count

}

// Construct a unit sphere at the origin

Sphere() {
xCenter = 0.0
yCenter = 0.0;
zCenter = 0.0
radius = 1.0;
++count; // Update object count

’

’

}

// The rest of the class as before...

223

Chapter 5

The statements in the default constructor that set three fields to zero are not really necessary, as the fields
would be set to zero by default. They are there just to emphasize that the primary purpose of a construc-
tor is to enable you to set initial values for the fields.

If you add the following statements to the CreateSpheres class, you can test out the new constructors:

public class CreateSpheres {
public static void main(String[] args) {

System.out.println("Number of objects = " + Sphere.getCount());

Sphere ball = new Sphere(4.0, 0.0, 0.0, 0.0); // Create a sphere
System.out.println("Number of objects = " + ball.getCount());

Sphere globe = new Sphere(12.0, 1.0, 1.0, 1.0); // Create a sphere
System.out.println("Number of objects = " + Sphere.getCount());

Sphere eightBall = new Sphere(10.0, 10.0, 0.0);
Sphere oddBall = new Sphere();
System.out.println ("Number of objects = " + Sphere.getCount());

// Output the volume of each sphere

System.out.println("ball volume = " + ball.volume());
System.out.println("globe volume = " + globe.volume()) ;
System.out.println("eightBall volume = " + eightBall.volume()) ;
System.out.println("oddBall volume = " + oddBall.volume()) ;

Now the program should produce the following output:

NP O

Number of objects =
Number of objects =
Number of objects =
Number of objects = 4

ball volume = 267.94666666666666
globe volume = 7234.559999999999
eightBall volume = 4.1866666666666665
oddBall volume = 4.1866666666666665

How It Works

When you create a Sphere object, the compiler selects the constructor to use based on the types of the
arguments you have specified. So, the first of the new constructors is applied in the first statement that
you added to main (), as its signature fits with the argument types used. The second statement that you
added clearly selects the last constructor, as no arguments are specified. The other additional statements
are there just to generate some output corresponding to the new objects. You can see from the volumes of
eightBall and oddBall that they both are of radius 1—in both instances the result is the value of 4r/3.

It is the number and types of the parameters that affect the signature of a method, not the parameter

names. If you wanted a constructor that defined a Sphere object at a point, by specifying the diameter
rather than the radius, you have a problem. You might try to write it as:

224

Defining Classes

// Illegal constructor!!!
// This WON'T WORK because it has the same signature as the original!!!
Sphere (double diameter, double x, double y, double z) {

xCenter = x;

yCenter = y;

zCenter = z;

radius = diameter/2.0;

++count;

If you add this method to the sphere class and recompile, you'll get a compile-time error. This construc-
tor has four arguments of type double, so its signature is identical to the first constructor that you wrote
for the class. This is not permitted —hence the compile-time error. When the number of parameters is

the same in two overloaded methods, at least one pair of corresponding parameters must be of different

types.

Calling a Constructor from a Constructor

One class constructor can call another constructor in the same class in its first executable statement. This
can often save duplicating a lot of code. To refer to another constructor in the same class, you use this
as the method name, followed by the appropriate arguments between parentheses. In the Sphere class,
you could have defined the constructors as:

class Sphere {
// Construct a unit sphere at the origin
Sphere() {
radius = 1.0;
// Other data members will be zero by default
++count; // Update object count

}

// Construct a unit sphere at a point
Sphere (double x, double y, double z)
{
this(); // Call the constructor with no arguments
xCenter = x;
yCenter = y;
zCenter = z;

}

Sphere (double theRadius, double x, double y, double z) {
this(x, v, z); // Call the 3 argument constructor
radius = theRadius; // Set the radius

}

// The rest of the class as before...

In the constructor that accepts the point coordinates as arguments, you call the default constructor to set
the radius and increment the count of the number of objects. In the constructor that sets the radius, as
well as the coordinates, you call the constructor with three arguments to set the coordinates, which in
turn will call the constructor that requires no arguments.

225

Chapter 5

Duplicating Objects Using a Constructor

When you were looking at how objects were passed to a method, you came across a requirement for
duplicating an object. The need to produce an identical copy of an object occurs surprisingly often.

Java provides a clone () method, but the details of using it must wait for the next
chapter.

Suppose you declare a Sphere object with the following statement:
Sphere eightBall = new Sphere(10.0, 10.0, 0.0);

Later in your program you want to create a new object newBal1l, which is identical to the object
eightBall. If you write

Sphere newBall = eightBall;

this will compile okay but it won’t do what you want. You might remember from my earlier discussion
that the variable newBall references the same object as eightBall. You don’t have a distinct object. The
variable newBall, of type Sphere, is created but no constructor is called, so no new object is created.

Of course, you could create newBall by specifying the same arguments to the constructor as you used to
create eightBall. In general, however, it may be that eightBall has been modified in some way dur-
ing execution of the program, so you don’t know that its instance variables have the same values — for
example, the position might have changed. This presumes that you have some other class methods that
alter the instance variables. You could provide the capability for duplicating an existing object by adding
a constructor to the class that will accept an existing Sphere object as an argument:

// Create a sphere from an existing object
Sphere (final Sphere oldSphere) {
radius = oldSphere.radius;
xCenter = oldSphere.xCenter;
yCenter = oldSphere.yCenter;
zCenter = oldSphere.yCenter;
++count; // Increment the object count

This works by copying the values of the instance variables of the Sphere object that is passed as the
argument to the corresponding instance variables of the new object. Thus the new object that this con-
structor creates will be identical to the Sphere object that is passed as the argument.

Now you can create newBall as a distinct object by writing:

Sphere newBall = new Sphere(eightBall); // Create a copy of eightBall

The next section recaps what you have learned about methods and constructors with another example.

226

Defining Classes

Using Objects

You'll create a program to do some simple 2D geometry. This will give you an opportunity to use more
than one class. You'll define two classes, a class that represents point objects and a class that represents
line objects; you'll then use these to find the point at which two lines intersect. Call the example
TryGeometry, so this will be the name of the directory or folder in which you should save the program
files. Quite a few lines of code are involved, so you'll put it together piecemeal and get an understanding
of how each piece works as you go.

Try It Out The Point Class

You first define a basic class for point objects:
import static java.lang.Math.sqgrt;

class Point {
// Coordinates of the point
double x;
double vy;

// Create a point from coordinates
Point (double xVal, double yVal) {
x = xVal;
y = yval;
}

// Create a point from another Point object
Point (final Point oldPoint) {
x = oldPoint.x; // Copy X coordinate
y = oldPoint.y; // Copy y coordinate
}

// Move a point

void move (double xDelta, double yDelta) ({
// Parameter values are increments to the current coordinates
x += xDelta;
y += yDelta;

}

// Calculate the distance to another point
double distance(final Point aPoint) {
return sgrt((x - aPoint.x)*(x - aPoint.x) + (y - aPoint.y)*(y - aPoint.y));

}

// Convert a point to a string
public String toString() {

return Double.toString(x) + ", " + vy; // As "x, y"
}

You should save this as Point . java in the directory TryGeometry.

227

Chapter 5

How It Works

This is a simple class that has just two instance variables, x and y, which are the coordinates of the
Point object. At the moment you have two constructors. One will create a Point object from a coordi-
nate pair passed as arguments of type double, and the other will create a new Point object from an
existing one.

Three methods are included in the class. First you have the move () method, which moves a Point to
another position by adding an increment to each of the coordinates. You also have the distance ()
method, which calculates the distance from the current Point object to the Point object passed as the
argument. This uses the Pythagorean theorem to compute the distance, as shown in Figure 5-7.

X2
X2,Y2
A2 A
4 g S—\
D4 eAZ
<>F< | \\‘MA\& Y2Y1
> A =
-<_X)1(,1y1 U e
=
B
X-Axis
Figure 5-7

Finally, you have a method tostring (), which returns a string representation of the coordinates of the
current point. If a class defines the toString () method, an object of that class can be used as an
operand of the string concatenation operator +, so you can implement this in any of your classes to allow
objects to be used in this way. The compiler will automatically insert a call to toString () when neces-
sary. For example, suppose thePoint is an object of type Point, and you write the statement:

System.out.println("The point is at " + thePoint);

The toString () method will be automatically invoked to convert the object referenced by the variable
thePoint to a String, and the resultant string will be appended to the String literal. You have speci-
fied the toString () method as public, as this is essential here for the class to compile. I will defer
explanations as to why this is necessary until a little later in this chapter.

Note how you use the static toString () method defined in the Double class to convert the x value to a
String. The compiler will insert a call to the same method automatically for the y value, as the left
operand of the + operation is a String object. Note that you could equally well have used the

valueOf () method in the String class. In this case the statement would be written like this:

return String.valueOf(x) + ", " + y; // As "x, y"

228

Defining Classes

Try It Out The Line Class

You can use Point objects in the definition of the class Line:

class Line {
Point start; // Start point of line
Point end; // End point of line

// Create a line from two points
Line(final Point start, final Point end) {
this.start = new Point (start);
this.end = new Point(end);

}

// Create a line from two coordinate pairs

Line (double xStart, double yStart, double xEnd, double yEnd) {
start = new Point (xStart, yStart); // Create the start point
end = new Point (xEnd, yEnd); // Create the end point

}

// Calculate the length of a line
double length() {

return start.distance(end) ; // Use the method from the Point class
}

// Convert a line to a string
public String toString() {
return " (" + start+ "):(" + end + ")"; // As "(start):(end)"
} // that is, "(x1, yl1):(x2, y2)"

You should save this as the file Line. java in the TryGeometry directory.

How It Works

You shouldn’t have any difficulty with this class definition, as it is very straightforward. The Line class
stores two Point objects as instance variables. There are two constructors for Line objects — one accept-
ing two Point objects as arguments and the other accepting the (x, y) coordinates of the start and end
points. You can see how you use the variable this to differentiate the class instance variables, start
and end, from the parameter names in the constructor.

Note how the constructor that accepts Point objects works:
// Create a line from two points
Line(final Point start, final Point end) {

this.start = new Point (start);
this.end = new Point(end);

229

Chapter 5

With this implementation of the constructor, two new Point objects are created that will be identical to,
but independent of, the objects passed to the constructor. If you don’t think about what happens, you
might be tempted to write it as:

// Create a line from two points - a poor implementation!

Line(final Point start, final Point end) {
this.start = start; // Dependent on external object!!!
this.end = end; // Dependent on external object!!!

}

The important thing you should notice here is that the way the constructor is implemented could cause
problems that might be hard to track down. In this version of the constructor no new points are created.
The start and end members of the object refer to the Point objects that passed as arguments. The Line
object will be implicitly dependent on the Point objects that are used to define it. If these were changed
outside the Line class, by using the move () method, for example, this would “silently” modify the Line
object. You might consciously decide that this is what you want, so the Line object continues to be
dependent on its associated Point objects. The rationale for this in a drawing package, for example,
might be that this would allow a point to be moved, and all lines based on the point would also be
moved accordingly. However, this is different from allowing such interdependencies by accident. In gen-
eral, you should take care to avoid creating implicit dependencies between objects unless they are what
you intended.

In the toString () method for the Line class, you are able to use the Point objects directly in the forma-
tion of the string representation of a Line object. This works because the Point class also defines a
toString () method.

You've now defined two classes. In these class definitions, you've included the basic data that defines an
object of each class type. You've also defined some useful methods for operating on objects, and added
constructors for a variety of input parameters. Note how the Point class is used in the definition of the
Line class. It is quite natural to define a line in terms of two Point objects, and the Line class is much
simpler and more understandable than if it were defined entirely in terms of the individual x and y coor-
dinates. To further demonstrate how classes can interact, and how you can solve problems directly, in
terms of the objects involved, let’s devise a method to calculate the intersection of two Line objects.

Creating a Point from Two Lines

You can add the method to determine the point of intersection between two lines to the Line class.
Figure 5-8 illustrates how the mathematics works out.

You can ignore the mathematics if you want to, as it is not the most important aspect of the example. If
you are willing to take the code in the new constructor on trust, then skip to the next “Try It Out” sec-
tion. On the other hand, you shouldn’t find it too difficult if you can still remember what you did in high
school.

One way to get the intersection of two lines is to use equations like those shown. These are called para-
metric equations because they use a parameter value (s or t) as the variable for determining points on
each line. The parameters s and t vary between 0 and 1 to give points on the lines between the defined
start and end points. When a parameter s or t is O the equations give the coordinates of the start point of
a line, and when the parameter value is 1 you get the end point of the line.

230

Defining Classes

Where two lines intersect, the equations for the lines must produce the same (x, y) values, so, at this
point, the right-hand sides of the equations for x for the two lines must be equal, and the same goes for
the equations for y. This will give you two equations in s and t, and with a bit of algebraic juggling you
can eliminate s to get the equation shown for t. You can then replace t in the equations, defining line 1
to get x and y for the intersection point.

X = XagH(XsX 3)S
Y = Ya+(yay 3)S

X1,Y1 Xa,Ya

linel

Y-Axis
< X
nn
=< x
£
X
NN

line2

X3,Y3 X2,Y2

X-AXi
At the intersection point: &
XgH(XaX 5)S = XyH(XoX 1)t You can calculate x,y for the
Ya+(Yay 3)S = Yat(yay o)t intersection by substituting t

back in the equations for line 1.
from which you get:
= (Yay 3)(XsX 1) —(Y 5Y 1)(XaX 3)
(Yay 3)(XaX 1) = (¥ 27 1)(XaX 3)

Figure 5-8

Try It Out Calculating the Intersection of Two Lines

You can use these results to write the additional method you need in the Line class. Add the following
code to the class definition in Line. java:

// Return a point as the intersection of two lines
Point intersects(final Line linel) {
Point localPoint = new Point (0, 0);

double num = (this.end.y - this.start.y)*(this.start.x - linel.start.x) -
(this.end.x - this.start.x)*(this.start.y - linel.start.y);

double denom = (this.end.y - this.start.y)*(linel.end.x - linel.start.x) -
(this.end.x - this.start.x)*(linel.end.y - linel.start.y);

(linel.end.x - linel.start.x) *num/denom;
(linel.end.y - linel.start.y) *num/denom;

localPoint.x = linel.start.x

¥
localPoint.y = linel.start.y +

return localPoint;

Since the Line class definition refers to the Point class, the Line class can’t be compiled without the
other being available. When you compile the Line class, the compiler will compile the other class, too.

231

Chapter 5

How It Works

The intersects () method is called for one Line object and takes another Line object as the argument.
In the code, the local variables num and denom are the numerator and denominator in the expression for
t in Figure 5-8. You then use these values to calculate the x and y coordinates for the intersection point.

If the lines are parallel, the denominator in the equation for t will be zero, some-
thing you should really check for in the code. For the moment you’ll ignore it and
end up with coordinates that are Infinity if it occurs.

Note how you get at the values of the coordinates for the Point objects defining the lines. The dot nota-
tion for referring to a member of an object is just repeated when you want to reference a member of a
member. For example, for the object 1inel, the expression linel.start refers to the Point object at
the beginning of the line. Therefore, 1inel.start.x refers to its x coordinate, and 1inel.start.y
accesses its y coordinate.

Now you have a Line class defined that you can use to calculate the intersection point of two Line
objects. You need a program to test the code out.

Try It Out The TryGeometry Class

You can exercise the two classes you have defined with the following code in the method main():

public class TryGeometry {
public static void main(String[] args) {
// Create two points and display them
Point start = new Point (0.0, 1.0);
Point end = new Point(5.0, 6.0);
System.out.println("Points created are " + start + " and " + end);

// Create two lines and display them

Line linel = new Line(start, end);

Line line2 = new Line (0.0, 3.0, 3.0, 0.0);
System.out.println("Lines created are " + linel + " and " + line2);

// Display the intersection
System.out.println("Intersection is " + line2.intersects(linel));

// Now move the end point of linel and show the new intersection
end.move (1.0, -5.0);
System.out.println("Intersection is " + linel.intersects(line2));

Save the TryGeometry. java file in the TryGeometry directory along with the other two class files,
Point.java and Line. java. The program will produce the following output:

.0
) and (0.0, 3.0):(3.0, 0.0)

Points created are 0.0, 1.0 and 5.0,

Lines created are (0.0, 1.0):(5.0, 6.
Intersection is 1.0, 2.

Intersection is 1.0, 2

6
0

232

Defining Classes

How It Works

You first create two Point objects, which you will use later in the program to create the object 1inel.
You then display the points using the println () method. The toString () method that you defined in
the Point class is used automatically to generate the String representation for each Point object.

After creating 1inel from the two points, you use the other constructor in the Line class to create
line2 from two pairs of coordinates. You then display the two lines. The toString () member of the
Line class is invoked here to create the String representation of each Line object, and this in turn calls
the toString () method in the Point class.

The next statement calls the intersects () method from the 1ine2 object and returns the Point object
at the intersection of the two lines, 1inel and 1ine2, as part of the argument to the println () method
that outputs the point. As you see, you are not obliged to save an object when you create it. Here you
just use it to create the string to be displayed. Once the output statement has executed, the intersection
point object is discarded.

You use the move () method in the class Point to modify the coordinates of the object end that you used
to create 1inel. You then get the intersection of the two lines again, this time calling the intersects ()
method from 1inel. The output demonstrates that 1inel is independent of the object end, as moving
the point has made no difference to the intersection.

If you change the constructor in the Line class to the version you saw earlier that does not create new
Point objects to define the line, you can run the example again to see the effect. The output will be:

Points created are 0.0, 1.0 and 5.0, 6.0

Lines created are (0.0, 1.0):(5.0, 6.0) and (0.0, 3.0):(3.0, 0.0)
Intersection is 1.0, 2.0

Intersection is 2.0, 1.0

Changing the end object now alters the line, so you get a different intersection point for the two lines
after you move the end point. This is because the Line object, 1inel, contains references to the Point
objects defined in main (), not references to independent Point objects.

Recursion

The methods you have seen so far have been called from within other methods, but a method can also
call itself. A method that calls itself is described as a recursive method, and the process is referred to as
recursion. You can also have indirect recursion where a method A calls another method B, which in turn
calls the method A. Clearly you must include some logic in a recursive method so that it will eventually
stop calling itself if the process is not to continue indefinitely. You can see how this might be done with a
simple example.

You can write a method that will calculate integer powers of a variable—in other words, evaluate xn, or
x*x...*x where x is multiplied by itself # times. You can use the fact that you can obtain xn by multiply-
ing xn-1 by x. To put this in terms of a specific example, you can calculate 2¢ as 2% multiplied by 2, and
you can get 2° by multiplying 2% by 2, and 22 is produced by multiplying 2!, which is 2, of course, by 2.

233

Chapter 5

Try It Out Calculating Powers

Here is the complete program, including the recursive method power ():

public class PowerCalc ({

public static void main(String[] args) {
double x = 5.0;
System.out.println(x + " to the power 4 is " + power (x,4)
System.out.println("7.5 to the power 5 is " + power(7.5,5
System.out.println("7.5 to the power 0 is " + power(7.5,0
System.out.println("10 to the power -2 is " + power (10,-2

}

)5
) 7
) 8

)
)
)
)

// Raise x to the power n
static double power (double x, int n) {

if(n > 1)
return x*power (x, n-1); // Recursive call
else if(n < 0)
return 1.0/power (x, -n); // Negative power of x
else
returnn == 0 ? 1.0 : x; // When n is 0 return 1, otherwise x

This program will produce the following output:

5.0 to the power 4 is 625.0

7.5 to the power 5 is 23730.46875
7.5 to the power 0 is 1.0

10 to the power -2 is 0.01

How It Works

The power () method has two parameters, the value x and the power n. The method performs four dif-
ferent actions, depending on the value of n:

n>1 A recursive call to power () is made with n reduced by 1, and the value that is
returned is multiplied by x. This is effectively calculating xn as x times xn-1.

n<0 x-n is equivalent to 1/xn so this is the expression for the return value. This involves
a recursive call to power () with the sign of n reversed.

n=0 x0 is defined as 1, so this is the value returned.

n=1 x1 i8S x, SO x is returned.

Just to make sure the process is clear you can work through the sequence of events as they occur in the
calculation of 5%

234

Defining Classes

Level

Description

The first call of the power () method
passes 5.0 and 4 as arguments.

Since the second argument, n, is

greater than 1, the power () method

is called again in the return statement,
with the second argument reduced by 1.

The second call of the power () method
passes 5.0 and 3 as arguments. Since
the second argument, n, is still greater
than 1, the power () method is called
again in the return statement, with
the second argument reduced by 1.

The third call of the power () method
passes 5.0 and 2 as arguments. Since
the second argument, n, is still greater
than 1, the power () method is called
again, with the second argument again
reduced by 1.

The fourth call of the power () method
passes 5.0 and 1 as arguments. Since the
second argument, n, is not greater than 1,
the value of the first argument, 5.0, is
returned to level 3.

Back at level 3, the value returned, 5.0,
is multiplied by the first argument,
5.0, and returned to level 2.

Back at level 2, the value returned,
25.0, is multiplied by the first argument,
5.0, and returned to level 1.

Back at level 1, the value returned,
125.0, is multiplied by the first
argument, 5.0, and 625.0 is returned as
the result of calling the method in the
first instance.

Relevant Code

power (5.0, 4) {
if(n > 1)
return 5.0*power (5.0,

power (5.0, 3) {
if(n > 1)
return 5.0*power (5.0,

power (5.0, 2) {
if(n > 1)
return 5.0*power (5.0,

power (5.0, 1) {

if(n > 1)
else
return 5.0;
}
power (5.0, 2) {
if(n>1)
else
return 5.0*5.0;
}
power (5.0, 3) {
if(n > 1)
else
return 5.0*25.0;
}
power (5.0, 4) {
if(n > 1)
else

return 5.0*125.0;

4-1);

3-1);

2-1);

235

Chapter 5

You can see from this that the power () method is called four times in all. The calls cascade down
through four levels until the value of n is such that it allows a value to be returned. The return values
ripple up through the levels until you are eventually back at the top, and 625.0 is returned to the original
calling point.

As a rule, you should use recursion only where there are evident advantages in the approach, as recur-
sive method calls have quite of lot of overhead. This particular example could be more easily pro-
grammed as a loop, and it would execute much more efficiently. You could also use the Math.pow ()
method to produce the result. One example of where recursion can be applied very effectively is in the
handling of data structures such as trees. Unfortunately these don’t make convenient illustrations of
how recursion works at this stage of the learning curve because of their complexity.

Before you can dig deeper into classes, you need to take an apparent detour to understand what a pack-
age is in Java.

Understanding Packages

Packages are fundamental to Java programs so make sure you understand this section.

Packages are implicit in the organization of the standard classes as well as your own programs, and they
influence the names you can use for classes and the variables and methods they contain. Essentially, a
package is a uniquely named collection of classes. The primary reason for grouping classes in packages
is to avoid possible name clashes with your own classes when you are using prewritten classes in an
application. The names used for classes in one package will not interfere with the names of classes in
another package or your program because the class names in a package are all qualified by the package
name. Thus, the String class you have been using is in the java. lang package, so the full name of the
class is java.lang.String. You have been able to use the unqualified name because all the classes in
the java.lang package are always available in your program code; there’s an implicit import state-
ment in effect for all the names in the java.lang package. If you happened to have defined a class of
your own with the name String, using the name String would refer to your class, but you could still
use the library class that has the same name by using its full name in your code, java.lang.String.

Every class in Java is contained in a package, including all those you have defined in the examples. You
haven’t seen many references to package names so far because you have been implicitly using the
default package to hold your classes, and this doesn’t have a name.

All of the standard classes in Java are contained within a set of packages, and each package contains
classes that are related in some way. The package that contains most of the standard classes that you
have used so far is called java.lang, so called because the classes in this package provide Java lan-
guage-related support. You haven’t seen any explicit reference to java. lang in your code either,
because this package is automatically available to your programs. Things are arranged this way because
some of the classes in java.lang, such as String, are used in every program. If you use a class from
the other packages containing standard classes, you will need either to use the fully qualified name of
the class or to explicitly import the full class name into your program in a way that I'll come to shortly.

236

Defining Classes

Packaging Up Your Classes

Putting one of your classes in a named package is very simple. You just add a package statement as the
first statement in the source file containing the class definition. Note that it must always be the first state-
ment. Only comments or blank lines are allowed to precede the package statement. A package statement
consists of the keyword package followed by the package name and is terminated by a semicolon. If
you want the classes in a package to be accessible outside the package, you must declare the class using
the keyword public in the first line of your class definition. Class definitions that aren’t preceded by the
keyword public are accessible only from methods in classes that belong to the same package.

For example, to include the Sphere class in a package called Geometry, the contents of the file
Sphere. java would need to be:

package Geometry;

public class Sphere ({
// Details of the class definition

}

Each class that you want to include in the package Geometry must contain the same package statement
at the beginning, and you must save all the files for the classes in the package in a directory with the
same name as the package, that is, Geometry. Note the use of the public keyword in the definition of
the sphere class. This makes the class accessible generally. If you omit the public keyword from the
class definition, the class would be accessible only from methods in classes that are in the Geometry
package.

Note that you would also need to declare the constructors and methods in the class as public if you
want them to be accessible from outside of the package. I will return to this in more detail a little later in
this chapter.

Packages and the Directory Structure

Packages are actually a little more complicated than they appear at first sight, because a package is inti-
mately related to the directory structure in which it is stored. You already know that the definition of a
class with the name ClassName must be stored in a file with the name ClassName. java, and that all the
files for classes within a package PackageName must be included in a directory with the name
PackageName. You can compile the source for a class within a package and have the . class file that is
generated stored in a different directory, but the directory name must still be the same as the package
name.

As you are aware from the existence of the java.lang package that contains the String class, a pack-

age can have a composite name that is a combination of two or more simple names. You can specify a

package name as any sequence of names separated by periods. For example, you might have developed

several collections of classes dealing with geometry, perhaps one that works with 2D shapes and another

with 3D shapes. In this case you might include the class Sphere in a package with the statement:
package Geometry.Shapes3D;

and the class for circles in a package using the statement:

package Geometry.Shapes2D;

237

Chapter 5

In this situation, the files containing the classes in the Geometry . Shapes3D packages are expected to be
in the directory Shapes3D and the files containing the classes in the Geometry . Shapes2D packages are
expected to be in the directory Shapes2D. Both of these directories must be subdirectories of a directory
with the name Geometry. In general, you can have as many names as you like separated by periods to
identify a package, but the package name must reflect the directory structure in which the package is
stored. This is illustrated in Figure 5-9.

Package Geometry.Shapes2D

Packages Geometry.Shapes3D

L Shape3D (==

Eile Edit View |Favorites Tools Help *

Q Back ~ J ? /- Search || Folders El"

addvess ([C:\Geometry)Shage3D : EJce | merton antiveus 51 -
Folders X MName Size | Type

5) Geometry — DSDhefe.java 1KE Javalanguage Source file
i e

<| > < (]
Figure 5-9

Compiling a Package

Compiling the classes in a package can be a bit tricky unless you are clear on how you go about it. I'll
describe what you need to do assuming you are using the JDK under Microsoft Windows. The path
to the package directory must be explicitly made known to the compiler in the value that is set for
CLASSPATH, even when the current directory is the one containing the package. The easiest way to
specify CLASSPATH is by using the -classpath option when you invoke the compiler.

The path to the package directory is the path to the directory that contains the package directory, and
therefore does not include the package directory itself. For example, if you have stored the source files
for classes that are in the Geometry package in the directory with the path c:\Beg Java Stuff\
Geometry, then the path to the Geometry directory is C: \Beg Java Stuff.Many beginners mistak-
enly specify the path as C: \Beg Java Stuff\Geometry, in which case the package will not be found.

As I'said, you can tell the compiler about the path to your package by using the -classpath option on
the command line. Assuming that the Geometry directory is a subdirectory of C: \Beg Java Stuff,
you could compile the Line. java source file with the command:

javac -classpath "C:\Beg Java Stuff" Line.java
This will result in both the Line. java and Point. java files being compiled, since Line. java refers to
the other class. Because the directory in the path contains spaces, you have to enclose the path string

between double quotes.

If the Point and Line classes were not interrelated, you could still compile the two source files or,
indeed, any number of source files, in the Geometry package with the following command:

javac -classpath "C:\Beg Java Stuff" *.java

238

Defining Classes

Accessing a Package

How you access a package when you are compiling a program that uses the package depends on where
you have put it. There are a couple of options here. The first, but not the best, is to leave the . class files
for the classes in the package in the directory with the package name.

Let’s look at that before going on to the second possibility.

With the . class files in the original package directory, either the path to your package must appear in
the string that has been set for the CLASSPATH environment variable, or you must use the -classpath
option on the command line when you invoke the compiler or the interpreter. This overrides the
CLASSPATH environment variable if it happens to be set. Note that it is up to you to make sure that the
classes in your package are in the right directory. Java will not prevent you from saving a file in a direc-
tory that is quite different from that appearing in the package statement. Of the two options here, using
the -classpath option on the command line is preferable, because it sets the classpath transiently
each time and can’t interfere with anything you do subsequently. In any event, you can explore both
possibilities.

If you elect to use the CLASSPATH environment variable, it needs to contain only the paths to your pack-
ages. The standard packages that are supplied with Java do not need to be considered, as the compiler
and the interpreter can always find them. For example, you might set it under Windows 98 by adding
the following command to your autoexec . bat file:

set CLASSPATH=.;C:\MySource;C:\MyPackages

Now the compiler and the interpreter will look for program files and the directories containing your
packages in the current directory, which is specified by the period in the classpath string, and the direc-
tories C: \MySource and C: \MyPackages. Of course, you can have as many paths as you want defined
in cLASSPATH. They just need to be separated by semicolons under Windows. If you are using Windows
XP, then you can create and set environment variables through the Advanced tab in the System
Properties dialog that you can access through Control Panel.

Under Unix, the equivalent mechanism to set CLASSPATH might be:
CLASSPATH=. : /usr/local/mysource: /usr/local/mypackages

If you are using the JDK, you can always specify where your packages can be found by using the
-classpath option when you execute the Java compiler or the interpreter. This has the advantage that
it applies only for the current compilation or execution, so you can easily set it to suit each run. The
command to compile MyProgram. java defining the classpath as in the preceding environment variable
would be:

javac -classpath ".;C:\MySource;C:\MyPackages" MyProgram.java

If you don’t set the classpath in one of these ways, or you set it incorrectly, Java will not be able to find
the classes in any new packages you might create. Remember that the period identifies the current direc-
tory as one of the directories in which files can be found. If you forget to specify the period in the
-classpath string when compiling your program, the compiler will not be able to find your program
source file. If you omit the period from the -classpath string when executing your program, you will
get a message to the effect that main () cannot be found and your program will not run.

239

Chapter 5

Another way to make your packages available once you have compiled them is by making them
extensions to the set of standard packages.

Using Extensions

Extensions are . jar files stored within the ext directory that is created when you install the JDK. The
default directory structure that is created is shown in Figure 5-10.

jdk1.5.0
bin jre ...others
Contains compiler,
interpreter, tools,
etc.
bin lib Contains rt.jar archive containing
the standard packages.

Contains executables
& DLLs for use by
tools & libraries.

ext ...others

The ext directory is for storing .jar files containing
extensions to the standard packages.
You can put your own .jar archives in here and

SDK Directory Structure they will be found automatically.

Figure 5-10

The classes and packages in the .jar archives that you place in the ext directory will automatically be
accessible when you compile or run your Java programs, without the need to set the CLASSPATH environ-
ment variable or use the —~classpath command-line option. When you create a . jar file for a package,
you need to make sure that you add the . class files with the directory structure corresponding to the
package name — you can’t just add the . class files to the archive. For example, suppose you want to
store the Geometry package in an archive. Assuming you have already compiled the package and the cur-
rent directory contains the package directory, the following command can be used to create the archive:

C:\Beg Java Stuff>jar cvf Geometry.jar Geometry*.class
This will create the archive Geometry.jar, and add all the . class files that are in the Geometry direc-
tory to it. All you now need to do to make the package available to any program that needs it is to copy

it to the ext directory in the JDK directory hierarchy shown in Figure 5-10.

The jar utility does a lot more than I have described here. If you want to know more about what it can
do, look into the “Tools and Utilities” section of the JDK documentation.

240

Defining Classes

Adding Classes from a Package to Your Program

You used the import statement frequently in examples but nonetheless I'll describe it here from the
ground up. Assuming they have been defined with the public keyword, you can add all or any of the
classes in a named package to the code in your program by using an import statement. You can then
reference the classes that you make available to your program through the import statement just by
using the class names. For example, to make available all the classes in the package

Geometry . Shapes3D to a source file, you just need to add the following import statement to the begin-
ning of the file:

import Geometry.Shapes3D. *; // Include all classes from this package

The keyword import is followed by the specification of what you want to import. The wildcard *, fol-
lowing the period after the package name, selects all the classes in the package, rather like selecting all
the files in a directory. Now you can refer to any public class in the package just by using the class name.
Again, the names of other classes in your program must be different from the names of the classes in the
package. Importing all the names in a package is not an approach you should adopt generally as it
defeats the primary objective of putting classes in packages. It’s usually better to import just the names
from a package that your code references.

If you want to add a particular class rather than an entire package, you specify its name explicitly in the
import statement:

import Geometry.Shapes3D.Sphere; // Include the class Sphere

This includes only the Sphere class in the source file. By using a separate import statement for each
individual class from the package, you ensure that your source file includes only the classes that you
need. This reduces the likelihood of name conflicts with your own classes, particularly if you are not
fully familiar with the contents of the package and it contains a large number of classes.

Note that the * can be used only to select all the classes in a package. You can’t use
Geometry . * to select all the packages in the Geometry directory.

Packages and Names in Your Programs

A package creates a self-contained environment for naming your classes. As I've said, this is the primary
reason for having packages in Java. You can specify the names for classes in one package without worry-
ing about whether the same names have been used elsewhere. Java makes this possible by treating the
package name as part of the class name —actually as a prefix. This means that the class Sphere in the
package Geometry . Shapes3D has the full name Geometry. Shapes3D. Sphere. If you don’t use an
import statement to incorporate the class in your program, you can still make use of the class by refer-
ring to it using its full class name. If you needed to do this with the class Sphere, you might declare a
variable with the statement:

Geometry.Shapes3D. Sphere ball = new Geometry.Shapes3D.Sphere(10.0, 1.0, 1.0, 1.0);

241

Chapter 5

While this is rather verbose and certainly doesn’t help the readability of the program, it does ensure you
will have no conflict between this class and any other sphere class that might be part of your program.
You can usually contrive that your class names do not conflict with those in the commonly used stan-
dard Java packages, but in cases where you can’t manage this, you can always fall back on using fully
qualified class names. Indeed, on some occasions, you have to do this. This is necessary when you are
using two different classes from different packages that share the same basic class name.

Importing Static Class Members

As you have seen in some of the examples, you can import the names of static members of a class from a
named package into your program. This allows you to reference such static members by their simple
unqualified names. In the Sphere class that you developed earlier in this chapter, you could have used
the constant PI that is defined in the Math class by using its fully qualified name, Math. PI, in the defini-
tion of the volume method:

double volume () {
return 4.0/3.0*Math.PI*radius*radius*radius;

}

This obviates the need for the static member of the Sphere class with the name PI and would provide a
much more accurate definition of the value of .

However, the Math prefix to the name PI doesn’t really add to the clarity of the code, and it would be
better without it. You can remove the need for prefixing PI with the Math class name by importing the
PI member name from the Math class:

import static java.lang.Math.PI;

class Sphere {
// Class details as before...
double volume () {
return 4.0/3.0*PI*radius*radius*radius;
}
}

It is clear what PI means here and the code is not cluttered up with the class name prefix.
You can also import all the static members of a class using * notation. For example:

import static java.lang.Math.*; // Import all static members of the Math class
With this statement at the beginning of a source file, you can refer to any of the static members of the
Math class without qualifying them with the class name. Thus you can use methods such as sart (),
abs (), random (), and so on, without the need for the Math prefix to the method names. Of course,
using the * notation to import all the static names in a class does increase the risk of clashes between the
names you are importing and the names you define in your code.
Note that the import statement, and that includes its use for importing static members of a class, applies

only to classes that are defined in a named package. This is particularly relevant in the context of static
import. If you want to import the names of a static member of a class that you define, then you must put

242

Defining Classes

the definition of a class in a named package. You cannot import the names of static members of a class
that is defined in the default package that has no name. The class name in a static import statement
must always be qualified with its package name.

Standard Packages

All of the standard classes that are provided with Java are stored in standard packages. There is a sub-
stantial and growing list of standard packages (more than 150 in JDK 5) but some of the ones you may

hear about most frequently are:

java.

java.

java.

java.

java.

lang

io

nio

nio.channels

awt

javax.swing

javax.swing.border

javax.swing.event

java.

java.

java.

java.

awt .event

awt .geom

applet

util

Contains classes that are fundamental to Java (e.g., the Math class)
and all of these are available in your programs automatically. You do
not need an import statement to include them.

Contains classes supporting stream input/output operations.

Contains classes supporting the new input/output operations that
were introduced in JDK1.4 —especially with files.

Contains more classes supporting new input/output operations —
the ones that actually read and write files.

Contains classes that support Java’s graphical user interface (GUI).
While you can use these classes for GUI programming, it is almost
always easier and better to use the alternative Swing classes.

Provides classes supporting the “Swing” GUI components. These are
not only more flexible and easier to use than the java.awt equiva-
lents, but they are also implemented largely in Java with minimal
dependency on native code.

Classes to support generating borders around Swing components.
Classes supporting event handling for Swing components.
Contains classes that support event handling.

Contains classes for drawing and operating with 2D geometric
entities.

Contains classes that enable you to write applets — programs that are
embedded in a web page.

Contains classes that support a range of standard operations for
managing collections of data, accessing date and time information,
and analyzing strings.

The standard packages and the classes they contain cover an enormous amount of ground, so evenin a
book of this size it is impossible to cover them all exhaustively. There are now many more classes in the
standard packages included with JDK 5 than there are pages in this book. However, you will be apply-

ing some classes from all of the packages in the preceding table, plus one or two others besides, in later
chapters of the book.

243

Chapter 5

Standard Classes Encapsulating the Primitive Data Types

You saw in the previous chapter that you have classes available that allow you to define objects that
encapsulate values of each of the primitive data types in Java. These classes are:

Boolean Character Byte
Short Integer Long
Float Double

These are all contained in the package java.lang along with quite a few other classes, such as the
String and StringBuffer classes that you saw in Chapter 4. Each of these classes encapsulates a value
of the corresponding primitive type and includes methods for manipulating and interrogating objects of
the class, as well as a number of very useful static methods that provide utility functions for the underly-
ing primitive types.

You have methods in these classes for converting from values of primitive types to strings. Each class
provides a static toString () method to convert a value of the corresponding primitive type to a
String object, as you saw in the last chapter. There is also a non-static toString () method in each class
that returns a String representation of a class object.

Conversely, there are methods to convert from a String object to a primitive type. For example, the
static parseInt () member in the Integer class accepts a String representation of an integer as an
argument and returns the equivalent value as type int. An alternative version of this method accepts a
second argument of type int that specifies the radix to be used when interpreting the string. This
enables you to parse strings that are hexadecimal or octal values, for example. If the String object can-
not be parsed for any reason, if it contains invalid characters, for example, the method will throw an
exception of type NumberFormatException. All the standard classes encapsulating numerical primitive
types define static methods to parse strings. You have the methods parseShort (), parseByte(),
parselnt (), and parseLong () in the classes for integer types, and parseFloat () and

parseDouble () for floating-point classes. The Boolean class defines a static method valueOf () that
converts a string to the Boolean value true if the string is equal to "true" ignoring case. Any other
string will result in false being returned.

Each class also defines a value () method that returns the value that is encapsulated by an object as a
value of the corresponding primitive type. For example, if you have created an object number of type
Double that encapsulates the value 1.14159, then the expression number.value () will result in the
value 1.14159 as type double.

The classes that wrap numerical primitive types each contain the static final constants MAX VALUE
and MIN_VALUE that define the maximum and minimum values that can be represented. The floating-
point classes also define the constants POSITIVE_INFINITY, NEGATIVE_INFINITY, and NaN (it stands
for Not a Number, as it is the result of 0/0), so you can use these in comparisons to test whether such
values have arisen during calculations. Alternatively, you can test floating-point values with the static
methods isInfinite () and isNaN() —you pass your variable as an argument, and the methods
return true for an infinite value or the NaN value, respectively. Remember that an infinite value can arise
without necessarily dividing by zero. Any computation that results in an exponent that is too large to be
represented will produce either POSITIVE_INFINITY or NEGATIVE_INFINITY.

244

Defining Classes

Many other operations are supported by these classes, so it is well worth browsing the JDK documenta-
tion for them. In particular, the Character class defines a large number of static methods for testing and

classifying characters.

Autoboxing Values of Primitive Types

Circumstances can arise surprisingly often where you want to pass values of a primitive type to a
method that requires the argument to be a reference to an object. The compiler will supply automatic
conversions of primitive values to the corresponding class type when circumstances permit this. This
can arise when you pass a value of type int to a method where the parameter type is type Integer, for
example. Conversions from a primitive type to the corresponding class type are called boxing conver-

sions, and automatic conversions of this kind are described as autoboxing.

The compiler will also insert unboxing conversions when necessary to convert a reference to an object of
a wrapper class for a primitive type such as double to the value that it encapsulates. The compiler does
this by inserting a call to the value () method for the object. You can see this in action in the following

little example.

Try It Out Autoboxing in Action

This program is contrived to force boxing and unboxing conversions to occur:

public class AutoboxingInAction {
public static void main(String[] args) {
int[] values = { 3, 97, 55, 22, 12345 };

Integer|[] objs = new Integer[values.length];

// Call method to cause boxing conversions
for(int 1 = 0 ; i<values.length ; i++) {
objs[i] = boxInteger (values[i]);

}

// Use method to cause unboxing conversions

for (Integer intObject : objs) {
unboxInteger (intObject) ;
}
}

// Method to cause boxing conversion
public static Integer boxInteger (Integer obj)
return obj;

}

// Method to cause unboxing conversion
public static void unboxInteger (int n) {
System.out.println("value = " + n);

}

{

// Array to store Integer objects

245

Chapter 5

This example will produce the following output:

value = 3
value = 97
value = 55
value = 22
value = 12345

How It Works

You have defined the boxInteger () method with a parameter type of type Integer. When you call
this method in the first for loop inmain (), you pass values of type int to it from the values array.
Because the boxInteger () method requires the argument to be a reference to an object of type
Integer, the compiler arranges for autoboxing to occur by inserting a boxing conversion to convert the
integer value to an object of type Integer. The method returns a reference to the object that results, and
you store this in the Integer[] array objs.

The second for loop inmain () passes each reference to an Integer object from the objs array to the
unboxInteger () method. Because you have specified the method parameter type as type int, the
method cannot accept a reference to an object of type Integer as the argument directly. The compiler
inserts an unboxing convert to obtain the value of type int that the object encapsulates. This value is
then passed to the method, and you output it.

Autoboxing is particular useful when you need to insert values of primitive types into a collection —
you will meet the collection classes that are available in the class libraries in Chapter 14, but you'll see
more on boxing and unboxing conversions in Chapter 13.

Controlling Access to Class Members

I'have not yet discussed in any detail how you control the accessibility of class members from outside
the class —from a method in another class in other words. You know that you can refer to any of the
static members of the same class in the code for a static class method, and a non-static method can refer
to any member of the same class. The degree to which variables and methods within one class are acces-
sible from other classes is a bit more complicated. It depends on what access attributes you have speci-
fied for the members of a class, whether the classes are in the same package, and whether you have
declared the class as public. This is why you had to understand packages first.

Using Access Attributes

Let’s start by considering classes that are in the same package. Within a given package, any class has
direct access to any other class name in the same package — for declaring variables or specifying method
parameter types, for example —but the variables and methods that are members of that other class are
not necessarily accessible. The accessibility of these is controlled by access attributes. The name of a
class in one package can be accessed from a class in another package only if the class to be accessed is
declared as public. Classes not declared as public can be accessed only by classes within the same
package.

246

Defining Classes

You have four possibilities when specifying an access attribute for a class member, and each possibility
has a different effect overall. The options you have for specifying the accessibility of a variable or a
method in a class are:

Attribute Permitted Access
No access attribute From methods in any class in the same package
public From methods in any class anywhere as long as the class has been

declared as public

private Accessible only from methods inside the class. No access from outside
the class at all.

protected From methods in any class in the same package and from any subclass
anywhere

The table shows you how the access attributes you set for a class member determine the parts of the Java
environment from which you can access it. I will discuss subclasses in the next chapter, so don’t worry
about these for the moment. I will describe how and when you use the protected attribute then. Note that
public, private, and protected are all keywords. Specifying a member as public makes it completely
accessible, and at the other extreme, making it private restricts access to members of the same class.

This may sound more complicated than it actually is. Look at Figure 5-11, which shows the access
allowed between classes within the same package.

Classl
o SubClassl
O int a; OK
oK > public int b; OK
ol protected int c; <= OK
ro private int e; No

Packagel

Figure 5-11

Within a package such as packagel in Figure 5-11, only the private members of the class Classl can’t
be directly accessed by methods in other classes in the same package. If you declare a class member to be
private, it can be accessed only by methods in the same class.

247

Chapter 5

As I said earlier, a class definition must have an access attribute of public if it is to be accessible from
outside the package that contains it. Figure 5-12 shows the situation where the classes seeking access to
the members of a public class are in different packages.

public Class1
Class2 SubClass1
No N int a; 7 No
OK > public int b; OK
No Y protected int c; OK
No Y private int e; 7__No
Package3 Packagel Package2

Figure 5-12

Here access is more restricted. The only members of Class1 that can be accessed from an ordinary class,
Class?2, in another package, are those specified as public. Keep in mind that the class Class1 must
also have been defined with the attribute public for this to be the case. A class that is not defined as
public cannot be accessed at all from a class in another package.

From a subclass of Class1 that is in another package, the members of Class1 without an access
attribute cannot be reached, and neither can the private members — these can never be accessed
externally under any circumstances.

Specifying Access Attributes

As you probably gathered from the diagrams in the previous section, to specify an access attribute for a
class member, you just add the appropriate keyword to the beginning of the declaration. Here is the
Point class you saw earlier, but now with access attributes defined for its members:

Try It Out Accessing the Point Class

Make the following changes to your Point class. If you save it in a new directory, do make sure
Line.java is copied there as well. It will be useful later if they are in a directory with the name
Geometry.

import static java.lang.Math.sqrt;

public class Point {
// Create a point from its coordinates

248

Defining Classes

public Point (double xVal, double yVal) {
X = xVal;
y = yVal;

}

// Create a Point from an existing Point object
public Point(final Point aPoint) {
x = aPoint.x;
y = aPoint.y;
}
// Move a point
public void move (double xDelta, double yDelta) {
// Parameter values are increments to the current coordinates
x += xDelta;
y += yDelta;
}

// Calculate the distance to another point
public double distance(final Point aPoint) ({
return sqgrt((x - aPoint.x)*(x - aPoint.x)+(y - aPoint.y)*(y - aPoint.y));

}

// Convert a point to a string
public String toString() {

return Double.toString(x) + ", " + vy; // As "x, y"
}

// Coordinates of the point
private double x;
private double y;

The members have been resequenced within the class, with the private members appearing last. You
should maintain a consistent ordering of class members according to their access attributes, as it makes
the code easier to follow. The ordering adopted most frequently is for the most accessible members to
appear first and the least accessible last, but a consistent order is more important than the particular
order you choose.

How It Works

Now the instance variables x and y cannot be accessed or modified from outside the class, as they are
private. The only way these can be set or modified is through methods within the class, either with con-
structors or the move () method. If it is necessary to obtain the values of x and y from outside the class,
as it might well be in this case, a simple function would do the trick. For example:

public double getX() {
return x;

}

Couldn’t be easier really, could it? This makes x freely available, but prevents modification of its value
from outside the class. In general, such methods are referred to as accessor methods and usually have

249

Chapter 5

the form getxxX (). Methods that allow a private data member to be changed are called mutator meth-
ods and are typically of the form setXXx (), where a new value is passed as an argument. For example:

public void setX(double inputX) {
X = inputX;

}

It may seem odd to use a method to alter the value of a private data member when you could just
make it public. The main advantage of using a method in this way is that you can apply validity checks
on the new value that is to be set and prevent inappropriate values from being assigned. Of course, if
you really don’t want to allow the value of a private member to be changed, you don’t include a mutator
method for the class.

Choosing Access Attributes

As you can see from the table of access attributes, all the classes you have defined so far have had mem-
bers that are freely accessible within the same package. This applies both to the methods and the vari-
ables that were defined in the classes. This is not good object-oriented programming practice. As I said
in Chapter 1, one of the ideas behind objects is to keep the data members encapsulated so they cannot be
modified by all and sundry, even from other classes within the same package. On the other hand, the
methods in your classes that provide the operations you want to allow with objects of the class type gen-
erally need to be accessible. They provide the outside interface to the class and define the set of opera-
tions that are possible with objects of the class. Therefore, in the majority of situations with simple
classes (i.e., no subclasses), you should be explicitly specifying your class members as either public or
private, rather than omitting the access attributes.

Broadly, unless you have good reasons for declaring them otherwise, the variables in a public class
should be private and the methods that will be called from outside the class should be public. Even
where access to the values of the variables from outside a class is necessary, you don’t need to make
them public or leave them without an access attribute. As you’ve just seen, you can provide access
quite easily by adding a simple public method to return the value of a data member.

Of course, there are always exceptions:

Q For classes in a package that are not public, and therefore not accessible outside the package, it
may sometimes be convenient to allow other classes in the package direct access to the data
members.

Q If you have data members that have been specified as £inal so that their values are fixed and
they are likely to be useful outside the class, you might as well declare them to be public.

QO You may well have methods in a class that are intended to be used only internally by other
methods in the same class. In this case you should specify these as private.

Q Ina class like the standard class Math, which is just a convenient container for utility functions
and standard data values, you'll want to make everything public.

All of this applies to simple classes. You'll see in the next chapter, when you will be looking at sub-
classes, that there are some further aspects of class structure that you must take into account.

250

Defining Classes

Using Package and Access Attributes

Let’s put together an example that uses a package that you will create. You could put the Point and
Line classes that you defined earlier in a package you could call Geometry. You can then write a pro-
gram that will import these classes and test them. You should already have the Geometry directory set
up if you followed my suggestion with the previous example.

Try It Out Packaging Up the Line and Point Classes

The source and . class files for each class in the package must be in a directory with the name
Geometry. Remember that you need to ensure the path to the directory (or directories if you are storing
.class files separately) Geometry appears in the CLASSPATH environment variable setting before you
try to compile or use either of these two classes. You can best do this by specifying the -classpath
option when you run the compiler or the interpreter.

To include the class Point in the package, the code in Point . java will be:

package Geometry;

import static java.lang.Math.sqgrt;
public class Point {

// Create a point from its coordinates
public Point (double xVal, double yVal) {
X = xVal;
y = yval;
}

// Create a Point from an existing Point object
public Point(final Point aPoint) {

x = aPoint.x;

y = aPoint.y;
}

// Move a point
public void move (double xDelta, double yDelta) {
// Parameter values are increments to the current coordinates
x += xDelta;
y += yDelta;
}

// Calculate the distance to another point
public double distance(final Point aPoint) {
return sqgrt((x - aPoint.x)*(x - aPoint.x)+(y - aPoint.y)*(y - aPoint.y));

}

// Convert a point to a string
public String toString() {

return Double.toString(x) + ", " + vy; // As "x, y"
}

251

Chapter 5

// Retrieve the x coordinate
public double getX() {
return x;

}

// Retrieve the y coordinate
public double getY() {
return y;

}

// Set the x coordinate
public void setX(double inputX) {
X = inputX;

}

// Set the y coordinate

public void setY(double inputY) {
y = inputY;

}

// Coordinates of the point
private double x;
private double y;

Note that you have added the getX (), getY (), setX(), and setY () methods to the class to make the
private data members accessible.

The Line class also needs to be amended to make the methods public and to declare the class as public.
You'll have to change its intersects () method so that it can access the private data members of Point
objects using the set. .. () and get. .. () methods in the Point class. The code in Line. java, with
changes highlighted, will be:

package Geometry;
public class Line ({

// Create a line from two points

public Line(final Point start, final Point end) {
this.start = new Point (start);
this.end = new Point (end) ;

}

// Create a line from two coordinate pairs

public Line(double xStart, double yStart, double xEnd, double yEnd) {
start = new Point (xStart, yStart); // Create the start point
end = new Point (xEnd, yEnd); // Create the end point

}

// Calculate the length of a line

public double length() {
return start.distance(end) ; // Use the method from the Point class

252

Defining Classes

}

// Return a point as the intersection of two lines -- called from a Line object

public Point intersects(final Line linel)

Point localPoint = new Point (0, 0);

{

double num =(this.end.getY() - this.start.getY())
* (this.start.getX()-linel.start.getX())
(this.end.getX () - this.start.getX())

* (this.start.getY() - linel.start.getY());

(this.end.getY
(linel.end.get
(this.end.getX
(linel.end.get

double denom =

*

()
X (
()
Y (

* 1

localPoint.setX(linel.start.getX() +

localPoint.setY(linel.start.getY () +

return localPoint;

}

// Convert a line to a string
public String toString() {
return " (" + start+ "):

}

// Data members
Point start;
Point end;

- this.start.getY(
) - linel.start.get
- this.start.getX(
) - linel.start.get

(linel.end.getX()

(.. + end + ||)u;

))

K==

)
(
)
()

linel.start.getX()) *num/denom) ;
(linel.end.getY() -
linel.start.getY()) *num/denom) ;

// As " (start):(end)"
// that is, "(x1, yl):(x2, y2)"

// Start point of line
// End point of line

Here you have left the data members of the class without an access attribute so they are accessible from
the Point class, but not from classes outside the Geometry package.

How It Works

The package statement at the beginning of each source file defines the package to which the class
belongs. Remember, you still have to save it in the correct directory, Geometry. Without the public
attribute, the classes would not be available to classes outside the Geometry package.

Since you have declared the data members in the class Point as private, they will not be accessible
directly. You have added the methods getX (), getY (), setX(), and setY () to the Point class to make

the values accessible to any class that needs them.

The static import statement that you added earlier for the sgrt () method in the Math class allows the
distance () method to access the sqrt () method without using the Math qualifier.

253

Chapter 5

The Line class hasn’t been updated since the earlier example, so you first have to sort out the access
attributes. The two instance variables are declared as before, without any access attribute, so they can be
accessed from within the package but not from classes outside the package. This is an occasion where
exposing the data members within the package is very convenient, and you can do it without exposing
the data members to any classes using the package. And you have updated the intersects () method to
reflect the changes in accessibility made to the members of the Point class.

You can now write the program that is going to import and use the package that you have just created.

Try It Out Testing the Geometry Package

You can create a succession of points, and create a line joining each pair of successive points in the
sequence. You can then calculate the total line length.

import Geometry.*; // Import the Point and Line classes

public class TryPackage {

public static void main(String[] args) {

double[][] coords = { {1.0, 0.0}, {6.0, 0.0}, {6.0, 10.0},
{10.0,10.0}, {10.0, -14.0}, {8.0, -14.0}};
// Create an array of points and fill it with Point objects
Point[] points = new Point[coords.length];
for(int 1 = 0; 1 < coords.length; i++)
points[i] = new Point (coords[i][0],coords[i][1]);

// Create an array of lines and fill it using Point pairs
Line[] lines = new Line[points.length - 1];

double totalLength = 0.0; // Store total line length here
for(int 1 = 0; 1 < points.length - 1; i++) {
lines[i] = new Line(points[i], points[i+l]); // Create a Line
totalLength += lines[i].length(); // Add its length
System.out.println("Line "+ (i+1)+' ' +lines[i] +

" Length is " + lines[i].length());
}
// Output the total length
System.out.println("\nTotal line length = " + totalLength) ;

You should save this as TryPackage.java in the directory TryPackage. If the path to your Geometry
directory on a PC running Windows is C: \Packages\Geometry, you can compile this with the follow-
ing command:

javac -classpath ".;C:\Packages" TryPackage.java

This assumes the current directory is the one containing the TryPackage . java file, which will be the
TryPackage directory if you followed my suggestion. The -classpath option specifies two paths sepa-
rated by a semicolon. The first path, specified by a period, is the current directory. This is necessary to
enable the TryPackage. java source file to be found. The second path is C: \Packages, which is the
directory containing your Geometry package. Without this the compiler will not be able to find the
classes in the Geometry package, and the compilation will fail.

254

Defining Classes

Once you have a successful compilation, you can execute the program with the command:
java -classpath ".;C:\Packages" TryPackage

When the program executes, you should see the following output:

Line 1 (1.0, 0.0):(6.0, 0.0) Length is 5.0

Line 2 (6.0, 0.0):(6.0, 10.0) Length is 10.0
Line 3 (6.0, 10.0):(10.0, 10.0) Length is 4.0
Line 4 (10.0, 10.0):(10.0, -14.0) Length is 24.0
Line 5 (10.0, -14.0):(8.0, -14.0) Length is 2.0

Total line length = 45.0

How It Works

This example is a handy review of how you can define arrays and also shows that you can declare an
array of objects in the same way as you declare an array of one of the basic types. The dimensions of the
array of arrays, coords, are determined by the initial values that you specified between the braces. The
number of values within the outer braces determines the first dimension. Each of the elements in the
array is itself an array of length two, with each pair of element values enclosed within their own braces.

Since there are six sets of these, you have an array of six elements, each of which is itself an array of two
elements. Each of these elements corresponds to the (x,) coordinates of a point.

You can see from this that you could create an array of arrays with each row having a different number
of elements. The number of initializing values that appear between each inner pair of braces determines
the length of each row, so the rows could all be of different lengths in the most general case.

You declare an array of Point objects with the same length as the number of (x, y) pairs in the coords
array. This array is filled with Point objects in the for loop, which you create using the pairs of coordi-
nate values from the coords array.

Since each pair of Point objects will define a Line object, you need one less element in the 1ines array
than you have in the points array. You create the elements of the lines array in the second for loop
using successive Point objects and accumulate the total length of all the line segments by adding the
length of each Line object to totalLength as it is created. On each iteration of the for loop, you output
the details of the current line. Finally, you output the value of totalLength, which in this case is 45.

Note that the import statement in TryPackage. java adds the classes from the Geometry package to
your program. These classes can be added to any application using the same import statement. You
might like to try putting the classes in the Geometry package in a . jar file and try it out as an exten-
sion. Let’s look at one other aspect of generating your own packages — compiling just the classes in the
package without any program that makes use of them. You can try this out on the Geometry package if
you delete the Line.class and Point.class files from the package directory.

First, make the directory, C: \Packages, that contains the package directory current. Now you can com-
pile just the classes in the Geometry package with the following command:

javac -classpath "C:\Packages" Geometry/*.java

255

Chapter 5

This will compile both the Line and Point classes so you should see the . class files restored in the
Geometry directory. The files to be compiled are specified relative to the current directory as
Geometry/*.java. Under Microsoft Windows this could equally well be Geometry*. java. This spec-
ifies all files in the Geometry subdirectory to the current directory. The classpath must contain the path
to the package directory; otherwise, the compiler will not be able to find the package. You have defined
it here using the -classpath option. You haven’t specified the current directory in the classpath string
because you do not have any files there that need to be compiled. If you had included it in the classpath
string, it would not have made any difference — the classes in the Geometry package would compile just
the same.

Nested Classes

All the classes you have defined so far have been separate from each other —each stored away in its
own source file. Not all classes have to be defined like this. You can put the definition of one class inside
the definition of another class. The inside class is called a nested class. A nested class can itself have
another class nested inside it, if need be.

When you define a nested class, it is a member of the enclosing class in much the same way as the other
class members. A nested class can have an access attribute just like other class members, and the accessi-
bility from outside the enclosing class is determined by the attributes in the same way:

public class Outside {

// Nested class
public class Inside {
// Details of Inside class...

}

// More members of Outside class...

Here the class Inside is nested inside the class Outside. The Inside class is declared as a public mem-
ber of Outside, so it is accessible from outside Outside. Obviously, a nested class should have some
specific association with the enclosing class. Arbitrarily nesting one class inside another would not be
sensible. The enclosing class here is referred to as a top-level class. A top-level class is a class that con-
tains a nested class but is not itself a nested class.

The nested class here has meaning only in the context of an object of type outside. This is because the
Inside class is not declared as a static member of the class outside. Until an object of type Outside
has been created, you can’t create any Inside objects. However, when you declare an object of a class
containing a nested class, no objects of the nested class are necessarily created — unless of course the
enclosing class’s constructor creates them. For example, suppose you create an object with the following
statement:

Outside outer = new Outside();

No objects of the nested class, Inside, are created. If you now wish to create an object of the type of the
nested class, you must refer to the nested class type using the name of the enclosing class as a qualifier.

256

Defining Classes

For instance, having declared an object of type Outside, you can create an object of type Inside as
follows:

Outside.Inside inner = outer.new Inside(); // Define a nested class object

Here you have created an object of the nested class type that is associated with the object outer that you
created earlier. You are creating an object of type Inside in the context of the object outer. Within non-
static methods that are members of Outside, you can use the class name Inside without any qualifica-
tion, as it will be automatically qualified by the compiler with the this variable. So you could create a
new Inside object from within the method of the object outside:

Inside inner = new Inside(); // Define a nested class object

This statement is equivalent to:
this.Inside inner = this.new Inside(); // Define a nested class object

All this implies that a static method cannot create objects of a non-static nested class type. Because the
Inside class is not a static member of the Outside class, such a member could refer to an object which
does not exist—which would be an error if there are no Inside objects extant in the context of an
Outside object. Because Inside is not a static member of the outside class, if a static method in

the outside class tried to create an object of type Inside directly, without first invoking an object

of type outside, it would be trying to create an object outside of that object’s legitimate scope —an
illegal maneuver.

Further, because the Inside class is not a static member of the Outside class, it cannot in turn contain
any static data members itself. Since Inside is not static, it cannot act as a freestanding class with static
members — this would be a logical contradiction.

You typically use nested classes to define objects that at least have a strong association with objects of
the enclosing class type, and often there is a tight coupling between the two. A further use for nested
classes is for grouping a set of related classes under the umbrella of an enclosing class. You will be using
this approach in examples later on in the book.

Static Nested Classes

To make objects of a nested class type independent of objects of the enclosing class type, you can declare
the nested class as static:

public class Outside {
public static class Skinside {
// Details of Skinside
}

// Nested class
public class Inside {
// Details of Inside class...

}

// More members of Outside class...

257

Chapter 5

Now with Skinside inside Outside declared as static, you can declare objects of this nested class
type independent from any objects of type Outside, and regardless of whether you have created any
Outside objects or not. For example:

Outside.Skinside example = new Outside.Skinside();

This is significantly different from what you needed to do for a non-static nested class. Now you must
use the nested class name qualified by the enclosing class name as the type for creating the object. Thus,
the name of a static nested class exists within the context of the outer class and therefore the nested class
name is qualified by the enclosing class name. Note that a static nested class can have static members,
whereas a non-static nested class cannot. A class containing both a static and a non-static nested class is
illustrated in Figure 5-13.

Top-level class ————>| class Outside{

| static membersI

Members of a static nested

class can access static static class Skinsidef

members of the A non-static nested class
top-level class can access any members
} static members } of the top-level class,

regardless of their access
attributes. A non-static
nested class can access
} static members of any
static nested classes
within the same top-
level class

Inon—static members

A non-static nested class

- class Inside
cannot have static members {

|non—static members
|

| non-static members I

Figure 5-13

If the preceding discussion seems a bit confusing in the abstract, you will get a better idea of how a
nested class works in practice with a simple example. You will create a class MagicHat that will define
an object containing a variable number of Rabbit objects. You will put the definition for the class
Rabbit inside the definition of the class MagicHat, so Rabbit will be an example of a nested class. The
basic structure of MagicHat . java will be:

public class MagicHat {
// Definition of the MagicHat class...

258

Defining Classes

// Nested class to define a rabbit
static class Rabbit {
// Definition of the Rabbit class...

Here the nested class is defined as static because you want to be able to have static members of this
class. You will see a little later in the chapter how it might work with a non-static nested class.

Try It Out Rabbits out of Hats

Let’s add the detail of the MagicHat class definition:
import java.util.Random; // Import Random class

public class MagicHat {
static int maxRabbits = 5; // Maximum rabbits in a hat
static Random select = new Random() ; // Random number generator

// Constructor for a hat

public MagicHat (String hatName) {
this.hatName = hatName; // Store the hat name
rabbits = new Rabbit[l+select.nextInt (maxRabbits)]; // Random rabbits

for(int 1 = 0; 1 < rabbits.length; i++) {
rabbits[i] = new Rabbit(); // Create the rabbits

// String representation of a hat
public String toString() {
// Hat name first...
String hatString = "\n" + hatName + " contains:\n";

for (Rabbit rabbit : rabbits) {
hatString += " " + rabbit; // Add the rabbits strings
}

return hatString;

}

private String hatName; // Name of the hat
private Rabbit rabbits[]; // Rabbits in the hat

// Nested class to define a rabbit
static class Rabbit {
// Definition of the Rabbit class...

You can save the source file in a new directory, TryNestedClass. Instead of the old Math.random ()
method that you have been using up to now to generate pseudo-random values, you are using an object
of the class Random that is defined in the java.util package. An object of type Random has a variety of

259

Chapter 5

methods to generate pseudo-random values of different types, and with different ranges. The method
nextInt () that you are using here returns an integer that is zero or greater, but less than the integer
value you pass as an argument. Thus, if you pass the length of an array to it, it will generate a random
index value that will always be legal for the array size.

You can now add the definition of the Rabbit class. When you create a Rabbit object, you want it to
have a unique name so you can distinguish one Rabbit from another. You can generate unique names
by selecting one of a limited set of fixed names and then appending an integer that is different each time
the base name is used. Here’s what you need to add for the Rabbit class definition:

public class MagicHat {
// Definition of the MagicHat class - as before...
// Nested class to define a rabbit
static class Rabbit {

// A name is a rabbit name from rabbitNames followed by an integer
static private String[] rabbitNames = {"Floppsy", "Moppsy",

"Gnasher", "Thumper"};
static private int[] rabbitNamesCount = new int[rabbitNames.length];
private String name; // Name of the rabbit

// Constructor for a rabbit

public Rabbit () {
int index = select.nextInt (rabbitNames.length); // Get random name index
name = rabbitNames[index] + (++rabbitNamesCount[index]) ;

}

// String representation of a rabbit
public String toString() {
return name;

}

Note that the constructor in the Rabbit class can access the select member of the enclosing class,
MagicHat, without qualification. This is possible only with static members of the enclosing class — you
can’t refer to non-static members of the enclosing class here because there is no object of type MagicHat
associated with it.

You can use the following application class to try out the nested class:

public class TryNestedClass {
static public void main(String[] args) {
// Create three magic hats and output them
System.out.println(new MagicHat ("Gray Topper")) ;
System.out.println (new MagicHat ("Black Topper")) ;
System.out.println(new MagicHat ("Baseball Cap"))

i

260

Defining Classes

You should save this source file in the same directory as MagicHat . java. When I ran the program, I got
the following output:

Gray Topper contains:
Floppsyl Moppsyl Gnasherl Floppsy?2 Thumperl

Black Topper contains:
Moppsy?2 Gnasher?2 Floppsy3 Floppsy4

Baseball Cap contains:
Moppsy3

You are likely to get something different.

How It Works

Each MagicHat object will contain a random number of Rabbit objects. The constructor for a
MagicHat object stores the name of the hat in its private member hatName and generates a Rabbit
array with at least one, and up to maxRabbits, elements. This is done with the expression
l+select.nextInt (maxRabbits). Calling nextInt () with the argument maxRabbits will return a
value that is from 0 to maxRabbits-1, inclusive. Adding 1 to this will result in a value from 1 to
maxRabbits, inclusive. The array so created is then filled with Rabbit objects.

The MagicHat class also has a toString () method that returns a String object containing the name of
the hat and the names of all the rabbits in the hat. This assumes that the Rabbit class also has a
toString () method defined. You will be able to use the toString () implicitly in an output statement
when you create and display MagicHat class objects.

The base names that you use to generate rabbit names are defined in the static array rabbitNames[]
in the Rabbit class. The count for each base name, which you will append to the base name to produce a
unique name for a rabbit, is stored in the static array rabbitNamesCount []. This has the same num-
ber of elements as the rabbitNames array, and each element stores a value to be appended to the corre-
sponding name in the rabbitNames array. The Rabbit class has the data member name to store a name
that is initialized in the constructor. A random base name is selected from the rabbitNames[] array
using an index value from 0 up to one less than the length of this array. You then append the current
count for the name incremented by 1, so successive uses of any base name, such as Gnasher, for exam-
ple, will produce names Gnasherl, Gnasher2, and so on. The toString () method for the class returns
the name for the Rabbit object.

The main () method in TryNestedClass creates three MagicHat objects and outputs the string repre-
sentation of each of them. Putting the object as an argument to the print1n () method will call the
toString () method for the object automatically, and the String object that is returned will be output
to the screen.

If you look at the . class files that are produced by the compiler, the Rabbit class has its own file with

the name MagicHat$Rabbit.class. Thus the name of the nested Rabbit class is qualified by the name
of the class that contains it, MagicHat.

261

Chapter 5

Using a Non-Static Nested Class

In the previous example, you could make the Rabbit class non-static by deleting the keyword static
from its definition. However, if you try that, the program will no longer compile and run. The problem is
the static data members rabbitNames and rabbitNamesCount in the Rabbit class. You saw earlier that
a non-static nested class cannot have static members, so you must find an alternative way of dealing
with names if you want to make Rabbit a non-static nested class.

You could consider making these arrays non-static. This has several disadvantages. First, each Rabbit
object would have its own copy of these arrays —an unnecessary duplication of data. A more serious
problem is that the naming process would not work. Because each object has its own copy of the
rabbitNamesCount array, the names that are generated are not going to be unique.

The answer is to keep rabbitNames and rabbitNamesCount as static, but put them in the MagicHat
class instead. Let’s see that working.

Try It Out Accessing the Top-Level Class Members

You need to modify the class definition to the following:

public class MagicHat {

static int maxRabbits = 5; // Maximuum rabbits in a hat
static Random select = new Random() ; // Random number generator
static private String[] rabbitNames = {"Floppsy", "Moppsy",

"Gnasher", "Thumper"};

static private int[] rabbitNamesCount = new int[rabbitNames.length];

// Constructor for a hat

public MagicHat (final String hatName) {
this.hatName = hatName; // Store the hat name
rabbits = new Rabbit[l+select.nextInt (maxRabbits)]; // Random rabbits

for(int 1 = 0; 1 < rabbits.length; i++) {
rabbits[i] = new Rabbit(); // Create the rabbits
}
}

// String representation of a hat
public String toString() {
// Hat name first...
String hatString = "\n" + hatName + " contains:\n";

for (Rabbit rabbit : rabbits) {
hatString += " " + rabbit; // Add the rabbits strings
}
return hatString;
}
private String hatName; // Name of the hat
private Rabbit rabbits[]; // Rabbits in the hat

// Nested class to define a rabbit

class Rabbit {
private String name; // Name of the rabbit

262

Defining Classes

// Constructor for a rabbit
public Rabbit() {

int index = select.nextInt (rabbitNames.length) ;

// Get random name index

name = rabbitNames[index] + (++rabbitNamesCount [index]);

}

// String representation of a rabbit
public String toString() {
return name;

}

The only changes are the deletion of the static keyword in the definition of the Rabbit class and the
movement of data members relating to rabbit names to the MagicHat class. You can run this with the
same version of TryNestedClass, and it should produce output much the same as before.

How It Works

Although the output is much the same, what is happening is distinctly different. The Rabbit objects that
are created in the MagicHat constructor are now associated with the current MagicHat object that is
being constructed. The Rabbit () constructor call is actually this.Rabbit ().

Using a Nested Class Outside the Top-Level Class

You can create objects of an inner class outside the top-level class containing the inner class. As I dis-
cussed, how you do this depends on whether the nested class is a static member of the enclosing class.
With the first version of the MagicHat class, with a static Rabbit class, you could create an independent

rabbit by adding the following statement to the end of main ():

System.out.println("An independent rabbit: " + new MagicHat.Rabbit());

This Rabbit object is completely free — there is no MagicHat object to contain and restrain it. In the case
of a non-static Rabbit class, things are different. Let’s try this using a modified version of the previous

program.

Try It Out Free-Range Rabbits (Almost)

You can see how this works by modifying the main () method in TryNestedClass to create another

MagicHat object, and then create a Rabbit object for it:

static public void main(String[] args) {
// Create three magic hats and output them
System.out.println(new MagicHat ("Gray Topper"));
System.out.println(new MagicHat ("Black Topper"));
System.out.println(new MagicHat ("Baseball Cap"))

’

MagicHat oldHat = new MagicHat ("Old hat");
MagicHat.Rabbit rabbit = oldHat.new Rabbit();
System.out.println(oldHat) ;
System.out.println("\nNew rabbit is: " + rabbit);

// New hat object

// Create rabbit object
// Show the hat

// Display the rabbit

263

Chapter 5

The output produced is as follows:

Gray Topper contains:
Thumperl

Black Topper contains:
Moppsyl Thumper2 Thumper3

Baseball Cap contains:
Floppsyl Floppsy2 Thumperd

0l1d hat contains:
Floppsy3 Thumper5 Thumper6 Thumper7 Thumper8

New rabbit is: Thumper?9

How It Works

The new code first creates a MagicHat object, o1dHat. This will have its own rabbits. You then use this
object to create an object of the class MagicHat .Rabbit. This is how a nested class type is referenced —
with the top-level class name as a qualifier. You can only call the constructor for the nested class in this
case by qualifying it with a MagicHat object name. This is because a non-static nested class can refer to
members of the top-level class —including instance members. Therefore, an instance of the top-level
class must exist for this to be possible.

Note how the top-level object is used in the constructor call. The object name qualifier goes before the
keyword new, which precedes the constructor call for the inner class. This creates an object, rabbit, in
the context of the object o1dHat. This doesn’t mean oldHat has rabbit as a member. It means that if
top-level members are used in the inner class, they will be the members for o1dHat. You can see from
the example that the name of the new rabbit is not part of the o1dHat object, although it is associated
with oldHat. You could demonstrate this by modifying the toString () method in the Rabbit class to:

public String toString() {
return name + " parent: "+hatName;

}

If you run the program again, you will see that when each Rabbit object is displayed, it will also show
its parent hat.

Local Nested Classes

You can define a class inside a method — where it is called a local nested class. It is also referred to as a
local inner class, since a non-static nested class is often referred to as an inner class. You can create
objects of a local inner class only locally — that is, within the method in which the class definition
appears. This is useful when the computation in a method requires the use of a specialized class that is
not required or used elsewhere. A good example is listeners for events that arise as a result of user inter-
action with an application. You'll learn about listeners in Chapter 18.

Alocal inner class can refer to variables declared in the method in which the definition appears, but only
if they are final.

264

Defining Classes

The finalize() Method

You have the option of including a method finalize () in a class definition. This method is called auto-
matically by Java before an object is finally destroyed and the space it occupies in memory is released. In
practice this may be some time after the object is inaccessible in your program. When an object goes out
of scope, it is dead as far as your program is concerned, but the Java Virtual Machine may not get
around to disposing of the remains until later. When it does, it calls the finalize () method for the
object. The form of the finalize () method is:

protected void finalize() {
// Your clean-up code...

}

This method is useful if your class objects use resources that require some special action when they are
destroyed. Typically these are resources that are not within the Java environment and not guaranteed to
be released by the object itself. These could be such things as graphics resources, fonts or other drawing-
related resources that are supplied by the host operating system, or external files on the hard disk.
Leaving these around after an object is destroyed wastes system resources and, in some circumstances
(with graphics resources under some older versions of Windows, for example) if you waste enough of
them, your program, and possibly other programs the system is supporting, may stop working. For
most classes this is not necessary, but if an object opened a disk file for example, but did not guarantee
its closure, you would want to make sure that the file was closed when the object was destroyed. You
can implement the finalize () method to take care of this.

Another use for the finalize () method is to record the fact that the object has been destroyed. You
could implement the finalize () method for the Sphere class to decrement the value of the static
member count, for example. This would make count a measure of how many Sphere objects were
around, rather than how many had been created. It would, however, not be an accurate measure for rea-
sons that I will come to in a moment.

You cannot rely on an object being destroyed when it is no longer available to your program code.
Unless your program calls the System.gc () method, the Java Virtual Machine will get rid of unwanted
objects and free the memory they occupy only if it runs out of memory, or if there is no activity within
your program — for example, when waiting for input. As a result, objects may not get destroyed until
execution of your program ends. You also have no guarantee as to when a finalize () method will be
called. All you are assured is that it will be called before the memory that the object occupied is freed.
Nothing time-sensitive should be left to the finalize () method.

If you don’t allow for the possibility of your objects hanging around, this can cause problems. For exam-
ple, suppose you create an object in a method that opens a file, and rely on the finalize () method to
close it. If you then call this method in a loop, you may end up with a large number of files open at one
time, since the object that is created in each call of the method will not necessarily be destroyed immedi-
ately on return from the method. This introduces the possibility of your program attempting to have
more files open simultaneously than the host operating system allows. In this situation, you should
make sure a file is closed when you have finished with it, by including an object method to close it
explicitly —for example, close ().

265

Chapter 5

The system class also provides another possible approach. You can suggest to the JVM that the
finalize () methods for all discarded objects should be run, if they haven’t been already. You just
call the runFinalization () method:

System.runFinalization() ;

This is another of those “best efforts” deals on the part of the JVM. It will do its very best to run
finalize() for any dead objects that are lying around before returning from the runFinalization ()
method, but like with a lot of things in this life, there are no guarantees.

Native Methods

It is possible to include in a class a method that is implemented in some other programming language,
such as C or C++, external to the Java Virtual Machine. To specify such a method within a class defini-
tion, you use the keyword native in the declaration of the method. For example:

public native long getDatal() ; // Declare a method that is not in Java

Of course, the method will have no body in Java since it is defined elsewhere, where all the work is
done, so the declaration ends with a semicolon. The implementation of a native method will need to use
an interface to the Java environment. The standard API for implementing native methods in C, for exam-
ple, is called JNI— the Java Native Interface.

The major drawback to using native methods in Java is that your program will no longer be portable.
Security requirements for applets embedded in web pages require that the code must all be written in
Java— using native methods in an applet is simply not possible. Since the primary reasons for using
Java are the portability of the code and the ability to produce applets, the need for you to add native
methods to your Java programs will be minimal. I will therefore not delve any deeper into this topic.

Summary

In this chapter you've learned all the essentials of defining your own classes. You can now create your
own class types to fit the context of the problems you are dealing with. You will build on this in the next
chapter to enable you to add more flexibility to the operations on your class objects by learning how to
realize polymorphism.

The important points covered in this chapter are:

Q Aclass definition specifies the variables and methods that are members of the class.

0 Each class must be saved in a file with the same name as the class, and with the extension
.java.

Q Class variables are declared using the keyword static, and one instance of each class variable
is shared among all objects of a class.

266

Defining Classes

Each object of a class will have its own instance variables — these are variables declared without
using the keyword static.

Methods that are specified as static can be called even if no class objects exist, but a static
method cannot refer to instance variables.

Methods that are not specified as static can access any of the variables in the class directly.
Recursive methods are methods that call themselves.

Access to members of a class is determined by the access attributes that are specified for each of
them. These can be public, private, protected, package private, or nothing at all.

Classes can be grouped into a package. If a class in a package is to be accessible from outside the
package, the class must be declared using the keyword public.

To designate that a class is a member of a package, you use a package statement at the begin-
ning of the file containing the class definition.

To add classes from a package to a file, you use an import statement immediately following
any package statement in the file.

A nested class is a class that is defined within the definition of another class. Objects of a nested
class type can be created only in the context of an object of the outer class type.

Objects of a static nested class type can be created independently, but the static nested class
name must be qualified by the outer class name.

A native method is a method implemented in a language other than Java. Java programs con-
taining native methods cannot be applets and are no longer portable.

Exercises

You can download the source code for the examples in the book and the solutions to the following exer-
cises from http: //www.wrox.com.

1.

Define a class for rectangle objects defined by two points, the top-left and bottom-right corners
of the rectangle. Include a constructor to copy a rectangle, a method to return a rectangle object
that encloses the current object and the rectangle passed as an argument, and a method to dis-
play the defining points of a rectangle. Test the class by creating four rectangles and combining
these cumulatively to end up with a rectangle enclosing them all. Output the defining points of
all the rectangles you create.

Define a class, mcmLength, to represent a length measured in meters, centimeters, and millime-
ters, each stored as integers. Include methods to add and subtract objects, to multiply and
divide an object by an integer value, to calculate an area resulting from the product of two
objects, and to compare objects. Include constructors that accept three arguments —meters, cen-
timeters, and millimeters; one integer argument in millimeters; one double argument in cen-
timeters; and no arguments, which creates an object with the length set to zero. Check the class
by creating some objects and testing the class operations.

267

Chapter 5

268

3.

Define a class, tkgWeight, to represent a weight in tons, kilograms, and grams, and include a
similar range of methods and constructors as the previous example. Demonstrate this class by
creating and combining some class objects.

Put both the previous classes in a package called Measures. Import this package into a program
that will calculate and display the total weight of the following: 200 carpets —size: 4 meters by
2 meters 9 centimeters, that weigh 1.25 kilograms per square meter; and 60 carpets —size: 3
meters 57 centimeters by 5 meters, that weigh 1.05 kilograms per square meter.

Extending Classes and
Inheritance

A very important part of object-oriented programming allows you to create a new class based on a
class that has already been defined. The class that you use as the base for your new class can be
one that you have defined, a standard class in Java, or a class defined by someone else — perhaps
from a package supporting a specialized application area.

This chapter focuses on how you can reuse existing classes by creating new classes based on the
ones you have and explores the ramifications of using this facility, and the additional capabilities it
provides. You will also delve into an important related topic— interfaces —and how you can use
them.

In this chapter you will learn:

0 How to reuse classes by defining a new class based on an existing class

What polymorphism is and how to define your classes to take advantage of it
What an abstract method is

What an abstract class is

What an interface is and how you can define your own interfaces

How to use interfaces in your classes

00000 O

How interfaces can help you implement polymorphic classes

Using Existing Classes

Let’s start by understanding the jargon. Defining a new class based on an existing class is called
derivation. The new class, or derived class, is referred to as a direct subclass of the class from
which it is derived. The original class is called a base class because it forms the base for the defini-
tion of the derived class. The original class is also referred to as a superclass of the derived class.

Chapter 6

You can also derive a new class from a derived class, which in turn was derived from some other
derived class, and so on. This is illustrated in Figure 6-1.

class A

direct superclass of B
indirect superclass of C

«— derived from—

class B

direct subclass of A

deri —
direct superclass of C <— derived from

class C

direct subclass of B
indirect subclass of A

Figure 6-1

This shows just three classes in a hierarchy, but there can be as many as you like.

Let’s consider a more concrete example. You could define a class Dog that could represent a dog of any
kind:

class Dog {
// Members of the Dog class...
}

This might contain a data member identifying the name of a particular dog, such as Lassie or Poochy, and
another data member to identify the breed, such as Border Collie or Pyrenean Mountain Dog. From the Dog
class, you could derive a Spaniel class that represented dogs that were spaniels:

class Spaniel extends Dog {

// Members of the Spaniel class...
}

270

Extending Classes and Inheritance

The extends keyword that you use here identifies that Dog is a base class for Spaniel, so an object of
type Spaniel will have members that are inherited from the Dog class, in addition to the members of the
Spaniel class that appear in its definition. The breed would be Spaniel for all instances of the class
Spaniel although in general the name for each spaniel would be different. The Spaniel class might
have some additional data members that characterize the specifics of what it means to be a spaniel. You
will see in a moment how you can arrange for the base class data members to be set appropriately.

A spaniel object is a specialized instance of a Dog object. This reflects real life. A spaniel is obviously a
dog and will have all the properties of a basic dog, but it has some unique characteristics of its own that
distinguish it from all the dogs that are not spaniels. The inheritance mechanism that adds all the prop-
erties of the base class — Dog in this instance —to those in the derived class is a good model for the real
world. The members of the derived class define the properties that differentiate it from the base type, so
when you derive one class from another, you can think of your derived class as a specification for objects
that are specializations of the base class object. Another way of thinking about this is that the base class
defines a set of objects and a derived class defines a specific subset of those that have particular defining
characteristics.

Class Inheritance

In summary, when you derive a new class from a base class, the process is additive in terms of what
makes up a class definition. The additional members that you define in the new class establish what
makes a derived class object different from a base class object. Any members that you define in the new
class are in addition to those that are already members of the base class. For your Spaniel class that you
derived from Dog, the data members to hold the name and the breed that are defined for the class Dog
would automatically be in the class Spaniel. A Spaniel object will always have a complete Dog object
inside it— with all its data members and methods. This does not mean that all the members defined in
the Dog class are available to methods that are specific to the Spaniel class. Some are and some aren’t.
The inclusion of members of a base class in a derived class so that they are accessible in that derived
class is called class inheritance. An inherited member of a base class is one that is accessible within the
derived class. If a base class member is not accessible in a derived class, then it is not an inherited mem-
ber of the derived class, but base class members that are not inherited still form part of a derived class
object.

An inherited member of a derived class is a full member of that class and is freely accessible to any
method in the class. Objects of the derived class type will contain all the inherited members of the base
class —both fields and methods, as well as the members that are specific to the derived class. Remember
that a derived class object always contains a complete base class object within it, including all the fields
and methods that are not inherited. The next step is to take a closer look at how inheritance works and
how the access attribute of a base class member affects its visibility in a derived class.

You need to consider several aspects of defining and using a derived class. First of all, you need to know
which members of the base class are inherited in the derived class. I will explain what this implies for
data members and methods separately — there are some subtleties here you should be quite clear on. I
will also look at what happens when you create an object of the derived class. There are some wrinkles
in this context that require closer consideration. Let’s start by looking at the data members that are inher-
ited from a base class.

271

Chapter 6

Inheriting Data Members

Figure 6-2 shows which access attributes permit a class member to be inherited in a subclass. It shows
what happens when the subclass is defined in either the same package or a different package from that
containing the base class. Remember that inheritance implies accessibility of the member in a derived
class, not just presence.

SubClass2 public MyClass SubClass1
No int a; inherited +— int a;
public int b; < inherited public int b; ——inherited 4+— public int b;
protected int c; inherited protected int ¢c; ——inherited - protected int c;
No private int e; ——\No
Package2 Packagel
Figure 6-2

Remember that a class itself can be specified as public. This makes the class acces-
sible from any package anywhere. A class that is not declared as public can be
accessed only from classes within the same package. This means, for example, that
you cannot define objects of a non-public class type within classes in other pack-
ages. It also means that to derive a new class from a class in a different package, the
base class must be declared as public. If the base class is not declared as public, it
cannot be reached directly from outside the package.

As you can see from Figure 6-2, a subclass that you define in the same package as its base class inherits
everything except for private data members of the base. If you define a subclass outside the package
containing the base class, the private data members are not inherited, and neither are any data mem-
bers in the base class that you have declared without access attributes. Members defined as private in
the base class are never inherited under any circumstances. The base class, MyClass, must be declared as
public in Packagel, otherwise it would not be accessible from package2 as the base class for
SubClass?2.

You should also be able to see where the explicit access specifiers now sit in relation to one another. The

public specifier is the least restrictive on class members since a public member is available every-
where, protected comes next, and prevents access from classes outside of a package, but does not limit

272

Extending Classes and Inheritance

inheritance — provided the class itself is public. Putting no access specifier on a class member limits
access to classes within the same package and prevents inheritance in subclasses that are defined in a
different package. The most restrictive is private since access is constrained to the same class.

The inheritance rules apply to members of a class that you have declared as static—as well as non-
static members. You will recall that only one occurrence of each static variable in a class exists and is
shared by all objects of the class, whereas each object has its own set of instance variables. So, for exam-
ple, a variable that you declare as private and static in the base class is not inherited in a derived
class, whereas a variable that you declare as protected and static will be inherited and will be shared
between all objects of a derived class type, as well as objects of the base class type.

Hidden Data Members

You can define a data member in a derived class with the same name as a data member in the base class.
This is not a recommended approach to class design generally, but it’s possible that it can arise uninten-
tionally. When it occurs, the base class data member may still be inherited, but will be hidden by the
derived class member with the same name. The hiding mechanism applies regardless of whether the
respective types or access attributes are the same or not — the base class member will be hidden in the
derived class if the names are the same.

Any use of the derived class member name will always refer to the member defined as part of the
derived class. To refer to the inherited base class member, you must qualify it with the keyword super
to indicate it is the member of the superclass that you want. Suppose you have a data member value as
a member of the base class, and a data member with the same name in the derived class. In the derived
class, the name value references the derived class member, and the name super.value refers to the
member inherited from the base class. Note that you cannot use super . super. something to refer to a
member name hidden in the base class of a base class.

In most situations you won’t need to refer to inherited data members in this way, as you would not
deliberately set out to use duplicate names. The situation can commonly arise if you are using a class as
a base that is subsequently modified by adding data members —it could be a Java library class, for
example, or some other class in a package designed and maintained by someone else. Since your code
did not presume the existence of the base class member with the same name as your derived class data
member, hiding the inherited member is precisely what you want. It allows the base class to be altered
without breaking your code.

Inherited Methods

Ordinary methods in a base class, by which I mean methods that are not constructors, are inherited
in a derived class in the same way as the data members of the base class. Those methods declared as
private in a base class are not inherited, and those that you declare without an access attribute are
inherited only if you define the derived class in the same package as the base class. The rest are all
inherited.

Constructors are different from ordinary methods. Constructors in the base class are never inherited,

regardless of their attributes. You can look into the intricacies of constructors in a class hierarchy by con-
sidering how derived class objects are created.

273

Chapter 6

Objects of a Derived Class

I said at the beginning of this chapter that a derived class extends a base class. This is not just jargon —it
really does do this. As I have said several times, inheritance is about what members of the base class are
accessible in a derived class, not what members of the base class exist in a derived class object. An object
of a subclass will contain all the members of the original base class, plus any new members that you
have defined in the derived class. This is illustrated in Figure 6-3.

Base Class Subclass Subclass Object
public \\ Inherited public \ Inherited Members
protected j protected j public

protected
no attribute \
private Inaccessible
constructors J Basic Members
subclass constructors New Members
subclass constructors
subclass data members
subclass methods / subclass data members
subclass methods
Members of a Subclass Object
Figure 6-3

The base members are all there in a derived class object—you just can’t access some of them in the
methods that you have defined for the derived class. The fact that you can’t access some of the base class
members does not mean that they are just excess baggage — they are essential members of your derived
class objects. A spaniel object needs all the Dog attributes that make it a Dog object, even though some
of these may not be accessible to the Spaniel methods. Of course, the base class methods that are inher-
ited in a derived class can access all the base class members, including those that are not inherited.

Though the base class constructors are not inherited in your derived class, you can still call them to ini-
tialize the base class members. More than that, if you don’t call a base class constructor from your
derived class constructor, the compiler will try to arrange to do it for you. The reasoning behind this is
that since a derived class object has a base class object inside it, a good way to initialize the base part of a
derived class object is using a base class constructor.

To understand this better, let’s take a look at how it works in practice.

274

Extending Classes and Inheritance

Deriving a Class

Let’s take a simple example. Suppose you have defined a class to represent an animal as follows:

public class Animal {
public Animal (String aType) {
type = new String(aType) ;
}

public String toString() {
return "This is a " + type;

}

private String type;

This has a member, type, to identify the type of animal, and its value is set by the constructor. You also
have a tostring () method for the class to generate a string representation of an object of the class.

You can now define another class, based on the class Animal, to define dogs. You can do this immedi-

ately, without affecting the definition of the class Animal. You could write the basic definition of the
class Dog as:

public class Dog extends Animal {
// constructors for a Dog object

private String name; // Name of a Dog
private String breed; // Dog breed
}

You use the keyword extends in the definition of a subclass to identify the name of the direct super-
class. The class Dog will inherit only the method toString () from the class Animal, since the private
data member and the constructor cannot be inherited. Of course, a Dog object will have a type data
member that needs to be set to "Dog", it just can’t be accessed by methods that you define in the Dog
class. You have added two new instance variables in the derived class. The name member holds the

name of the particular dog, and the breed member records the kind of dog it is. All you need to add is
the means of creating Dog class objects.

Derived Class Constructors

You can define two constructors for the subclass Dog, one that just accepts an argument for the name of a
dog and another that accepts both a name and the breed of the Dog object. For any derived class object,
you need to make sure that the private base class member, type, is properly initialized. You do this by
calling a base class constructor from the derived class constructor:

public class Dog extends Animal {
public Dog(String aName) {
super ("Dog") ;
name = aName;

// Call the base constructor
// Supplied name
breed = "Unknown"; // Default breed value

}

275

Chapter 6

public Dog(String aName, String aBreed) ({

super ("Dog") ; // Call the base constructor
name = aName; // Supplied name
breed = aBreed; // Supplied breed

}

private String name; // Name of a Dog

private String breed; // Dog breed

}
The statement in the derived class constructors that calls the base class constructor is:
super ("Dog") ; // Call the base constructor

The use of the super keyword here as the method name calls the constructor in the superclass — the
direct base class of the class Dog, which is the class Animal. This will initialize the private member
type to "Dog" since this is the argument passed to the base constructor. The superclass constructor is
always called in this way in the subclass, using the name super rather than the base class constructor
name Animal. The super keyword has other uses in a derived class. You have already seen that you can
access a hidden member of the base class by qualifying the member name with super.

Calling the Base Class Constructor

You should always call an appropriate base class constructor from the constructors in your derived class.
The base class constructor call must be the first statement in the body of the derived class constructor. If
the first statement in a derived class constructor is not a call to a base class constructor, the compiler will
insert a call to the default base class constructor for you:

super () ; // Call the default base constructor

Unfortunately, this can result in a compiler error, even though the offending statement was inserted
automatically. How does this come about?

When you define your own constructor in a class, as is the case for the Animal class, no default construc-
tor is created by the compiler. It assumes you are taking care of all the details of object construction,
including any requirement for a default constructor. If you have not defined your own default construc-
tor in a base class — that is, a constructor that has no parameters — when the compiler inserts a call to
the default constructor from your derived class constructor, you will get a message saying that the con-
structor is not there.

Try It Out Testing a Derived Class

You can try out the Dog class with the following code:

public class TestDerived ({
public static void main(String[] args) {
Dog aDog = new Dog("Fido", "Chihuahua"); // Create a dog
Dog starDog = new Dog("Lassie"); // Create a Hollywood dog

276

Extending Classes and Inheritance

System.out.println (aDog) ; // Let's hear about it
System.out.println (starDog) ; // and the star
}
}

Of course, the files containing the Dog and Animal class definition must be in the same directory as
TestDerived. java. The example produces the following rather uninformative output:

This is a Dog
This is a Dog

How It Works

Here you create two Dog objects and then output information about them using the println () method.
This will implicitly call the toString () method for each. You could try commenting out the call to
super () in the constructors of the derived class to see the effect of the compiler’s efforts to call the
default base class constructor.

You have called the inherited method toString () successfully, but this knows only about the base class
data members. At least you know that the private member, type, is being set up properly. What you
really need though is a version of toString () for the derived class.

Overriding a Base Class Method

You can define a method in a derived class that has the same signature as a method in the base class. The
access attribute for the method in the derived class can be the same as that in the base class or less
restrictive, but it cannot be more restrictive. This means that if you declare a method as public in the
base class, for example, any derived class definition of the method must also be declared as public. You
cannot omit the access attribute in the derived class in this case, or specify it as private or protected.

When you define a new version of a base class method in this way, the derived class method will be
called for a derived class object, not the method inherited from the base class. The method in the derived
class overrides the method in the base class. The base class method is still there though, and it is still
possible to call it in a derived class. Let’s see an overriding method in a derived class in action.

Try It Out Overriding a Base Class Method

You can add the definition of a new version of toString () to the definition of the derived class, Dog:
// Present a dog's details as a string
public String toString() {
return "It's " + name + " the " + breed;
}
With this change to the example, the output will now be:

It's Fido the Chihuahua
It's Lassie the Unknown

277

Chapter 6

How It Works

The tostring () method in the Dog class overrides the base class method because it has the same signa-
ture. You will recall from the last chapter that the signature of a method is determined by its name and
the parameter list. So, now whenever you use the toString () method for a Dog object either explicitly
or implicitly, this method will be called —not the base class method.

Note that you are obliged to declare the toString () method as public. When you
override a base class method, you cannot change the access attributes of the new ver-
sion of the method to be more stringent than that of the base class method that it over-
rides. Since public is the least stringent access attribute, you have no other choice.

Of course, ideally you would like to output the member, type, of the base class, but you can’t reference
this in the derived class because it is not inherited. However, you can still call the base class version of
toString (). It’s another job for the super keyword.

Try It Out Calling a Base Class Method from a Derived Class

You can rewrite the derived class version of toString () to call the base method:

// Present a dog's details as a string
public String toString() {
return super.toString() + "\nIt's " + name + " the " + breed;

}
Running the example again will produce the following output:

This is a Dog
It's Fido the Chihuahua
This is a Dog
It's Lassie the Unknown

How It Works

You use the super keyword to identify the base class version of toString () that is hidden by the
derived class version. You used the same notation to refer to superclass data members that were hidden
by derived class data members with the same name. Calling the base class version of toString ()
returns the String object for the base part of the object. You then append extra information to this about
the derived part of the object to produce a String object specific to the derived class.

278

Extending Classes and Inheritance

Choosing Base Class Access Attributes

You now know the options available to you in defining the access attributes for classes you expect to use
to define subclasses. You know what effect the attributes have on class inheritance, but how do you
decide which you should use?

There are no hard and fast rules —what you choose will depend on what you want to do with your
classes in the future, but there are some guidelines you should consider. They follow from basic object-
oriented principles:

0 Youshould declare the methods that make up the external interface to a class as public. As long
as there are no overriding methods defined in a derived class, public base class methods will be
inherited and fully available as part of the external interface to the derived class. You should not
normally make data members public unless they are constants intended for general use.

Q If you expect other people will use your classes as base classes, your classes will be more secure
if you keep data members private, and provide public methods for accessing and manipulat-
ing them when necessary. In this way you control how a derived class object can affect the base
class data members.

0 Making base class members protected allows them to be accessed from other classes in the
same package, but prevents direct access from a class in another package. Base class members
that are protected are inherited in a subclass and can, therefore, be used in the implementation
of a derived class. You can use the protected option when you have a package of classes in
which you want uninhibited access to the data members of any class within the same package —
because they operate in a closely coupled way, for instance —but you want free access to be
limited to subclasses in other packages.

Q Omitting the access attribute for a class member makes it directly available to other classes in
the same package, while preventing it from being inherited in a subclass that is not in the same
package —it is effectively private when viewed from another package.

Polymorphism

Class inheritance is not just about reusing classes that you have already defined as a basis for defining a
new class. It also adds enormous flexibility to the way in which you can program your applications,
with a mechanism called polymorphism. So what is polymorphism?

The word polymorphism generally means the ability to assume several different forms or shapes. In pro-
gramming terms it means the ability of a single variable of a given type to be used to reference objects of
different types and to automatically call the method that is specific to the type of object the variable ref-
erences. This enables a single method call to behave differently, depending on the type of the object to
which the call applies. This is illustrated in Figure 6-4.

279

Chapter 6

Dog aDog; // Variable to hold any kind of dog object

Dog
bark()
A
Spaniel Chihuahua Collie
bark() ba&k() bark()

Call any of these methods depending on the object type

N S

aDog.bark()

The variable aDog can be used to refer to an object of the
base class type, or an object of any of the derived class types.

Figure 6-4

A few requirements must be fulfilled to get polymorphic behavior, so let’s step through them.

First of all, polymorphism works with derived class objects. It also depends on a new capability that is
possible within a class hierarchy that you haven’t met before. Up to now you have always been using a
variable of a given type to reference objects of the same type. Derived classes introduce some new flexi-
bility in this. Of course, you can store a reference to a derived class object in a variable of the derived
class type, but you can also store it in a variable of any direct or indirect base class type. More than that,
a reference to a derived class object must be stored in a variable of a direct or indirect class type for poly-
morphism to work. For example, Figure 6-4 illustrates how a variable of type Dog can be used to store a
reference to an object of any type derived from Dog. If the Dog class were derived from the Animal class
here, a variable of type Animal could also be used to reference Spaniel, Chihuahua, or Collie objects.

Polymorphism means that the actual type of the object involved in a method call determines which

method is called, rather than the type of the variable being used to store the reference to the object. In
Figure 6-4, if aDog contains a reference to a Spaniel object, the bark () method for that object will be

280

Extending Classes and Inheritance

called. If it contains a reference to a Collie object, the bark () method in the Collie class will be called.
To get polymorphic operation when calling a method, the method must be declared as a member of the
base class —the class type of the variable you are using —as well as being declared as a member of the
class type of the object involved. So in the example, the Dog class must contain a bark () method, as
must each of the derived classes. You cannot call a method for a derived class object using a variable of a
base class type if the method is not a member of the base class. Any definition of the method in a derived
class must have the same signature as in the base class and must have an access specifier that is no more
restrictive.

Methods that have the same signature have the same name, and have parameter lists with the same
number of parameters where corresponding parameters are of the same type. You have a bit more flexi-
bility with the return type when you are defining a polymorphic method. For polymorphic behavior,
the return type of the method in the derived class must either be the same as that of the base class
method, or must be of a type that is a subclass of the base class type. Where the return types are different
but the return type of the method in the derived class is a subclass of the return type in the base class,
the return types are said to be covariant. Thus the type of object returned by the derived class method is
just a specialization of the type returned by the base class method. For example, suppose that you have a
method defined in a base class Animal that has a return type of type Animal:

public class Animal {
Animal createCreature() {
// Code to create an Animal object and return a reference to it...

}

// Rest of the class definition...

You can redefine the createCreature () method in a derived class Dog like this:

public class Dog extends Animal {
Dog createCreature() {
// Code to create a Dog object and return a reference to it...

}

// Rest of the class definition...

}

As long as the return type for the method in the derived class is a subclass of the base class type, as you
have here, even though the return types are different you can still get polymorphic behavior. I can sum-
marize the conditions that need to be met if you want to use polymorphism as follows:

The method call for a derived class object must be through a variable of a base class type.
The method called must be defined in the derived class.
The method called must also be declared as a member of the base class.

The method signatures for the method in the base and derived classes must be the same.

o 0 UJ oo

Either the method return type must be the same in the base and derived classes or the return
type must be covariant.

(]

The method access specifier must be no more restrictive in the derived class than in the base.

281

Chapter 6

When you call a method using a variable of a base class type, polymorphism results in the method that
is called being selected based on the type of the object stored, not the type of the variable. Because a vari-
able of a base type can store a reference to an object of any derived type, the kind of object stored will
not be known until the program executes. Thus the choice of which method to execute has to be made
dynamically when the program is running — it cannot be determined when the program is compiled.
The bark () method that is called through the variable of type Dog in the earlier illustration may do dif-
ferent things depending on what kind of object the variable references. As you will see, this introduces a
whole new level of capability in programming using objects. It implies that your programs can adapt at
run time to accommodate and process different kinds of data quite automatically.

Note that polymorphism applies only to methods. It does not apply to data members. When you access
a data member of a class object, the variable type always determines the class to which the data member
belongs. This implies that a variable of type Dog can only be used to access data members of the Dog
class. Even when it references an object of type Spaniel, for example, you can only use it to access data
members of the Dog part of a Spaniel object.

Using Polymorphism

As you have seen, polymorphism relies on the fact that you can assign an object of a subclass type to a
variable that you have declared as being of a superclass type. Suppose you declare the variable:

Animal theAnimal = null; // Declare a variable of type Animal

You can quite happily make theAnimal refer to an object of any of the subclasses of the class Animal.
For example, you could use it to reference an object of type Dog:

theAnimal = new Dog("Rover");

As you might expect, you could also initialize the variable theAnimal to reference an object when you
declare it:

Animal theAnimal = new Dog("Rover");

This principle applies quite generally. You can use a variable of a base class type to store a reference to an
object of any class type that you have derived, directly or indirectly, from the base. You can see what
magic can be wrought with this in practice by extending the previous example. You can add a new
method to the class Dog that will display the sound a Dog makes. You can add a couple of new sub-
classes that represent some other kinds of animals.

Try It Out Enhancing the Dog Class

First of all you will enhance the class Dog by adding a method to display the sound that a dog makes:

public class Dog extends Animal {
// A barking method
public void sound() {
System.out.println ("Woof Woof") ;
}

// Rest of the class as before...

282

Extending Classes and Inheritance

You can also derive a class cat from the class Animal:

public class Cat extends Animal {
public Cat(String aName) {

super ("Cat") ; // Call the base constructor
name = aName; // Supplied name
breed = "Unknown"; // Default breed value

}

public Cat(String aName, String aBreed) {

super ("Cat") ; // Call the base constructor
name = aName; // Supplied name
breed = aBreed; // Supplied breed

}

// Return a String full of a cat's details
public String toString() {
return super.toString() + "\nIt's " + name + " the " + breed;

}

// A miaowing method
public void sound() {
System.out.println("Miiaocoww") ;

}

private String name; // Name of a cat
private String breed; // Cat breed
Just to make it a crowd, you can derive another class — of ducks:

public class Duck extends Animal ({
public Duck(String aName) {

super ("Duck") ; // Call the base constructor
name = aName; // Supplied name
breed = "Unknown"; // Default breed value

}

public Duck(String aName, String aBreed) {

super ("Duck") ; // Call the base constructor
name = aName; // Supplied name
breed = aBreed; // Supplied breed

}

// Return a String full of a duck's details
public String toString() {
return super.toString() + "\nIt's " + name + " the " + breed;

}

// A quacking method

public void sound() {
System.out.println("Quack quackquack");

}

283

Chapter 6

private String name; // Duck name
private String breed; // Duck breed
}

You can fill the whole farmyard, if you need the practice, but three kinds of animal are sufficient to show
you how polymorphism works.

You need to make one change to the class Animal. To select the method sound () dynamically for
derived class objects, it needs to be a member of the base class. You can add a content-free version of
sound () to the class Animal:

class Animal {
// Rest of the class as before...

// Dummy method to be implemented in the derived classes
public void sound() {}

Only a particular Animal object will make a specific sound, so the sound () method in the class does
nothing. You need a program that will use these classes. To give the classes a workout, you can create an
array of type Animal and populate its elements with different subclass objects. You can then select an
object random from the array, so that there is no possibility that the type of the object selected is known
ahead of time. Here’s the code to do that:

import java.util.Random;

public class TryPolymorphism {
public static void main(String[] args) {
// Create an array of three different animals
Animal[] theAnimals = {

new Dog ("Rover", "Poodle"),

new Cat("Max", "Abyssinian"),

new Duck ("Daffy", "Aylesbury")

iy

Animal petChoice; // Choice of pet
Random select = new Random() ; // Random number generator
// Make five random choices of pet
for(int i = 0; 1 < 5; i++) {

// Choose a random animal as a pet
petChoice = theAnimals|[select.nextInt (theAnimals.length)];

System.out.println("\nYour choice:\n" + petChoice) ;
petChoice.sound() ; // Get the pet's reaction

284

Extending Classes and Inheritance

When I ran this I got the following output:

Your choice:

This is a Duck

It's Daffy the Aylesbury
Quack quackquack

Your choice:

This is a Cat

It's Max the Abyssinian
Miiaooww

Your choice:

This is a Duck

It's Daffy the Aylesbury
Quack quackquack

Your choice:

This is a Duck

It's Daffy the Aylesbury
Quack quackquack

Your choice:

This is a Cat

It's Max the Abyssinian
Miiaooww

The chances are good that you will get a different set from this, and a different set again when you rerun
the example. The output from the example clearly shows that the methods are being selected at run time,
depending on which object happens to get stored in the variable petChoice.

How It Works

The definition of the sound () method in the Animal class has no statements in the body, so it will do
nothing if it is executed. You will see a little later in this chapter how you can avoid including the empty
definition for the method but still get polymorphic behavior in the derived classes.

You need the import statement because you use a Random class object in the example to produce
pseudo-random index values in the way you have seen before. The array theAnimals of type Animal
contains a Dog object, a Cat object, and a Duck object. You select objects randomly from this array in the
for loop using the Random object select, and store the selection in petChoice. You then call the
toString () and sound () methods using the object reference stored. The effect is that the appropriate
method is selected automatically to suit the object stored, so the program operates differently depending
on what type of object is referenced by petChoice.

Of course, you call the tostring () method implicitly in the argument to println (). The compiler will
insert a call to this method to produce a String representation of the object referenced by petChoice.
The particular toString () method will automatically be selected to correspond with the type of object
referenced by petChoice. This would still work even if you had not included the toString () method
in the base class. You'll see a little later in this chapter that there is a toString () method in every class
that you define, regardless of whether you define one or not.

285

Chapter 6

Polymorphism is a fundamental part of object-oriented programming. You'll be making extensive use of
polymorphism in many of the examples you will develop later in the book, and you will find that you
use it often in your own applications and applets. But this is not all there is to polymorphism in Java,
and I will come back to it again later in this chapter.

Multiple Levels of Inheritance

As I indicated at the beginning of the chapter, there is nothing to prevent a derived class from being
used as a base class. For example, you could derive a class Spaniel from the class Dog without any
problem:

Try It Out A Spaniel Class

Start the spaniel class off with this minimal code:

class Spaniel extends Dog ({
public Spaniel (String aName) {
super (aName, "Spaniel");
}
}

To try this out you can add a Spaniel object to the array theAnimals in the previous example, by
changing the statement to:

Animal[] theAnimals = {

new Dog ("Rover", "Poodle"),
new Cat("Max", "Abyssinian"),
new Duck("Daffy", "Aylesbury"),
new Spaniel ("Fido")

}i

Don’t forget to add in the comma after the Duck object. Try running the example again a few times.

How It Works

The class spaniel will inherit members from the class Dog, including the members of Dog that are
inherited from the class Animal. The class Dog is a direct superclass, and the class Animal is an indirect
superclass of the class Spaniel. The only additional member of Spaniel is the constructor. This calls
the Dog class constructor using the keyword super and passes the value of aName and the String object
"Spaniel" toit.

If you run the TryPolymorphism class a few times, you should get a choice of the Spaniel object from
time to time. Thus, the class Spaniel is also participating in the polymorphic selection of the methods
toString () and sound (), which in this case are inherited from the parent class, Dog. The inherited
toString () method works perfectly well with the Spaniel object, but if you wanted to provide a
unique version, you could add it to the Spaniel class definition. This would then be automatically
selected for a Spaniel object rather than the method inherited from the Dog class.

286

Extending Classes and Inheritance

Abstract Classes

In the Animal class, you introduced a version of the sound () method that did nothing because you
wanted to call the sound () method in the subclass objects dynamically. The method sound () has no
meaning in the context of the generic class Animal, so implementing it does not make much sense. This
situation often arises in object-oriented programming. You will often find yourself creating a superclass
from which you will derive a number of subclasses, just to take advantage of polymorphism.

To cater for this, Java has abstract classes. An abstract class is a class in which one or more methods are
declared, but not defined. The bodies of these methods are omitted, because, as in the case of the method
sound () in the Animal class, implementing the methods does not make sense. Since they have no defi-
nition and cannot be executed, they are called abstract methods. The declaration for an abstract method
ends with a semicolon and you specify the method with the keyword abstract to identify it as such. To
declare that a class is abstract you just use the keyword abstract in front of the class keyword in the
first line of the class definition.

You could have defined the class Animal as an abstract class by amending it as follows:

public abstract class Animal {
public abstract void sound() ; // Abstract method

public Animal (String aType) {
type = new String(aType) ;
}

public String toString() {
return "This is a " + type;

}

private String type;
}

The previous program will work just as well with these changes. It doesn’t matter whether you prefix
the class name with public abstract or abstract public, they are equivalent, but you should be
consistent in your usage. The sequence public abstract is typically preferred. The same goes for the
declaration of an abstract method, but both public and abstract must precede the return type specifi-
cation, which is void in this case.

An abstract method cannot be private since a private method cannot be inherited and therefore
cannot be redefined in a subclass.

You cannot instantiate an object of an abstract class, but you can declare a variable of an abstract class
type. With the new abstract version of the class Animal, you can still write:

Animal thePet = null; // Declare a variable of type Animal

just as you did in the TryPolymorphism class. You can then use this variable to store objects of the sub-
classes, Dog, Spaniel, Duck, and Cat.

When you derive a class from an abstract base class, you don’t have to define all the abstract methods in

the subclass. In this case the subclass will also be abstract and you won’t be able to instantiate any
objects of the subclass either. If a class is abstract, you must use the abstract keyword when you define

287

Chapter 6

it, even if it only inherits an abstract method from its superclass. Sooner or later you must have a sub-
class that contains no abstract methods. You can then create objects of this class type.

The Universal Superclass

I must now reveal something I have been keeping from you. All the classes that you define are sub-
classes by default—whether you like it or not. All your classes have a standard class, Object, as a base,
so Object is a superclass of every class. You never need to specify the class Object as a base in the def-
inition of your classes —it happens automatically.

There are some interesting consequences of having 0bject as a universal superclass. For one thing, a
variable of type Object can store a reference to an object of any class type. This is useful when you want
to write a method that needs to handle objects of unknown type. You can define a parameter to the
method of type Object, in which case a reference to any type of object can be passed to the method.
When necessary you can include code in the method to figure out what kind of object it actually is
(you'll see some of the tools that will enable you to do this a little later in this chapter).

Of course, your classes will inherit members from the class Object. These all happen to be methods, of
which seven are public, and two are protected. The seven public methods are:

Method Purpose

toString () This method returns a String object that describes the current object. In the
inherited version of the method, this will be the name of the class, followed by
'@ and the hexadecimal representation for the object. This method is called
automatically when you concatenate objects with String variables using +. You
can override this method in your classes to return your own String object for
your class.

equals () This compares the reference to the object passed as an argument with the reference
to the current object and returns true if they are equal. Thus true is returned if the
current object and the argument are the same object (not just equal — they must be
one and the same object). It returns false if they are different objects, even if the
objects have identical values for their data members.

getClass () This method returns an object of type Class that identifies the class of the cur-
rent object. You'll see a little more about this later in this chapter.

hashCode () This method calculates a hashcode value for an object and returns it as type int.
Hashcode values are used in classes defined in the package java.util for stor-
ing objects in hash tables. You'll see more about this in Chapter 14.

notify () This is used to wake up a thread associated with the current object. I'll discuss
how threads work in Chapter 16.

notifyall () Thisis used to wake up all threads associated with the current object. I'll also dis-
cuss this in Chapter 16.

wait () This method causes a thread to wait for a change in the current object. I'll discuss

this method in Chapter 16, too.

288

Extending Classes and Inheritance

Note that getClass (), notify (), notifyAll(),and wait () cannot be overridden in your own class
definitions — they are fixed with the keyword final in the class definition for Object (see the section on
the final modifier later in this chapter).

It should be clear now why you could get polymorphic behavior with toString () in your derived
classes when your base class did not define the method. There is always a toString () method in all
your classes that is inherited from Object.

The two protected methods that your classes inherit from Object are:

Method Purpose

clone () This will create an object that is a copy of the current object regardless of
type. This can be of any type, as an Object variable can refer to an object
of any class. Note that this does not work with all class objects and does
not always do precisely what you want, as you will see later in this section.

finalize() This is the method that is called to clean up when an object is destroyed.
As you saw in the previous chapter, you can override this to add your own
clean-up code.

Since all your classes will inherit the methods defined in the Object class you should look at them in a
little more detail.

The toString() Method

You have already made extensive use of the toString () method, and you know that it is used by the
compiler to obtain a String representation of an object when necessary. It is obvious now why you must
always declare the toString () method as public in a class. It is declared as such in the object class
and you can’t declare it as anything else.

You can see what the toString () method that is inherited from the object class will output for an
object of one of your classes by commenting out the toString () method in Animal class in the previ-
ous example. A typical sample of the output for an object is:

Your choice:
Spaniel@b75778b2

It's Fido the Spaniel
Woof Woof

The second line here is generated by the toString () method implemented in the Object class. This

will be inherited in the Animal class, and it is called because you no longer override it. The hexadecimal
digits following the @ in the output are the hashcode of the object.

Determining the Type of an Object

The getClass () method that all your classes inherit from Object returns an object of type Class that
identifies the class of an object. Suppose you have a variable pet of type Animal that might contain a

289

Chapter 6

reference to an object of type Dog, Cat, Duck, or even Spaniel. To figure out what sort of thing it really
refers to, you could write the following statements:

Class objectType = pet.getClass(); // Get the class type
System.out.println (objectType.getName ()) ; // Output the class name

The method getName () is a member of the Class class, and it returns the fully qualified name of the
actual class of the object for which it is called as a String object. Thus, the second statement will output
the name of the class for the pet object. If pet referred to a Duck object, this would output:

Duck

This is the fully qualified name in this case, as the class is in the default package, which has no name. For
a class defined in a named package, the class name would be prefixed with the package name. If you just
wanted to output the class identity, you need not explicitly store the C1ass object. You can combine both
statements into one:

System.out.println(pet.getClass().getName()); // Output the class name
This will produce the same output as before.

Remember that the Class object returns the actual class of an object. Suppose you define a String
object like this:

String saying = "A stitch in time saves nine.";

You could store a reference to this String object as type Object:
Object str = saying;

The following statement will display the type of str:
System.out.println(str.getClass () .getName()) ;

This statement will output the type name as java.lang.String. The fact that the reference is stored in
a variable of type Object does not affect the underlying type of the object itself.

When your program is executing, there are instances of the Class class in existence that represent each
of the classes and interfaces in your program (I'll explain what an interface type is a little later in this
chapter). There is also a Class object for each array type in your program as well as every primitive
type. The Java Virtual Machine generates these when your program is loaded. Since Class is primarily
intended for use by the Java Virtual Machine, it has no public constructors, so you can’t create objects of
type Class yourself.

Although you can use the forName () method to get the Class object corresponding to a particular “class
or interface type, there is a more direct way. If you append . class to the name of any class, interface, or
primitive type, you have a reference to the Class object for that class. For example, java.lang.String.
class references the Class object for the String class and Duck. class references the Class object for
the Duck class. Similarly, int . class is the class object for the primitive type, int, and double.class is

290

Extending Classes and Inheritance

the one corresponding to type double. This may not seem particularly relevant at this point, but keep it in
mind. Because there is only one Class object for each class or interface type, you can test for the class of an
object programmatically. Given a variable pet of type Animal, you could check whether the object refer-
enced was of type Duck with the following statement:

if (pet.getClass()== Duck.class) {
System.out.println("By George - it is a duck!");
}

This tests whether the object referenced by pet is of type Duck. Because each Class object is unique, this
is a precise test. If pet contained a reference to an object that was a subclass of Duck, the result of the
comparison in the i f would be false. You'll see a little later in this chapter that you have an operator
in Java, instanceof, that does almost the same thing—but not quite.

Note that the Class class is not an ordinary class. It is an example of a generic type. I'll discuss generic
types in detail in Chapter 13, but for now be aware that Class really defines a set of classes. Each class,
interface, array type, and primitive type that you use in your program will be represented by an object of
a unique class from the set defined by the Class generic type.

Copying Objects

As you saw in the summary at the beginning of this section, the protected method clone () thatis
inherited from the Object class will create a new object that is a copy of the current object. It will do this
only if the class of the object to be cloned indicates that cloning is acceptable. This is the case if the class
implements the Cloneable interface. Don’t worry about what an interface is at this point—you'll learn
about this a little later in this chapter.

The clone () method that is inherited from Object clones an object by creating a new object of the same
type as the current object and setting each of the fields in the new object to the same value as the corre-
sponding fields in the current object. When the data members of the original object refer to class objects,
the objects referred to are not duplicated when the clone is created — only the references are copied

from the fields in the old object to the fields in the cloned object. This isn’t typically what you want to
happen —both the old and the new class objects can now be modifying a single shared object that is
referenced through their corresponding data members, not recognizing that this is occurring.

If objects are to be cloned, the class must implement the Cloneable interface. I will discuss interfaces
later in this chapter where you will see that implementing an interface typically involves implementing
a specific set of methods. All that is required to make a class implement this interface is to declare it in
the first line of the class definition. This is done using the implements keyword. For example:

class Dog implements Cloneable {
// Details of the definition of the class...
}

This makes Dog objects cloneable because you have declared that the class implements the interface.
You will understand the implications of the inherited clone () method more clearly if you consider a

simple specific instance. Let’s suppose you define a class Flea that has a method that allows the name to
be changed:

291

Chapter 6

public class Flea extends Animal implements Cloneable {
// Constructor
public Flea(String aName, String aSpecies) {

super ("Flea") ; // Pass the type to the base
name = aName; // Supplied name
species = aSpecies; // Supplied species

// Change the flea's name
public void setName (String aName) {
name = aName; // Change to the new name

// Return the flea's name
public String getName() {
return name;

// Return the species
public String getSpecies() {
return species;

public void sound() {
System.out.println("Psst");

// Present a flea's details as a String
public String toString() {
return super.toString() + "\nIt's " + name + " the " + species;

// Override inherited clone() to make it public
public Object clone() throws CloneNotSupportedException {
return super.clone();

}
private String name; // Name of flea!
private String species; // Flea species

You have defined accessor methods for the name and the species. You don’t need them now but they
will be useful later. By implementing the Cloneable interface you are indicating that you are happy to

clone objects of this class. Since you have said that Flea is cloneable, you must implement the
Cloneable interface in the base class too, so the Animal class needs to be changed to:

public class Animal implements Cloneable {
// Details of the class as before...

No other changes are necessary to the Animal class here. You can now define a class PetDog that con-

tains a Flea object as a member that is also cloneable:

292

Extending Classes and Inheritance

public class PetDog extends Animal implements Cloneable {
// Constructor
public PetDog (String name, String breed) {
super ("Dog") ;
petFlea = new Flea("Max", "circus flea"); // Initialize petFlea
this.name = name;
this.breed = breed;

// Rename the dog
public void setName (String name) {
this.name = name;

}

// Return the dog's name
public String getName () {
return name;

}

// Return the breed
public String getBreed() {
return breed;

}

// Return the flea
public Flea getFlea() {
return petFlea;

}

public void sound() {
System.out.println("Woof") ;
}

// Return a String for the pet dog
public String toString() {
return super.toString() + "\nIt's " + name + " the "
+ breed + " & \n" + petFlea;

// Override inherited clone() to make it public
public Object clone() throws CloneNotSupportedException {
return super.clone();

}

private Flea petFlea; // The pet flea
private String name; // Dog's name
private String breed; // Dog's breed

To make it possible to clone a PetDog object, you override the inherited clone () method with

a public version that calls the base class version. Note that the inherited method throws the
CloneNotSupportedException so you must declare the method as shown — otherwise, it won't
compile. You will be looking into what exceptions are in the next chapter.

293

Chapter 6

You can now create a PetDog object with the statement:

PetDog myPet = new PetDog("Fang", "Chihuahua");
After seeing my pet, you want one just like it, so you can clone him:

PetDog yourPet = (PetDog)myPet.clone();
Now you have individual PetDog objects that regrettably contain references to the same Flea object.
The clone () method will create the new PetDog object, yourPet, and copy the reference to the Flea
object from the petFlea data member in myPet to the member with the same name in yourpet. If you
decide that you prefer the name “Gnasher” for yourPet, you can change the name of your pet with the
statement:

yourPet.setName ("Gnasher") ;

Your dog will probably like a personalized flea, too, so you can change the name of its flea with the
statement:

yourPet.getFlea() .setName ("Atlas") ;

Unfortunately, Fang ' s flea will also be given the name Atlas because, under the covers, Fang and
Gnasher both share a common Flea. If you want to demonstrate this, you can put all the classes
together in an example, with the following class:

// Test cloning
public class TestCloning {
public static void main(String[] args) {

try {
PetDog myPet = new PetDog("Fang", "Chihuahua");
PetDog yourPet = (PetDog)myPet.clone();
yourPet.setName ("Gnasher") ; // Change your dog's name
yourPet.getFlea () .setName ("Atlas") ; // Change your dog's flea's name

System.out.println("\nYour pet details:\n"+yourPet) ;
System.out.println("\nMy pet details:\n"+ myPet) ;

} catch(CloneNotSupportedException e) {
e.printStackTrace (System.err) ;

Don’t worry about the try and catch blocks — these are necessary to deal with the exception that I
mentioned earlier. You'll learn all about exceptions in Chapter 7. Just concentrate on the code between
the braces following try. If you run the example, it will output the details on myPet and yourPet after
the name for yourPet has been changed. Both names will be the same, so the output will be:

C:\Java\3668\Ch06\TestFlea>java TestFlea
Your pet details:

This is a Dog

It's Gnasher the Chihuahua &

This is a Flea

It's Atlas the circus flea

294

Extending Classes and Inheritance

My pet details:

This is a Dog

It's Fang the Chihuahua &
This is a Flea

It's Atlas the circus flea

Choosing a name for your pet’s flea has changed the name for my pet’s flea, too. Unless you really want
to share objects between the variables in two separate objects, you should implement the clone () method
in your class to do the cloning the way you want. As an alternative to cloning (or in addition to), you
could add a constructor to your class to create a new class object from an existing object. This creates a
duplicate of the original object properly. You saw how you can do this in the previous chapter. If you
implement your own public version of clone () to override the inherited version, you would typically
code this method in the same way as you would the constructor to create a copy of an object. You could
implement the clone () method in the PetDog class like this:

public Object clone() throws CloneNotSupportedException {
PetDog pet = new PetDog(name, breed) ;
pet.setName ("Gnasher") ;
pet.getFlea() .setName ("Atlas");

return pet;

Here the method creates a new PetDog object using the name and breed of the current object. You then
call the two objects” setName () methods to set the clones” names. If you compile and run the program,
again with this change, altering the name of myPet will not affect yourpet. Of course, you could use the
inherited clone () method to duplicate the current object and then explicitly clone the Flea member to
refer to an independent object:

// Override inherited clone() to make it public

public Object clone() throws CloneNotSupportedException {
PetDog pet = (PetDog)super.clone();
pet.petFlea = (Flea)petFlea.clone();

return pet;

}

The new object created by the inherited clone () method is of type PetDog, but it is returned as a refer-
ence of type Object. To access the thePet member, you need a reference of type PetDog, so the cast is
essential. The same is true of the cloned Flea object. The effect of this version of the clone () method is
the same as the previous version.

Methods Accepting a Variable
Number of Arguments

You can write a method so that it will accept an arbitrary number of arguments when it is called, and
the arguments that are passed do not need to be of the same type. The reason I have waited until now to
mention this is that understanding how this works depends on having an understanding of the role of

295

Chapter 6

the Object class. You indicate that a method will accept a variable number of arguments by specifying
the last parameter as follows:

Object ... args

The method can have zero or more parameters preceding this, but this must be last for obvious reasons.
The ellipsis (three periods) between the type name Object and the parameter name args enables the
compiler to determine that the argument list is variable. The parameter name args represents an array
of type Object [, and the argument values are available in the elements of the array as type Object.
Within the body of the method, the length of the args array tells you how many arguments were supplied.

Let’s consider a very simple example to demonstrate the mechanism. Suppose you want to implement
a static method that will accept any number of arguments and output the arguments to the command
line—whatever they are. You could code it like this:

public static void printAll (Object ... args) {
for (Object arg : args) {
System.out.print (" "+arg);

}
System.out.println() ;
}

The arguments can be anything at all. Values of primitive types will be autoboxed because the method
expects reference arguments. The loop will output the string representation of each of the arguments on a

single line, the string being produced by invoking the toString () method for whatever the argument is.

Let’s see it working.

Try It Out Displaying Any Old Arguments

Here’s a program that will exercise the printall () method:

public class TryVariableArgumentList {
public static void main(String[] args) {

printAll(2, "two", 4, "four", 4.5, "four point five"); // Six arguments
printAll () ; // No arguments
printAll (25, "Anything goes", true, 4E4, false); // Five arguments
}
public static void printAll (Object ... args) {
for (Object arg : args) {
System.out.print (" "+arg);

}
System.out.println() ;
}
This program will produce the following output:

2 two 4 four 4.5 four point five

25 Anything goes true 40000.0 false

296

Extending Classes and Inheritance

How It Works

You can see from the output that the printall () works as advertised and will accept an arbitrary num-
ber of arguments. The first call of the printall () method mixes arguments of type int, type String,
and type double. The numerical values are converted to objects the corresponding wrapper class types
by boxing conversions that the compiler inserts. The output strings are then produced by calls to the
toString () method for the objects, also expedited by the compiler. The second call to the method
results in an empty line. The last line of output shows that autoboxing works with boolean values as
well as values of the other primitive types.

One use for the variable argument list capability in the class libraries is to define the printf () method
in the PrintStream class. This method will produce formatted output for an arbitrary sequence of val-
ues of various types, where the formatting is specified by the first argument to the method. System. out
happens to be of type PrintStream so you can use printf () to produce formatted output to the com-
mand line. I'll discuss how you use the print£ () method to produce output with more precise control
over the format in which it is displayed in Chapter 8 in the context of streams.

Limiting the Types in a Variable Argument List

You don’t have to specify the type of the variable argument list as type Object; you can specify it as any
class or interface type. The arguments must be of the type that you specify, or any subtype of that type.
Specifying the type of the variable argument list as Object maximizes flexibility because any types of
argument can be supplied, but there may be occasions where you want to restrict the types of the argu-
ments that can be supplied. For example, if you want to define a method that computes the average of
an arbitrary number of values that are to be supplied as individual arguments, then you really want to
be sure that the arguments can only be numerical values. Here’s how you could do this:

public static double average (Double ... args) {
if (args.length == 0) {
return 0.0;
}
double ave = 0.0;
for (double value : args) {
ave += value;

}
return ave/args.length;

}

In this case the arguments must be of type Double or of a type derived from Double, or —because of
autoboxing conversion supplied by the compiler — of type double. You could try this out in an example.

Try It Out Limiting the Types Allowed in a Variable Argument List

You need to add only a simple version of main () to call the average () method a few times to show it
in action:

public class TryLimitedVariableArgumentList {
public static void main(String[] args) {
System.out.println(average(1.0,2.0,3.0,4.0,5.0));
System.out.println(average(3.14, 1.414, 1.732));

297

Chapter 6

System.out.println (average (new Double(7),new Double(8),new Double(9),
new Double(10)));

}

// Average of a variable number of values
public static double average (Double ... args) {
if (args.length == 0) {
return 0.0;
}
double ave = 0.0;
for (double value : args) {
ave += value;
}

return ave/args.length;

This example produces the following output:

3.
2.0953333333333335
8.

Ul O O

How It Works

The average () method allows an arbitrary number of arguments to be supplied when it is called. The
arguments can be references of type Double or a type derived from Double, or of type double. When
the arguments are of type double, the compiler inserts autoboxing conversions to type Double for them
so the values are received in the method as that type. If you were to attempt to pass values of type int
as arguments to the average () method, the compiler would flag this as an error because there is no
automatic conversion from type int to type Double.

Casting Objects

You can cast an object to another class type, but only if the current object type and the new class type are
in the same hierarchy of derived classes, and one is a superclass of the other. For example, earlier in this
chapter you defined the classes Animal, Dog, Spaniel, Cat, and Duck, and these classes are related in
the hierarchy shown in Figure 6-5.

You can cast a reference to an object of a class upwards through its direct and indirect superclasses. For
example, you could cast a reference to an object of type Spaniel directly to type Dog, type Animal, or
type Object. You could write:

Spaniel aPet = new Spaniel ("Fang") ;
Animal theAnimal = (Animal)aPet; // Cast the Spaniel to Animal

When you are assigning an object reference to a variable of a superclass type, you do not have to include
the cast. You could write the assignment as:

Animal theAnimal = aPet; // Cast the Spaniel to Animal

298

Extending Classes and Inheritance

class Object

is derived from

class Animal

is derived from is derived from
is derived from

class Cat class Dog class Duck

is derived from

class Spaniel

Figure 6-5

This would work just as well. The compiler is always prepared to insert a cast to a superclass type when
necessary.

When you cast an object reference to a superclass type, Java retains full knowledge of the actual class

to which the object belongs. If this were not the case, polymorphism would not be possible. Since infor-
mation about the original type of an object is retained, you can cast down a hierarchy as well. However,
you must always write the cast explicitly since the compiler is not prepared to insert it. For the cast to
work, the object must be a legitimate instance of the class you are casting to— that is, the class you are
casting to must be the original class of the object, or must be a superclass of the object. For example, you
could cast a reference stored in the variable theAnimal shown in the preceding example to type Dog or
type Spaniel, since the object was originally a Spaniel, but you could not cast it to Cat or Duck, since
an object of type Spaniel does not have Cat or Duck as a superclass. To cast theAnimal to type Dog,
you would write:

Dog aDog = (Dog)theAnimal; // Cast from Animal to Dog

Now the variable aDog refers to an object of type Spaniel that also happens to be a Dog. Remember,
you can only use the variable aDog to call the polymorphic methods from the class Spaniel that over-
ride methods that exist in Dog. You can’t call methods that are not defined in the Dog class. If you want
to call a method that is in the class Spaniel and not in the class Dog, you must first cast aDog to type
Spaniel.

299

Chapter 6

Although you cannot cast between unrelated objects, from Spaniel to Duck for example, you can achieve
a conversion by writing a suitable constructor, but obviously only where it makes sense to do so. You
just write a constructor in the class to which you want to convert and make it accept an object of the
class you are converting from as an argument. If you really thought spaniel to Duck was a reasonable
conversion, you could add the constructor to the Duck class:

public Duck(Spaniel aSpaniel) {
// Back legs off, and staple on a beak of your choice...

super ("Duck") ; // Call the base constructor
name = aSpaniel.getName () ;
breed = "Barking Coot"; // Set the duck breed for a converted Spaniel

}

This assumes you have added a method, getName (), in the class Dog, which will be inherited in the
class spaniel, and which returns the value of name for an object. This constructor accepts a Spaniel
and turns out a Duck. This is quite different from a cast though. This creates a completely new object that
is separate from the original, whereas a cast presents the same object as a different type.

When to Cast Objects

You will have cause to cast objects in both directions through a class hierarchy. For example, whenever
you execute methods polymorphically, you will be storing objects in a variable of a base class type and
calling methods in a derived class. This will generally involve casting the derived class objects to the
base class. Another reason you might want to cast up through a hierarchy is to pass an object of several
possible subclasses to a method. By specifying a parameter as base class type, you have the flexibility to
pass an object of any derived class to it. You could pass a Dog, Duck, or Cat object to a method as an
argument for a parameter of type Animal, for example.

The reason you might want to cast down through a class hierarchy is to execute a method unique to a
particular class. If the Duck class has a method layEgg (), for example, you can’t call this using a vari-
able of type Animal, even though it references a Duck object. As I said, casting downwards through a
class hierarchy always requires an explicit cast.

Try It Out Casting Down to Lay an Egg

Let’s amend the Duck class and use it along with the Animal class in an example. Add layEgg () to the
Duck class as:

public class Duck extends Animal {
public void layEgg() {
System.out.println("Egg laid");
}

// Rest of the class as before...
}

If you now try to use this with the code:

public class LayEggs {
public static void main(String[] args) {
Duck aDuck = new Duck("Donald", "Eider");

300

Extending Classes and Inheritance

Animal aPet = aDuck; // Cast the Duck to Animal
aPet.layEgg () ; // This won't compile!
}

}

you will get a compiler message to the effect that 1ayEgg () is not found in the class Animal.

Since you know this object is really a Duck, you can make it work by writing the call to layEgg () in the
preceding code as:

((Duck)aPet) .layEgg() ; // This works fine

The object pointed to by aPet is first cast to type Duck. The result of the cast is then used to call the method
layEgg (). If the object were not of type Duck, the cast would cause an exception to be thrown.

In general, you should avoid explicitly casting objects as much as possible because
it increases the potential for an invalid cast and can therefore make your programs
unreliable. Most of the time, you should find that if you design your classes care-
fully, you won’t need explicit casts very often.

Identifying Objects

There are circumstances when you may not know exactly what sort of object you are dealing with. This
can arise if a derived class object is passed to a method as an argument for a parameter of a base class
type for example, in the way I discussed in the previous section. In some situations you may need to cast
the object to its actual class type, perhaps to call a class-specific method. If you try to make the cast and it
turns out to be illegal, an exception will be thrown, and your program will end unless you have made
provision for catching the exception. One way to obviate this situation is to verify that the object is of the
type you expect before you make the cast.

You saw earlier in this chapter how you could use the getClass () method to obtain the Class object
corresponding to the class type, and how you could compare it to a C1lass instance for the class you are
looking for. You can also do this using the instanceof operator. For example, suppose you have a vari-
able pet of type Animal, and you want to cast it to type Duck. You could code this as:

Duck aDuck; // Declare a duck

if (pet instanceof Duck) {
aDuck = (Duck)pet; // It is a duck so the cast is OK
aDuck.layEgg () ; // and You can have an egg for tea
}

If pet does not refer to a Duck object, an attempt to cast the object referenced by pet to Duck would cause
an exception to be thrown. This code fragment will execute the cast and lay an egg only if pet does point to
a Duck object. The preceding code fragment could have been written much more concisely as:

if (pet instanceof Duck) {

((Duck)pet) .layEgg () ; // It is a duck so You can have an egg for tea
}

301

Chapter 6

So what is the difference between this and using getClass () ? Well, it’s quite subtle. The instanceof
operator checks whether a cast of the object referenced by the left operand to the type specified by the
right operand is legal. The result will be true if the object is the same type as the right operand, or of any
subclass type. You can illustrate the difference by choosing a slightly different example.

Suppose pet stores a reference to an object of type Spaniel. You want to call a method defined in the
Dog class, so you need to check that pet does really reference a Dog object. You can check whether you
have a Dog object or not with the following statements:

if (pet instanceof Dog) {

System.out.println("You have a dog!");
} else {

System.out.println("It's definitely not a dog!");
}

You will get confirmation that you have a Dog object here even though it is actually a Spaniel object.
This is fine though for casting purposes. As long as the Dog class is in the class hierarchy for the object,
the cast will work okay, so the operator is telling you what you need to know. However, suppose you

write:
if (pet.getClass() == Dog.class)
System.out.println("You have a dog!");
else

System.out.println("It's definitely not a dog!");

Here the i f expression will be false because the class type of the object is Spaniel, so its Class object
is different from that of Dog.class —you would have to write Spaniel.class instead of Dog.class
to get the value true from the if expression.

You can conclude from this that for casting purposes you should always use the instanceof operator to
check the type of a reference. You only need to resort to checking the Class object corresponding to a
reference when you need to confirm the exact type of the reference.

More on Enumerations

When I introduced enumerations in Chapter 2, I said that there was more to enumerations than simply a
type with a limited range of integer values. In fact, an enumeration type is a special form of class. When
you define an enumeration type in your code, the enumeration constants that you specify are created as
instances of a class that has the Enum class, which is defined in the java.lang package, as a superclass.
The object that corresponds to each enumeration constant stores the name of the constant in a field, and
the enumeration class type inherits the toString method from the Enum class. The toString () method
in the Enum class returns the original name of the enumeration constant, so that’s why you get the name
you gave to an enumeration constant displayed when you output it using the print1n () method.

You have seen that you can put the definition of an enumeration type within the definition of a class.
You can also put the definition is a separate source file. In this case you specify the name of the file con-
taining the enumeration type definition in the same way as for any other class type. An enumeration
that you define in its own source file can be accessed by any other source file in exactly the same way as
any other class definition.

302

Extending Classes and Inheritance

An object representing an enumeration constant also stores an integer field. By default, each constant in
an enumeration will be assigned an integer value that is different from all the other constants in the enu-
meration. The values are assigned to the enumeration constants in the sequence in which you specify
them, starting with zero for the first constant, 1 for the second, and so on. You can retrieve the value for
a constant by calling its ordinal () method, but you should not need to do this in general.

You have already seen back in Chapter 3 that you can compare values of an enumeration type for equality
using the equals () method. For example, assuming that you have defined an enumeration type, Season,
with enumeration constants spring, summer, fall, and winter, you could write the following;:

Season now = Season.winter;
if (now.equals (Season.winter))
System.out.println ("It is definitely winter!");

The equals () method is inherited from the Enum class in your enumeration class type. Your enumeration
class type will also inherit the compareTo () method that compares instances of the enumeration based on
their ordinal values. It returns a negative integer if the value for the instance for which the method is called
is less than the instance that you pass as the argument, 0 if they are equal, and a positive integer if the value
of the current instance is greater than the value for the argument. Thus, the sequence in which you specify
the enumeration constants when you define them determines the order that the compareTo () method
implements. You might use it like this:

if (now.compareTo (Season.summer) > 0)
System.out.println ("It is definitely getting colder!");

The values () method for an enumeration that I introduced in Chapter 3 is a static member of your enu-
meration class type. This method returns a collection object containing all the enumeration constants
that you can use in a collection-based for loop. You'll learn about collection classes in Chapter 14.

Adding Members to an Enumeration Class

Because an enumeration is a class, you have the possibility to add your own methods and fields when
you define the enumeration type. You can also add your own constructors to initialize any additional
fields you introduce. Let’s take an example. Suppose you want to define an enumeration for clothing
sizes —jackets, say. Your initial definition might be like this:

public enum JacketSize { small, medium, large, extra_large, extra_extra_large }

You then realize that you would really like to record the average chest size applicable to each jacket size.
You could amend the definition of the enumeration like this:

public enum JacketSize { small(36), medium(40), large(42),
extra_large(46), extra_extra_large(48);

// Constructor

JacketSize (int chestSize) {
this.chestSize = chestSize;

}

// Method to return the chest size for the current jacket size

303

Chapter 6

public int chestSize() {
return chestSize;

}

private int chestSize; // Field to record chest size

}

Note how the list of enumeration constants now ends with a semicolon. Each constant in the list has the
corresponding chest size between parentheses, and this value will be passed to the constructor that you
have added to the class. In the previous definition of JacketSize, the appearance of each enumeration
constant results in a call to the default constructor for the class. In fact, you could put an empty pair of
parentheses after the name of each constant, and it would still compile. However, this would not improve
the clarity of the code. Because you have defined a constructor, no default destructor will be defined
for the enumeration class, so you cannot write enumeration constants just as names. You must put the
parentheses enclosing a value for the chest size following each enumeration constant. Of course, if you
wanted to have the option of omitting the chest size for some of the constants in the enumeration, you
could define your own default constructor and assign a default value for the chestsize field.

Even though you have added your own constructor, the fields inherited from the base class, Enum, that
store the name of the constant and its ordinal value, will still be set appropriately. The ordering of the
constants that compareTo () implements will still be determined by the sequence in which the constants
appear in the definition. Note that you must not declare a constructor in an enumeration class as public.
If you do, the enum class definition will not compile. The only modifier that you are allowed to apply to
a constructor in class defining an enumeration is private, which will result in the constructor being
callable only from inside the class.

The chest size is recorded in a private data member so there is also a chestSize () method to allow the
value of chestsSize to be retrieved.

Let’s see it working.

Try It Out Embroidering an Enumeration

First, create a new directory for the example and save the JacketSize. java file containing the defini-
tion of the enumeration from the previous section in it. Now create another file containing the following
definition:

public enum JacketColor { red, orange, yellow, blue, green }
This should be in a file with the name JacketColor. java.
Now you can define a class that represents a jacket:
public class Jacket {
public Jacket (JacketSize size, JacketColor color) {
this.size = size;

this.color = color;

}

public String toString() {
StringBuffer str = new StringBuffer ("Jacket ");

304

Extending Classes and Inheritance

return str.append(size).append(" in ").append(color) .toString() ;

}

private JacketSize size;
private JacketColor color;

}
Finally, you need a file containing code to try out some jackets:

public class TryEnumeration {
public static void main(String[] args) {

// Define some jackets

Jacket[] jackets = { new Jacket (JacketSize.medium, JacketColor.red),
new Jacket (JacketSize.extra_large, JacketColor.yellow),
new Jacket (JacketSize.small, JacketColor.green),
new Jacket (JacketSize.extra_extra_large, JacketColor.blue)

iy

// Output colors available

System.out.println("Jackets colors available are:\n");

for (JacketColor color: JacketColor.values()) {
System.out.print (" " + color);

// Output sizes available

System.out.println("\n\nJackets sizes available are:\n");

for (JacketSize size: JacketSize.values()) {
System.out.print (" " + size);

System.out.println("\n\nJackets in stock are:");
for (Jacket jacket: jackets) ({
System.out.println(jacket) ;

When you compile and execute this program you will get the following output:
Jackets colors available are:
red orange vyellow Dblue green
Jackets sizes available are:
small medium large extra_large extra_extra_large
Jackets in stock are:
Jacket medium in red
Jacket extra_large in yellow

Jacket small in green
Jacket extra_extra_large in blue

305

Chapter 6

How It Works

The main () method in the TryEnumeration class defines an array of Jacket objects. It then lists the
sizes and colors available for a jacket simply by using the collection-based for loop to list the constants
in each enumeration. Because the enumeration constants are objects, the compiler inserts a call to the
toString () method for the objects to produce the output. You use the same kind of for loop to list the
contents of the array of Jacket objects. This also involves an implicit call to the toString () method for
each Jacket object.

Because you have defined the JacketSize and JacketColor enumerations in separate classes, they
are accessible from any source file in the same directory. To make them even more widely available, you
could put them in a package.

The Jacket class uses the enumeration types to define private fields recording the size and color of a

jacket. Note how the toString () method in the Jacket class is able to use the size and color members
as though they were strings. The compiler will insert a call to the toString () method for the enumera-
tion type that applies. You can override the toString () method for an enumeration type. For example,
you might decide you prefer to define the toString () method in the JacketSize enumeration like this:

public String toString() {
switch(this) {
case small:
return "S";
case medium:
return "M";
case large:
return "L";
case extra_large:
return "XL";
case extra_extra_large:
return "XXL";

Note how you can use this as the control expression for the switch statement. This is because this refer-
ences the current instance, which is an enumeration constant. Because the expression is an enumeration
constant, the case labels are the constant names. They do not need to be qualified by the name of the enu-
meration. With this implementation of toString () in the JacketSize enumeration, the output will be:

Jackets colors available are:
red orange vyellow blue green
Jackets sizes available are:
S M L XL XXL
Jackets in stock are:
Jacket M in red
Jacket XL in yellow

Jacket S in green
Jacket XXL in blue

Thus, you can see from this example that you can treat an enumeration type just like any other class type.

306

Extending Classes and Inheritance

Designing Classes

A basic problem in object-oriented programming is deciding how the classes in your program should
relate to one another. One possibility is to create a hierarchy of classes by deriving classes from a base
class that you have defined and adding methods and data members to specialize the subclasses. The
Animal class and the subclasses derived from it are an example of this. Another possibility is to define
a set of classes that are not hierarchical, but that have data members that are themselves class objects.
A Zoo class might well have objects of types derived from Animal as members, for example. You can
have class hierarchies that contain data members that are class objects —you already have this with the
classes derived from Animal since they have members of type String. The examples so far have been
relatively clear-cut as to which approach to choose, but it is not always so evident. Quite often you will
have a choice between defining your classes as a hierarchy and defining classes that have members that
are class objects. Which is the best approach to take?

Like almost all questions of this kind, there are no clear-cut answers. If object-oriented programming
were a process that you could specify by a fixed set of rules that you could just follow blindly, you could
get the computer to do it. There are some guidelines though, and some contexts in which the answer
may be more obvious.

Aside from the desirability of reflecting real-world relationships between types of objects, the need to
use polymorphism is a primary reason for using subclasses (or interfaces, as you'll see shortly). This is
the essence of object-oriented programming. Having a range of related objects that can be treated equiv-
alently can greatly simplify your programs. You have seen how having various kinds of animals speci-
fied by classes derived from a common base class, Animal, allows us to act on different types of animals
as though they are the same, producing different results depending on what kind of animal is being
dealt with, and all this automatically.

A Classy Example

Many situations involve making judgments about the design of your classes. The way to go may well
boil down to a question of personal preference. Let’s try to see how the options look in practice by con-
sidering a simple example. Suppose you want to define a class PolyLine to represent geometric entities
that consist of a number of connected line segments, as illustrated in the Figure 6-6.

i P P
i P b
_ P
P
@ P
g
> P P
- P
1 T T T T T T 1
X-Axis
Figure 6-6

307

Chapter 6

Figure 6-6 shows two polylines, one defined by four points, the other defined by six points.

It seems reasonable to represent points as objects of a class Point. Points are well-defined objects that
will occur in the context of all kinds of geometric entities. You have seen a class for points earlier, which
you put in the Geometry package. Rather than repeat the whole class, let’s just define the bare bones of
what you need in this context:

public class Point {
// Create a point from its coordinates
public Point (double xVal, double yVal) {
X = xVal;
y = yval;
}

// Create a point from another point
public Point (Point point) {

X = point.x;

v point.y;
}

// Convert a point to a string
public String toString() {
return x+","+y;

}

// Coordinates of the point
protected double x;
protected double y;

Save the source file containing this code in a new directory, TryPolyLine. You'll add all the files for the
example to this directory. Both data members of Point will be inherited in any subclass because they are
specified as protected. They are also insulated from interference from outside the package containing
the class. The toString () method will allow Point objects to be concatenated to a String object for
automatic conversion —in an argument passed to the println () method, for example.

The next question you might ask is, “Should I derive the class PolyLine from the class Point?” This
has a fairly obvious answer. A polyline is clearly not a kind of point, so it is not logical to derive the class
PolyLine from the Point class. This is an elementary demonstration of what is often referred to as the
“is a” test. If you can say that one kind of object “is a” specialized form of another kind of object, you
may have a good case for a derived class (but not always — there may be other reasons not to!). If not,
you don’t.

The complement to the “is a” test is the “has a” test. If one object “has a” component that is an object of
another class, you have a case for a class member. A House object “has a” door, so a variable of type
Door is likely to be a member of the class House. The PolyLine class will contain several points, which
looks promising, but you should look a little more closely at how you might store them, as there are
some options.

308

Extending Classes and Inheritance

Designing the PolyLine Class

With the knowledge you have of Java, an array of Point objects looks like a good candidate to be a mem-
ber of the class. There are disadvantages, though. A common requirement with polylines is to be able to
add a segment or two to an existing object. With an array storing the points you will need to create a
new array each time you add a segment, then copy all the points from the old array to the new one. This
could be time-consuming if you have a PolyLine object with a lot of segments.

You have another option. You could create a linked list of points. In its simplest form, a linked list of
objects is an arrangement where each object in the list has a reference to the next object as a data mem-
ber. As long as you have a variable containing a reference to the first Point object, you can access all
the points in the list, as shown in Figure 6-7.

PolyLine

ListPoint end;
ListPoint start;

refers to refers to
ListPoint ListPoint ListPoint ListPoint
double x; double x; double x; double x;
double y; double y; double y; double y;
ListPoint next; ListPoint next; ListPoint next; ListPoint next;

null

Figure 6-7

Figure 6-7 illustrates the basic structure you might have for a linked list of points stored as a PolyLine.
The points are stored as members of ListPoint objects. In addition to constructors, the PolyLine class
will need a method to add points, but before you look into that, let’s consider the ListPoint class in
more detail.

You could take one of at least three approaches to define the ListPoint class, and you could make
arguments in favor of all three.

O You could define the ListPoint class with the x and y coordinates stored explicitly. The main
argument against this would be that you have already encapsulated the properties of a point in
the Point class, so why not use it?

Q You could regard a ListPoint object as something that contains a reference to a Point object,
plus members that refer to previous and following ListPoint objects in the list. This is not an
unreasonable approach. It is easy to implement and not inconsistent with an intuitive idea of a
ListPoint.

309

Chapter 6

QO You could view a ListPoint object as a specialized kind of Point, so you would derive the
ListPoint class from Point. Whether or not this is reasonable depends on whether you see
this as valid. To my mind, this is stretching the usual notion of a point somewhat —1I would not
use this.

The best option looks to me to be the second approach. You could implement the ListPoint class with
a data member of type Point, which defines a basic point with its coordinates. A ListPoint object
would have an extra data member, next, of type ListPoint that is intended to contain a reference to
the next object in the list. With this arrangement, you can find all the points in a Polyline object by
starting with its start member, which stores a reference to its first ListPoint object. This contains a
reference to the next ListPoint object in its next member, which in turn contains a reference to the
next, and so on through to the last ListPoint object. You'll know it is the last one because its next
member, which usually points to the next ListPoint object, will be null. Let’s try it.

Try It Out The ListPoint Class

You can define the ListPoint class using the Point class with the following code:

public class ListPoint {
// Constructor
public ListPoint (Point point) {
this.point = point; // Store point reference
next = null; // Set next ListPoint as null

// Set the pointer to the next ListPoint
public void setNext (ListPoint next) ({
this.next = next; // Store the next ListPoint

// Get the next point in the list
public ListPoint getNext () {
return next; // Return the next ListPoint

}

// Return String representation
public String toString() {

return " (" + point + ")";
}

private ListPoint next; // Refers to next ListPoint in the list
private Point point; // The point for this list point

Save this file in the same directory as the Point class, TryPolyLine.

How It Works

A ListPoint object is a means of creating a list of Point objects that originate elsewhere so you don’t
need to worry about duplicating Point objects stored in the list. You can just store the reference to the
Point object passed to the constructor in the data member, point. The data member, next, should contain
a reference to the next ListPoint in the list, and since that is not defined here, you set next to null.

310

Extending Classes and Inheritance

The setNext () method will enable the next data member to be set for the existing last point in the list
when a new point is added to the list. A reference to the new ListPoint object will be passed as an
argument to the method. The getNext () method enables the next point in the list to be determined, so
this method is the means by which you can iterate through the entire list.

By implementing the toString () method for the class, you enable the automatic creation of a String
representation for a ListPoint object when required. Here you differentiate the String representation

of the ListPoint object by enclosing the String representation of point between parentheses.

You could now have a first stab at implementing the PolyLine class.

Try It Out The PolyLine Class

You can define the PolyLine class to use the ListPoint class as follows:

public class PolyLine {
// Construct a polyline from an array of points
public PolyLine (Point[] points) {

if (points != null) { // Make sure there is an array
for (Point p : points) {
addPoint (p) ;

}
}

// Add a Point object to the list
public void addPoint (Point point) {

ListPoint newEnd = new ListPoint (point) ; // Create a new ListPoint
if(start == null) {

start = newEnd; // Start is same as end
} else {

end.setNext (newEnd) ; // Set next variable for old end as new end
}
end = newEnd; // Store new point as end

}

// String representation of a polyline
public String toString() {
StringBuffer str = new StringBuffer ("Polyline:");

ListPoint nextPoint = start; // Set the lst point as start
while (nextPoint !'= null) {
str.append (" "+ nextPoint) ; // Output the current point
nextPoint = nextPoint.getNext () ; // Make the next point current

}

return str.toString();

}

private ListPoint start; // First ListPoint in the list
private ListPoint end; // Last ListPoint in the list

This source file also goes in the TryPolyLine directory.

311

Chapter 6

You might want to be able to add a point to the list by specifying a coordinate pair. You could overload
the addPoint () method to do this:

// Add a point defined by a coordinate pair to the list
public void addPoint (double x, double y) {

addPoint (new Point (x, v));
}

You just created a new Point object in the expression that is the argument to the other version of
addPoint ().

You might also want to create a PolyLine object from an array of coordinates. The constructor to do this
would be:

// Construct a polyline from an array of coordinates
public PolyLine (double[][] coords) {
if (coords != null) {
for(int 1 = 0; 1 < coords.length ; i++) {
addPoint (coords[1][0], coords[i][1]);

How It Works

The PolyLine class has the data members start and end that you saw in Figure 6-7. These will refer-
ence the first and last points of the list, or null if the list is empty. Storing the end point in the list is not
essential since you can always find it by going through the list starting with start. However, having a
reference to the last point saves a lot of time when you want to add a point to the list. The constructor
accepts an array of Point objects and starts the process of assembling the object, by creating a list con-
taining one ListPoint object produced from the first element in the array. It then uses the addpoint ()
method to add all the remaining points in the array to the list.

Adding a point to the list is deceptively simple. All the addPoint () method does is create a ListPoint
object from the Point object passed as an argument, sets the next member of the old end point in the
list to refer to the new point, and finally stores a reference to the new end point in the member end.

The tostring () method will return a string representing the PolyLine object as a list of point coordi-
nates. Note how the next member of the ListPoint objects controls the loop that runs through the list.
When the last ListPoint object is reached, the next member will be returned as null, and the while
loop will end. You can now give the PolyLine class a whirl.

Try It Out Using PolyLine Objects

You can create a simple example to illustrate use of the PolyLine class:

public class TryPolyLine {
public static void main(String[] args) {
// Create an array of coordinate pairs
double[][] coords = { {1., 1.}, {1., 2.}, { 2., 3.},
{-3., 5.}, {-5., 1.}, {0., 0.} };

312

Extending Classes and Inheritance

// Create a polyline from the coordinates and display it
PolyLine polygon = new PolyLine (coords) ;
System.out.println (polygon) ;

// Add a point and display the polyline again
polygon.addPoint (10., 10.);

System.out.println (polygon) ;

// Create Point objects from the coordinate array
Point[] points = new Point[coords.length];
for(int i = 0; i < points.length; i++)

points[i] = new Point (coords[i][0],coords[i][1]);

// Use the points to create a new polyline and display it
PolyLine newPoly = new PolyLine (points);
System.out.println (newPoly) ;

Remember that all three classes, Point, ListPoint, and PolyLine, need to be together in the same
directory as this class, which will be the TryPolyLine directory if you followed my initial suggestion.
If you have keyed everything in correctly, the program will output three PolyLine objects:

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (,5.0) (
Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) ¢

.0 ,1.0) (0.0,0.0)
.0,5.0) 1.0

-3 -5.0
-3 -5.0) (0.0,0.0)

1

Polyline: (1.0,1.0) (1.0,2.0) (2.0,3.0) (-3.0,5.0) (-5.0,1.0) (0.0,0.0)

The first and the third lines of output are the same, with the coordinates from the coords array. The sec-
ond has the extra point (10, 10) at the end.

The PolyLine class works well enough but it doesn’t seem very satisfactory. Adding all the code to
create and manage a list for what is essentially a geometric entity is not very object-oriented is it? Come
to think of it, why are you making a list of points? Apart from the type of the data members of the
ListPoint class, there’s very little to do with Point objects in its definition; it’s all to do with the link-
ing mechanism. You might also have lots of other requirements for lists. If you were implementing an
address book for instance, you would want a list of names. A cookery program would need a list of
recipes. You might need lists for all kinds of things —maybe even a list of lists! Let’s see if there’s a bet-
ter approach.

Let’s put together a more general-purpose linked list and then use it to store polylines as before. You
should save the source files for this in a new directory, as you will implement it as a whole new example.
I'll put the source files in a directory with the name TryLinkedList in the code download for the book.

A General-Purpose Linked List

The key to implementing a simple, general-purpose linked list is the Object class discussed earlier in
this chapter. Because the Object class is a superclass of every class, a variable of type Object can be
used to store any kind of object. You could re-implement the ListPoint class in the form of a ListItem
class. This will represent an element in a linked list that can reference any type of object:

313

Chapter 6

class ListItem {
// Constructor
public ListItem(Object item) {
this.item = item; // Store the item
next = null; // Set next as end point

}

// Return class name & object
public String toString() {
return "ListItem " + item ;

}

ListItem next; // Refers to next item in the list
Object item; // The item for this ListItem

It’s basically similar to the ListPoint class except that you have omitted the methods to set and retrieve
the next member reference. You'll see why these are not necessary in a moment. The toString () method
assumes that the object referenced by item implements a toString () method. You won’t use the
toString () method here when you come to exercise the general linked list class you're implementing,
but it is a good idea to implement the toString () method for your classes anyway. If you do, class
objects can always be output using the println () method, which is very handy for debugging.

You can now use objects of this class in a definition of a class that will represent a linked list.

Defining a Linked List Class

The mechanics of creating and handling the linked list will be similar to what you had in the PolyLine
class, but externally you need to deal in the objects that are stored in the list, not in terms of ListItem
objects. In fact, you don’t need to have the ListItem class separate from the LinkedList class. You can
make it an inner class:

public class LinkedList {
// Default constructor - creates an empty list
public LinkedList() {}

// Constructor to create a list containing one object
public LinkedList (Object item) {
if(item != null) {
current=end=start=new ListItem(item); // item is the start and end
}
}

// Construct a linked list from an array of objects
public LinkedList (Object[] items) {
if(items !'= null) {
// Add the items to the list
for(int 1 = 0; 1 < items.length; i++) {
addItem(items[1]);
}

current = start;

314

Extending Classes and Inheritance

// Add an item object to the list
public void addItem(Object item) {

ListItem newEnd = new ListItem(item); // Create a new ListItem
if(start == null) { // Is the list empty?

start = end = newEnd; // Yes, so new element is start and end
} else { // No, so append new element

end.next = newEnd; // Set next variable for old end

end = newEnd; // Store new item as end

}

// Get the first object in the list
public Object getFirst() {
current = start;
return start == null ? null : start.item;

}

// Get the next object in the list
public Object getNext () {

if (current != null) {
current = current.next; // Get the reference to the next item
}
return current == null ? null : current.item;
}
private ListItem start = null; // First ListItem in the list
private ListItem end = null; // Last ListItem in the list
private ListItem current = null; // The current item for iterating

private class ListItem {
// ListItem class definition as before...

}

Save this source file in the new directory for the example. You can use this class to create a linked list
containing any types of objects. The class has data members to track the first and last items in the list,
plus the member current, which will be used to iterate through the list. You have three class construc-
tors. The default constructor creates an empty list. You have a constructor to create a list with a single
object, and another to create a list from an array of objects. Any list can also be extended by means of
the addItem () method. Each of the constructors, apart from the default, sets the current member to
the first item in the list, so if the list is not empty, this will refer to a valid first item.

You can see that because the ListItem class is a member of the LinkedList class, you can refer to its
data members directly within methods in the LinkedList class. This obviates the need for any methods
in the ListItem class to get or set its fields. Since it is private it will not be accessible outside the
LinkedList class so there is no risk associated with this—as long as you code the LinkedList class
correctly, of course.

The addItem () method works in much the same way as the addPoint () method did in the PolyLine
class. It creates a new ListItem object and updates the next member of the previous last item to refer to
the new one. The complication is the possibility that the list might be empty. The check in the if takes
care of this. You take special steps if start holds a null reference.

315

Chapter 6

The getFirst () and getNext () methods are intended to be used together to access all the objects
stored in the list. The getFirst () method returns the object stored in the first ListItem object in the
list and sets the current data member to refer to the first ListItem object. After calling the getFirst ()
method, successive calls to the getNext () method will return subsequent objects stored in the list. The
method updates current to refer to the next ListItem object, each time it is called. When the end of the
list is reached, getNext () returns null.

Try It Out Using the General Linked List

You can now define the PolyLine class so that it uses a LinkedList object. All you need to do is put a
LinkedList variable as a class member that you initialize in the class constructors, and implement all
the other methods you had in the previous version of the class to use the LinkedList object:

public class PolyLine {
// Construct a polyline from an array of coordinate pairs
public PolyLine (double[][] coords) {
Point[] points = new Point[coords.length]; // Array to hold points

// Create points from the coordinates
for(int 1 = 0; 1 < coords.length ; i++) {

points[i] = new Point (coords[i][0], coords([i]I[1l]);
}

// Create the polyline from the array of points
polyline = new LinkedList (points) ;
}

// Construct a polyline from an array of points
public PolyLine(Point[] points) {

polyline = new LinkedList (points); // Create the polyline
}

// Add a Point object to the list
public void addPoint (Point point) {

polyline.addItem(point) ; // Add the point to the list
}

// Add a point from a coordinate pair to the list
public void addPoint (double x, double y) {

polyline.addItem(new Point(x, v)); // Add the point to the list
}

// String representation of a polyline
public String toString() {
StringBuffer str = new StringBuffer("Polyline:");
Point point = (Point) polyline.getFirst();
// Set the 1lst point as start
while (point != null) {
str.append (" ("+ point+ ")"); // Append the current point
point = (Point)polyline.getNext(); // Make the next point current
}

return str.toString();

316

Extending Classes and Inheritance

}

private LinkedList polyline; // The linked list of points
}

You can exercise this using the same code as last time —in the TryPolyLine. java file. Copy this file to
the directory for this example.

How It Works

The PolyLine class implements all the methods that you had in the class before, so the main () method
in the TryPolyLine class works just the same. Under the covers, the methods in the PolyLine class
work a little differently. The work of creating the linked list is now in the constructor for the LinkedList
class. The PolyLine class constructors just assemble a point array if necessary, and call the LinkedList
constructor. Similarly, the addPoint () method creates a Point object from the coordinate pair it receives
and passes it to the addItem () method for the LinkedList object, polyline.

Note that the cast from Point to Object when the addItem () method is called is automatic. A cast from
any class type to type Object is always automatic because the cast is up the class hierarchy —remember
that all classes have Object as a base. In the toString () method, you must insert an explicit cast to store
the object returned by the getFirst () or the getNext () method. This cast is down the hierarchy so you
must specify the cast explicitly.

You could use a variable of type Object to store the objects returned from getFirst () and getNext (),
but this would not be a good idea. You would not need to insert the explicit cast, but you would lose a
valuable check on the integrity of the program. You put objects of type Point into the list, so you would
expect objects of type Point to be returned. An error in the program somewhere could result in an object
of another type being inserted. If the object is not of type Point —due to the said program error, for
example — the cast to type Point will fail and you will get an exception. A variable of type Object can
store anything. If you use this, and something other than a Point object is returned, it would not regis-
ter at all.

Now that you have gone to the trouble of writing your own general linked list class, you may be wonder-
ing why someone hasn’t done it already. Well, they have! The java.util package defines a LinkedList
class that is much better than this one. Still, putting your own together was good experience, and I hope
you found it educational, if not interesting. The way you have implemented the LinkedList class here
is not the best approach. In Chapter 13 you will learn about generic types, which enable you to define a
linked list class that is type-safe. You'll look at the standard class in the java.util package that imple-
ments a linked list using the generic types capability described in Chapter 14.

Using the final Modifier

You have already used the final keyword to fix the value of a static data member of a class. You can
also apply this keyword to the definition of a method, and to the definition of a class.

It may be that you want to prevent a subclass from overriding a method in your class. When this is the
case, simply declare that method as final. Any attempt to override a f£inal method in a subclass will
result in the compiler flagging the new method as an error. For example, you could declare the method
addpoint () as final within the class PolyLine by writing its definition in the class as:

317

Chapter 6

public final void addPoint (Point point) {

ListPoint newEnd = new ListPoint(point); // Create a new ListPoint
end. setNext (newEnd) ; // Set next variable for old end as new end
end = newEnd; // Store new point as end

Any class derived from PolyLine would not be able to redefine this method. Obviously, an abstract
method cannot be declared as final —because it must be defined in a subclass somewhere.

If you declare a class as £inal, you prevent any subclasses from being derived from it. To declare the
class PolyLine as final, you would define it as:

public final class PolyLine {
// Definition as before...
}

If you now attempt to define a class based on PolyLine, you will get an error message from the com-
piler. An abstract class cannot be declared as £inal since this would prevent the abstract methods in the
class from ever being defined. Declaring a class as £inal is a drastic step that prevents the functionality
of the class being extended by derivation, so you should be very sure that you want to do this.

Interfaces

In the classes that you derived from the class Animal, you had a common method, sound (), that was
implemented individually in each of the subclasses. The method signature was the same in each class,
and the method could be called polymorphically. The main point to defining the class Animal first and
then subsequently defining the classes Dog, Cat, and so on, from it was to be able to get polymorphic
behavior. When all you want is a set of one or more methods to be implemented in a number of different
classes so that you can call them polymorphically, you can dispense with the base class altogether.

You can achieve the same result much more simply by using a Java facility called an interface. The name
indicates its primary use —specifying a set of methods that represent a particular class interface, which
can then be implemented appropriately in a number of different classes. All of the classes will then share
this common interface, and the methods in it can be called polymorphically through a variable of the
interface type. This is just one aspect of what you can do using an interface. I will start by examining
what an interface is from the ground up and then look at what you can do with it.

An interface is essentially a collection of related constants and/or abstract methods, and in most cases it
will contain just methods. An interface doesn’t define what a method does. It just defines its form —its
name, its parameters, and its return type, so by definition the methods in an interface are abstract.

To make use of an interface, you implement the interface in a class — that is, you declare that the class
implements the interface and you write the code for each of the methods that the interface declares as
part of the class definition. When a class implements an interface, any constants that were defined in the
interface definition are available directly in the class, just as though they were inherited from a base
class. An interface can contain either constants, or abstract methods, or both.

318

Extending Classes and Inheritance

As Figure 6-8 illustrates, the methods in an interface are always public and abstract, so you do not
need to specify them as such; it is considered bad programming practice to specify any attributes for
them, and you definitely cannot add any attributes other than the defaults, public and abstract. This
implies that methods declared in an interface can never be static, so an interface always declares
instance methods. The constants in an interface are always public, static, and £inal, so you do not
need to specify the attributes for these either.

Interfacel Interface2 Interface3

Constants
Constants and Methods

Methods

Constants in an interface Methods in an interface
are always are always

public, static, and final public and abstract
by default by default

Figure 6-8

An interface is defined just like a class, but using the keyword interface rather than the keyword
class. You store an interface definition in a .java file with the same name as the interface. The name
that you give to an interface must be different from that of any other interface or class in the same pack-
age. Just as for classes, the members of the interface — the constants and/or method declarations —
appear between a pair of braces that delimit the body of the interface definition.

Encapsulating Constants in a Program

You will often find that a program makes use of a set of constant values that you really want to define
only once. You might have values representing standard colors that your program uses or perhaps con-
stants that are used in calculations such as conversion factors from one set of units to another. In Java
versions prior to 5.0, a common approach was to define a set of related constants in an interface and then
implement the interface in any class that used any of the constants. This approach has largely been made
obsolete by the static import capability.

The capability to import static members of a class that was introduced in Java 5 provides an excellent
way of dealing with constants in a program. However, the use of an interface for such purposes has
been very widespread in the past, so I'll first explain briefly how that works to equip you for when you
run into it. I'll then explain how you use static import to access constants that you have defined in a
class, which is a much cleaner and better way of making a set of constants available wherever they are
needed.

319

Chapter 6

Constants in an Interface

Suppose you are writing a program that converts measurements between metric and imperial units.
Here’s how the constants that such a program might use could be defined in an interface:

public interface ConversionFactors ({
double INCH_TO_MM = 25.4;
double OUNCE_TO_GRAM = 28.349523125;
double POUND_TO_GRAM = 453.5924;
double HP_TO_WATT = 745.7;
double WATT_TO_HP = 1.0/HP_TO_WATT;

The conversionFactors interface defines five constants for conversions of various kinds. Constants
defined in an interface are automatically public, static, and final. You have no choice about this —
constants defined in an interface always have these attributes. Since they are static and final, you must
always supply initializing values for constants defined in an interface. The names given to these in the
ConversionFactors interface use capital letters to indicate that they are final and cannot be altered —
this is a common convention in Java. You can define the value of one constant in terms of a preceding
constant, as in the definition of WATT_TO_HP. If you try to use a constant that is defined later in the
interface —if, for example, the definition for WATT_TO_HP appeared first—your code will not compile.

Because you have declared the interface as public, the constants are also available outside the package
containing the ConversionFactors interface. You can access constants defined in an interface in the
same way as for public and static fields in a class—by just qualifying the name with the name of the
interface. For example, you could write:

public class MyClass {
// This class can access any of the constants defined in ConversionFactors
// by qualifying their names...
public static double poundsToGrams (double pounds) {
return pounds*ConversionFactors.POUND_TO_GRAM;

}

// Plus the rest of the class definition...

Since the ConversionFactors interface includes only constants, a class can gain access to them using
their unqualified names by declaring that it implements the interface. This has been the technique
employed in the past. For example, here’s a class that implements the ConversionFactors interface:

public class MyOtherClass implements ConversionFactors ({
// This class can access any of the constants defined in ConversionFactors
// using their unqualified names, and so can any subclasses of this class...
public static double poundsToGrams (double pounds) {
return pounds*POUND_TO_GRAM;
}

// Plus the rest of the class definition...

The constants defined in the ConversionFactors interface are now members of MyOtherClass and
therefore will be inherited in any derived classes.

320

Extending Classes and Inheritance

While this technique of using an interface as a container for constants works and has been widely used
in the past, using a class to contain the constants as static fields and then importing the names of the
fields as required provides a simpler more effective approach. This is now the recommended technique
for handling sets of constants in a program. Let’s see how it works.

Constants Defined in a Class

You could define a class to hold the same set of constants that you saw defined in an interface in the pre-
vious section, like this:

package conversions; // Package for conversions

public class ConversionFactors {
public static final double INCH_TO_MM = 25.4;
public static final double OUNCE_TO_GRAM = 28.349523125;
public static final double POUND_TO_GRAM = 453.5924;
public static final double HP_TO_WATT = 745.7;
public static final double WATT_TO_HP = 1.0/HP_TO_WATT;

Of course, you can access the members of the ConversionsFactors class from outside by using the
qualified names of the data members — ConversionFactors.HP_TO_WATT, for example. An alternative
and possibly more convenient approach is to import the static members of the class into any class that
needs to use any of the constants. This will allow the constants to be referred to by their unqualified
names. In this case, the class must be in a named package, because the import statement cannot be
applied to the unnamed package.

Here’s how you might use it:

import static conversions.ConversionFactors.*; // Import static members

public class MyOtherClass {
// This class can access any of the constants defined in ConversionFactors

public static double poundsToGrams (double pounds) {
return pounds*POUND_TO_GRAM;
}

// Plus the rest of the class definition...

Now you can access any of the static members of the ConversionFactors class using their unqualified
names from any source file. All that is necessary is the import statement for the static members of the
class. Alternatively, you could just import the static members you want to use. For example, you could
use the following import statement if you just wanted to use the constant with the name
POUND_TO_GRAM:

import static conversions.ConversionFactors.POUND_TO_GRAM;

Let’s see it working in an example.

321

Chapter 6

Try It Out Importing Constants into a Program

Save the ConversionFactors class definition ConversionFactors. java in a directory with the name
conversions. Here’s a simple class that uses the constants defined in the utility class
ConversionFactors:

import static conversions.ConversionFactors.*; // Import static members

public class TryConversions {
public static double poundsToGrams (double pounds) {
return pounds*POUND_TO_GRAM;
}

public static double inchesToMillimeters (double inches) {
return inches*INCH_TO_MM;
}

public static void main(String argsl]) {
int myWeightInPounds = 180;
int myHeightInInches = 75;

System.out.println("My weight in pounds: " +myWeightInPounds +
" \t-in grams: "+ (int)poundsToGrams (myWeightInPounds)) ;
System.out.println("My height in inches: " +myHeightInInches +

" \t-in millimeters: "+ (int)inchesToMillimeters (myHeightInInches)) ;

Save the TryConversions. java file in the TryConversions directory. Don’t forget that you must include
the path to your conversions package when you compile this program. If the conversions directory is a
subdirectory of C: \MyPackages, the command to compile the program with TryConversions as the cur-
rent directory would be:

javac -classpath .:C:\MyPackages TryConversions.java
When you compile and execute this example, you should see the following output:

My weight in pounds: 180 -in grams: 81646
My height in inches: 75 -in millimeters: 1905

How It Works

The fact that you have used only static methods to access the constants from the utility class is
unimportant—it’s just to keep the example simple. They are equally accessible from instance
methods in a class.

The two conversion methods use the conversion factors defined in the ConversionFactors class.
Because you have imported the static fields from the ConversionFactors class in the conversions
package into the TryConversion. java source file, you can use the unqualified names to refer to the
constants.

322

Extending Classes and Inheritance

Interfaces Declaring Methods

The primary use for an interface is to define the external form of a set of methods that represent a partic-
ular functionality. Let’s consider an example. Suppose that you want to define an interface declaring a
set of methods to be used for conversions between metric and imperial measurements. You could define
such an interface like this:

public interface Conversions {
double inchesToMillimeters (double inches);
double ouncesToGrams (double ounces) ;
double poundsToGrams (double pounds) ;
double hpToWatts (double hp) ;
double wattsToHP (double watts) ;

This interface declares five methods to perform conversions. Every method declared in the interface
must have a definition within the class that implements the interface if you are going to create objects of
the class. A class that implements this interface would look like this:

public class MyClass implements Conversions {
// Implementations for the methods in the Conversions interface
// Definitions for the other class members...

Since the methods in an interface are, by definition, public, you must use the public keyword when you
define them in your class — otherwise, your code will not compile. The implementation of an interface
method in a class must not have an access specifier that is more restrictive than that implicit in the
abstract method declaration, and you can’t get less restrictive than public.

A class can implement more than one interface. In this case, you write the names of all the interfaces that
the class implements separated by commas following the implements keyword. Here’s an example:

public class MyClass implements Conversions, Definitions, Detections ({
// Definition of the class including implementation of interface methods

}

This class implements three interfaces with the names Conversions, Definitions, and Detections.
The class body will contain definitions for the methods declared in all three interfaces.

Try It Out Implementing an Interface

You can use the Conversions interface in a modified version of the previous example. Redefine the
TryConversions class in the TryConversions.java source file as follows:

import static conversions.ConversionFactors.*; // Import static members

public class TryConversions implements Conversions {
public double wattsToHP (double watts) {
return watts*WATT_TO_HP;
}
public double hpToWatts (double hp) {
return hp*HP_TO_WATT;
}

323

Chapter 6

public double ouncesToGrams (double ounces) {
return ounces*OUNCE_TO_GRAM;
}

public double poundsToGrams (double pounds) {
return pounds*POUND_TO_GRAM;
}

public double inchesToMillimeters (double inches) {
return inches*INCH_TO_MM;
}

public static void main(String argsl[]) {
int myWeightInPounds = 180;
int myHeightInInches = 75;

TryConversions converter = new TryConversions() ;

System.out.println("My weight in pounds: " +myWeightInPounds +
" \t-in grams: "+ (int)converter.poundsToGrams (myWeightInPounds)) ;
System.out.println("My height in inches: " + myHeightInInches

+ " \t-in millimeters: "
+ (int)converter.inchesToMillimeters (myHeightInInches)) ;

Save the file in a new directory, TryConversion2, and add a source file containing the definition for
the Conversions interface to the same directory. You name a file containing an interface definition
in a similar way to that of a class — the file name should be the same as the interface name, with

the extension . java. Thus, the source file containing the Conversions interface definition will be
Conversions.java.

How It Works

The methods you were using in the original definition of the class are now not declared as static.
Since interface methods are by definition instance methods, you cannot declare them as static in the
class that implements the interface. As the methods are now instance methods, you have to create a
TryConversions object, converter, to call them.

Of course, in this particular instance, statically importing the constants that are used by the interface
method implementations is a clumsy way of doing things. Since the constants are clearly related to the
methods, it would probably be better to define all the constants in the Conversions interface in addi-
tion to the method declarations.

Of course, you don't have to implement every method in the interface, but there are some consequences if
you don’t.

A Partial Interface Implementation

You can omit the implementation of one or more of the methods from an interface in a class that imple-
ments the interface, but in this case the class inherits some abstract methods from the interface so you
would need to declare the class itself as abstract:

324

Extending Classes and Inheritance

import static conversions.ConversionFactors.INCH_TO_MM;
import static conversions.ConversionFactors.OUNCE_TO_GRAM;

public abstract class MyClass implements Conversions {
// Implementation of two of the methods in the interface
public double inchesToMillimeters (double inches) {
return inches*INCH_TO_MM;
}

public double ouncesToGrams (double ounces) {
return ounces*OUNCE_TO_GRAM;
}

// Definition of the rest of the class...

You cannot create objects of type MyClass. To arrive at a useful class, you must define a subclass of
MyClass that implements the remaining methods in the interface. The declaration of the class as abstract
is mandatory when you don’t implement all of the methods that are declared in an interface. The com-
piler will complain if you forget to do this.

Now that you know how to write the code to implement an interface, you can tie up a loose end that
was left earlier in this chapter. I mentioned that you need to implement the interface Cloneable to use
the inherited method clone (). In fact this interface is empty with no methods or constants, so all you
need to do to implement it in a class is to specify that the class in question implements it. This means
that you just need to write something like:

public MyClass implements Cloneable ({
// Detail of the class...
}

The sole purpose of the Cloneable interface is to act as a flag signaling that you are prepared to allow
objects of your class to be cloned. Even though you have defined a public clone () method in your class,
the compiler will not permit the clone () method to be called for objects of your class type unless you
also specify that your class implements Cloneable.

Extending Interfaces

You can define one interface based on another by using the keyword extends to identify the base inter-
face name. This is essentially the same form as you use to derive one class from another. The interface
doing the extending acquires all the methods and constants from the interface it extends. For example,
the interface Conversions would perhaps be more useful if it contained the constants that the original
interface ConversionFactors contained. This would obviate the need for a separate class containing
the constants, so there would be no need for the static import statement.

You could do this by defining the interface Conversions as follows:

public interface Conversions extends ConversionFactors ({
double inchesToMillimeters (double inches);
double ouncesToGrams (double ounces) ;

325

Chapter 6

double poundsToGrams (double pounds) ;
double hpToWatts (double hp) ;
double wattsToHP (double watts);

}

Now the interface Conversions also contains the members of the interface ConversionFactors. Any
class implementing the Conversions interface will have the constants from ConversionFactors avail-
able to implement the methods. Analogous to the idea of a superclass, the interface ConversionFactors
is referred to as a super-interface of the interface Conversions.

Of course, since the constants and the methods involved in conversion operations are closely related, it
would have been much better to put them all in a single interface definition. But then it wouldn’t demon-
strate one interface extending another.

Interfaces and Multiple Inheritance

Unlike a class, which can extend only one other class, an interface can extend any number of other inter-
faces. To define an interface that inherits the members of several other interfaces, you specify the names
of the interfaces separated by commas following the keyword extends. For example:

public interface MyInterface extends HisInterface, HerInterface {
// Interface members - constants and abstract methods...
}

Now MyInterface will inherit all the methods and constants that are members of HisInterface and
HerInterface. This is described as multiple inheritance. In Java, classes do not support multiple
inheritance, only interfaces do.

Some care is necessary when you use this capability. If two or more super-interfaces declare a method
with the same signature — that is, with identical names and parameters — the method must have the
same return type in all the interfaces that declare it. If they don’t, the compiler will report an error. This
is because it would be impossible for a class to implement both methods, as they have the same signa-
ture. If the method is declared identically in all the interfaces that declare it, then a single definition in
the class will satisfy all the interfaces. As I said in the previous chapter, every method in a class must
have a unique signature, and the return type is not part of it.

Using Interfaces

What you have seen up to now has primarily illustrated the mechanics of creating an interface and
incorporating it into a class. The really interesting question is —what should you use interfaces for?

An interface that declares methods defines a standard set of operations. Different classes can add such
a standard interface by implementing it. Thus, objects of a number of different class types can share a
common set of operations. Of course, a given operation in one class may be implemented quite differ-
ently from how it is implemented in another class. But the way in which you invoke the operation is the
same for objects of all class types that implement the interface. For this reason it is often said that an
interface defines a contract for a set of operations.

I'hinted at the third and perhaps most important use of interfaces at the beginning of this discussion.

An interface defines a type, so you can expedite polymorphism across a set of classes that implement the
same interface. This is an extremely useful and powerful facility. Let’s have a look at how this works.

326

Extending Classes and Inheritance

Interfaces and Polymorphism

You can’t create objects of an interface type, but you can create a variable of an interface type. For example:
Conversions converter = null; // Variable of the Conversions interface type

If you can’t create objects of type Conversions, what good is it? Well, you use it to store a reference to
an object of any class type that implements Conversions. This means that you can use this variable to
call the methods declared in the Conversions interface polymorphically. The Conversions interface is
not a good example to show how this works. Let’s consider a real-world parallel that I can use to better
demonstrate this idea, that of home audio/visual equipment and a remote control. I'm grateful to John
Ganter who suggested this idea to me after reading a previous edition of this book.

You almost certainly have a TV, a hi-fi, a VCR, and maybe a DVD player around your home, and each of
them will have its own remote control. All the remote controls will probably have some common subset
of buttons — power on/off, volume up, volume down, mute, and so on. Once you have more than four
or so remotes cluttering the place up, you might consider one of those fancy universal remote control
devices to replace them —sort of a single definition of a remote control, to suit all equipment.

A universal remote has a lot of similarities to an interface. By itself a universal remote does nothing. It
defines a set of buttons for standard operations, but the operation of each button must be programmed
specifically to suit each kind of device that you want to control. You can represent the TV, VCR, DVD,
and so on by classes, each of which will make use of the same remote control interface — the set of but-
tons if you like—but each in a different way. Even though it uses the same button on the remote, Power
On for the TV, for example, is quite different from Power On for the VCR. Let’s see how that might look
in a concrete example.

Try It Out Defining Interfaces

Here’s how you might define an interface to model a simple universal remote:

public interface RemoteControl {

boolean powerOnOff () ; // Returns new state, on = true

int volumeUp (int increment) ; // Returns new volume level

int volumeDown (int decrement) ; // Returns new volume level

void mute() ; // Mutes sound output

int setChannel (int channel) ; // Set the channel number and return it

// Returns new channel number

(
int channelUp () ;
n(); // Returns new channel number

int channelDow:

}

The methods declared here in the RemoteControl interface should be self-explanatory. I have included
just a few of the many possible remote operations here to conserve space in the book. You could add
more if you want. You could have separate power on and power off methods, for example, tone controls,
and so on. There is no definition for any of these methods here. Methods declared in an interface are
always abstract —by definition. Nor is there an access attribute for any of them. Methods declared in
an interface are always public by default.

Now any class that requires the use of the functionality provided by a RemoteControl just has to declare

that it implements the interface and include the definitions for each of the methods in the interface. For
example, here’s the TV:

327

Chapter 6

import static java.lang.Math.max;
import static java.lang.Math.min;

public class TV implements RemoteControl {
public TV (String make, int screensize) {
this.make = make;
this.screensize = screensize;
// In practice you would probably have more
// arguments to set the max and min channel

// and volume here plus other characteristics for a particular TV.

public boolean powerOnOff () {

power = !power;
System.out.println(make + " "+ screensize + " inch TV
+ (power ? "on.":"off."));
return power;
}
public int volumeUp (int increment) {
if (!power) { // If the power is
return 0; // Nothing works

// Set volume - must not be greater than the maximum
volume += increment;
volume = min(volume, MAX_VOLUME) ;

System.out.println(make + " "+ screensize + " inch TV
+ volume) ;
return volume;
}
public int volumeDown (int decrement) {
if (!power) { // If the power is
return 0; // Nothing works

// Set volume - must not be less than the minimum

volume -= decrement;
volume = max(volume, MIN_VOLUME) ;
System.out.println(make + " "+ screensize + " inch TV
+ volume) ;
return volume;
}
public void mute() {
if (!power) { // If the power is
return; // Nothing works

volume = MIN_VOLUME;
System.out.println(make + " "+ screensize + " inch TV
+ volume) ;

328

power "

off

volume level:

off

volume level:

off

volume level:

Extending Classes and Inheritance

public int setChannel (int newChannel) ({
if (!power) { // If the power is off
return 0; // Nothing works

// Channel must be from MIN_CHANNEL to MAX_ CHANNEL
if (newChannel>=MIN_CHANNEL && newChannel<=MAX CHANNEL)
channel = newChannel;
System.out.println(make + " "+ screensize + " inch TV tuned to channel: "
+ channel) ;
return channel;

public int channelUp() {
if (!power) { // If the power is off
return 0; // Nothing works

// Wrap channel up to MIN_CHANNEL when MAX_CHANNEL is reached

channel = channel<MAX_CHANNEL ? ++channel : MIN_CHANNEL;

System.out.println(make + " "+ screensize + " inch TV tuned to channel: "
+ channel) ;

return channel;

public int channelDown () {
if (!power) { // If the power is off
return 0; // Nothing works

// Wrap channel down to MAX_CHANNEL when MIN_CHANNEL is reached

channel = channel>MIN_CHANNEL ? --channel : MAX_CHANNEL;

System.out.println(make + " "+ screensize + " inch TV tuned to channel:
+ channel) ;

return channel;

private String make = null;
private int screensize = 0;
private boolean power = false;

private int MIN_VOLUME = 0;
private int MAX_VOLUME = 100;
private int volume = MIN_VOLUME;

private int MIN_CHANNEL
private int MAX_ CHANNEL
private int channel = 0;

0;
999;

This class implements all the methods declared in the RemoteControl interface, and each method out-
puts a message to the command line so you'll know when it is called. Of course, if you omitted any of
the interface method definitions in the class, the class would be abstract and you would have to declare
it as such.

329

Chapter 6

A VCR class might also implement RemoteControl:

import static java.lang.Math.max;
import static java.lang.Math.min;

public class VCR implements RemoteControl ({
public VCR(String make) {
this.make = make;

public boolean powerOnOff () {
power = !power;
System.out.println(make + " VCR power "+ (power ? "on.":"off."));
return power;

public int volumeUp (int increment) {
if (!power) { // If the power is off
return 0; // Nothing works

// Set volume - must not be greater than the maximum
volume += increment;

volume = min(volume, MAX_VOLUME) ;

System.out.println(make + " VCR volume level: "+ volume) ;
return volume;

public int volumeDown (int decrement) {
if (!power) { // If the power is off
return 0; // Nothing works

// Set volume - must not be less than the minimum

volume -= decrement;

volume = max(volume, MIN_VOLUME) ;

System.out.println(make + " VCR volume level: "+ volume);
return volume;

public void mute() {
if (!power) { // If the power is off
return; // Nothing works

volume = MIN_VOLUME;
System.out.println(make + " VCR volume level: "+ volume);

public int setChannel (int newChannel) {
if (!power) { // If the power is off
return 0; // Nothing works

330

Extending Classes and Inheritance

// Channel must be from MIN_CHANNEL to MAX_CHANNEL

if (newChannel>=MIN_CHANNEL && newChannel<=MAX_ CHANNEL) {
channel = newChannel;

}

System.out.println(make + " VCR tuned to channel: "+ channel);

return channel;

}

public int channelUp() {
if (!power) { // If the power is off
return 0; // Nothing works

}

// Wrap channel round to MIN_CHANNEL when MAX_CHANNEL is reached
channel = channel<MAX_CHANNEL ? ++channel : MIN_CHANNEL;
System.out.println(make + " VCR tuned to channel: "+ channel);
return channel;

}

public int channelDown () {
if (!power) { // If the power is off
return 0; // Nothing works

}

// Wrap channel round to MAX_CHANNEL when MIN_CHANNEL is reached
channel = channel>MIN_CHANNEL ? --channel : MAX_CHANNEL;
System.out.println(make + " VCR tuned to channel: "+ channel);
return channel;

private String make = null;
private boolean power = false;

private int MIN_VOLUME = 0;
private int MAX_VOLUME = 100;
private int volume = MIN_VOLUME;

private int MIN_CHANNEL
private int MAX_CHANNEL
private int channel = 0;

0;
99;

Of course, you could continue and define classes for other kinds of devices that used the remote, but
these two are sufficient to demonstrate the principle.

Let’s see how you can use the RemoteControl interface and these two classes in a working example.

Try It Out Polymorphism Using an Interface Type

You want to demonstrate polymorphic behavior with these classes. By introducing a bit of “random-
ness” into the example, you can avoid having any prior knowledge of the objects involved. Here’s the
class to operate both TV and VCR objects via a variable of type RemoteControl:

331

Chapter 6

import static java.lang.Math.random;

public class TryRemoteControl ({
public static void main(String argsl]) {
RemoteControl remote = null;

// You will create five objects to operate using our remote

for(int 1 = 0 ; 1<5 ; i++) {
// Now create either a TV or a VCR at random
if (random()<0.5)

// Random choice of TV make and screen size

remote = new TV (random()<0.5 ? "Sony" "Hitachi",
random()<0.5 ? 32 28) ;
else // Random choice of VCR
remote = new VCR(random()<0.5 ? "Panasonic": "JVC");
// Now operate it, whatever it is
remote.powerOnOff () ; // Switch it on

//
/7

remote.channelUp() ;
remote.volumeUp (10) ;

Set the next channel up
Turn up the sound

This should be in the same directory as the source files for the other two classes and the interface. When
you compile and run this, you should see output recording a random selection of five TV and VCR objects

operated by the RemoteControl variable. I got:

Sony 28 inch TV power on.

Sony 28 inch TV tuned to channel: 1
Sony 28 inch TV volume level: 10
Panasonic VCR power on.

Panasonic VCR tuned to channel: 1
Panasonic VCR volume level: 10

Sony 32 inch TV power on.

Sony 32 inch TV tuned to channel: 1
Sony 32 inch TV volume level: 10
JVC VCR power on.

JVC VCR tuned to channel: 1

JVC VCR volume level: 10

Sony 28 inch TV power on.

Sony 28 inch TV tuned to channel: 1
Sony 28 inch TV volume level: 10

How It Works

The variable remote is of type RemoteControl so you can use it to store a reference to any class object
that implements the RemoteControl interface. Within the for loop, you create either a TV or a VCR
object at random. The TV or VCR object will be of a randomly chosen make, and any TV object will be
either 28 inches or 32 inches —again chosen at random. The object that is created is then operated through
remote by calling its powerOnO££ (), channelUp (), and volumeUp () methods. Since the type of the
object is determined at run time, and at random, the output demonstrates you are clearly seeing poly-

morphism in action here through a variable of an interface type.

332

Extending Classes and Inheritance

Using Multiple Interfaces

Of course, a RemoteControl object in the previous example can be used to call only the methods that
are declared in the interface. If a class implements some other interface besides RemoteControl, then to
call the methods declared in the second interface you would need either to use a variable of that inter-
face type to store the object reference or to cast the object reference to its actual class type. Suppose you
have a class defined as:

public MyClass implements RemoteControl, AbsoluteControl ({
// Class definition including methods from both interfaces...

}

Since this class implements RemoteControl and AbsoluteControl, you can store an object of type
MyClass in a variable of either interface type. For example:

AbsoluteControl ac = new MyClass();

Now you can use the variable ac to call methods declared in the AbsoluteControl interface. However,
you cannot call the methods declared in the RemoteControl interface using ac, even though the object
reference that it holds has these methods. One possibility is to cast the reference to the original class type,
like this:

((MyClass)ac) .powerOnOff () ;

Since you cast the reference to type MyClass, you can call any of the methods defined in that class. You
can’t get polymorphic behavior like this though. The compiler will determine the method that is called
when the code is compiled. To call the methods in the RemoteControl interface polymorphically, you
would have to have the reference stored as that type. Provided you know that the object is of a class type
that implements the RemoteControl interface, you can get from the reference store in the variable ac to
a reference of type RemoteControl. Like this, for example:

if (ac instanceof RemoteControl)
((RemoteControl)ac) .mute() ;

Even though the interfaces RemoteControl and AbsoluteControl are unrelated, you can cast the
reference in ac to type RemoteControl. This is possible because the object that is referenced by ac is
actually of type MyClass, which happens to implement both interfaces and therefore incorporates both
interface types.

If you got a bit lost in this last section don’t worry about it. You won’t need this level of knowledge
about interfaces very often.

Method Parameters of Interface Types

Of course, you can specify that a parameter to a method is of an interface type. This has a special signifi-
cance in that a reference to an object of any type can be passed as an argument as long as the object type

implements the interface. By specifying a parameter as an interface type you are implying that the method

is interested only in the interface methods. As long as an object is of a type that implements those methods,
it is acceptable as an argument.

333

Chapter 6

This technique of making a parameter an interface type is used extensively within the class libraries. The
String, StringBuilder, and StringBuffer classes (plus the CharBuffer class that you'll meet later
in the book) all implement the CharSequence interface. You'll see lots of class methods that have a
parameter of type CharSequence, in which case such methods will accept references to any of the class
types I've mentioned as arguments. For example, the StringBuilder and StringBuffer classes both
have constructors with a parameter of type Charsequence. You can therefore create new objects of these
two class types from any of the four classes that implement the interface.

Nesting Classes in an Interface Definition

You can put the definition of a class inside the definition of an interface. The class will be an inner class
to the interface. An inner class to an interface will be static and public by default. The code structure
would be like this:

interface Port ({
// Methods & Constants declared in the interface...

class Info {
// Definition of the class...
}
}

This declares the interface Port with an inner class Info. Objects of the inner class would be of type
Port.Info. You might create one with a statement like this:

Port.Info info = new Port.Info();

The standard class library includes a number of interfaces with inner classes, including one with the
name Port (in the javax. sound. sampled package) that has an inner class with the name Info, although
the Info class does not have the default constructor that I have used in the illustration here. The circum-
stances where you might define a class as an inner class to an interface would be when objects of the
inner class type have a strong logical association with the interface.

A class that implements the interface would have no direct connection with the inner class to the
interface — it would just need to implement the methods declared by the interface, but it is highly
likely it would make use of objects of the inner class type.

Interfaces and the Real World

An interface type is sometimes used to reference an object that encapsulates something that exists out-
side of Java, such as a particular physical device. This is done when the external device does not require
methods implemented in Java code because all the function is provided externally. The interface method
declarations just identify the mechanism for operating on the external object.

The example of the Port interface in the library is exactly that. A reference of type Port refers to an object
that is a physical port on a sound card, such as that for the speaker or the microphone. The inner class,
Port.Info, defines objects that encapsulate data to define a particular port. You can’t create a Port
object directly since there is no class of type Port. Indeed, it doesn’t necessarily make sense to do so
since your system may not have any ports. Assuming your PC has sound ports, you obtain a reference

334

Extending Classes and Inheritance

of type Port to an object that encapsulates a real port, such as the microphone, by calling a static method
defined in another class. The argument to the method would be a reference to an object of type Port.Info
specifying the kind of port that you want. All of the methods defined in the Port interface would corre-
spond to methods written in native machine code that would operate on the port. To call them you just
use the Port reference that you have obtained.

Anonymous Classes

There are occasions where you need to define a class for which you will only ever want to define one
object in your program, and the only use for the object is to pass it directly as an argument to a method.
In this case, as long as your class extends an existing class, or implements an interface, you have the
option of defining the class as an anonymous class. The definition for an anonymous class appears in
the new expression, in the statement where you create and use the object of the class, so that there is no
necessity to provide a name for the class.

I will illustrate how this is done using an example. Suppose you want to define an object of a class that
implements the interface ActionListener for one-time use. You could do this as follows:

pickButton.addActionListener (new ActionListener () {
// Code to define the class
// that implements the ActionListener interface
}
) 8

The class definition appears in the new expression that creates the argument to the addactionListener ()
method. This method requires a reference of type ActionListener —in other words, a reference to a class
that implements the ActionListener interface. The parentheses following the name of the interface indi-
cate you are creating an object reference of this type, and the details of the class definition appear between
the parentheses. The anonymous class can include data members as well as methods, but obviously not
constructors because the class has no name. Here, all the methods declared in the ActionListener inter-
face would need to be defined. You'll be using this approach in practice when you are implementing
window-based applications later in the book.

If the anonymous class extends an existing class, the syntax is much the same. In this case, you are call-
ing a constructor for the base class and, if this is not a default constructor, you can pass arguments to it
by specifying them between the parentheses following the base class name. The definition of the anony-
mous class must appear between braces, just as in the previous example.

An anonymous class can be convenient where the class definition is short and simple. You shouldn’t use
the approach to define classes of any complexity as it will make the code very difficult to understand.

Summary

You should now understand polymorphism and how to apply it. You will find that this technique can
be utilized to considerable advantage in the majority of your Java programs. It will certainly appear in
many of the examples in the remaining chapters.

335

Chapter 6

The important points I have covered in this chapter are:

336

Q

a

An abstract method is a method that has no body defined for it and is declared using the key-
word abstract.

An abstract class is a class that contains one or more abstract methods. It must be defined with
the attribute abstract.

You can define one class based on another. This is called class derivation or inheritance. The
base class is called a superclass, and the derived class is called a subclass. A superclass can also
be a subclass of another superclass.

A subclass inherits certain members of its superclass. An inherited member of a class can be ref-
erenced and used as though it were declared as a normal member of the class.

A subclass does not inherit the superclass constructors.

The private members of a superclass are not inherited in a subclass. If the subclass is not in the
same package as the superclass, then members of the superclass that do not have an access
attribute are not inherited.

The first statement in the body of a constructor for a subclass should call a constructor for
the superclass. If it does not, the compiler will insert a call for the default constructor for the
superclass.

A subclass can re-implement, or overload, the methods inherited from its superclass. If two or
more subclasses, with a common base class, re-implement a common set of methods, these
methods can be selected for execution at run time.

A variable of a superclass can point to an object of any of its subclasses. Such a variable can then
be used to execute the subclass methods inherited from the superclass.

A subclass of an abstract class must also be declared as abstract if it does not provide defini-
tions for all of the abstract methods inherited from its superclass.

You can import the static members of a class that is defined in a named package to allow the
static members to be referenced by their unqualified names.

An enumeration type is a specialized form of class, and the enumeration constants that you
define are instances of the enumeration class type.

A class defined inside another class is called a nested class or inner class. An inner class may
itself contain inner classes.

An interface can contain constants, abstract methods, and inner classes.

A class can implement one or more interfaces by declaring them in the class definition and
including the code to implement each of the interface methods.

A class that does not define all the methods for an interface it implements must be declared as
abstract.

If several classes implement a common interface, the methods declared as members of the inter-
face can be executed polymorphically.

Extending Classes and Inheritance

Exercises

You can download the source code for the examples in the book and the solutions to the following exer-
cises from http: //www.wrox.com.

1.

Define an abstract base class Shape that includes protected data members for the (x, y) posi-
tion of a shape, a public method to move a shape, and a public abstract method show ()
to output a shape. Derive subclasses for lines, circles, and rectangles. Also, define the class
PolyLine that you saw in this chapter with Shape as its base class. You can represent a line as
two points, a circle as a center and a radius, and a rectangle as two points on diagonally oppo-
site corners. Implement the toString () method for each class. Test the classes by selecting ten
random objects of the derived classes, and then invoking the show () method for each. Use the
tostring () methods in the derived classes.

Define a class, ShapeList, that can store an arbitrary collection of any objects of subclasses of
the shape class.

Implement the classes for shapes using an interface for the common methods, rather than inher-
itance from the superclass, while still keeping Shape as a base class.

Extend the LinkedList class that you defined in this chapter so that it supports traversing the
list backwards as well as forwards.

Add methods to the class LinkedList to insert and delete elements at the current position.

Implement a method in the LinkedList class to insert an object following an object passed as
an argument. (Assume the objects stored in the list implement an equals () method that com-
pares the This object with an object passed as an argument and returns true if they are equal.)

337

Exceptions

Java uses exceptions as a way of signaling serious problems when you execute a program. The
standard classes use them extensively. Since they arise in your Java programs when things go
wrong, and if something can go wrong in your code, sooner or later it will, they are a very basic
consideration when you are designing and writing your programs.

The reason I've been sidestepping the question of exceptions for the past six chapters is that you
first needed to understand classes and inheritance before you could understand what an exception
is and appreciate what happens when an exception occurs. Now that you have a good grasp of
these topics I can delve into how to use and deal with exceptions in a program.

In this chapter you'll learn:

0O What an exception is

How you handle exceptions in your programs

The standard exceptions in Java

How to guarantee that a particular block of code in a method will always be executed

How to define and use your own types of exceptions

0O 00 0 O

How to throw exceptions in your programs

The Idea Behind Exceptions

An exception usually signals an error and is so called because errors in your Java programs are
bound to be the exception rather than the rule —by definition! An exception doesn’t always indi-
cate an error though —it can also signal some particularly unusual event in your program that
deserves special attention.

If you try to deal with the myriad and often highly unusual error conditions that might arise in the
midst of the code that deals with the normal operation of the program, your program structure
will soon become very complicated and difficult to understand. One major benefit of having an

Chapter 7

error signaled by an exception is that it separates the code that deals with errors from the code that is
executed when things are moving along smoothly. Another positive aspect of exceptions is that they
provide a way of enforcing a response to particular errors. With many kinds of exceptions, you must
include code in your program to deal with them; otherwise, your code will not compile.

One important idea to grasp is that not all errors in your programs need to be signaled by exceptions.
Exceptions should be reserved for the unusual or catastrophic situations that can arise. A user entering
incorrect input to your program for instance is a normal event and should be handled without recourse
to exceptions. The reason for this is that dealing with exceptions involves quite a lot of processing over-
head, so if your program is handling exceptions a lot of the time it will be a lot slower than it needs to be.

An exception in Java is an object that’s created when an abnormal situation arises in your program. This
exception object has fields that store information about the nature of the problem. The exception is said
to be thrown —that is, the object identifying the exceptional circumstance is tossed as an argument to a
specific piece of program code that has been written specifically to deal with that kind of problem. The
code receiving the exception object as a parameter is said to catch it.

The situations that cause exceptions are quite diverse, but they fall into four broad categories:

Code or data errors For example, you attempt an invalid cast of an object, you try to
use an array index that’s outside the limits for the array, or an
integer arithmetic expression has a zero divisor.

Standard method For example, if you use the substring () method in the String

exceptions class, it can throw a StringIndexOutOfBoundsException
exception.

Throwing your own You'll see later in this chapter how you can throw a few of your

exceptions own when you need to.

Java errors These can be due to errors in executing the Java Virtual Machine,

which runs your compiled program, but usually arise as a
consequence of an error in your program.

Before you look at how you make provision in your programs for dealing with exceptions, you should
understand what specific classes of exceptions could arise.

Types of Exceptions

An exception is always an object of some subclass of the standard class Throwable. This is true for
exceptions that you define and throw yourself, as well as the standard exceptions that arise due to errors
in your code. It’s also true for exceptions that are thrown by methods in one or another of the standard
packages.

Two direct subclasses of the class Throwable — the class Error and the class Exception—cover all the

standard exceptions. Both these classes themselves have subclasses that identify specific exception con-
ditions. Figure 7-1 shows the hierarchy to which these classes belong.

340

Exceptions

Object
derived from
Throwable
derived from derived from
Error Exception
derived from derived from derived from derived from
Exceptions you should not catch Exceptions you can catch

Figure 7-1

Error Exceptions

The exceptions that are defined by the Error class and its subclasses are characterized by the fact that they
all represent conditions that you aren’t expected to do anything about, so you aren’t expected to catch
them. Error has three direct subclasses — ThreadDeath, LinkageError, and VirtualMachineError:

a

The first of these sounds the most serious, but in fact it isn’t. A ThreadDeath exception is thrown
whenever an executing thread is deliberately stopped, and for the thread to be destroyed prop-
erly, you should not catch this exception. In some circumstances you might want to catch it—
for clean-up operations, for example —in which case you must be sure to rethrow the exception
to allow the thread to die peacefully. When a ThreadDeath exception is thrown and not caught,
it's the thread that ends, not the program. I will deal with threads in detail in Chapter 16.

The LinkageError exception class has subclasses that record serious errors with the classes
in your program. Incompatibilities between classes or attempting to create an object of a non-
existent class type are the sorts of things that cause these exceptions to be thrown.

The virtualMachineError class has four subclasses that specify exceptions that will be
thrown when a catastrophic failure of the Java Virtual Machine occurs. You aren’t prohibited
from trying to deal with these exceptions, but in general, there’s little point in attempting to
catch them.

The exceptions that correspond to objects of classes derived from LinkageError and
VirtualMachineError are all the result of catastrophic events or conditions. You can do little or
nothing to recover from them during the execution of the program. In these sorts of situations, all you

341

Chapter 7

can usually do is read the error message that is generated by the exception being thrown and then, par-

ticularly in the case of a LinkageError exception, try to figure out what might be wrong with your code

to cause the problem.

RuntimeException Exceptions

For almost all the exceptions that are represented by subclasses of the Exception class, you must

include code in your programs to deal with them if your code may cause them to be thrown. If a method

in your program has the potential to generate an exception of a type that has Exception as a superclass,
you must either handle the exception within the method or register that your method may throw such
an exception. If you don’t, your program will not compile. You'll see in a moment how to handle excep-
tions and how to specify that a method can throw an exception.

One group of subclasses of Exception that is exempted from this is comprised of those derived from

RuntimeException. The reason that RuntimeException exceptions are treated differently, and that the
compiler allows you to ignore them, is that they generally arise because of serious errors in your code. In

most cases you can do little to recover the situation. However, in some contexts for some of these excep-
tions, this is not always the case, and you may well want to include code to recognize them. Quite a lot
of subclasses of RuntimeException are used to signal problems in various packages in the Java class

library. Let’s look at the exception classes that have RuntimeException as a base that are defined in the

java.lang package.

The subclasses of Runt imeException defined in the standard package java.lang are:

Class Name

ArithmeticException

IndexOutOfBoundsException

NegativeArraySizeException

NullPointerException

ArrayStoreException

ClassCastException

IllegalArgumentException

342

Exception Condition Represented

An invalid arithmetic condition has arisen, such as an
attempt to divide an integer value by zero.

You've attempted to use an index that is outside the
bounds of the object it is applied to. This may be an
array, a String object, or a Vector object. The Vector
class is defined in the standard package java.util.
You will be looking into the Vector class in Chapter 14.

You tried to define an array with a negative dimension.

You used an object variable containing null, when it
should refer to an object for proper operation — for
example, calling a method or accessing a data member.

You've attempted to store an object in an array that isn’t
permitted for the array type.

You've tried to cast an object to an invalid type —the
object isn’t of the class specified, nor is it a subclass or a
superclass of the class specified.

You've passed an argument to a method that doesn’t
correspond with the parameter type.

Exceptions

Class Name Exception Condition Represented

SecurityException Your program has performed an illegal operation that is
a security violation. This might be trying to read a file
on the local machine from an applet.

IllegalMonitorStateException A thread has tried to wait on the monitor for an object
that the thread doesn’t own. (You'll look into threads in
Chapter 16.)

IllegalStateException You tried to call a method at a time when it was not

legal to do so.

UnsupportedOperationException This is thrown if you request an operation to be carried
out that is not supported.

In the normal course of events you shouldn’t meet up with the last three of these. The
ArithmeticException turns up quite easily in your programs, as does the
IndexOutOfBoundsException. A mistake in a for loop limit will produce the latter. In fact there

are two subclasses of IndexOutOfBoundsException that specify the type of exception thrown

more precisely—ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
ANullPointerException can also turn up relatively easily, as can ArrayStoreException,
ClassCastException, and IllegalArgumentException, surprisingly enough. The last three here
arise when you are using a base class variable to call methods for derived class objects. Explicit attempts
to perform an incorrect cast, or store a reference of an incorrect type, or pass an argument of the wrong
type to a method will all be picked up by the compiler. These exceptions can, therefore, arise only from
using a variable of a base type to hold references to a derived class object.

The I1legalArgumentException class is a base class for two further exception classes,
IllegalThreadStateException and NumberFormatException. The former arises when you attempt
an operation that is illegal in the current thread state. The NumberFormatException exception is thrown
by the valueOf () or decode () methods in the classes representing integers — that is, the classes Byte,
Short, Integer, and Long. The parsexXx () methods in these classes can also throw this exception.
The exception is thrown if the String object you pass as an argument to the conversion method is not

a valid representation of an integer —if it contains invalid characters, for example. In this case a special
return value cannot be used, so throwing an exception is a very convenient way to signal that the argu-
ment is invalid.

You'll be trying out some of the RuntimeException exceptions later in the chapter, as some of them are
very easy to generate, but let’s see what other sorts of exception classes have Exception as a base.

Other Subclasses of Exception

For all the other classes derived from the class Exception, the compiler will check that you've either
handled the exception in a method where the exception may be thrown or that you've indicated that the
method can throw such an exception. If you do neither, your code won’t compile. You'll look more at
how you ensure that the code does compile in the next two sections.

343

Chapter 7

Apart from a few that have RuntimeException as a base, all exceptions thrown by methods in the Java
class library are of a type that you must deal with. In Chapter 8 you will be looking at input and output
where the code will be liberally sprinkled with provisions for exceptions being thrown.

You'll see later in this chapter that when you want to define your own exceptions,
you do this by subclassing the Exception class. Wherever your exception can be
thrown by a method, the compiler will verify either that it is caught in the method or
that the method definition indicates that it can be thrown by the method, just as it
does for the built-in exceptions.

Dealing with Exceptions

As I discussed in the previous sections, if your code can throw exceptions other than those of type Error
or type RuntimeException (you can assume that I generally include the subclasses when I talk about
Error and RuntimeException exceptions), you must do something about it. Whenever you write code
that can throw an exception, you have a choice. You can supply code within the method to deal with any
exception that is thrown, or you can essentially ignore it by enabling the method containing the exception-
throwing code to pass it on to the code that called the method.

Let’s first see how you can pass an exception on.

Specifying the Exceptions a Method Can Throw

Suppose you have a method that can throw an exception that is neither a subclass of RuntimeException
nor of Error. This could be an exception of type I0Exception, for example, which can be thrown if
your method involves some file input or output operations. If the exception isn’t caught and disposed
of in the method, you must at least declare that the exception can be thrown. But how do you do that?

You do it simply by adding a throws clause in the definition of the method. Suppose you write a
method that uses the methods from classes that support input/output that are defined in the package
java.io. You'll see in the chapters devoted to I/O operations that some of these can throw exceptions
represented by objects of classes T0Exception and FileNotFoundException. Neither of these is a
subclass of RuntimeException or Error, so the possibility of an exception being thrown needs to be
declared. Since the method can’t handle any exceptions it might throw, for the simple reason that you
don’t know how to do it yet, it must be defined as:

double myMethod() throws IOException, FileNotFoundException {
// Detail of the method code...
}

As the preceding fragment illustrates, to declare that your method can throw exceptions you just put the
throws keyword after the parameter list for the method. Then add the list of classes for the exceptions
that might be thrown, separated by commas. This has a knock-on effect —if another method calls this
method, it too must take account of the exceptions this method can throw. After all, calling a method

344

Exceptions

that can throw an exception is clearly code where an exception may be thrown. The calling method defi-
nition must either deal with the exceptions or declare that it can throw these exceptions as well. It’s a
simple choice. You either pass the buck or decide that the buck stops here. The compiler checks for this
and your code will not compile if you don’t do one or the other. The reasons for this will become obvi-
ous when you look at the way a Java program behaves when it encounters an exception.

Handling Exceptions

If you want to deal with the exceptions where they occur, you can include three kinds of code blocks in
a method to handle them — try, catch, and finally blocks:

Q A try block encloses code that may give rise to one or more exceptions. Code that can throw an
exception that you want to catch must be in a try block.

0 A catch block encloses code that is intended to handle exceptions of a particular type that may
be thrown in the associated try block. I'll get to how a catch block is associated with a try
block in a moment.

Q Thecodeina finally block is always executed before the method ends, regardless of whether
any exceptions are thrown in the try block.

Let’s dig into the detail of try and catch blocks first and then come back to the application of a finally
block a little later.

The try Block

When you want to catch an exception, the code in the method that might cause the exception to be
thrown must be enclosed in a try block. Code that can cause exceptions need not be in a try block, but
in this case, the method containing the code won’t be able to catch any exceptions that are thrown and
the method must declare that it can throw the types of exceptions that are not caught.

A try block is simply the keyword try, followed by braces enclosing the code that can throw the
exception:

try {
// Code that can throw one or more exceptions

}

Although I am discussing primarily exceptions that you must deal with here, a try block is also neces-
sary if you want to catch exceptions of type Error or RuntimeException. When you come to a work-
ing example in a moment, you will use an exception type that you don’t have to catch, simply because
exceptions of this type are easy to generate.

The catch Block

You enclose the code to handle an exception of a given type in a catch block. The catch block must
immediately follow the try block that contains the code that may throw that particular exception. A
catch block consists of the keyword catch followed by a single parameter between parentheses that

345

Chapter 7

identifies the type of exception that the block is to deal with. This is followed by the code to handle the
exception enclosed between braces:

try {
// Code that can throw one or more exceptions

} catch(ArithmeticException e) {
// Code to handle the exception
}

This catch block handles only ArithmeticException exceptions. This implies that this is the only kind
of exception that can be thrown in the try block. If others can be thrown, this won’t compile. I will come
back to handling multiple exception types in a moment.

In general, the parameter for a catch block must be of type Throwable or one of the subclasses of the
class Throwable. If the class that you specify as the parameter type has subclasses, the catch block will
be expected to process exceptions of that class type, plus all subclasses of the class. If you specified the
parameter to a catch block as type RuntimeException, for example, the code in the catch block
would be invoked for exceptions defined by the class Runt imeException, or any of its subclasses.

You can see how this works with a simple example. It doesn’t matter what the code does — the impor-
tant thing is that it throws an exception you can catch.

Try It Out Using a try and a catch Block

The following code is really just an exhaustive log of the program’s execution:

public class TestTryCatch {
public static void main(String[] args) {
int i = 1;

int j = 0;

try {
System.out.println("Try block entered " + "i = "+ i + " j = "+3j);
System.out.println(i/j); // Divide by 0 - exception thrown

System.out.println("Ending try block");

} catch(ArithmeticException e) { // Catch the exception
System.out.println("Arithmetic exception caught");

}

System.out.println("After try block");
return;

}
If you run the example, you should get the following output:
Try block entered 1 =1 j =0

Arithmetic exception caught
After try block

346

Exceptions

How It Works

The variable j is initialized to 0, so that the divide operation in the try block will throw an
ArithmeticException exception. You must use the variable j with the value 0 here because the Java
compiler will not allow you to explicitly divide by zero — that is, the expression i/0 will not compile.
The first line in the try block will enable you to track when the try block is entered, and the second
line will throw an exception. The third line can be executed only if the exception isn’t thrown —which
can’t occur in this example.

This shows that when the exception is thrown, control transfers immediately to the first statement in the
catch block. It’s the evaluation of the expression that is the argument to the print1ln () method that
throws the exception, so the println () method never gets called. After the catch block has been exe-
cuted, execution then continues with the statement following the catch block. The statements in the
try block following the point where the exception occurred aren’t executed. You could try running the
example again after changing the value of j to 1 so that no exception is thrown. The output in this case
will be:

Try block entered i =1 j =1
1

Ending try block

After try block

From this you can see that the entire try block is executed. Execution then continues with the statement
after the catch block. Because no arithmetic exception was thrown, the code in the catch block isn’t
executed.

You need to take care when adding try blocks to existing code. A try block is no
different to any other block between braces when it comes to variable scope.
Variables declared in a try block are available only until the closing brace for the
block. It’s easy to enclose the declaration of a variable in a try block, and, in doing
so, inadvertently limit the scope of the variable and cause compiler errors.

The catch block itself is a separate scope from the try block. If you want the catch block to output
information about objects or values that are set in the try block, make sure the variables are declared in
an outer scope.

try catch Bonding

The try and catch blocks are bonded together. You must not separate them by putting statements
between the two blocks, or even by putting braces around the try keyword and the try block itself. If
you have a loop block that is also a try block, the catch block that follows is also part of the loop. You
can see this with a variation of the previous example.

Try It Out A Loop Block That Is a try Block

You can make j a loop control variable and count down so that eventually you get a zero divisor in the
loop:

public class TestLoopTryCatch {
public static void main(String[] args) {

347

Chapter 7

int 1 = 12;

for (int j=3 ;j>=-1 ; j--)

try {
System.out.println("Try block entered " + "i = "+ i + " j = "+3j);
System.out.println(i/j); // Divide by 0 - exception thrown

System.out.println("Ending try block");
} catch(ArithmeticException e) { // Catch the exception
System.out.println("Arithmetic exception caught");

}

System.out.println("After try block");
return;

This will produce the following output:

Try block entered 1 = 12 j = 3
4

Ending try block

Try block entered i = 12 j = 2

6

Ending try block

Try block entered 1 = 12 j =1
12

Ending try block

Try block entered 1 = 12 j =0
Arithmetic exception caught
Try block entered i = 12 j = -1

-12
Ending try block
After try block

How It Works

The try and catch blocks are all part of the loop because the catch is inextricably bound to the try.
You can see this from the output. On the fourth iteration, you get an exception thrown because j is 0.
However, after the catch block is executed, you still get one more iteration with j having the value -1.
Of course, it would be better programming style to include braces for the loop block that enclosed the
try/catch combination, but then it would have been obvious that they were both in the loop and
would not demonstrate the point of the example.

Even though the try and catch blocks are both within the for loop, they have separate scopes. Variables

declared within the try block cease to exist when an exception is thrown. You can demonstrate that this is

so by declaring an arbitrary variable—k, say —in the try block, and then adding a statement to output k
in the catch block. Your code will not compile in this case.

Suppose you wanted the loop to end when an exception was thrown. You can easily arrange for this.
Just put the whole loop in a try block, thus:

348

Exceptions

public static void main(String[] args) {

int 1 = 12;
try {
System.out.println("Try block entered.");
for (int j=3 ;j>=-1 ; j--) {
System.out.println("Loop entered " + "i = "+ i + " j = "+3j);
System.out.println(i/j); // Divide by 0 - exception thrown

}
System.out.println("Ending try block");

} catch(ArithmeticException e) { // Catch the exception
System.out.println ("Arithmetic exception caught");

}

System.out.println("After try block");
return;

With this version of main (), the previous program will produce the following output:

Try block entered.

Lo
4
Lo
6
Lo
12

op entered 1 = 12 j = 3
op entered 1 = 12 j = 2
op entered 1 = 12 j =1

Loop entered 1 = 12 j = 0
Arithmetic exception caught
After try block

Now, you no longer get the output for the last iteration because control passes to the catch block when
the exception is thrown, and that is now outside the loop.

Multiple catch Blocks

Ifatr
try bl

y block can throw several different kinds of exception, you can put several catch blocks after the
ock to handle them:

try {

}
/7

// Code that may throw exceptions

catch (ArithmeticException e) {

// Code for handling ArithmeticException exceptions

catch (IndexOutOfBoundsException e) {

// Code for handling IndexOutOfBoundsException exceptions

Execution continues here...

Exceptions of type ArithmeticException will be caught by the first catch block, and exceptions of type

Index
except

OutOfBoundsException will be caught by the second. Of course, if an ArithmeticException
ion is thrown, only the code in that catch block will be executed. When it is complete, execution

continues with the statement following the last catch block.

349

Chapter 7

When you need to catch exceptions of several different types that may be thrown in a try block, the
order of the catch blocks can be important. When an exception is thrown, it will be caught by the first
catch block that has a parameter type that is the same as that of the exception, or a type that is a super-
class of the type of the exception. An extreme case would be if you specified the catch block parameter
as type Exception. This will catch any exception that is of type Exception, or of a class type that is
derived from Exception. This includes virtually all the exceptions you are likely to meet in the normal
course of events.

This has implications for multiple catch blocks relating to exception class types in a hierarchy. The catch
blocks must be in sequence with the most derived type first, and the most basic type last. Otherwise, your
code will not compile. The simple reason for this is that if a catch block for a given class type precedes a
catch block for a type that is derived from the first, the second catch block can never be executed, and the
compiler will detect that this is the case.

Suppose you have a catch block for exceptions of type ArithmeticException and another for excep-
tions of type Exception as a catch-all. If you write them in the following sequence, exceptions of type
ArithmeticException could never reach the second catch block because they will always be caught
by the first:

// Invalid catch block sequence - won't compile!
try {
// try block code

} catch(Exception e) {

// Generic handling of exceptions
} catch(ArithmeticException e) {

// Specialized handling for these exceptions
}

Of course, this won't get past the compiler — it would be flagged as an error.

To summarize —if you have catch blocks for several exception types in the same class hierarchy, you
must put the catch blocks in order, starting with the lowest subclass first and then progressing to the
highest superclass.

In principle, if you're only interested in generic exceptions, all the error handling code can be localized
in one catch block for exceptions of the superclass type. However, in general it is more useful and better
practice to have a catch block for each of the specific types of exceptions that a try block can throw.

The finally Block

The immediate nature of an exception being thrown means that execution of the try block code breaks
off, regardless of the importance of the code that follows the point at which the exception was thrown.
This introduces the possibility that the exception leaves things in an unsatisfactory state. You might have
opened a file, for example, and because an exception was thrown, the code to close the file is not executed.

The finally block provides the means for you to clean up at the end of executing a try block. You use
a finally block when you need to be sure that some particular code is run before a method returns, no

350

Exceptions

matter what exceptions are thrown within the associated try block. A finally block is always executed,
regardless of whether or not exceptions are thrown during the execution of the associated try block. If a
file needs to be closed, or a critical resource released, you can guarantee that it will be done if the code to
doitis putina finally block.

The finally block has a very simple structure:

finally {
// Clean-up code to be executed last
}

Just like a catch block, a finally block is associated with a particular try block, and it must be located
immediately following any catch blocks for the try block. If there are no catch blocks, then you posi-
tion the finally block immediately after the try block. If you don’t do this, your program will not
compile.

The primary purpose for the try block is to identify code that may result in an
exception being thrown. However, you can use it to contain code that doesn’t throw
exceptions for the convenience of using a £inally block. This can be useful when
the code in the try block has several possible exit points —break or return state-
ments, for example —but you always want to have a specific set of statements exe-
cuted after the try block has been executed to make sure things are tidied up, such
as closing any open files. You can put these in a finally block. Note: If a value

is returned within a finally block, this return overrides any return statement
executed in the try block.

Structuring a Method

You've looked at the blocks you can include in the body of a method, but it may not always be obvious
how they are combined. The first thing to get straight is that a try block plus any corresponding catch
blocks and the £inally block all bunch together in that order:

try {
// Code that may throw exceptions...

} catch(ExceptionTypel e) {
// Code to handle exceptions of type ExceptionTypel or subclass
} catch(ExceptionType2 e) {
// Code to handle exceptions of type ExceptionType2 or subclass
// more catch blocks if necessary
} finally {
// Code always to be executed after try block code
}

You can’t have just a try block by itself. Each try block must always be followed by at least one block
that is either a catch block or a finally block.

351

Chapter 7

You must not include other code between a try block and its catch blocks, or between the catch blocks
and the finally block. You can have other code that doesn’t throw exceptions after the finally block,
and you can have multiple try blocks in a method. In this case, your method might be structured as
shown in Figure 7-2.

double doSomething(int aParam)
throws ExceptionTypel, ExceptionType2{

try(
//Code that does throw exceptions

}

//Code that does not throw exceptions

| //Set of try/catch/finally blocks... |

catch(MyExceptionl e) {
//Code that does not throw exceptions //Code to process exception

}

Typical
Structure

| //Set of try/catch/finally blocks... |
catch(MyException2 e){

//Code to process exception

}

| //Set of try/catch/finally blocks... | finally{

//Code that does not throw exceptions

//Code to execute after the try block
//Code that does not throw exceptions }

/... In general there can be as many catch
blocks as required, and there may be none.
} The finally block is optional if there is a catch block.

Figure 7-2

In many cases, a method will need only a single try block followed by all the catch blocks for the excep-
tions that need to be processed in the method, perhaps followed by a £inally block. Java, however, gives
you the flexibility to have as many try blocks as you want. This makes it possible for you to separate vari-
ous operations in a method by putting each of them in their own try block—an exception thrown as a
result of a problem with one operation does not prevent subsequent operations from being executed.

The throws clause that follows the parameter list for the method identifies exceptions that can be thrown
in this method, but which aren’t caught by any of the catch blocks within the method. You saw this ear-
lier in this chapter. Exceptions that aren’t caught can be thrown by code anywhere in the body of the
method —in code not enclosed by a try block.

Execution Sequence

You saw how the sequence of execution proceeds with the simple case of a try block and a single catch
block. You also need to understand the sequence in which code executes when you have the try-catch-
finally combinations of blocks, when different exceptions are thrown. This is easiest to comprehend by
considering an example. You can use the following code to create a range of exceptions and conditions.

Try It Out Execution Sequence of a try Block

It will be convenient, in this example, to use an input statement to pause the program. The method you
will use can throw an exception of a type defined in the java. io package. You'll start by importing the
java.io.IOException class name into the source file. Give the class that contains main () the name

352

Exceptions

TryBlockTest. You'll define another method, divide (), in this class that will be called in main (). The
overall structure of the TryBlockTest class source file will be:

import java.io.IOException;

public class TryBlockTest {
public static void main(String[] args) {
// Code for main()..

}

// Divide method
public static int divide(int[] array, int index) {
// Code for divide()...

}

The idea behind the divide () method is to pass it an array and an index as arguments. By choosing
the values in the array and the index value judiciously, you'll be able to cause exceptions of type
ArithmeticException and ArrayIndexOutOfBoundsException to be thrown. You'll need a try
block plus two catch blocks for the exceptions, and you'll throw in a £inally block for good measure.
Here’s the code for divide():

public static int divide(int[] array, int index) {
try {

}

System.out.println("\nFirst try block in divide() entered");
array[index + 2] = arrayl[index]/array[index + 1];
System.out.println("Code at end of first try block in divide()");
return array[index + 2];

catch(ArithmeticException e) {

System.out.println("Arithmetic exception caught in divide()");

catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Index-out-of-bounds exception caught in divide()");
finally {

System.out.println("finally block in divide()");

System.out.println ("Executing code after try block in divide()");
return arrayl[index + 2];

You can define the main () method with the following code:

public static void main(String[] args) {
int[] x = {10, 5, 0}; // Array of three integers

// This block only throws an exception if the divide() method does
try {

System.out.println("First try block in main entered") ;

()
System.out.println("result = " + divide(x,0)); // No error
x[1] = 0; // Will cause a divide by zero
System.out.println("result = " + divide(x,0)); // Arithmetic error
x[1] = 1; // Reset to prevent divide by zero
System.out.println("result = " + divide(x,1)); // Index error

353

Chapter 7

} catch(ArithmeticException e) {
System.out.println("Arithmetic exception caught in main()");

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Index-out-of-bounds exception caught in main()");

System.out.println("Outside first try block in main()");
System.out.println("\nPress Enter to exit");

// This try block is just to pause the program before returning

try {
System.out.println("In second try block in main()");
System.in.read() ; // Pauses waiting for input...
return;

} catch(IOException e) { // The read() method can throw exceptions
System.out.println("I/0 exception caught in main()");

} finally { // This will always be executed

System.out.println("finally block for second try block in main()");

System.out.println("Code after second try block in main()");

Because the read () method for the object in (this object represents the standard input stream and com-
plements the out object, which is the standard output stream) can throw an I/O exception, it must be
called in a try block and have an associated catch block, unless you choose to add a throws clause to
the header line of main ().

If you run the example, it will produce the following output:

First try block in main()entered

First try block in divide() entered

Code at end of first try block in divide()
finally block in divide()

result = 2

First try block in divide() entered
Arithmetic exception caught in divide()
finally block in divide()

Executing code after try block in divide()
result = 2

First try block in divide() entered
Index-out-of-bounds exception caught in divide
finally block in divide()

Executing code after try block in divide()
Index-out-of-bounds exception caught in main()
Outside first try block in main()

Press Enter to exit
In second try block in main()

finally block for second try block in main()

354

Exceptions

How It Works

All the try, catch, and finally blocks in the example have output statements so you can trace the
sequence of execution.

Within the divide () method, the code in the try block can throw an exception of type
ArithmeticException if the element array[index + 1] of the array passed to it is 0. It can also
throw an ArrayIndexOutOfBoundsException exception in the try block if the index value passed
to it is negative, or it results in index + 2 being beyond the array limits. Both these exceptions are
caught by one or other of the catch blocks, so they will not be apparent in the calling method main ().

Note, however, that the last statement in divide () can also throw an exception of type
ArrayIndexOutOfBoundsException:

return array[index+2];

This statement is outside the try block, so the exception will not be caught. The exception will therefore
be thrown by the method when it is called in main (). However, you aren’t obliged to declare that the
divide () method throws this exception because the ArrayIndexOutOfBoundsException class is a
subclass of RuntimeException and is therefore exempted from the obligation to deal with it.

The main () method has two try blocks. The first try block encloses three calls to the divide () method.
The first call will execute without error; the second call will cause an arithmetic exception in the method;
and the third call will cause an index-out-of-bounds exception. There are two catch blocks for the first
try block inmain () to deal with these two potential exceptions.

The read () method in the second try block in main () can cause an I/O exception to be thrown. Since
this is one of the exceptions that the compiler will check for, you must either put the statement that calls
the read () method in a try block and have a catch block to deal with the exception or declare that
main () throws the I0OException exception. If you don’t do one or the other, the program will not compile.

Using the read () method in this way has the effect of pausing the program until the Enter key is pressed.
You'll be looking at read (), and other methods for I/O operations, in the next four chapters. The
IOException class is in the package java. io, so you need the import statement for this class because
you refer to it in the catch block using its unqualified name. Of course, if you referred to it as java. io
. IOException, you would not need to import the class name. Remember that only classes defined in
java.lang are included in your program automatically.

Normal Execution of a Method

The first line of output from the TryBlockTest example indicates that execution of the try block in
main () has begun. The next block of four lines of output from the example is the result of a straight-
forward execution of the divide () method. No exceptions occur in divide (), so no catch blocks are
executed.

The code at the end of the divide () method, following the catch blocks, isn’t executed because the
return statement in the try block ends the execution of the method. However, the finally block in
divide () is executed before the return to the calling method occurs. If you comment out the return
statement at the end of the divide () method’s try block and run the example again, the code that fol-
lows the finally block will be executed.

355

Chapter 7

The sequence of execution when no exceptions occur is shown in Figure 7-3.

Execution starts —————> try{
as the beginning //Code that can throw exceptions
of the try block. }

catch(MyExceptionl e) {
After a normal //Code to process exception
exit from a
try block, the | }
finally block is
executed, before catch(MyException2 e) {
any return in
the try block.

//Code to process exception

}
| finally({
//Code to execute after the try block
If there is no return statement }
in the try or £inally blocks,
execution continues with code .
following the £inally block. — > Normal Execution Sequence

Figure 7-3

Figure 7-3 illustrates the normal sequence of execution in an arbitrary try-catch-finally set of blocks.
If there’s a return statement in the try block, this will be executed immediately after the finally block
completes execution —so this prevents the execution of any code following the finally block. A return
statement in a finally block will cause an immediate return to the calling point, and the code following
the finally block wouldn’t be executed in this case.

Execution When an Exception Is Thrown

The next block of five lines in the output correspond to an ArithmeticException being thrown and
caught in the divide () method. The exception is thrown because the value of the second element in the
array x is zero. When the exception occurs, execution of the code in the try block is stopped, and you
can see that the code that follows the catch block for the exception in the divide () method is then exe-
cuted. The £inally block executes next, followed by the code after the £inally block. The value in the
last element of the array isn’t changed from its previous value, because the exception occurs during the
computation of the new value, before the result is stored.

The general sequence of execution in an arbitrary try-catch-finally set of blocks when an exception
occurs is shown in Figure 7-4.

Execution of the try block stops at the point where the exception occurs, and the code in the catch
block for the exception is executed immediately. If there is a return statement in the catch block, this
isn’t executed until after the finally block has been executed. As I discussed earlier, if a return state-
ment that returns a value is executed within a finally block, that value will be returned, not the value
from any previous return statement.

356

Exceptions

Execution starts > try{
at the beginning //Code that does throw exceptions
of the try block. }

Execution breaks off at catch(MyExceptionl e) {

the point where the exception
occurs, and control transfers
to the start of the catch }
block for the exception.

//Code to process exception

catch(MyException2 e) {

//Code to process exception

After the catch block }
has executed, the finally
block is executed. > finally{
//Code to execute after the try block
If there is no return statement }

in the catch or £inally blocks,

execution continues with code i i
" . —>
following the £inally block. Exception Execution Sequence

Figure 7-4

Execution When an Exception Is Not Caught

The next block of six lines in the output is a consequence of the third call to the divide () method. This
causes an ArrayIndexOutOfBoundsException to be thrown in the try block, which is then caught.
However, the code at the end of the method, which is executed after the finally block, throws another
exception of this type. This can’t be caught in the divide () method because the statement causing it
isn’t in a try block. Since this exception isn’t caught in the divide () method, the method terminates
immediately and the same exception is thrown inmain () at the point where the divide () method was
called. This causes the code in the relevant catch block inmain () to be executed in consequence.

An exception that isn’t caught in a method is always propagated upwards to the calling method. It will
continue to propagate up through each level of calling method until either it is caught or the main()
method is reached. If it isn’t caught in main (), the program will terminate and a suitable message will
be displayed. This situation is illustrated in Figure 7-5.

int methodi(...) {
try {
thod2(...);
me 4 cazl V6 uncaught
{ Exception2— method3(...)
. catch(Exceptionl e) { propagated }
Exception2 //Code to process exception eeeceeceeceeccfeeeciiciceoonld
caught uncaught
. Exception2
catch(Exception2 e) { propagated int method3(...) {
X method4 (...);
{//Code to process exception }
} finmally { e
finally block uncaught A
executed //Code to execute after the try block Exceptitoxf int method4(...) {
|—’} propagate //Exception 2
} thrown
}

Fi 75
igure 357

Chapter 7

Figure 7-5 shows methodl () calling method2 (),which calls method3 (), which calls method4 (), in
which an exception of type Exception2 is thrown. This exception isn’t caught in method4 (), so execu-
tion of method4 () ceases, and the exception is thrown in method3 (). It isn’t caught and continues to be
rethrown until it reaches method1 () where there’s a catch block to handle it.

In our TryBlockTest example, execution continues in main () with the output statements outside the

first try block. The read () method pauses the program until you press the Enter key. No exception is

thrown, and execution ends after the code in the finally block is executed. The finally block is tied
to the try block that immediately precedes it and is executed even though there’s a return statement in
the try block.

Nested try Blocks

I'won’t be going into these in detail, but you should note that you can have nested try blocks, as Figure
7-6 illustrates.

The catch blocks for the outer try block can catch any exceptions that are thrown, but not caught, by
any code within the block, including code within inner try-catch blocks. In the example shown in
Figure 7-6, the catch block for the outer try block will catch any exception of type Exception2. Such
exceptions could originate anywhere within the outer try block. The illustration shows two levels of
nesting, but you can specify more if you know what you're doing.

try {

try {
//1lst inner try block code...

} catch(Exceptionl) A{
/] ..

} Exceptions of type Exception2 thrown

//Outer try block code. .. anywhere in here that are not caught
will be caught by the catch block for the

try { outer try block.
//2nd inner try block code...
}catch(Exceptionl e) {
//try block code...

}catch(Exception2 e){ <

//Outer catch block code...

}

Figure 7-6

358

Exceptions

Rethrowing Exceptions

Even though you may need to recognize that an exception has occurred in a method by implementing a
catch clause for it, this is not necessarily the end of the matter. In many situations, the calling program
may need to know about it—perhaps because it will affect the continued operation of the program or
because the calling program may be able to compensate for the problem.

If you need to pass an exception that you have caught on to the calling program, you can rethrow it from
within the catch block using a throw statement. For example:

try {
// Code that originates an arithmetic exception

} catch(ArithmeticException e) {
// Deal with the exception here
throw e; // Rethrow the exception to the calling program

}

The throw statement is the keyword throw followed by the exception object to be thrown. When you
look at how to define our own exceptions later in this chapter, you'll be using exactly the same mecha-
nism to throw them.

Exception Objects

Well, you now understand how to put try blocks together with catch blocks and finally blocks in your
methods. You may be thinking at this point that it seems a lot of trouble to go to just to display a message
when an exception is thrown. You may be right, but whether you can do very much more depends on the
nature and context of the problem. In many situations a message may be the best you can do, although you
can produce messages that are a bit more informative than those you’ve used so far in our examples. For
one thing, I have totally ignored the exception object that is passed to the catch block.

The exception object that is passed to a catch block can provide additional information about the nature
of the problem that originated it. To understand more about this, let’s first look at the members of the
base class for exceptions Throwable because these will be inherited by all exception classes and are
therefore contained in every exception object that is thrown.

The Throwable Class

The Throwable class is the class from which all Java exception classes are derived — that is, every excep-
tion object will contain the methods defined in this class. The Throwable class has two constructors: a
default constructor and a constructor that accepts an argument of type string. The string object that
is passed to the constructor is used to provide a description of the nature of the problem causing the
exception. Both constructors are public.

Objects of type Throwable contain two items of information about an exception:

QO Amessage, which I have just referred to as being initialized by a constructor

Q Arecord of the execution stack at the time the object was created

359

Chapter 7

The execution stack keeps track of all the methods that are in execution at any given instant. It provides
the means whereby executing a return gets back to the calling point for a method. The record of the exe-
cution stack that is stored in the exception object consists of the line number in the source code where
the exception originated followed by a trace of the method calls that immediately preceded the point at
which the exception occurred. This is made up of the fully qualified name for each of the methods
called, plus the line number in the source file where each method call occurred. The method calls are in
sequence with the most recent method call appearing first. This will help you to understand how this
point in the program was reached.

The Throwable class has the following public methods that enable you to access the message and the
stack trace:

Method Description

getMessage () This returns the contents of the message,
describing the current exception. This will typi-
cally be the fully qualified name of the exception
class (it will be a subclass of Throwable) and a
brief description of the exception.

printStackTrace () This will output the message and the stack trace
to the standard error output stream — which is
the screen in the case of a console program.

printStackTrace (PrintStream s) This is the same as the previous method except
that you specify the output stream as an argu-
ment. Calling the previous method for an excep-
tion object e is equivalent to:

e.printStackTrace (System.err) ;

Another method, fillInStackTrace (), will update the stack trace to the point at which this method is
called. For example, if you put a call to this method in the catch block:

e.fillInStackTrace() ;
the line number recorded in the stack record for the method in which the exception occurred will be the
line where fillInStackTrace () is called. The main use of this is when you want to rethrow an excep-

tion (so it will be caught by the calling method) and record the point at which it is rethrown. For example:

e.fillInStackTrace(); // Record the throw point
throw e; // Rethrow the exception

In practice, it’s often more useful to throw an exception of your own. You'll see how to define your own

exceptions in the next section, but first, let’s exercise some of the methods defined in the Throwable
class and see the results.

360

Exceptions

Try It Out Dishing the Dirt on Exceptions

The easiest way to try out some of the methods I've just discussed is to make some judicious additions to
the catch blocks in the divide () method you have in the TryBlockTest class example:

public static int divide(int[] array, int index) {

try {
System.out.println("\nFirst try block in divide() entered");
array[index + 2] = arrayl[index]/arrayl[index + 1];

System.out.println("Code at end of first try block in divide()");
return arrayl[index + 2];

} catch(ArithmeticException e) {
System.err.println("Arithmetic exception caught in divide()\n" +
"\nMessage in exception object:\n\t" +
e.getMessage());
System.err.println("\nStack trace output:\n");
e.printStackTrace() ;
System.err.println("\nEnd of stack trace output\n");
} catch(ArrayIndexOutOfBoundsException e) {
System.err.println("Index-out-of-bounds exception caught in divide()\n" +
"\nMessage in exception object:\n\t" + e.getMessage());
System.err.println("\nStack trace output:\n");
e.printStackTrace() ;
System.out.println("\nEnd of stack trace output\n");
} finally {
System.err.println("finally clause in divide()");
}
System.out.println("Executing code after try block in divide()");
return arrayl[index + 21];

If you recompile the program and run it again, it will produce all the output as before, but with extra
information when exceptions are thrown in the divide () method. The new output generated for the
ArithmeticException will be:

Message in exception object:
/ by zero

Stack trace output:
java.lang.ArithmeticException: / by zero
at TryBlockTest.divide (TryBlockTest.java:54)

at TryBlockTest.main (TryBlockTest.java:15)
End of stack trace output

The additional output generated for the ArrayIndexOutOfBoundsException will be:

Message in exception object:
3

Stack trace output:

361

Chapter 7

java.lang.ArrayIndexOutOfBoundsException: 3
at TryBlockTest.divide (TryBlockTest.java:54)
at TryBlockTest.main(TryBlockTest.java:17)

End of stack trace output

How It Works

The extra lines of code in each of the catch blocks in the divide () method output the message associ-
ated with the exception object e by calling its getMessage () method. You could have just put e here,
which would invoke the toString () method for e, and, in this case, the class name for e would pre-
cede the message. There are a couple of extra println () calls around the call to printStackTrace ()
to make it easier to find the stack trace in the output. These are called for the standard error stream
object, System. err, for consistency with the stack trace output.

The first stack trace, for the arithmetic exception, indicates that the error originated at line 54 in the
source file TryBlockText . java and the last method call was at line 15 in the same source file. The sec-
ond stack trace provides similar information about the index-out-of-bounds exception, including the
offending index value. As you can see, with the stack trace output, it’s very easy to see where the error
occurred and how this point in the program was reached.

Standard Exceptions

The majority of predefined exception classes in Java don’t add further information about the conditions
that created the exception. The type alone serves to differentiate one exception from another in most
cases. This general lack of additional information is because it can be gleaned in the majority of cases
only by prior knowledge of the computation that is being carried out when the exception occurs, and the
only person who is privy to that is you, since you're writing the program.

This should spark the glimmer of an idea. If you need more information about the circumstances sur-
rounding an exception, you're going to have to obtain it and, equally important, communicate it to the
appropriate point in your program. This leads to the notion of defining your own exceptions.

Defining Your Own Exceptions

There are two basic reasons for defining your own exception classes:

0O You want to add information when a standard exception occurs, and you can do this by
rethrowing an object of your own exception class.

Q You may have error conditions that arise in your code that warrant the distinction of a special
exception class.

However, you should bear in mind that there’s a lot of overhead in throwing exceptions, so it is not a
valid substitute for “normal” recovery code that you would expect to be executed frequently. If you have
recovery code that will be executed often, then it doesn’t belong in a catch block, but rather in some-
thing like an i f-else statement.

Let’s see how you create your own exceptions.

362

Exceptions

Defining an Exception Class

Your exception classes must always have Throwable as a superclass; otherwise, they will not define an
exception. Although you can derive them from any of the standard exception classes, your best policy
is to derive them from the Exception class. This will allow the compiler to keep track of where such
exceptions are thrown in your program and check that they are either caught or declared as thrown in a
method. If you use RuntimeException or one of its subclasses, the compiler checking for catch blocks
of your exception class will be suppressed.

Let’s go through an example of how you define an exception class:

public class DreadfulProblemException extends Exception {
// Constructors
public DreadfulProblemException(){ } // Default constructor

public DreadfulProblemException(String s) {
super (s) ; // Call the base class constructor
}
}

This is the minimum you should supply in your exception class definition. By convention, your excep-
tion class should include a default constructor and a constructor that accepts a String object as an argu-
ment. The message stored in the superclass Exception (in fact, in Throwable, which is the superclass
of Exception) will automatically be initialized with the name of your class, whichever constructor for
your class objects is used. The String passed to the second constructor will be appended to the name of
the class to form the message stored in the exception object.

Of course, you can add other constructors. In general, you'll want to do so, particularly when you're
rethrowing your own exception after a standard exception has been thrown. In addition, you'll typically
want to add instance variables to the class that store additional information about the problem, plus
methods that will enable the code in a catch block to get at the data. Since your exception class is ulti-
mately derived from Throwable, the stack trace information will be automatically available for your
exceptions.

Throwing Your Own Exception

As you saw earlier, you throw an exception with a statement that consists of the throw keyword, followed
by an exception object. This means you can throw your own exception with the following statements:

DreadfulProblemException e = new DreadfulProblemException () ;
throw e;

The method will cease execution at this point— unless the code snippet above isin a try or a catch
block with an associated finally clause, the contents of which will be executed before the method
ends. The exception will be thrown in the calling program at the point where this method was called.
The message in the exception object will consist only of the qualified name of the exception class.

If you wanted to add a specific message to the exception, you could define it as:

DreadfulProblemException e = new DreadfulProblemException("Uh-Oh, trouble.");

363

Chapter 7

You're using a different constructor here. In this case the message stored in the superclass will be a string
that consists of the class name with the string passed to the constructor appended to it. The getMessage ()
method inherited from Throwable will, therefore, return a String object containing the following string:

"DreadfulProblemException: Uh-Oh, trouble."
You can also create an exception object and throw it in a single statement. For example:
throw new DreadfulProblemException ("Terrible difficulties");

In all the examples, the stack trace record inherited from the superclass Throwable will be set up
automatically.

An Exception Handling Strategy

You should think through what you want to achieve with the exception handling code in your program.
There are no hard and fast rules. In some situations you may be able to correct a problem and enable
your program to continue as though nothing happened. In other situations, outputting the stack trace
and a fast exit will be the best approach —a fast exit being achieved by calling the exit () method in
the System class. Here you'll take a look at some of the things you need to weigh when deciding how
to handle exceptions.

Consider the last example where you handled arithmetic and index-out-of-bounds exceptions in the
divide () method. While this was a reasonable demonstration of the way the various blocks worked, it
wasn't a satisfactory way of dealing with the exceptions in the program for at least two reasons.

Q First, it does not make sense to catch the arithmetic exceptions in the divide () method without
passing them on to the calling method. After all, it was the calling method that set the data up,
and only the calling program has the potential to recover the situation.

Q Second, by handling the exceptions completely in the divide () method, you allow the calling
program to continue execution without any knowledge of the problem that arose. In a real sit-
uation this would undoubtedly create chaos, as further calculations would proceed with erro-
neous data.

You could have simply ignored the exceptions in the divide () method. This might not be a bad approach
in this particular situation, but the first problem the calling program would have is determining the
source of the exception. After all, such exceptions might also arise in the calling program itself. A second
consideration could arise if the divide () method were more complicated. There could be several places
where such exceptions might be thrown, and the calling method would have a hard time distinguishing
them.

An Example of an Exception Class

Another possibility is to catch the exceptions in the method where they originate and then pass them on
to the calling program. You can pass them on by throwing new exceptions that provide more granularity
in identifying the problem (by having more than one exception type or by providing additional data within
the new exception type). For example, you could define more than one exception class of your own that
represented an ArithmeticException, where each reflected the specifics of a particular situation. This
situation is illustrated in Figure 7-7.

364

Exceptions

void methodi(...) {

try {

int x = method2(...); +—— method call————— int method?2(...) throws

T Exceptionl,Exception2{
two varieties . new exception ——
of the exception are } catch(Exceptiond e) { thrown try{

distinguished
// try block code that may

// Handle exception // throw ArithmeticException

exception

’ thrown
} catch(Exception2 e) {

> } catch(ArithmeticException e) {
// Handle exception
//Analysis code...
} if(...) {

throw Exceptioni;

}else {

throw Exception2;

Figure 7-7

Figure 7-7 shows how two different circumstances causing an ArithmeticException in method2 () are
differentiated in the calling method, methodl (). The method2 () method can throw an exception either
of type Exceptionl or of type Exception2, depending on the analysis that is made in the catch block
for the ArithmeticException type. The calling method has a separate catch block for each of the
exceptions that may be thrown.

You could also define a new exception class that had instance variables to identify the problem more
precisely. Let’s suppose that in the last example you wanted to provide more information to the calling
program about the error that caused each exception in the divide () method. The primary exception
can be either an ArithmeticException or an ArrayIndexOutOfBoundsException, but since you're
dealing with a specific context for these errors, you could give the calling program more information by
throwing your own exceptions.

Let’s take the ArithmeticException case as a model and define an exception class to use in the pro-
gram to help identify the reason for the error more precisely.

Try It Out Defining Your Own Exception Class

You can define the class that will correspond to an ArithmeticException in the divide () method as:

public class ZeroDivideException extends Exception {
private int index = -1; // Index of array element causing error

// Default Constructor
public ZeroDivideException(){ }

365

Chapter 7

// Standard constructor
public ZeroDivideException (String s) {

super (s) ; // Call the base constructor
}
public ZeroDivideException (int index) {
super ("/ by zero"); // Call the base constructor
this.index = index; // Set the index value

}

// Get the array index value for the error
public int getIndex() {
return index; // Return the index value

}

How It Works

As you've derived the ZeroDivideException class from the Exception class, the compiler will check

that the exceptions thrown are either caught or identified as thrown in a method. Your class will inherit

all the members of the class Throwable via the Exception class, so you'll get the stack trace record and
the message for the exception maintained for free. It will also inherit the toString () method, which is

satisfactory in this context, but this could be overridden if desired.

You've added a data member, index, to store the index value of the zero divisor in the array passed to
divide (). This will give the calling program a chance to fix this value if appropriate in the catch block
for the exception. In this case, the catch block would also need to include code that would enable the
divide () method to be called again with the corrected array.

Let’s now put it to work in another variation on the TryBlockTest example.

Try It Out Using the Exception Class

You need to use the exception class in two contexts —in the divide () method when you catch a stan-
dard ArithmeticException and in the calling method main () to catch the new exception. Let’s mod-
ify divide() first:

public static int divide(int[] array, int index) throws ZeroDivideException {

try {
System.out.println("First try block in divide() entered");
array[index + 2] = arraylindex]/arrayl[index + 1];

System.out.println("Code at end of first try block in divide()");
return array[index + 2];

} catch(ArithmeticException e) {

System.out.println("Arithmetic exception caught in divide()");

throw new ZeroDivideException(index + 1); // Throw new exception
} catch(ArrayIndexOutOfBoundsException e) {

System.out.println(

"Index-out-of-bounds index exception caught in divide()");

}
System.out.println("Executing code after try block in divide()");
return arrayl[index + 2];

366

Exceptions

The first change is to add the throws clause to the method definition. Without this you'll get an
error message from the compiler. The second change adds a statement to the catch block for
ArithmeticException exceptions that throws a new exception.

This new exception needs to be caught in the calling method main ():

public static void main(String[] args) {
int[] x = {10, 5, 0}; // Array of three integers

// This block only throws an exception if method divide() does

try {
System.out.println("First try block in main()entered");
System.out.println("result = " + divide(x,0)); // No error
x[1] = 0; // Will cause a divide by =zero
System.out.println("result = " + divide(x,0)); // Arithmetic error
x[1] = 1; // Reset to prevent divide by zero
System.out.println("result = " + divide(x,1)); // Index error
} catch(ZeroDivideException e) {
int index = e.getIndex(); // Get the index for the error
if (index > 0) { // Verify it is valid and now fix the array
x[index] = 1; // ...set the divisor to 1...
x[index + 1] = x[index - 1]; // ...and set the result

System.out.println("Zero divisor corrected to " + x[index]);
}
} catch(ArithmeticException e) {
System.out.println("Arithmetic exception caught in main()");
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Index-out-of-bounds exception caught in main()");
}

System.out.println("Outside first try block in main()");

You should put the revised TryBlockTest class file and the file for the ZeroDivideException class
together in the same directory. In the download, they’ll be in the TryBlockTest3 directory for Chapter 7.

How It Works

All you need to add inmain () is the catch block for the new exception. You need to make sure that
the index value for the divisor stored in the exception object is positive so that another exception is not
thrown when you fix up the array. As you arbitrarily set the array element that contained the zero divi-
sor to 1, it makes sense to set the array element holding the result to the same as the dividend. You can
then let the method main () stagger on.

A point to bear in mind is that the last two statements in the try block will not have
been executed. After the catch block has been executed, the method continues with
the code following the try-catch block set. In practice you would need to consider
whether to ignore this. One possibility is to put the whole of the try-catch block
code inmain () in aloop that would normally only run one iteration, but where this
could be altered to run additional iterations by setting a flag in the catch block.

367

Chapter 7

This is a rather artificial example —so what sort of circumstances could justify this kind of fixing up of
the data in a program? If the data originated through some kind of instrumentation measuring physical
parameters such as temperatures or pressures—in a chemical manufacturing plant or an oil refinery, for
example — the data may contain spurious zero values from time to time. Rather than abandon the whole
calculation you might well want to amend these as they occur and press on to process the rest of the data.

Summary

In this chapter you have learned what exceptions are and how to deal with them in your programs. You
should make sure that you consider exception handling as an integral part of developing your Java pro-
grams. The robustness of your program code depends on how effectively you deal with the exceptions
that can be thrown within it.

The important concepts you have explored in this chapter are:

a
a

Exceptions identify errors that arise in your program.
Exceptions are objects of subclasses of the Throwable class.

Java includes a set of standard exceptions that may be thrown automatically, as a result of errors
in your code, or may be thrown by methods in the standard classes in Java.

If a method throws exceptions that aren’t caught, and aren’t represented by subclasses of the
Error class or by subclasses of the RuntimeException class, then you must identify the excep-
tion classes in a throws clause in the method definition.

If you want to handle an exception in a method, you must place the code that may generate the
exception in a try block. A method may have several try blocks.

Exception handling code is placed in a catch block that immediately follows the try block that
contains the code that can throw the exception. A try block can have multiple catch blocks
that each deals with a different type of exception.

A finally block is used to contain code that must be executed after the execution of a try
block, regardless of how the try block execution ends. A £inally block will always be exe-
cuted before execution of the method ends.

You can throw an exception by using a throw statement. You can throw an exception anywhere
in a method. You can also rethrow an existing exception in a catch block to pass it to the calling
method.

You can define your own exception classes that, in general, should be derived from the class
Exception.

Exercises

You can download the source code for the examples in the book and the solutions to the following exer-
cises from http: //www.wrox.com.

368

Exceptions

Write a program that will generate exceptions of type NullPointerException,
NegativeArraySizeException, and IndexOutOfBoundsException. Record the catching of
each exception by displaying the message stored in the exception object and the stack trace record.

Add an exception class to the last example that will differentiate between the index-out-of-
bounds error possibilities, rethrow an appropriate object of this exception class in divide (),
and handle the exception in main ().

Write a program that calls a method that throws an exception of type ArithmeticException at
a random iteration in a for loop. Catch the exception in the method and pass the iteration count
when the exception occurred to the calling method by using an object of an exception class you
define.

Add a finally block to the method in the previous example to output the iteration count when
the method exits.

369

Understanding Streams

This is the first of four chapters devoted to streams and file input and output. This chapter intro-
duces streams, and deals with keyboard input, and output to the command line.

By the end of this chapter, you will have learned:

0O What a stream is and what the main classes that Java provides to support stream opera-
tions are

0 What stream readers and writers are and what they are used for

O

How to read data from the keyboard

0O How to format data that you write to the command line

Streams and the New I/0 Capability

The package that supports stream input/output is java.io, and it is vast. It defines over seventy
classes and interfaces, many of which have a large number of methods. It is therefore quite impracti-
cal to go into them all in detail in a book of this kind. Refer to the Java documentation for more
information. My strategy in this and the following three chapters will be to take a practical approach.
The idea is to provide an overall grounding of the concepts involved and to equip you with enough
detailed knowledge to be able to do a number of specific, useful, and practical things in your pro-
grams. These are:

0 To be able to read data of various kinds from the keyboard
0 To be able to create formatted output to the command line
0O Tobe able to read and write files containing basic data
Q

To be able to read and write files containing objects

To achieve this, I'll give you an overview of what the important stream classes do and how they
interrelate, together with an outline of the classes that operate on streams. I'll go into the detail

Chapter 8

selectively, just exploring the classes and methods that you need to accomplish specific things. I'll also be
sticking to the latest and greatest I/O capability that was first introduced in the JDK 1.4 and continues in
JDK 5.0, which makes it unnecessary to delve into a lot of the original stream classes.

Up to and including Java 1.3, the only way to read and write disk files was to use a stream. The new I/O
capability in the java.nio and java.nio.channels packages enables you to read and write files that
contain data of the primitive Java types, as well as strings, and completely supersedes the stream I/O
capability in this context. While all the old I/O facilities are still there, the new I/0O capability is much
more efficient and in many ways easier to use, so I'll limit the discussions of streams for handling files to
the extent necessary for you to understand the new I/O capability. I'll go into the new I/O capability in
detail in the next two chapters.

Two areas where you must still use the facilities provided by the stream classes are reading from the
keyboard and writing to the command line. I cover both of these in this chapter along with some general
aspects of the stream classes and the relationships between them. The new file I/O capability does not
provide for objects to be written and read, so you still need to use streams for this. You will be looking
into how you read and write objects to a file in Chapter 12.

Understanding Streams

A stream is an abstract representation of an input or output device that is a source of, or destination for,
data. You can write data to a stream and read data from a stream. You can visualize a stream as a sequence
of bytes that flows into or out of your program. Figure 8-1 illustrates how physical devices map to streams.

Data

Data Program

Output
Stream

Figure 8-1

372

Understanding Streams

Input and Output Streams

When you write data to a stream, the stream is called an output stream. The output stream can go to any
device to which a sequence of bytes can be transferred, such as a file on a hard disk, or a phone line con-
necting your system to a remote system. An output stream can also go to your display screen, but only at
the expense of limiting it to a fraction of its true capability. Stream output to your display is output to the
command line. When you write to your display screen using a stream, it can display characters only, not
graphical output. Graphical output requires more specialized support that I'll discuss from Chapter 17
onwards.

Note that while a printer can be considered notionally as a stream, printing in Java does not work this way.
A printer in Java is treated as a graphical device, so sending output to the printer is very similar to dis-
playing graphical output on your display screen. You'll learn how printing works in Java in Chapter 21.

You read data from an input stream. In principle, this can be any source of serial data, but is typically a
disk file, the keyboard, or a remote computer.

Under normal circumstances, file input and output for the machine on which your program is executing
is available only to Java applications. It’s not available to Java applets except to a strictly limited extent.

If this were not so, a malicious Java applet embedded in a web page could trash your hard disk. An
IOException will normally be thrown by any attempted operation on disk files on the local machine in
a Java applet. The directory containing the . class file for the applet and its subdirectories are freely
accessible to the applet. Also, the security features in Java can be used to control what an applet (and an
application running under a Security Manager) can access so that an applet can access only files or other
resources for which it has explicit permission.

The main reason for using a stream as the basis for input and output operations is to make your pro-
gram code for these operations independent of the device involved. This has two advantages. First, you
don’t have to worry about the detailed mechanics of each device, which are taken care of behind the
scenes. Second, your program will work for a variety of input/output devices without any changes to
the code.

Stream input and output methods generally permit very small amounts of data, such as a single charac-
ter or byte, to be written or read in a single operation. Transferring data to or from a stream like this may
be extremely inefficient, so a stream is often equipped with a buffer in memory, in which case it is called
a buffered stream. A buffer is simply a block of memory that is used to batch up the data that is trans-
ferred to or from an external device. Reading or writing a stream in reasonably large chunks will reduce
the number of input/output operations necessary and thus make the process more efficient.

When you write to a buffered output stream, the data is sent to the buffer and not to the external device.
The amount of data in the buffer is tracked automatically, and the data is usually sent to the device when
the buffer is full. However, you will sometimes want the data in the buffer to be sent to the device before
the buffer is full, and methods are provided to do this. This operation is usually termed flushing the
buffer.

Buffered input streams work in a similar way. Any read operation on a buffered input stream will read
data from the buffer. A read operation for the device that is the source of data for the stream will be read
only when the buffer is empty and the program has requested data. When this occurs, a complete buffer-
full of data will be read automatically from the device, if sufficient data is available.

373

Chapter 8

Binary and Character Streams

The java. io package supports two types of streams — binary streams, which contain binary data, and
character streams, which contain character data. Binary streams are sometimes referred to as byte streams.
These two kinds of streams behave in different ways when you read and write data.

When you write data to a binary stream, the data is written to the stream as a series of bytes, exactly as it
appears in memory. No transformation of the data takes place. Binary numerical values are just written
as a series of bytes, 4 bytes for each value of type int, 8 bytes for each value of type 1ong, 8 bytes for
each value of type double, and so on. As you saw in Chapter 2, Java stores its characters internally as
Unicode characters, which are 16-bit characters, so each Unicode character is written to a binary stream
as 2 bytes, the high byte being written first. Supplementary Unicode characters that are surrogates con-
sist of two successive 16-bit characters, in which case the two sets of 2 bytes are written in sequence to
the binary stream with the high byte written first in each case.

Character streams are used for storing and retrieving text. You may also use character streams to read
text files not written by a Java program. All binary numeric data has to be converted to a textual repre-
sentation before being written to a character stream. This involves generating a character representation
of the original binary data value. Reading numeric data from a stream that contains text involves much
more work than reading binary data. When you read a value of type int from a binary stream, you
know that it consists of 4 bytes. When you read an integer from a character stream, you have to deter-
mine how many characters from the stream make up the value. For each numerical value you read from
a character stream, you have to be able to recognize where the value begins and ends and then convert
the token — the sequence of characters that represents the value — to its binary form. Figure 8-2 illus-
trates this.

total of 5 bytes written

ASCII
L 6 7 Y 7 representation
/ of characters
Stream Contents 0x31 | Ox36 | 0x37 | Ox32 | Ox37

write x
Int x = 167; write y
To read these back
Inty =27; Sklﬁiiﬁgil It);1g ?iursr]teti?e?

bytes correspond to x,
and the next two
correspond to y.

Figure 8-2

374

Understanding Streams

When you write strings to a stream as character data, by default the Unicode characters are automati-
cally converted to the local representation of the characters in the host machine, and these are then writ-
ten to the stream. When you read a string, the default mechanism converts the data from the stream back
to Unicode characters from the local machine representation. With character streams, your program reads
and writes Unicode characters, but the stream will contain characters in the equivalent character encod-
ing used by the local computer.

You don’t have to accept the default conversion process for character streams. Java allows named map-
pings between Unicode characters and sets of bytes to be defined, called charsets, and you can select an
available charset that should apply when data is transferred to, or from, a particular character stream. I
won’t be going into this in detail, but you can find more information on defining and using charsets in
the JDK documentation for the Charset class.

The Classes for Input and Output

There are quite a number of stream classes, but as you will see, they form a reasonably logical structure.
Once you see how they are related, you shouldn’t have much trouble using them. I will work through
the class hierarchy from the top down, so you will be able to see how the classes hang together and how
you can combine them in different ways to suit different situations.

The package java. io contains the classes that provide the foundation for Java’s support for stream I/0O:

Class Description
InputStream The base class for byte stream input operations.
OutputStream The base class for byte stream output operations.

InputStreamand OutputStream are both abstract classes. As you are well aware by now, you cannot
create instances of an abstract class — these classes serve only as a base from which to derive classes
with more concrete input or output capabilities. However, both of the classes declare methods that
define a basic set of operations for the streams they represent, so the fundamental characteristics of how
a stream is accessed are set by these classes. Both classes implement the Closeable interface. This inter-
face declares just one method, close (), which should close the stream and release any resources that
the stream object is holding. Generally, the InputStream and OutputStream classes, and their sub-
classes, represent byte streams and provide the means of reading and writing binary data as a series

of bytes.

Basic Input Stream Operations

As you saw in the previous section, the InputStream class is abstract, so you cannot create objects of
this class type. Nonetheless, input stream objects are often accessible via a reference of this type, so the
methods identified in this class are what you get. The InputStream class includes three methods for
reading data from a stream:

375

Chapter 8

Method Description

read () This method is abstract in the InputStream class, so it
has to be defined in a subclass. The method returns the
next byte available from the stream as type int. If the end
of the stream is reached, the method will return the value
-1. An exception of type IOException will be thrown if
an I/O error occurs.

read (byte[] array) This method reads bytes from the stream into successive
elements of array. The maximum of array.length
bytes will be read. The method will not return until the
input data is read or the end of the stream is detected. The
method returns the number of bytes read or -1 if no bytes
were read because the end of the stream was reached. If
an I/O error occurs, an exception of type I0Exception
will be thrown. If the argument to the method is null
then a NullPointerException will be thrown. An
input/output method that does not return until the oper-
ation is completed is referred to as a blocking method,
and you say that the methods blocks until the operation
is complete.

read (byte[] array, This works in essentially the same way as the previous
int offset, method, except that up to 1length bytes are read into
int length) array starting with the element array[offset].

The data is read from the stream by these methods simply as bytes. No conversion is applied to the bytes
read. If any conversion is required — for a stream containing bytes in the local character encoding, for
example — you must provide a way to handle this. You will see how this might be done in a moment.

You can skip over bytes in an InputStream by calling its skip () method. You specify the number of
bytes to be skipped as an argument of type long, and the actual number of bytes skipped is returned,
also a value of type 1long. This method can throw an I0Exception if an error occurs.

You can close an InputStream by calling its close () method. Once you have closed an input stream,
subsequent attempts to access or read from the stream will cause an T0Exception to be thrown because
the close () operation will have released the resources held by the stream object, including the source
of the data, such as a file.

The InputStreamn class has the seven direct subclasses shown in Figure 8-3.

You will be using the FileInputStreanm class in Chapter 11 for reading disk files and the
ObjectInputStream class in Chapter 12 for reading objects from a file.

376

Understanding Streams

InputStream
A A A
AudiolnputStream [~ — SequencelnputStream
For reading audio data For reading from a
sequence of streams
FileInputStream — — ByteArraylnputStream
For reading from a file For reading from a byte array
ObjectinputStream PipedinputStream
For reading objects from a stream For reading from a piped stream

FilterInputStream

For filtering input from an
existing stream

Figure 8-3

The FilterInputStream class has a further nine direct subclasses that provide more specialized ways
of filtering or transforming data from an input stream. You'll be using only the BufferedInputStream
class, but here’s the complete set, with an indication of what each of them does:

BufferedInputStream

DataInputStream

CheckedInputStream

CipherInputStream

DigestInputStream

InflaterInputStream

Buffers input from another stream in memory to make the
read operations more efficient.

Reads data of primitive types from a binary stream.

Reads an input stream and maintains a checksum for the
data that is read to verify its integrity.

Reads data from an encrypted input stream.

Reads data from an input stream and updates an associated
message digest. A message digest is a mechanism for com-
bining an arbitrary amount of data from a stream into a
fixed-length value that can be used to verify the integrity of
the data.

Reads data from a stream that has been compressed, such
as a ZIP file, for example.

Table continued on following page

377

Chapter 8

LineNumberInputStream Reads data from a stream and keeps track of the current
line number. The line number starts at 0 and is incremented
each time a newline character is read.

ProgressMonitorInputStream Reads data from an input stream and uses a progress-
monitor to monitor reading the stream. If reading the
stream takes a significant amount of time, a progress dialog
will be displayed offering the option to cancel the operation.
This is used in window-based applications for operations
that are expected to be time-consuming.

PushbackInputStream Adds the capability to return the last byte that was read
back to the input stream so you can read it again.

You can create a Buf feredInputStream object from any other input stream, since the constructor
accepts a reference of type InputStream as an argument. The BufferedInputStream class overrides
the methods inherited from InputStream. For example, in the following code:

BufferedInputStream keyboard = new BufferedInputStream(System.in);

the argument System. in is the static member of the System class that encapsulates input from the key-
board and is of type InputStream. You'll be looking into how you can best read input from the keyboard a
little later in this chapter.

The effect of wrapping a stream in a Buf feredInputStream object is to buffer the underlying stream

in memory so that data can be read from the stream in large chunks — up to the size of the buffer that is
provided. The data is then made available to the read () methods directly from memory, and a real read
operation from the underlying stream is executed only when the buffer is empty. With a suitable choice
of buffer size, the number of input operations that are needed will be substantially reduced, and the pro-
cess will be a whole lot more efficient. This is because for most input streams, each read operation carries
quite a bit of overhead, beyond the time required to actually transfer the data. In the case of a disk file,
for example, the transfer of data from the disk to memory can start only once the read /write head has
been positioned over the track that contains the data and the disk has rotated to the point where the
read/write head is over the point in the track where the data starts. This delay before the transfer of data
begins will typically be several milliseconds and will often be much longer than the time required to
transfer the data. Thus, by minimizing the number of separate read operations that are necessary, you
can substantially reduce the total time needed to read a significant amount of data.

The buffer size that you get by default when you call the Buf feredInputStream constructor as in the
previous code fragment is 8192 bytes. This will be adequate for most situations where modest amounts
of data are involved. The Buf feredInputStream class also defines a constructor that accepts a second
argument of type int that enables you to specify the size in bytes of the buffer to be used.

Deciding on a suitable size for a buffer is a matter of judgment. You need to think about how the buffer
size will affect operations in your program. The total amount of data involved, as well as the amount
that you need to process at one time, also comes into it. For example, you will usually want to choose a
buffer size that is a multiple of the amount of data that your program will request in each read operation.
Suppose you expect your program to read and process 600 bytes at a time, for instance. In this case, you
should choose a buffer size that is a multiple of 600 bytes. The multiple, and therefore the total buffer
size, is a balance between the amount of memory required for the buffer and its effect on the efficiency

378

Understanding Streams

of your program. If you expect to be processing 100 sets of data, each of 600 bytes, you might settle on
a buffer size of 6000 bytes as a reasonable choice. Each buffer-full would then consist of 10 sets of data,
and there would need to be only 10 physical read operations to refill the buffer.

Basic Output Stream Operations

The OutputStream class contains three write () methods for writing binary data to the stream. As can
be expected, these mirror the read () methods of the InputStream class. This class is also abstract, so
only subclasses can be instantiated. The principal direct subclasses of OutputStream are shown in
Figure 8-4.

OutputStream
J | [
FileOutputStream ByteArrayOutputStream
For writing to a file For writing to a byte array
ObjectOutputStream —— PipeOutputStream
For writing objects to a stream For writing to a piped stream

FilterOutputStream

For filtering output from
and existing stream

Figure 8-4

You'll be using the FileOutputStream class that is derived from OutputStream when you write files
in the next chapter, and you'll investigate the methods belonging to the ObjectOutputStream class in
Chapter 12, when you learn how to write objects to a file.

Note that this is not the complete set of output stream classes. The FilterOutputStream class has a
further seven subclasses, including the Buf feredOutputStrean class, which does for output streams
what the Buf feredInputStream class does for input streams. There is also the PrintStream class,
which you will be looking at a little later in this chapter, since output to the command line is via a stream
object of this type.

Stream Readers and Writers

Stream readers and writers are objects that can read and write byte streams as character streams. So a
character stream is essentially a byte stream fronted by a reader or a writer. The base classes for stream
readers and writers are:

379

Chapter 8

Class Description
Reader The base class for reading a character stream
Writer The base class for writing a character stream

Reader and Writer are both abstract classes. Both classes implement the Closeable interface, which
declares the close () method. The Reader class also implements the Readable interface, which declares
the read () method for reading characters into a CharBuffer object that is passed as the argument to
the method. I'll discuss CharBuffer objects in Chapters 10 and 11 in the context of reading and writing
files. The Reader class defines two further read () methods. One of these requires no arguments and
reads and returns a single character from the stream and returns it as type int. The other expects an
array of type char[] as the argument and reads characters into the array that is passed to the method.
The method returns the number of characters that were read or -1 if the end of the stream is reached.
Finally, the reader has an abstract read () method as a member, which is declared like this:

public abstract int read(char[] buf, int offset, int length) throws IOException;

This method is the reason the Reader class is abstract and has to be implemented in any concrete sub-
class. The method reads 1ength characters into the buf array starting at position buf [offset]. The
method also returns the number of characters that were read or -1 if the end of the stream was reached.
All three read () methods can throw an exception of type I0Exception, and the read method declared
in Readable can also throw an exception of NullPointerException if the argument is null.

The writer class implements the Appendable interface. This declares two versions of the append ()
method; one takes an argument of type char and appends the character that is passed to it to whatever
stream the wWriter encapsulates, and the other accepts an argument of type CharSequence and appends
that to the underlying stream. You'll recall from Chapter 6 that a CharSequence reference can be a refer-
ence to an object of type String, an object of type StringBuilder, an object of type StringBuffer, or
an object of type CharBuffer, so the append () method will handle any of these. The Writer class has
five write () methods as members, all of which have a void return type and throw an I0Exception if
an I/0O error occurs:

write(int ch) Writes the character corresponding to
the low-order 2 bytes of the integer
argument, ch

write(char[] buf) Writes the array of characters buf

write(char[] buf, int offset, int length) This is an abstract method that writes
length characters from buf starting at
buf [offset]

write(String str) Writes the string str

write(String str, int offset, int length) Writes 1length characters from str
starting with the character at index
position of fset in the string

380

Understanding Streams

The Reader and Writer classes and their subclasses are not really streams themselves, but provide the
methods you can use for reading and writing an underlying stream as a character stream. Thus, a Reader
or Writer object is typically created using an underlying InputStream or OutputStream object that
encapsulates the connection to the external device, which is the ultimate source or destination of the data.

Using Readers

The Reader class has the direct subclasses shown in Figure 8-5.

Reader

J A A\ A A [
InputStreamReader PipedReader

For reading a character stream For reading from a PipedWriter

BufferedReader CharArrayReader

For buffering other reader

(%)

For reading from a char array

FilterReader StringReader

For reading filtered streams For reading from a string

Figure 8-5

The concrete class that you would use to read an input stream as a character stream is InputStreamReader.
You could create an InputStreamReader object like this, for example:

InputStreamReader keyboard = new InputStreamReader (System.in) ;

The parameter to the InputStreamReader constructor is of type InputStream, so you can pass an
object of any class derived from InputStream to it. The sample above creates an InputStreamReader
object, keyboard, from the object System. in, the keyboard input stream.

The InputStreamReader class defines the abstract read () method that it inherits from Reader and rede-
fines the read () method without parameters. These methods read bytes from the underlying stream and
return them as Unicode characters using the default conversion from the local character encoding. In addi-
tion to the preceding example, there are also three further constructors for InputStreamReader objects:

InputStreamReader (InputStream in, Constructs an object with in as the underlying
Charset s) stream. The object will use s to convert bytes to
Unicode characters.

Table continued on following page

381

Chapter 8

InputStreamReader (InputStream in, Constructs an object that will use the charset
CharsetDecoder dec) decoder dec to transform bytes that are read from
the stream in to a sequence of Unicode characters
InputStreamReader (InputStream in, Constructs an object that will use the charset
String charsetName) identified in the name charsetName to convert

bytes that are read from the stream in to a
sequence of Unicode characters

A java.nio.charset.Charset object defines a mapping between Unicode characters and bytes. A
Charset can be identified by a name that is a string that conforms to the IANA conventions for Charset
registration. A java.nio.charset.CharsetDecoder object converts a sequence of bytes in a given
charset to bytes. Consult the class documentation in the JDK for the Charset and CharsetDecoder
classes for more information.

Of course, the operations with a reader would be much more efficient if you buffered it using a
BufferedReader object like this:

BufferedReader keyboard = new BufferedReader (new InputStreamReader (System.in)) ;

Here, you wrap an InputStreamReader object around System. in and then buffer it using a

Buf feredReader object. This will make the input operations much more efficient. Your read operations
will be from the buffer belonging to the Buf feredReader object, and this object will take care of filling
the buffer from System. in when necessary via the underlying InputStreamReader object.

A CharArrayReader object is created from an array and enables you to read data from the array as
though it were from a character input stream. A StringReader object class does essentially the same
thing, but obtains the data from a String object.

Using Writers

The main subclasses of the Writer class are as shown in Figure 8-6.
I'll just discuss a few details of the most commonly used of these classes.

The OoutputStreamwriter class writes characters to an underlying binary stream. It also has a subclass,
FileWriter, that writes characters to a stream encapsulating a file. Both of these are largely superseded
by the I/0O facilities introduced in Java 1.4 that you'll explore starting in the next chapter.

Note that the Printwriter class has no particular relevance to printing, in spite of its name. The
PrintWriter class defines methods for formatting binary data as characters and writing it to a charac-
ter stream. It defines overloaded print () and println () methods that accept an argument of each
of the basic data types, of type char[], of type String, and of type Object. The data that is written
is a character representation of the argument. Numerical values and objects are converted to a string
representation using the static valueOf () method in the String class. Overloaded versions of this
method exist for all of the primitive types plus type Object. In the case of an argument that is an
Object reference, the valueOf () method just calls the toString () method for the object to produce
the string to be written to the stream. The print () methods just write the string representation of the
argument, whereas the println () method appends \n to the output. You can create a PrintWriter
object from a stream or from another Writer object.

382

Understanding Streams

Writer
A A A A A
OutputStreamWriter - H PipedWriter
For writing a character stream For writing to a PipedReader
BufferedWriter — — CharArrayWriter

For buffering other writers For writing to a char array

PrintWriter StringWriter
For writing formated data For writing to a string

FilterWriter

For writing filtered streams

Figure 8-6

An important point to note when using a Printiriter object is that its methods do not throw 1/0 excep-
tions. To determine whether any I/O errors have occurred, you have to call the checkError () method for
the PrintwWriter object. This method will return true if an error occurred and false otherwise.

The stringWriter and CharArrayWiriter classes are for writing character data to a StringBuffer
object, or an array of type char[]. You would typically use these to perform data conversions so that
the results are available to you from the underlying array, or string. For example, you could combine the
capabilities of a PrintWriter with a StringWriter to obtain a String object containing binary data
converted to characters:

StringWriter strWriter = new StringWriter();
PrintWriter writer = new PrintWriter (strWriter) ;

Now you can use the methods for the writer object to write to the StringBuf fer object underlying the
StringWriter object:

double value = 2.71828;
writer.println(value) ;

You can get the result back as a StringBuf fer object from the original Stringliriter object:

StringBuffer str = strWriter.getBuffer();

383

Chapter 8

Of course, the formatting done by a PrintwWriter object does not help make the output line up in neat
columns. I